
Annals of Mathematics and Artificial Intelligence (2023) 91:713–750
https://doi.org/10.1007/s10472-023-09886-7

REGULAR SUBMISS ION

Using answer set programming to deal with boolean
networks and attractor computation: application to gene
regulatory networks of cells

Tarek Khaled1 · Belaid Benhamou1 · Van-Giang Trinh1

Accepted: 5 July 2023 / Published online: 31 July 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Deciphering gene regulatory networks’ functioning is an essential step for better understand-
ing of life, as these networks play a fundamental role in the control of cellular processes.
Boolean networks have been widely used to represent gene regulatory networks. They allow
to describe the dynamics of complex gene regulatory networks straightforwardly and effi-
ciently. The attractors are essential in the analysis of the dynamics of a Boolean network.
They explain that a particular cell can acquire specific phenotypes that may be transmitted
over several generations. In thiswork, we consider a new representation of Boolean networks’
dynamics based on a new semantics used in Answer Set Programming (ASP). We use logic
programs and ASP to express and deal with gene regulatory networks seen as Boolean net-
works, and develop a method to detect all the attractors of such networks. We first show how
to represent and deal with general Boolean networks for the synchronous and asynchronous
updates modes, where the computation of attractors requires a simulation of these networks’
dynamics. Then, we propose an approach for the particular case of circular networks where
no simulation is needed. This last specific case plays an essential role in biological systems.
We show several theoretical properties; in particular, simple attractors of the gene networks
are represented by the stablemodels of the corresponding logic programs and cyclic attractors
by its extra-stable models. These extra-stable models correspond to the extra-extensions of
the new semantics that are not captured by the semantics of stable models. We then evaluate
the proposed approach for general Boolean networks on real biological networks and the one
dedicated to the case of circular networks on Boolean networks generated randomly. The
obtained results for both approaches are encouraging.

Keywords Answer set programming · Logic programming · Systems biology · Gene
regulatory network · Boolean network · Attractor · Cellular phenotype

Tarek Khaled and Belaid Benhamou are contributed equally to this work.

B Tarek Khaled
tarek.khaled@univ-amu.fr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-023-09886-7&domain=pdf


714 T. Khaled et al.

Mathematics Subject Classification (2010) 68

1 Introduction

Proteins synthesized froman organism’s genes are involved in cellular processes such as cells’
response to changing environmental conditions, cell differentiation during an organism’s
development, and DNA replication before cell division. Each of these cellular processes is
sensitive to the concentration of a large number of proteins. Therefore, we understand why
gene expression, that is, the set of processes leading to the synthesis of these proteins, is
a highly regulated phenomenon. Many proteins are involved in these different regulation
stages. Gene expression is regulated by proteins from other genes’ expression. The set of
regulatory interactions between genes forms what is called a gene regulatory network.

A gene regulatory network is a biological system representing genes’ interaction for the
survival, reproduction, or death of a cell. Different approaches have been used to model and
simulate gene regulatory networks [1]. Quantitative modeling is mostly used, but it needs
numerical parameters that are, in most cases, challenging to obtain. Here, we use a qualitative
representation that does not require to know such parameters [2] and allows to capture the
fundamental properties of the dynamics of gene regulatory networks.

Boolean networks are a simple but powerful framework for modeling gene regulatory
networks [3–5]. They are composed of entities corresponding to genes or proteins. Each entity
takes a value on or off, meaning that the gene/protein is or is not expressed, respectively. Two
genes/proteins are connected if the expression of one of them modifies the expression of the
other resulting in an activation or an inhibition. From a logical point of view, a biological
system can be seen as a set of interacting entities changing along discrete time. An update
mode specifies the way that the entities will be updated. There are two most popular update
modes for Boolean networks [6]: synchronous (i.e., all the entities are simultaneously updated
at each step) and asynchronous (i.e., only one entity is selected randomly and updated at each
step). It has been shown that Boolean networks correctly express and capture the dynamics
of gene regulatory networks. Particularly, the attractors of Boolean networks characterize
their dynamics.

In gene regulatory networks, an attractor represents the states towards which the network
dynamics converges and generally corresponds to the characteristics/phenotypes observed
in biological systems [4, 7]. A Boolean network will converge to an attractor, and will then
remain in it unless an external force is applied [8, 9]. Thus, it is essential to identify the
attractors when studying the dynamics of a network. With this demand, we introduce in this
work a new logic approach to express and analyze the dynamics of Boolean networks that
allows to capture all the attractors.

We use logic programming and the ASP framework [10] to represent and deal with gene
regulatory networks. ASP is a well-known declarative paradigm resulting from research on
logic programming and non-monotonic reasoning. Several ASP solvers [11–14] have been
developed. They provide a very natural and powerful way [15] to represent knowledge bases
and allow to solve efficiently various combinatorial problems. The work presented in this
paper is based on the ASP approach introduced in [16, 17] that is itself based on the semantics
introduced in [18]. Unlike other semantics, the used one always ensures extensions or models
for consistent logic programs, which reflect the meaning of the logic programs. Some of the
extensions satisfying what is called a discriminant condition correspond to the stable models

123



Using answer set programming to deal with attractor computation 715

of the logic programs. Other ones called extra-extensions identify extra-stable models that
are not considered by know classical semantics, such as the one of stable models [19].

First, we propose a method that we use to compute the attractors of general Boolean
networks for both the synchronous and asynchronous update modes. Herein, the detection
of attractors is done by simulating the Boolean networks’ dynamics and then verifying the
attractors’ existence. Second, we focus on particular gene networks represented by circular
graph interactions that play an essential role in biological systems and consider only the
asynchronous update mode. For this case, the detection of the attractors is done without any
Boolean network simulation. We will see that representing interaction graphs of circular
Boolean networks as logic programs interpreted in the new semantics [18] leads to some
theoretical results that we use to identify the attractors. Especially, these results reveal a
similarity between the answer sets (the stable models) of the logic program representing the
interaction graph and the stable configurations of its corresponding transition graph. On the
other hand, we draw parallels between the extra-stable models of the logic program and the
stable cycles of the transition graph. The extra-stable models of the new semantics [18] are
essential in the detection of the stable cycle attractors.

It is worth noting that the present article is the revised and extended version of our previous
work [20, 21]. On the one hand, we carefully revise the formal definitions and proofs, the
discussions about related work, the experimental design, and all the other details presented
in the preliminary papers. On the other hand, we add more new results as follows. First,
we have improved our ASP encoding to make it totally declarative but focus only on stable
configurations. Second,we showcase that the efficiency of this improved encoding can benefit
to a broader approach [22] (also developed by our group) for computing all attractors of an
asynchronous Boolean network. Finally, we verify this hypothesis by testing our method on
the large real-world models used in [22].

The paper’s remainder is organized as follows: We start with summarizing the prelimi-
naries of the used ASP semantics [18] and the Boolean network framework in Section 2. We
show how to represent and deal with general Boolean networks in Section 3. In Section 4,
we propose an approach dedicated to the particular case of circular Boolean networks. In
Section 5, we evaluate the proposed approach for general Boolean networks on real biological
networks and the approach dedicated to circular networks on randomly generated networks.
We also discuss several related work in Section 6. Finally in Section 7, we conclude the work
and give some perspectives.

2 Preliminaries

2.1 Boolean networks

Let V = {v1, . . . , vn} be a finite set of Boolean entities vi ∈ {0, 1} representing genes in a
gene regulatory network. A configuration x = (x1, . . . , xn) of the system is the attribution of
a truth value xi ∈ {0, 1} to each element of V . The set of all configurations [23], also called
the space of configurations, is designated by X = {0, 1}n . Boolean networks can be seen
as abstractions for gene regulatory networks where each Boolean variable xi represents the
state of the gene vi . The true value for xi (i.e., xi = 1) means that the corresponding gene is
active, the false value (i.e., xi = 0) means that the corresponding gene is inactive.

The dynamics of a Boolean network is expressed by a global transition function f and an
update mode that defines how the elements of this Boolean network are updated over time.

123



716 T. Khaled et al.

The global transition function f is defined as f : X �→ X such that x = (x1, . . . , xn) �→
f (x) = ( f1(x), . . . , fn(x)), where each function fi 1: X �→ {0, 1} is a local transition
function that gives the evolution of the state xi of the gene vi over time.

There are an infinite number of possible update modes, but the most used ones are the
synchronous and asynchronous modes [6]. In the synchronous mode, all the components are
concurrently updated at each step. Consequently, each state has exactly one successor. In
the asynchronous mode, only one component is selected randomly and updated at each step.
Thus, each state can have up to n successors. In biology, the asynchronous mode fits the
actual situation better [6]. Indeed, state changes occur at variable speeds and are usually not
simultaneous. However, the question which update mode is the best one is still open so far.
Hence, in this work we study both synchronous and asynchronous Boolean networks.

2.1.1 Transition graphs

The Boolean network dynamics is expressed by means of a transition graph TG, defined by
a transition function f and an update mode, formally:

Definition 1 Let X = {0, 1}n be the configuration space of a Boolean network, f : X → X
be its associated global transition function and fi : X → {0, 1}, i ∈ {1, . . . , n} are the local
transition functions forming the function f . The transition graph representing the dynamic
of the network is the oriented graph TG( f ) = (X , T ( f )) where the set of vertices is the
set of all configurations of X and the set of arcs is T ( f ) ⊆ X2. In the synchronous update
mode, an arc (x, x ′) ∈ T ( f ) if and only if x ′

i = fi (x),∀i ∈ {1, . . . , n}. In the asynchronous
update mode, an (x, x ′) ∈ T ( f ) if and only if ∃i ∈ {1, . . . , n} such that x ′

i = fi (x) and
x ′
j = x j ,∀ j ∈ {1, . . . , n} \ {i}. An arc (x, x ′) is called a self transition if x = x ′.

An orbit in the transition graph T ( f ) is a sequence of configurations (x0, x1, x2, . . . )
such that ∀t ≥ 0, (xt , xt+1) ∈ TG( f ). A cycle of length r is a sequence of configurations
(x1, . . . , xr , x1) with r ≥ 2 whose configurations x1, . . . , xr are all different. We can now
give the meaning of an attractor in a Boolean network. A configuration x = (x1, . . . , xn)
of the transition graph TG( f ) is a stable configuration when ∀xi ∈ V , xi = fi (x), thus
x = f (x). A stable configuration x = (x1, . . . , xn) forms a trivial attractor of TG( f ). Note
that the sets of stable configurations of the synchronous and asynchronous transition graphs
are the same.

A sequence of configurations (x1, x2, . . . , xr , x1) forms a stable cycle of TG( f ) when
∀t < r , xt+1 is the unique successor of xt and x1 is the unique successor of xr . A stable
cycle in TG( f ) forms a cyclic attractor. Note that a synchronous transition graph can have
stable configurations or stable cycles, whereas an asynchronous transition graph can have in
addition unstable cycles (i.e., there is a configuration of a cycle that has a successor outside
the cycle) or loose attractors [24] (i.e., overlapping of multiple unstable cycles). In this study,
we only focus on stable configurations and stable cycles.

Transition graphs are then relevant to study the dynamics of a Boolean networks. Nev-
ertheless, the biological data emanate from observations of experiments that habitually give
only correlations between genes, but nothing on the network dynamics.

1 fi (x) represents the local change that is made to the state xi of the gene vi .

123



Using answer set programming to deal with attractor computation 717

2.1.2 Interaction graphs

The correlations between genes in a gene network are traditionally represented by an inter-
action graph that is a directed graph where the signs (+ or −) label the arcs.

Definition 2 Let N = (V , f ) be a Boolean network, where V = {v1, .., vn} and f =
{ f1, ..., fn}. The interaction graph of N is the signed-oriented graph IG = (V , I ) where
I ⊆ V × {+,−} × V is the set of signed arcs. For all vi , v j ∈ V , there exists a positive
labeled by + (resp. negative labeled by −) arc from v j to vi if and only if there exists a
configuration x ∈ X with x j = 0 such that fi (x) < fi (x j ) (resp. fi (x) > fi (x j )), where
x j denotes the configuration y such that y j = 1 − x j and yk = xk for all k 
= j .

Remark 1 The vertices of the interaction graph depict the genes in the gene regulatory net-
work and the arcs express the interactions between them. An arc labeled by + is said to be
positive and denotes a positive interaction between genes, whereas an arc labeled by - is said
to be negative and indicates a negative interaction between genes.

An interaction graph of a Boolean network is much smaller than the transition graph of
this network; therefore, is straightforward. However, an interaction graph only provides the
static information of a Boolean network.

Example 1 Let us consider a Boolean network having a set of vertices V = {v1, v2} and a
transition function f defined as f (x1, x2) = (x2, x1 ∧ ¬x2). The function f induces the
interaction graph shown in Fig. 1-a. This interaction graph is associated with the global
renamed transition function f : {1, 2}2 �→ {1, 2}2 where f (1, 2) = (2, 1 ∧ ¬2) and where
each Boolean variable xi is simply denoted by its index i . We can see that the configuration
space of the network is X = {0, 1}2. From f and X , we deduce the two transition graphs
shown in Fig. 1-b and -c corresponding to the synchronous and asynchronous update modes,
respectively.

The synchronous graph has two attractors including the stable configuration 00 and the
stable cycle {10, 01}. The asynchronous graph has only one attractor represented by the stable
configuration 00. We can also notice that the asynchronous graph contains an unstable cycle
{10, 11}. It is not stable because 10 has an arc coming out from this cycle.

2.1.3 Circular Boolean networks

The particularity of circular networks has been underlined in [25]. Thomas considered asyn-
chronous Boolean networks and assumed that a Boolean network must contain a positive

Fig. 1 The synchronous (b) / asynchronous (c) transition graphs of a Boolean network resulting from the
interaction graph (a) corresponding to the transition function f

123



718 T. Khaled et al.

circuit (resp. a negative one) to admit several stable configurations (resp. a non-trivial attrac-
tor such as a stable cycle).

Definition 3 A circuit of the interaction graph IG = (V , I ) of size k is a sequence of
vertices C = (i1, i2, . . . , ik, i1) such that for all j ∈ {1, . . . , k − 1}, (i j , {+,−}, i j+1) and
(ik, {+,−}, i1) are arcs of IG. If all the vertices of C are distinct, then C is said to be
elementary. If the number of arcs labeled by the sign "-" (negative arcs) of an elementary
circuit is even (resp. odd), then this circuit is said to be positive (resp. negative).

Example 2 Consider the two Boolean networks having the same set of nodes V = {1, 2, 3}
and two global transition functions f and g defined as f (x1, x2, x3) = (x3,¬x1, x2) and
g(x1, x2, x3) = (¬x3,¬x1, x2). Figure 2 shows the interaction graphs corresponding to both
f and g. We can see that the function f induces a negative circuit of size 3 (Fig. 2 (a)) and
g induces a positive circuit of size 3 (Fig. 2 (b)).

The configuration space here is X = {0, 1}3. The two asynchronous transition graphs
corresponding to both f and g are given in Fig. 3. We can see that for each arc (x, y)
of both the transition graphs, if x 
= y then the successor configuration y differs from its
predecessor configuration x by a single component element. The transition graph TG(g)
corresponding to g has two stable configurations 100 and 011 illustrated in bold in Fig. 3
(b). Both configurations express two simple attractors that could be written as (1,¬2,¬3)
and (¬1, 2, 3) when considering the corresponding nodes. The transition graph TG( f ) cor-
responding to f has a stable cycle attractor {000, 010, 011, 111, 101, 100} formed by the
six configurations pictured in bold in Fig. 3 (a). This cycle attractor could be denoted as
{(¬1,¬2,¬3), (¬1, 2,¬3), (¬1, 2, 3), (1, 2, 3), (1,¬2, 3), (1,¬2,¬3)} when considering
the associated nodes.

An interaction graph of a single node with a positive arc forms a positive circuit of length
1. If the node is active, then it remains active permanently. If it is inactive, then it remains
permanently inactive. Therefore, its transition graph will contain two stable configurations,
one where the node is active and one where it is inactive. This property is also valid for
interaction graphs forming a positive circuit of any size. In other words, each node in a
positive circuit acts positively on itself through all the circuit interactions.

The stabilization state of gene i depends on the stabilization state of the node j preceding
i in the circuit. For instance, if the interaction of j on i is positive and j has stabilized in an
active state, then i should stabilize in an active state. If j has stabilized in an inactive state,
then i should stabilize in an inactive state. The state of each node could then stabilize either
in an active or an inactive state. Therefore, regardless of the length of the circuit, there are
only two possible stable configurations (two simple attractors) for such networks.

On the other hand, an interaction graph consisting in a single self-inhibitory node forms
a negative circuit of length 1. If the node is active, then it inhibits itself and it activates itself

Fig. 2 Interaction graph of circular positive (b) and negative graphs (a) of size 3

123



Using answer set programming to deal with attractor computation 719

Fig. 3 Transition graphs of circular positive (b) and negative graphs (a) of size 3. For simplification, self
transitions are omitted

otherwise (if it is inactive). The state of the node alternates between active and inactive. This
property is preserved for interaction graphs with negative circuits of any length. Each node
operates on itself through the circuit’s interactions, and its state oscillates between active and
inactive.

In the case of the asynchronous update mode, it has been shown in [26] that a positive
circuit of size n has two attractors, namely two stable configurations x and ¬x of n elements
(of size n) in its corresponding transition graph. The configuration ¬x is obtained from x by
inverting the truth value of each element of x . It is the complementary configuration of x .
On the other hand, a negative circuit of size n admits only one attractor corresponding to a
stable cycle of its transition graph formed by 2n configurations of n elements.

From a biological point of view, the capacity to have multiple stable configurations may
explain that some cells could develop specific phenotypes that could be transmitted over
several generations. Stable cycles allow the expression of homeostasis phenomena. This
phenomenon’s role is to maintain certain critical factors around an ideal value (e.g., temper-
ature, blood sugar level).

2.2 Answer set programming

The ASP paradigm [10] is entirely declarative, it has a high level knowledge representation
capability and very powerful solvers. The basic idea of ASP is to represent the knowledge
base as a set of rules constituting a logical program, then give to this program a semantics
by computing for instance its stable models [19] or its answer sets [27].

A logic program π is a finite set of rules of the form

r : head(r) ← body(r)

In general, the rules are given in First-Order Logic. A grounder is used to transform the
initial logic program into a ground (propositional logic) program denoted by Ground(π)

that conserves the initial program’s stable models or answer sets. In the sequel, we focus on
only ground programs. We shall write just π to mean Ground(π).

123



720 T. Khaled et al.

There are different classes of logic programs. They differ by the presence or the absence
of the classical negation and/or the default negation (or the negation as failure) in the rules
of the considered program. A positive logic program π is a set of rules of the form

r : A0 ← A1, A2, . . . , Am

where m ≥ 0 and Ai∈{0,...,m} is an atom. There is no classical/strong negation or default
negation in a positive logic program. A normal logic program π is a set of rules of the form

r : A0 ← A1, A2, . . . , Am, not Am+1, . . . , not An

where 0 ≤ m ≤ n, Ai∈{0,...,n} is an atom and not is the symbol expressing the default
negation. The positive body of r is body+(r) = {A1, A2, . . . , Am} and the negative one is
body−(r) = {Am+1, . . . , An}. The intuitive meaning of the rule r is the following: if we
prove all the atoms of body+(r) and at the same time no atom of body−(r) had been proven,
then we infer the head A0. The positive projection of r is

r+ = A0 ← A1, A2, . . . , Am

An extended logic program is a set of rules of the form

r : L0 ← L1, L2, . . . , Lm, not Lm+1, . . . , not Ln

where 0 ≤ m ≤ n and Li∈{0,...,n} is a literal (i.e., an atom Ai or its negation¬Ai ). In addition
to the default negation, an extended program contains the classical negation.

2.2.1 Semantics of normal programs

Various semantics are introduced to ASP to give a meaning to logic programs. The stable
model semantics [19] is one of the most common semantics used in ASP.

The reduct of a normal logic program π with respect to a given set of atoms X is the
positive program π X obtained by removing from π each rule containing a literal not Ai in
its negative body such that Ai ∈ X , and all the literals not A j of the other rules. Formally,

π X := {
head(r) ← body+(r) | r ∈ π, body−(r) ∩ X = ∅}

A set X of atoms is a stable model of π if and only if X is identical to the minimal
Herbrand model of the reduct π X obtained from π with respect to X . This model is also
called the canonical model of π X , it is denoted by Cn(π X ). Formally, a set X of atoms is a
stable model of π if and only if X = Cn(π X ).

A new semantics that captures and extends the semantics of the stable models has been
presented in [18]. This semantics uses a Horn clausal representation to express the considered
logic program. This Horn representation has the same size as the one of the input logic
program, it does not increase its size. This semantics is based on a classical propositional
language L having two subsets of variables. The subset of variables V := {Ai | Ai ∈ L} and
the subset of negated variables nV := {not Ai | Ai ∈ L}. For each variable Ai ∈ V , there is
a corresponding variable not Ai ∈ nV expressing a sort of weak negation by failure of Ai . A

123



Using answer set programming to deal with attractor computation 721

link between the two types of variables is expressed by adding to L an axiom expressing the
mutual exclusion between the two types of variables. This axiom induces the set of binary
clauses

ME := {(¬Ai ∨ ¬ not Ai ) | Ai ∈ V } .

A normal logic program π = {r : A0 ← A1, A2, . . . , Am, not Am+1, . . . , not An} with
0 ≤ m ≤ n is expressed in the propositional language L by the set of Horn clauses

HC(π) = RC ∪ ME =
⎧
⎨

⎩

⋃

r∈π

A0 ∨
∨

i∈{1,...,m}
¬Ai ∨

∨

i∈{1,...,n−m}
¬ not Am+i

⎫
⎬

⎭

∪
⋃

Ai∈V
{¬Ai ∨ ¬ not Ai }

representing the union of the subset of rule clauses (RC) and the subset of mutual exclusion
clauses (ME). The strong back-door2 (STB) [28] of the logic program π is formed by the
literals of the form not Ai that occur in the negative bodies of its rules. Formally, it is defined
by

ST B := {
not Ai | r ∈ π, Ai ∈ body−(r)

}
.

Given a logic program π and its STB, an extension of HC(π) with respect to the STB,
or simply an extension of the pair (HC(π), ST B) is the set of all consistent clauses derived
from HC(π) when adding a maximal set of negative literals not Ai ∈ ST B to HC(π). See
the formal definition at Definition 4.

Definition 4 (adjusted from [18]) Let HC(π) be theHornCNFencoding of a logic program
π , ST B be its strong back-door, and S′ ⊆ ST B. The set E = HC(π)∪ S′ of clauses is then
an extension of (HC(π), ST B) if the following conditions hold.

1. E is consistent.
2. ∀ not Ai ∈ ST B \ S′, E ∪ {not Ai } is inconsistent.
It is shown in [18] that each consistent set of clauses HC(π) representing the logic program

π admits at least an extension with respect to the corresponding ST B. To be formal, see
Proposition 1.

Proposition 1 (adjusted from [18]) Let π be a logic program and ST B be its strong
back-door. If HC(π) is consistent, then there exists at least one extension of the pair
(HC(π), ST B).

It is also shown in [18] that the set of stable models of a logic program π is in bijection
with the subset of extensions E of HC(π) that satisfy the discriminant condition: for each
atom Ai ∈ V , if E infers ¬ not Ai , then E must infer Ai . That is,

∀Ai ∈ V , E |� ¬ not Ai ⇒ E |� Ai .

The extensions that do not satisfy the discriminant condition are called extra-extensions.
They will define extra-stable models that extend the classical semantics of stable models.

Two main theoretical properties are given in the two following theorems.

2 We shall see in the sequel that the variables of the strong back-door form the main variables (the decision
nodes) of the model search tree.

123



722 T. Khaled et al.

Theorem 1 ([18]) If X is a stablemodel of a logic programπ , then there exists an extension E
of (HC(π), ST B) satisfying the discriminant condition such that X = {Ai ∈ V | E |� Ai }.
Theorem 2 ([18]) If E is an extension of (HC(π), ST B) that satisfies the discriminant
condition, then X = {Ai | E |� Ai } is a stable model of π .

Example 3 Consider the logic program π including the below rules

q ← not r

r ← not q

p ← not p

p ← not r

The Horn clausal representation of the logic program π is formed by the set HC(π) =
RC ∪ ME where

RC = {q ∨ ¬ not r , r ∨ ¬ not q , p ∨ ¬ not p , p ∨ ¬ not r}
ME = {¬q ∨ ¬ not q,¬r ∨ ¬ not r ,¬p ∨ ¬ not p}

and its strong back-door is ST B = {not r , not q, not p}. We can see that (HC(π), ST B)

admits two extensions E1 = HC(π) ∪ {not r} and E2 = HC(π) ∪ {not q}. Indeed, E1 and
E2 are maximally consistent with respect to the set ST B. We can deduce by unit resolution
that

E1 |� {¬r , q, p,¬ not q,¬ not p}
and

E2 |� {¬ not r , r ,¬q,¬ not p,¬p}.
The extension E1 satisfies the discriminant condition, whereas E2 does not. Thus, the logic
program has one stable model M1 = {p, q} whose atoms are deduced from E1 by unit
resolution. On the other hand, M2 = {r} represents an extra-stable model deduced from the
extra-extension E2. Then, we have two models for this program, among one of them is a
stable model.

Remark 2 One can remark that in the models M1 = {p, q} and M2 = {r}, we just reported
the positive atoms that are true in the models. The other atoms are all assumed to be false by
the closed-world assumption.

2.2.2 Search method for stable models and extra-stable models

The method [16] used in this article to compute stable models and extra-stable models is
based on the semantics [18] discussed in the previous section. For a given logic program π ,
this method computes all the extensions of (HC(π), ST B) fromwhich the stable models and
extra-stable models are deduced. The computation of extensions of the pair (HC(π), ST B)

is done by progressively adding the literals not Ai of ST B to HC(π) and by checking the
consistency of the set obtained at each node of the search tree.

The enumeration process of this method explores a Boolean tree search. It looks like the
one of a DPLL [29] procedure that is adapted to ASP and to the used semantics [18]. If
the computed extension satisfies the discriminant condition, then it induces a stable model.
Otherwise, if the discriminant condition is not satisfied, then it corresponds to an extra-stable
model. The enumeration process incrementally constructs an extension by alternating in

123



Using answer set programming to deal with attractor computation 723

the search tree between deterministic nodes that correspond to unit propagation and non-
deterministic nodes corresponding to choice points. The choice points are defined by the
assignment of truth values (true or false) to literals not Ai within the set ST B. One of the
advantages of this method is that its enumeration process is carried out only on the subset
of the literals belonging to the set ST B. This advantage makes it possible to reduce the
complexity in computational time in practice.

2.2.3 Semantics of extended programs

Normal logic programs are used to model various problems. However, it turns out that many
situations require strong negation. Strong negation is essential when real problems have to be
modeled declaratively. The semantics of an extended logic program is defined by a reduction
to a normal program [27]. This reduction removes the strong negation. Then, we could use
the semantics summarized above for normal programs [18] to deduce the answer sets of the
extended logic program.

To reduce an extended logic program into an equivalent normal logic program, we replace
any negative literals ¬L appearing in the extended logic program by a new literal L ′, then
add the integrity constraint rule ← L, L ′. This rule prohibits that L and ¬L to be true in the
same model. We compute the stable models of the resulting normal program from which we
can obtain the original extended program’s answer sets.

Example 4 Let π be an extended logic program with the following rules

b ← not¬b, a

¬b ← not b

a ← not¬a

The normal program resulting from the translation of π is π ′ with the following rules

b ← not b′, a
b′ ← not b

a ← not a′

← a, a′

← b, b′

The Horn clausal representation of the logic program π ′ is HC(π ′) = CR(π ′) ∪ ME(π ′)
where

CR(π ′) = {b ∨ ¬ not b′ ∨ ¬a, b′ ∨ ¬ not b, a ∨ ¬ not a′,¬a ∨ ¬a′,¬b ∨ ¬b′}
and

ME(π ′) = {¬a ∨ ¬ not a,¬b ∨ ¬ not b,¬a′ ∨ ¬ not a′,¬b′ ∨ ¬ not b′}.
Its strong back-door is ST B = {not a′, not b, not b′}.

We can see that (HC(π ′), ST B) admits two extensions E ′
1 = HC(π ′) ∪ {not b, not a′}

and E ′
2 = HC(π ′) ∪ {not a′, not b′}. The two extensions E ′

1 and E ′
2 verify the discriminant

condition. Thus, the logic program π ′ has two stable models M ′
1 = {a, b′} and M ′

2 = {a, b}
that are deduced from E1 and E2, respectively. It results that the extended logic program π

admits the two answer sets M1 = {a,¬b} and M2 = {a, b}.

123



724 T. Khaled et al.

3 Detection of attractors in general Boolean networks

We are interested here in general Boolean networks, i.e., there are no restrictions on their
Boolean functions. We shall show how we detect attractors in both the synchronous and
asynchronous update modes. A first and short version of this work has been presented in [20].

3.1 General approach

3.1.1 Representation of interaction graphs

First, we show how to represent an interaction graph IG associated with a Boolean network
as an extended logic program denoted by PIG . In other words, we are representing the global
transition function associated with IG.

We first start with the rule (r1) that encodes discrete time:

r1 : time(0..t)

to compute the different configuration sequences of a transition graph TG associated with a
given Boolean network. We need to study its behavior under a certain initial state condition.
The possible number of combinations for the initial state could be significant, making the
task very difficult for a manual user. This is the reason behind our decision to automate the
process.

Next, we introduce the two rules r2 and r3 to generate all possible combinations of the
initial state automatically:

r2 : vi (0) ← not¬vi (0)

and
r3 : ¬vi (0) ← not vi (0)

These two rules express the fact that in the absence of ¬vi (0), we deduce vi (0) and in the
absence of vi (0), we deduce¬vi (0). These rules guarantee the choice of the active or inactive
state for each gene. Consequently, all the answer sets are automatically generated for each
possible initial state.

The four next rules r4, r5, r6, r7 encode the effects of one gene on another, i.e., the activa-
tion or inhibition of one gene by another. The rules r4 and r5 state that if the gene vi is active
(resp. inactive) at time step t , then it will activate (resp. inhibit) the gene v j at time step t +1.
These two rules represent the positively oriented arc (vi ,+, v j ) of the interaction graph. The
rules r6 and r7 encode the negative oriented arc (vi ,−, v j ) of the interaction graph. In this
case both rules express the fact that activating (resp. inhibiting) the gene vi at time step t will
inhibit (resp. activate) the gene v j at time step t + 1.

r4 : v j (t + 1) ← vi (t)

r5 : ¬v j (t + 1) ← ¬vi (t)

r6 : v j (t + 1) ← ¬vi (t)

r7 : ¬v j (t + 1) ← vi (t)

The following rules r8 and r9 express inertia, i.e., what happens if there is no change in
gene state between the steps t and t + 1. A gene maintains its state at step t + 1 unless it has

123



Using answer set programming to deal with attractor computation 725

been changed at step t .

r8 : vi (t + 1) ← vi (t), not¬vi (t + 1)

r9 : ¬vi (t + 1) ← ¬vi (t), not vi (t + 1)

Now, we present the rules for dealing with general Boolean networks where a given gene
has several interactions. We express each local transition function fi as a set of rules. We
assume that each local function fi is given in the disjunctive normal form (DNF). Given the
gene vector v(t) = (v1, v2, . . . , vn) at time step t , we express for each node vi ∈ V of the
interaction graph, its corresponding function fi by the following DNF formula:

vi (t + 1) = fi (v(t)) =
l∨

j=1

m j
i

where m j
i is a conjunction of literals.

Let DNF (¬ fi (v(t)) =
e∨

j=1
m′ j

i be the DNF of ¬ fi (v(t)). The formula m′ j
i is a conjunc-

tion of literals. The set of rules that encodes each function fi is defined as follows:

r10 : {vi (t + 1) ← m j
i (t) | 1 ≤ j ≤ l}, i ∈ {1, . . . , n}

r11 : {¬vi (t + 1) ← m′ j
i (t) | 1 ≤ j ≤ e}, i ∈ {1, . . . , n}

Note that the rules r10 and r11 apply only when considering the synchronous update mode,
where all the local transition function fi are simultaneously applied at each time step.

Example 5 Consider the interaction graph given in Example 1. The set of rules generated by
the generic rules r10 and r11 for this interaction graph are

1(t + 1) ← 2(t)

2(t + 1) ← 1(t),¬2(t)

and

¬1(t + 1) ← ¬2(t)

¬2(t + 1) ← ¬1(t)

¬2(t + 1) ← 2(t)

respectively.

Now,we showhow to encode the asynchronous updatemode. The rules r12 and r13 express
the existence of a state change for the gene vi , when its state in step t + 1 is different from
its state in t .

r12 : Change(vi , t) ← vi (t + 1),¬vi (t)

r13 : Change(vi , t) ← ¬vi (t + 1), vi (t)

The fact that the predicate Change(vi , t) is true indicates that a gene vi has been updated.
Next, we introduce a new predicate Block(vi , t) that indicates the fact that a gene vi is

blocked for updating at time step t , i.e., only the unblocked genes could be updated.

123



726 T. Khaled et al.

For the asynchronous updatemode, we set the rule r14 to allow only one gene to be updated
and block all the others. This rule says that if a gene vi is not blocked, then all the other genes
v j will be blocked.

r14 : {
Block(vi , t) ← Change(v j , t), not Block(v j , t) | ∀i ∈ {1, . . . , n}\{ j}}

For the asynchronous update mode, we adapt both rules r10 and r11 by involving the new
predicate Block(vi , t) and obtain the two new generic rules r15 and r16, respectively.

r15 : {vi (t + 1) ← m j
i (t), not Block(vi , t) | 1 ≤ j ≤ l}, i ∈ {1, . . . , n}

r16 : {¬vi (t + 1) ← m′ j
i (t), not Block(vi , t) | 1 ≤ j ≤ e}, i ∈ {1, . . . , n}

These rules state that a gene could be updated unless it is blocked.

Example 6 The set of rules generated by the generic rules r14, r15, and r16 when applied to
the interaction graph of Example 1 are as follows:

Block(1, t) ← Change(2, t), not Block(2, t)

Block(2, t) ← Change(1, t), not Block(1, t)

and

1(t + 1) ← 2(t), not Block(1, t)

2(t + 1) ← 1(t),¬2(t), not Block(2, t)

and

¬1(t + 1) ← ¬2(t), not Block(1, t)

¬2(t + 1) ← ¬1(t), not Block(2, t)

¬2(t + 1) ← 2(t), not Block(2, t)

respectively.

The rules described previously, constitute the logic program PIG representing the inter-
action graph of a general Boolean network. We now establish the relationship between the
answer sets of PIG and the corresponding transition graph’s configuration sequences.

Proposition 2 Let PIG be the logic program representing the interaction graph IG of a gene
network having a global transition function f and TG( f ) be its corresponding transition
graph. A tuple x = (x0, . . . , xt ) is a sequence of configurations of TG( f ), if and only if
I = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))} is an answer set of PIG such that the set
(v1(i), . . . , vn(i)) of literals fixed at time step i ∈ {0, . . . , t} corresponds to the state of the
genes of the configuration xi ⊆ x defined at time step i in the transition graph TG( f ).

Proof We prove the property by induction on the step t . First, we have to verify the property
for the initial step t = 0. That is, we prove that I0 = {v1(0), . . . , vn(0)} is an answer set
of the logic program P0

IG defined at t = 0, if and only if x0 = (x0) = (v1(0), . . . , vn(0))
forms the initial configuration of TG( f ). At the initial step t = 0, we have P0

IG = {r2, r3} =
{vi (0) ← not¬vi (0),¬vi (0) ← not vi (0)}.

Given the initial configuration x0 = (v1(0), . . . , vn(0)), we show that the subset of literals
I0 = {v1(0), . . . , vn(0)} is an answer set of P0

IG . For each vi (0), we have two possibilities:

123



Using answer set programming to deal with attractor computation 727

1. if vi (0) ∈ I0, then the rule vi (0) ← belongs to the reduct (PIG)I0 ,
2. otherwise ¬vi (0) ∈ I0, and ¬vi (0) ← belongs to the reduct (PIG)I0 .

We can see that the reduct program (PIG)I0 , admits I0 as a single complete minimal
Herbrand model, where each variable is either proven to be true or false. That is, for each
variable vi (0), I0 contains either the positive literal vi (0) or the negative literal¬vi (0). Thus,
I0 is an answer set of PIG . For the converse, let I0 = {v1(0), . . . , vn(0)} be an answer set of
P0
IG . Then I0 is complete in the sense that for each variable vi (0) either the positive literal

vi (0) or the negative one ¬vi (0) is present in I0. Otherwise, if a variable vi (0) is missing in
I0, then the reduct (PIG)I0 , will contain both rules v j (0) ← and ¬v j (0) ←, which lead to
an inconsistency. Since for all i ∈ {1, . . . , n}, we have either vi (0) or ¬vi (0) or inactive at
t = 0, we conclude that x0 = (v1(0), . . . , vn(0)) is the initial state of TG( f ).

Now, suppose that the property holds until a time step t . That is, A tuple xt = (x0, . . . , xt )
is a sequence of configurations of TG( f ), if and only if

It = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))}
is an answer set of Pt

IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed at time
step i ∈ {0, . . . , t} corresponds to the state of the genes of the configuration xi ⊆ x defined
at time step i ∈ {0, . . . , t} in the transition graph TG( f ).

We prove that the property holds at time step t + 1. That is, a tuple xt+1 =
(x0, . . . , xt , xt+1) is a sequence of configurations of TG( f ), if and only if

It+1 = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t + 1), . . . , vn(t + 1))}
is an answer set of Pt+1

IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed at time
step i ∈ {0, . . . , t, t + 1} corresponds to the state of the genes of the configuration xi ⊆ x
defined at the step i ∈ {0, . . . , t, t + 1} in the transition graph TG( f ).

Given the configuration sequence xt+1 = (x0, . . . , xt , xt+1) of TG( f ), we have to
prove that the set of literals It+1 = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t +
1), . . . , vn(t + 1))} is an answer set of Pt+1

IG such that the set of all the literals (v1(t +
1), . . . , vn(t + 1)) fixed at time step t + 1 corresponds to the state of the genes of the
configuration xt+1 ⊆ x defined at time step t + 1 in the transition graph TG( f ).

To do this, we need to demonstrate that It+1 = It ∪ {v1(t + 1), . . . , vn(t + 1)} is an
answer set of Pt+1

IG which is an extension of It produced by the application of the rules r10

and r11. From these rules encoding the transition function, we have fi (v(t)) =
l∨

j=1
m j

i and

¬ fi (v(t)) = ¬(
l∨

j=1
m j

i ) =
e∨

i=1
m′ j

i . If
l∨

j=1
m j

i is true at time step t (resp.
e∨

j=1
m′ j

i is true

at timestep t), then
e∨

j=1
m′ j

i is false at time step t (resp.
l∨

j=1
m j

i is false at time step t . By

application of the rules r10 and r11, we will have either vi (t + 1) or ¬vi (t + 1)) assigned
to the value true at time step t + 1 expressing the fact that the corresponding gene i is
active or inactive at time step t + 1. This means that both general rules r10 and r11 are
satisfied and the literals fixed at time step t + 1 corresponds to the state of the genes of the
configuration xt+1 ⊆ x . By using the induction hypothesis, we can conclude that It+1 is an
answer set of Pt+1

IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed at time step
i ∈ {0, . . . , t, t + 1} correspond to the state of the genes of the configuration xi ⊆ x defined
at time step i ∈ {0, . . . , t, t + 1} in the transition graph TG( f ).

123



728 T. Khaled et al.

For the converse, let

It+1 = It ∪ {v1(t + 1), . . . , vn(t + 1)}
= {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t)), (v1(t + 1), . . . , vn(t + 1))}

be an answer set of Pt+1
IG . We know by the induction hypothesis that a tuple xt = (x0, . . . , xt )

is a sequence of configurations of TG( f ) if and only if It = {(v1(0), . . . , vn(0)), . . . , (v1(t),
. . . , vn(t))} is an answer set of Pt

IG such that the set of all the literals (v1(i), . . . , vn(i)) fixed
at the step i ∈ {0, . . . , t} corresponds to the state of the genes of the configuration xi ⊆ x
defined at the step i ∈ {0, . . . , t} in the transition graph TG( f ).

Now,wewill prove that xt+1 = (x0, . . . , xt , xt+1) is a configurations sequence of TG( f ).
To do this, we need to demonstrate that for each variable vi (t + 1) at time step t + 1 either
the positive literal vi (t + 1) or the negative one ¬vi (t + 1) is present. This is true, because
the application of the rules r10 and r11, ensure to have either vi (t + 1) or ¬vi (t + 1)) at time
step t + 1. Thus, It+1 is complete in the sense that for each variable vi (t + 1) at step t + 1
either the positive literal vi (t + 1) or the negative one ¬vi (t + 1) is present in It+1.

By the induction hypothesis, we have xt = (x0, . . . , xt ) is a sequence of configuration.
We can conclude that xt+1 = (x0, . . . , xt , xt+1) is a configurations sequence of TG( f ). ��

3.1.2 Detection of attractors

The method we use to study the dynamics of a Boolean network consists of enumerating all
the possible initial configurations and then carrying out a simulation based on each of them.
Themethod lists all possible configuration sequences of the transition graph, ensuring that all
attractors will be detected. We look for all configuration sequences of a given length n in the
transition graph. As we can have an exponential number of configurations, the enumeration
could be memory demanding for wide networks. We want to avoid the enumeration done
by a naive simulation of the network dynamics. Thus, we keep a trace of the cycles already
found to eliminate them during the next iterations.

The main idea of the attractor detection algorithm is the following: once a sequence of
configurations is found,we verify if it includes a cycle.A cycle in a sequence of configurations
is identified by looking if the last configuration occurs twice in the sequence. In the affirmative
case, all the configurations between both occurrences of this configuration belong to the cycle.
For the synchronous update mode, each configuration in the synchronous transition graph
has a unique successor. Thus, when a sequence of configurations enters a cycle, it never
leaves it. This means that each cycle in the synchronous transition graph is stable. However,
in the asynchronous update mode, a configuration of the asynchronous transition graph can
have several successors. Therefore, cycles of the transition graph are not necessarily stable.
There could be stable cycles and unstable cycles. If no cycle for a given sequence of length
n is detected, then the algorithm doubles the length to 2n and looks for other configurations.
The algorithm will stop when no new configuration sequence is found. This means that
all the cycles have already been computed. Once all the cycles have been discovered, only
configuration sequences having shorter lengths than the fixed current length can be found.

The general schema of the proposed method is presented in Algorithm 1. Note that it is
applicable for both the synchronous and asynchronous update modes.

The method starts by generating an extended logic program PIG representing the inter-
action graph according to the rules described in the previous subsection. We use the ASP
system presented in [16] to compute the answer sets representing the sequences of config-
urations having a fixed length n in the transition graph. When an answer set is found, the

123



Using answer set programming to deal with attractor computation 729

Algorithm 1 The general schema of the cycle search algorithm.
Require: PIG : the logic program representing the interaction graph
1: I = ASP-Solver(PIG )

2: while I is a new answer set of PIG do
3: attractor_is_found = false
4: xI = (x0, x1, . . . , xt ) is the sequence of configurations corresponding to I
5: i = t − 1
6: while ((i ≥ 0 and not (attractor_is_found)) do
7: if xt = xi then
8: attractor_is_found = true
9: attractors = attractors ∪ {(xi+1, . . . , xt )}
10: PIG = PIG ∪ j∈{i+1,t} {← v1( j), v2( j), . . . , vn( j)}.
11: end if
12: i = i − 1
13: end while
14: if not(attractor_is_found) then
15: t = 2 × t
16: end if
17: I = ASP-Solver(PIG )
18: end while

algorithm checks if there is a stable cycle or a stable configuration in the the corresponding
sequence of configurations. For each detected attractor (stable cycle or stable configuration),
the method adds constraint rules to the logic program PIG to avoid this attractor in the
remaining search. By adding these rules, it eliminates all the answer sets that could contain
an attractor already found. All attractors are identified when no new answer set is generated
(i.e., no new configuration sequence is generated).

In the case of the synchronous update mode, all the cycles of the transition graph are
stable, which means that each cycle represents a potential attractor of the considered net-
work. However, for the asynchronous update mode, the cycles in the transition graph are not
necessarily stable. To detect the instability of a cycle, one can check at each configuration of
the cycle, whether the current configuration could evolve to a new configuration that is not
part of the cycle. If so, then the cycle is unstable; otherwise it is stable.

Next, we show how to test the stability/instability of a cycle of the transition graph using
the answer sets of PIG that we compute.

Proposition 3 Let PIG be the logic program representing the interaction graph IG
having a global transition function f , TG( f ) be the corresponding transition graph
and I = {(v1(0), . . . , vn(0)), . . . , (v1(t), . . . , vn(t))} be an answer set of PIG corre-
sponding to the sequence of configuration xI in TG( f ). If a subset of literals Is =
{(v1(1), . . . , vn(1)), . . . , (v1(r), . . . , vn(r)), (v1(r + 1), . . . , vn(r + 1))} ⊆ I correspond-
ing to a sequence of configurations (x1, . . . , xr , x1) ⊆ xI forms a stable cycle in
TG( f ), then every answer set J of PIG different from I (J 
= I ), is such that ∀i ∈
{1, . . . , r}, (v1(i), . . . , vn(i)) /∈ J ∩ Is .

Proof Assume that I is answer set of PIG corresponding to the configuration sequence xI
in TG( f ), and Is = {(v1(1), . . . , vn(1)), . . . , (v1(r), . . . , vn(r)), (v1(r + 1), . . . , vn(r +
1))} ⊆ I is a subset of literals of I , corresponding to a sequence of configurations
xIs = (x1, . . . , xr , x1) ⊆ xI forming a stable cycle in TG( f ). Suppose that PIG
has an answer set J 
= I corresponding to a sequence of configurations xJ , such that
∃k ∈ {1, . . . , r}, (v1(k), . . . , vn(k)) ∈ J ∩ Is . Thus, it results that xIs and xJ share the con-

123



730 T. Khaled et al.

figuration xk corresponding to (v1(k), . . . , vn(k)). This means that the configuration xk ∈ Is
has more than one successor, and this contradicts the fact that Is forms a stable cycle. ��

Weperform the stability verification by a small modification of theASP solver [16] that we
used to compute the answer sets. Indeed, for each answer set of the program PIG containing
a cycle, we check for each of its subsets of literals {(v1(i), . . . , vn(i))} corresponding to
a configuration xi of the cycle, if a new subset of literals {(v1(i + 1), . . . , vn(i + 1))}
corresponding to a configuration xi+1 different from the successor of xi in the cycle could
be deduced. In the affirmative case we conclude that the cycle is not stable, otherwise the
stability of the cycle is proven.

In practice, we do this by attempting to produce a different configuration at each choice
point of the branch of the search tree corresponding to the cycle included in the stable model.
This is done by setting a new literal not Block(v j , t) different from the one representing this
choice point. We have integrated this operation in the resolution process of the method [16]
that we used to compute the answer sets of the logic program PIG expressing the interaction
graph of the considered network.

Note that our incremental approach does not require to know the maximum path size in
advance, which is hard to determine because it is related to the diameter of the state transition
graph, which is very hard to compute [31]. However, it might be possible to implement
this approach by using the incremental ASP control loops and multi-shot solving [30]. In
particular, we might not need to determine the maximum path size in advance thanks to
Clingo’s APIs. We leave the implementation using Clingo as one of our future work

3.2 Detection of stable configurations

In the previous subsection, we have proposed a generic and natural ASP encoding for general
Boolean networks under both the synchronous and asynchronous update scheme. From the
generic encoding, we have proposed an iterative method for computing all stable configura-
tions and stable cycles of a Boolean network under both the synchronous and asynchronous
update scheme. In a sense of ASP, this approach is non-totally declarative. It is inevitable
because in general a Boolean network may have stable cycles of size up to 2n and it is hard
to know in advance the maximum length that is related to the diameter of the state transition
graph [31].

We have now improved our approach with the focus on only stable configurations, it has
become totally declarative. It is worth noting that stable configurations of a Boolean network
are the same for both the synchronous and asynchronous update modes [32]. In the improved
approach, we simplified the encoding introduced in the previous subsection by just keeping
the two constraints r10 and r11 that remain necessary in the new approach. With this new
approach, the calculation of stable configurations is completely declarative and we obtained
much better results (see Section 5.2). The details are as follows.

First, we remove the time t from the ASP encoding. Now, each node vi is represented by
two atoms (not predicates) vi and ¬vi . Second, since in a stable configuration, vi (t + 1) is
always equal to vi (t) for every node vi , we replace vi (t + 1) and vi (t) by vi . Formally, the
two constraints r10 and r11 become

r ′
10 : {vi ← m j

i | 1 ≤ j ≤ l}, i ∈ {1, . . . , n},
r ′
11 : {¬vi ← m′ j

i | 1 ≤ j ≤ e}, i ∈ {1, . . . , n},

123



Using answer set programming to deal with attractor computation 731

respectively. Third, we add the two set of ASP rules to ensure that an answer set corresponds
to a configuration:

r17 :
⋃

i∈{1,...,n}
vi ,¬vi ←

r18 :
⋃

i∈{1,...,n}
← vi ,¬vi

We show an illustration and the correctness of the above encoding in Example 7 and Propo-
sition 4, respectively.

Example 7 Consider the Boolean network given in Example 1. The normal logic program
following the above encoding is as follows:

1 ← 2

2 ← 1, 2′

1′ ← 2′

2′ ← 1′

2′ ← 2

1, 1′ ←
← 1, 1′

2, 2′ ←
← 2, 2′

Proposition 4 Letπ be the logic programof aBoolean network following the above encoding.
Then an answer set of π is equivalent to a stable configuration of the Boolean network.

Proof Let I be a set of atoms of π . Let x be a state of the Boolean network such that xi = 1
if and only if vi ∈ I and xi = 0 if and only if ¬vi ∈ I for every node vi . Based on the proof
of Proposition 2, we can imply that I is an answer set of π if and only if (x, x) is a transition
of the transition graph of the Boolean network. Herein, xi plays the roles of both vi (t + 1)
and vi (t). (x, x) is a transition of the transition graph of the Boolean network is equivalent
to that x is a stable configuration of the Boolean network. We can conclude the proof. ��

Finally, we showcase a crucial application of our new approach. Recently, we have devel-
oped a new method called mtsNFVS [22] for computing all attractors of an asynchronous
Boolean network (i.e., stable configurations, stable cycles, and loose attractors). mtsNFVS
first computes a Negative Feedback Vertex Set (NFVS) of the interaction graph of the asyn-
chronous Boolean network. Based on the chosen NFVS U−, mtsNFVS randomly chooses a
set B− of Boolean values corresponding to the nodes in U−. From U− and B−, mtsNFVS
builds a new Boolean network called the reduced-dynamics Boolean network whose set of
stable configurations exactly covers all attractors of the asynchronous Boolean network (see
Theorem 3). The word “cover” means that for every attractor at least one of its configurations
belongs to the set of stable configurations of the reduced-dynamics Boolean network. Then
mtsNFVS uses the reachability analysis on the asynchronous Boolean network to filter out
this set. Finally, mtsNFVS returns the set A of configurations (not attractors) that one-to-one
covers the set of attractors of the asynchronous Boolean network.

123



732 T. Khaled et al.

Theorem 3 ([22]) Let A be an asynchronous Boolean network and U− be an NFVS of it.
Let B− be a set of Boolean values corresponding to the nodes in U−. We first construct
the reduced-dynamics Boolean network denoted by Ared as follows. Ared includes the set of
nodes of A and its set of Boolean functions is given by:

{
f redi = fi if xi /∈ U−,

f redi = [(xi ↔ bi ) ∧ bi ] ∨ [¬(xi ↔ bi ) ∧ fi ] if xi ∈ U−,

where ↔ denotes the bi-implication logical operator. Then for any NFVS U− and any set of
Boolean values B−, the set of fixed points of the reduced-dynamics Boolean network covers
exactly all attractors of A .

Crucially, the number of stable configurations of the reduced-dynamics Boolean network
depends on and may be exponential in the size ofU− [22]. In several real-world models,U−
is usually large (e.g., > 25), leading to too many stable configurations. Hence, in mtsNFVS,
computing stable configurations of the reduced-dynamics Boolean network is a demanding
task. Indeed, we observed in [22] that the most of the running time was spent for computing
stable configurations. Our above ASP encoding can benefit to this task of mtsNFVS, thus it
can speedup the whole process of mtsNFVS. Furthermore, the computation of stable config-
urations is also the bottleneck in many analysis and control methods for Boolean networks,
which again can be overcome by applying our proposed method.

Note that it is difficult to compare the whole method mtsNFVS with our approach in the
present article. The reasons include (1) our approach returns the set of stable configurations
and cycles of a Boolean network whereas mtsNFVS returns a set of configurations, (2)
our approach deals with both the synchronous and asynchronous update modes whereas
mtsNFVS is specifically designed for the asynchronous update mode.

4 Detection of attractors in circular Boolean networks

In this section, we deal with the specific case of Boolean networks called circular Boolean
networks. We shall focus on the computation of the attractors for the asynchronous update
mode. A first release of this work has been presented in [21].

4.1 Representation of interaction graphs

The dynamic of a Boolean network is represented by its transition graph TG, and the inter-
action graph IG expresses interactions between genes. An important subject of study is to
make formal links between these two representations [25]. In the following, we show how an
interaction graph IG is expressed as an extended logic program PIG given in its Horn clausal
form HC(PIG). We shall prove some important theoretical properties on the representation
HC(PIG) and its extensions that we will use to establish the relation between HC(PIG)

representing IG and TG.
Our approach is to calculate the stable configurations and the stable cycles of the transition

graph TG by calculating the stable and extra-stable models of the logic program PIG . The
formalism of Boolean networks associates an entity i ∈ {1, . . . , n} to a Boolean variable vi .
To lighten the notation, we will use in the sequel i instead of vi when possible.

123



Using answer set programming to deal with attractor computation 733

To address this situation, we opted for the answer set programming (ASP) framework
where we use the semantics introduced in [18]. ASP gives a good compromise between the
expressiveness of the knowledge representation language and the efficiency of the associated
resolution tools.

Definition 5 Given the interaction graph IG of a Boolean network representing a gene regu-
latory network, the logic program PIG expressing IG and a gene i , we define the following.

• i means that the gene i is active in the cell.
• ¬i means that the gene i is not active in the cell.
• not¬i (resp. ¬ not¬i) means that the cell gives (resp. does not give) the permission to

activate i . In other words, the cell has (resp. has not) the ability to activate i .
• not i (resp. ¬ not i) means that the cell gives (resp. does not give) the permission to

disable i . In other words, the cell has (resp. has not) the ability to inhibit i .

Definition 6 The translation of IG into a logic program PIG is done by transcribing every
arc in IG into the following pair of rules.

• A positive arc (i,+, j) between the two genes i and j is expressed by the two rules
j ← not¬i . and ¬ j ← not i .

• A negative arc (i,−, j) between the two genes i and j is expressed by the two rules
j ← not i . and ¬ j ← not¬i .

Example 8 The negative circuit of Fig. 2 (a) is translated into the extended logic program
PIG( f ) with the following rules

2 ← not 1

¬2 ← not¬1

3 ← not¬2

¬3 ← not 2

1 ← not¬3

¬1 ← not 3

The interaction graph of Fig. 2 (b) representing the positive circuit is expressed by the
extended logic program PIG(g) with the following rules

2 ← not 1

¬2 ← not¬1

3 ← not¬2

¬3 ← not 2

1 ← not 3

¬1 ← not¬3

In our approach, each extended logic program PIG is transformed to an equivalent normal
logic program P ′

IG that is expressed in the end by a set of Horn clauses HC(P ′
IG) in the

used semantics [18]. An extension of the pair (HC(P ′
IG), ST B) is the consistent set formed

123



734 T. Khaled et al.

by all the clauses derived from HC(P ′
IG) when assigning a maximal set of positive literals

not Ai ∈ ST B to HC(P ′
IG) the value true. In this context, the ST B set acts as a set of

permissions to activate genes (resp. to inhibit a gene). In the sequel, we will consider the
Horn clausal representation HC(P ′

IG) instead of the logic program P ′
IG that we denote by

HC(PIG) when there is no confusion. We will also simply say extensions of HC(PIG) to
mean extensions of (HC(P ′

IG), ST B).

Remark 3 In this context, the role of an extension appears to gather a maximum of consistent
permissions. Note that even if not¬i stands for the cell permitting to attempt the production
of j , this production is not mandatory. It can be produced or not, according to the context
(i.e., the set of all interactions in the cell). We could establish a similar reasoning for the case
of the literal not i that gives the authorization to disable j .

In general, it is permitted to have both not¬i and not i in the used semantics. But from a
biological perspective, we cannot give permission to both activate a gene j and inhibit it at
the same moment. Proposition 5 below expresses this biological aspect.

Proposition 5 If HC(PIG) is a logic program representing the interaction graph IG, then
for every i ∈ V = {1, . . . , n}, the condition ¬(not¬i ∧ not i) holds in HC(PIG).

Proof By definition, if IG contains a signed arc (i, {+,−}, j), then the translation of this
arc induces two sets of clauses { j ∨ ¬ not¬i,¬ j ∨ ¬ not i} or { j ∨ ¬ not i,¬ j ∨ ¬ not¬i}.
In both cases, if not¬i ∧ not i holds, then, we infer j ∧ ¬ j that expresses an inconsistency.
Thus, ¬(not¬i ∧ not i) holds in HC(PIG). ��
Proposition 6 Let IG be an interaction graph whose logic encoding is HC(PIG), we have
the following.

1. HC(PIG) is consistent.
2. HC(PIG) has at least one extension.

Proof 1. The encoding HC(PIG) is formed by a set of binary Horn clauses. That is, each
clause contains at least one negative literal. The assignment of all literals to false is then
a model of HC(PIG). Thus, HC(PIG) is consistent.

2. Since HC(PIG) is consistent, it results from Proposition 1 that HC(PIG) has at least
one extension.

��
The following definitions and propositions are important to understand the intuition behind

the representation described in this section.

Definition 7 Let IG be an interaction graph whose set of vertices is V = {1, . . . , n},
HC(PIG) its logic encoding and E an extension of HC(PIG) obtained by adding to
HC(PIG) a maximal consistent set of literals {not k}, with k ∈ {1, . . . , n,¬1, . . . ,¬n}.
Then we have the following.

1. E is complete if for all i ∈ V , not¬i ∈ E or not i ∈ E .
2. i is free in E if i /∈ E and ¬i /∈ E . Otherwise, it is fixed.
3. The degree of freedom of E (denoted by deg(E)) is the number of its free elements

i ∈ V .
4. The mirror of E = HC(PIG) ∪ {not k} (denoted by mir(E)) is defined as mir(E) =

HC(PIG) ∪ {not¬k}.

123



Using answer set programming to deal with attractor computation 735

Proposition 7 If HC(PIG) is the logic encoding of the program PIG representing the inter-
action graph IG and E is an extension of HC(PIG), then the mirror of E is also an extension
of HC(PIG).

Proof By definition, if IG contains a signed arc (i, {+,−}, j), then its encoding in HC(PIG)

includes both sets of clauses { j∨¬ not¬i,¬ j∨¬ not i} or { j∨¬ not i, neg j∨¬ not¬i}. An
extension is the set of all consistent clauses derived from HC(PIG) when adding a maximal
set of positive literals not i to HC(PIG). If we inverse each literal not i in the extension, i.e.,
we replace not i (resp. not¬i) by not¬i (resp. not i), then we get two cases. The first case
corresponds to the presence of a positive arc in the interaction graph IG. In this case, we
infer j when not¬i holds, or ¬ j if not i holds. The second case corresponds to the presence
of a negative arc in the interaction graph IG. In this case, we infer¬ j when not¬i holds and
infer j when not i holds. Thus, it is trivial to see that the extension E and its mirror mir(E)

are symmetrical. It results that mir(E) is an extension too. ��
In the following, we prove that in some particular interaction graphs IG including circuits,

complete extensions of HC(PIG) are of degree 0 and induce answer sets of HC(PIG).

Proposition 8 Let IG be an interaction graph, HC(PIG) be the logic encoding of the pro-
gram PIG representing IG and E be an extension of HC(PIG). If every node of IG has at
least one incoming arc, then any complete extension of HC(PIG) is of degree 0.

Proof Let E be a complete extension of HC(PIG). To prove that E is of degree 0, we have
to prove that each variable j of HC(PIG) is not free in E . In other words, for each node j
in the interaction graph IG, we have either ¬ j ∈ E or j ∈ E . By the hypothesis, j has a
positive/negative incoming arc ( j,+/−, i) in IG.

If the arc is positive, then it is expressed by the pair of clauses { j∨¬ not¬i,¬ j∨¬ not i}.
Since E is complete, we have either not i ∈ E or not¬i ∈ E . If not¬i ∈ E , then j is inferred
( j ∈ E). If not i ∈ E , then ¬ j is inferred (¬ j ∈ E). Then in both cases j is not free in E .

The case of a negative arc is treated in the same way. We will have the rules { j ∨
¬ not i,¬ j ∨ ¬ not¬i}. If not¬i ∈ E , then we infer ¬ j and if not i ∈ E , then we derive j .
Therefore, for all the assumptions we infer either j or ¬ j . Thus, there is no free element j
in E and deg(E) = 0. ��
Proposition 9 Let IG be an interaction graph and HC(PIG) be the logic encoding of the
program PIG representing IG. If any node of IG has at least one incoming arc, then any
complete extension of HC(PIG) corresponds to an answer set of HC(PIG).

Proof Let E be a complete extension of HC(PIG). E corresponds to an answer set if for
any node i , the discriminant condition holds for both i and ¬i . That is both conditions (1)
¬ not i ∈ E ⇒ i ∈ E and (2) ¬ not¬i ∈ E ⇒ ¬i ∈ E hold. Since E is complete, then
it is of degree 0 (Proposition 8). It results that either i or ¬i is in E . We have two cases as
follows.

If i ∈ E , then (1) is trivially verified. According to the mutual exclusion ME = {(¬i ∨
¬ not i)}, we obtain ¬ not i ∈ E . In this case, we have¬i /∈ E . Suppose now that¬ not¬i ∈
E , this means that not¬i /∈ E . As E is complete, we have not i ∈ E , and this contradicts
the fact that ¬ not i ∈ E . Thus, the condition (2) is verified.

If we have ¬i ∈ E , then the condition (2) is trivially verified. According to the mutual
exclusion ME , we obtain ¬ not¬i ∈ E . In this case, we have i /∈ E and if we suppose that
¬ not i ∈ E , then not i /∈ E . As E is complete, then not¬i ∈ E , and this contradicts the fact
that ¬ not¬i ∈ E . Therefore the condition (1) is verified.

123



736 T. Khaled et al.

Since E verifies the discriminant condition in both cases, then E induces an answer set
of HC(PIG) (Theorem 2). ��

We now show that any answer set of HC(PIG) corresponds to an extension of degree 0.

Proposition 10 Let IG be an interaction graph. If any node of IG has at least one incoming
arc, then any answer set of HC(PIG) corresponds to an extension E of degree 0.

Proof Let E be an extension inducing an answer set of HC(PIG). By definition, E is maxi-
mally consistent with respect to the literals of the form not i ∈ E or not¬i ∈ E and verifies
the discriminant conditions (a) ¬ not i ∈ E ⇒ i ∈ E and (b) ¬ not¬i ∈ E ⇒ ¬i ∈ E
corresponding to both i and ¬i . The extension E induces then an answer set of HC(PIG).
We have to prove that for all i ∈ HC(PIG), we have either i ∈ E or ¬i ∈ E . There are three
study cases:

1. The casewhere not i ∈ E and not¬i /∈ E . It results fromProposition 5 that¬ not¬i ∈ E .
Then, from the discriminant condition (b), we get ¬i ∈ E .

2. The case where not¬i ∈ E and not i /∈ E . From Proposition 5, we get ¬ not i ∈ E .
Thus, i ∈ E because the condition (a) holds.

3. The case where not i /∈ E and not¬i /∈ E . In this case, we have not i ∧ E |� � and
not¬i ∧ E |� �. Thus, E |� ¬ not i and E |� ¬ not¬i . From (a) and (b), we have
E |� i and E |� ¬i . Thus, we get an inconsistency that contradicts the fact that E is an
extension.

It results that only the first and the second case could be possible. Thus, we have either i ∈ E
or ¬i ∈ E , and deg(E) = 0. ��

In what follows, we shall show that for an interaction graph IG representing a positive
circuit of nodes, the corresponding logic encoding HC(PIG) has two answer sets of n
elements.

Proposition 11 If the interaction graph IG is a positive circuit of n entities, then its logical
form HC(PIG) has two extensions that induce two answer sets of size n.

Proof The proof is based on the results of Proposition 9 and the fact that in a positive circuit
each gene acts positively on itself through the circuit. Indeed, if we give at the beginning the
authorization to activate the gene i (by supposing not¬i), then we will end up deducing that
i is active. Conversely, if we initially give the authorization to deactivate i (by supposing
not i) then we will deduce that i is inactive (we get ¬i). We can then construct two complete
extensions of degree 0. The first one is made by supposing at the beginning the literal not¬i
and the second one is its mirror extension that is obtained by supposing at the beginning the
literal not i . Both extensions are complete and are of degree 0. As the two extensions are
complete and of degree 0, we deduce from Proposition 9 that each of them induces a stable
model of HC(PIG) of size n. ��

Example 9 Consider the extended logic program of Example 8 expressing the interaction
graph of Example 2 representing the positive circuit of size 3 (Fig. 2 (b)), we have PIG(g)

123



Using answer set programming to deal with attractor computation 737

as follows.

2 ← not 1

¬2 ← not¬1

3 ← not¬2

¬3 ← not 2

1 ← not 3

¬1 ← not¬3

PIG(g) is translated to the equivalent normal program P ′
IG(g):

2 ← not 1

2′ ← not 1′

3 ← not 2′

3′ ← not 2

1 ← not 3

1′ ← not 3′

⊥ ← 1, 1′

⊥ ← 2, 2′

⊥ ← 3, 3′

HC(P ′
IG(g)) has two extensions E1 = HC(P ′

IG(g)) ∪ {not 1, not 2′, not 3′} and E2 =
HC(P ′

IG(g)) ∪ {not 1′, not 2, not 3} that correspond to two stable models. E1 and E2 are
two extensions that verify both discriminant conditions: E |� ¬ not i ⇒ E |� i and E |�
¬ not i ′ ⇒ E |� i ′ for all i and i ′.

We notice that E1 is complete because for every i ∈ HC(P ′
IG(g)), either not i ′ (not¬i)

belongs to E1 or not i belongs to E1. In addition, we have either i ∈ E1 or i ′ = ¬i ∈ E1 for
every i ∈ HC(P ′

IG(g)), which means that the degree of freedom of E1 is 0.
The extension E2 is the mirror of E1. The same reasoning could be applied to show that

E2 is complete and of degree 0. The stable models induced by E1 and E2 are M ′
1 = {1′, 2, 3}

and M ′
2 = {1, 2′, 3′}, respectively. The corresponding answers sets of the extended program

PIG(g) are M1 = {¬1, 2, 3} and M2 = {1,¬2,¬3}, respectively. We can see that the two
precedent answers sets correspond to the two stable configurations of the transition graph
(Fig. 3(b)) of the positive circuit presented in Example 2.

The intuition behind the computation of E1 is given by the construction scheme described
in Fig. 4(b). The interaction graph is represented in Fig. 4(a), whereas Fig. 4(b) gives the
different construction steps of E1. Initially, E1 is empty. We begin the process by assuming

Fig. 4 (a) IG( f ), (b) Construction of E1, (c) The graph of M1

123



738 T. Khaled et al.

that not 1 is in E1. Thus, by applying the rule 2 ← not 1, we deduce 2 and then ¬ not 2 is
deduced from the mutual exclusion clause (¬2∨ ¬ not 2). The construction of E1 continues
by adding not¬2 to E1, and then we deduce 3. Themutual exclusion (¬3∨¬ not 3) prohibits
the application of not 3. Then, we add not¬3 to E1 from which we infer ¬1. If we are only
interested in the gene literals i , then we obtain the restricted graph of E1 shown in Figure 4(c)
that represents the corresponding stable model M1. This model corresponds to one of the
two stable configurations of the transition graph of Fig. 3(b) of Example 2. The extension
E2 is built in the same way as E1. To get E2, we must start the process by assuming that
not 1′ = not¬1 is true in E2.

From the biological point of view, the answer sets’ variables represent the state of each
gene of the regulatory network. For example, M1 = {¬1, 2, 3} says that 2 and 3 are active
and 1 is inactive. Similarly, M2 = {1,¬2,¬3} means that both 2 and 3 are inactive and 1 is
active.

In the following, we show that each interaction graph IG representing a negative circuit
of n nodes has 2n extra-extensions of degree 1 inducing 2n extra-stable models that encode
a stable cycle of size 2n in the transition graph.

Proposition 12 If the interaction graph IG is a negative circuit of size n then HC(PIG) has
2n extra-extensions of degree 1 inducing 2n extra-stable models of size n − 1.

Proof The proof is based on the fact that in a negative circuit, a gene acts negatively on itself
through the circuit. Indeed, if we give at the beginning the authorization to activate the gene
i by supposing not¬i , then when we close the cycle we deduce that i is inactive (¬i is true).
Conversely, if initially we authorize to inhibit i by supposing not i , then we deduce that i
is active (i is true) when we close the cycle. We then obtain an inconsistency in both cases
because we have both i and ¬i simultaneously. This deduction means that we cannot have a
complete extension in both cases.

Then, we obtain an incomplete extension E and its mirror extensionmir(E)which is also
incomplete. In both them, there is neither the literal not j nor the literal not¬ j with j being
the predecessor of i . Thus, neither i nor ¬i is true in both extensions. On the other hand,
all the other elements different from i are linked in these two extensions. It follows that the
two extensions are therefore of degree 1. It is also trivial to see that both extensions do not
satisfy the discriminating condition. Indeed, we have ¬ not i in E without having i in E , and
we have ¬ not¬i in mir(E) without having ¬i in mir(E).

Therefore, we have two mirror extra-extensions of degree 1 inducing two extra-stable
models of size n − 1. Each time we change the starting element i , we get two other mirror
extra-extensions of degrees 1, which induce two other extra-stable models of sizes n − 1.
In total, there will be be 2n extra-extensions of degree 1 inducing 2n extra-stable models of
sizes n − 1. ��

Example 10 Consider the extended logic program of Example 8 expressing the interaction
graph of Example 2 corresponding to a negative circuit of size 3 (Fig. 2 (a)). We obtain

123



Using answer set programming to deal with attractor computation 739

PIG( f ) as follows.

2 ← not 1

¬2 ← not¬1

3 ← not¬2

¬3 ← not 2

1 ← not¬3

¬1 ← not 3

After translation, we get the normal logic program P ′
IG( f ) as follows.

2 ← not 1

2′ ← not 1′

3 ← not 2′

3′ ← not 2

1 ← not 3′

1′ ← not 3

⊥ ← 1, 1′

⊥ ← 2, 2′

⊥ ← 3, 3′

The logic encoding HC(P ′
IG( f )) has six extra-extensions (E ′

i ) that induce six extra-stable
models (M ′

i ) as follows.

1. E ′
1 = HC(P ′

IG( f )) ∪ {not 1, not 2′} and E ′
1 |� {not 1, 2, not 2′, 3}, it induces M ′

1 =
{2, 3}.

2. E ′
2 = HC(P ′

IG( f )) ∪ {not 1, not 3} and E ′
2 |� {not 1, 2, not 3, 1′}, it induces M ′

2 =
{2, 1′}.

3. E ′
3 = HC(P ′

IG( f )) ∪ {not 1′, not 3′} and E ′
3 |� {not 1′, 2′, not 3′, 1}, it induces M ′

3 =
{2′, 1}.

4. E ′
4 = HC(P ′

IG( f )) ∪ {not 1′, not 2} and E ′
4 |� {not 1′, 3′, not 2, 3′}, it induces M ′

4 =
{2′, 3′}.

5. E ′
5 = HC(P ′

IG( f )) ∪ {not 2′, not 3′} and E ′
5 |� {not 2′, 3, not 3′, 1}, it induces M ′

5 =
{3, 1}.

6. E ′
6 = HC(P ′

IG( f )) ∪ {not 2, not 3} and E ′
6 |� {not 2, 3′, not 3, 1′}, it induces M ′

6 =
{3′, 1′}.
Figure 5(a) shows the considered negative circuit expressed as a logic program. Figure 5(b)

illustrates the construction of the extension E ′
1. It is built by adding to HC(P ′

IG( f )) both
literals not 1 and not 2′. We can see in Fig. 5(b) that it is impossible to deduce 1′. Indeed, to
get 1′, we must use the rule (1′ ← not 3). But this is impossible because ¬ not 3 results from
the mutual exclusion (¬3 ∨ ¬ not 3). On the other hand, we cannot get 1. As not 1 holds,
then from the mutual exclusion (¬1 ∨ ¬ not 1), we get ¬1. Thus, we cannot have 1. We can
notice that the extension E ′

1 is not complete because it contains neither not 3 nor not 3′. The
element 1 is free in E ′

1 because 1 /∈ E ′
1 and ¬1 /∈ E ′

1. As a result, E ′
1 is an extension of

degree 1. Figure 5(c) gives the restriction of E ′
1 to the corresponding extra-stable model M ′

1.

123



740 T. Khaled et al.

Fig. 5 (a) IG(g) the negative circuit, (b) Construction of E ′
1, (c) Construction of M

′
1

4.2 The relation between the transition graph and the logical representation of its
interaction graph

Hereafter, we shall explore the relationship between the logical representation HC(PIG) of
the interaction graph IG and the corresponding transition graph TG. In order to do this, we
see that the vertices of the transition graph TG corresponding to stable configurations or
stable cycles could be expressed, in fact, by the extensions/extra-extensions (stable models
or extra-stable models) of the logical encoding HC(PIG).

Given a Boolean network, having an interaction graph IG, a transition graph TG, and
HC(PIG) is the clausal horn representation of the associated logic program PIG , we shall
show for positive circuits (Theorem 4) that there is an isomorphism between the stable
configurations of TG and the answer sets of HC(PIG). Furthermore, we shall also prove
(Theorem 5) that any stable cycle of the transition graph of a negative circuit interaction
graph of size n is encoded as a set of 2n extra-stable models of degree 1 of HC(PIG).

Proposition 13 Given a Boolean network represented by the interaction graph IG where
TG is its associated transition graph and HC(PIG) is the Horn clausal representation of
the logic program PIG expressing IG. If s is a vertex (a configuration) of TG representing
an extension/extra-extension E of HC(PIG) of degree k, then s has exactly k successors.

Proof If i is free in the extension/extra-extension E representing the configuration s, then
either ¬i or i is true in an extension/extra-extension corresponding to a state s′ accessible
from s. By construction of TG, s′ is the single successor of s that verifies this statement.
This property is verified for each free element i in E . Thus, if the degree of freedom of E is
k, then there is k accessible vertices from s. ��
Theorem 4 Given a Boolean network where IG is the interaction graph and HC(PIG) is
the Horn clausal representation of the logic program PIG associated with IG. Then the
following assumptions hold:

1. If X = (x1, x2, . . . , xn) is an answer set of PIG induced by an extension of HC(PIG),
then X = (x1, x2, . . . , xn) is a stable configuration of the transition graph TG.

2. If X = (x1, x2, . . . , xn) is a stable configuration of the transition graph TG, then
X = (x1, x2, . . . , xn) corresponds to an answer set of PIG induced by an extension
of HC(PIG).

Proof 1. Let E be the extension inducing the answer set X = (x1, x2, . . . , xn) and s =
(x1, x2, . . . , xn) be the vertex representing E in TG. As E is an extension, then its
degree of freedom is 0. According to Proposition 13, it follows that the only accessible
node from s is itself. Thus, s is a stable configuration of TG.

123



Using answer set programming to deal with attractor computation 741

2. If s = (x1, x2, . . . , xn) is a stable configuration of the associated transition graph TG,
then no arcs come out of s. The only vertex accessible from s is itself. It follows that for
each element xi (resp. ¬xi ) of s, either xi is true or ¬xi is true. Then, all the xi are linked
in the extension E corresponding to the configuration s. That is, the freedom degree of
E is 0. It results from Proposition 10 that s = (x1, x2, . . . , xn) forms an answer set of
PIG .

��

Example 11 Figure 6(b) shows the two extensions obtained for the logic program of the
positive circuit of Example 8. Both extensions induce two answer sets that encode the two
stable configurations of the transition graph (Fig. 6(a)) that are drawn in bold font.

Theorem 5 Given a Boolean network where the interaction graph IG is a negative circuit
of size n and PIG the logic program expressing IG. Then, the set of 2n extra-extensions of
HC(PIG) correspond to a stable cycle in the associated transition graph TG of size 2n.

Proof Proposition 12 guarantees the existence of 2n extra-extension (extra-stable models) of
degree 1. We have to consider here the fact that all the 2n extra-extensions are of degree 1.
This implies that there is a single transition from each extra-extension of degree 1 to another
extra-extension of degree 1, producing a stable cycle of 2n extra-extensions. This corresponds
to a stable cycle of size 2n in TG, where each extra-extension identifies a configuration in
the cycle of TG. ��

Example 12 Figure 7(c) shows the extra-extensions obtained for the logic program corre-
sponding to the negative circuit of Example 8. We can see that six extra-extensions of degree
1 inducing six extra-stable models are found and each of them identifies a configuration of the
stable cycle of the corresponding transition graph given in bold font (Fig. 7(a)). Figure 7(b)
shows the stable cycle separately from the rest of the transition graph.

Fig. 6 The stable configurations of TG expressed as stable models of HC(PIG ). For simplification, self
transitions are omitted

123



742 T. Khaled et al.

Fig. 7 Astable cycle of TG seen as a set of 2n extra-extensions of HC(PIG ). For simplification, self transitions
are omitted

5 Empirical validation

In this section, we evaluate our proposed methods for general Boolean networks (see Sec-
tion 3) and circular Boolean networks (see Section 4). In Section 5.1, we test our method
(presented in Section 3.1 for computing all stable configurations and cycles of a general
Boolean network) on several popular networks in the literature. In Section 5.2, we test our
method (presented in Section 3.1 for computing only stable configurations of a general
Boolean network) on the seven reduced-dynamics networks of the seven real-world models
used in [22]. In Section 5.3, we test our method (presented in Section 4 for computing only
stable configurations and cycles of a circular Boolean network) on many randomly generated
networks. Our code and benchmark problems are publicly available in the GitHub repository
3.

5.1 Stable configurations and cycles of general networks

To illustrate the soundness of our approach introduced in Section 3 for the simulation of
Boolean networks and the detection of attractors, we applied it to real biological networks.
We evaluated themethod for the synchronous and asynchronous updatemodes on real genetic
networks found in the literature. We experimented the method on networks corresponding to
yeast cell cycle [33] and fission yeast cell cycle studied in [34]. We also applied the method
to T-helper cell differentiation and its Boolean network described in [6].

We are interested here in the computation time and the number of attractors found. Table 1
shows the obtained results.We can see that themethod is efficient on all the networks.We also
note that the attractors in the synchronous case often coincide with those in the asynchronous
case. The similarity is due to a large number of stable configurations compared to the number
of stable cycles in these networks. It is well known that the stable configurations are generally
the same in both the synchronous and asynchronous updating modes [6].

3 https://github.com/tarekhaledasp/ASP-BN.git

123

https://github.com/tarekhaledasp/ASP-BN.git


Using answer set programming to deal with attractor computation 743

Table 1 The results obtained on common graph regulatory networks found in the literature

Network Genes Attractors Update mode Time (sec)

Yeast cell cycle 11 6 Synchronous 2.21

11 6 Asynchronous 0.56

Fission Yeast 10 11 Synchronous 1.82

10 12 Asynchronous 0.50

T-helper cell differentiation 23 2 Synchronous 0.37

23 2 Asynchronous 0.43

5.2 Stable configurations of reduced-dynamics networks

To evaluate our new approach for computing only stable configurations of a Boolean net-
work (see Section 3.2), we applied it to the reduced-dynamics networks of the seven
selected real-world networks used in [22]. The number of stable configurations of a reduced-
dynamics Boolean network depends on the size of the minimum negative feedback vertex
set of the original network and this number is large in most cases [22]. Hence, com-
puting stable configurations of reduced-dynamics networks is computationally demanding
task.

In [22], we used the state-of-the-art method PyBoolNet [35] for computing stable config-
urations of reduced-dynamics networks. This method also relies on ASP but it uses another
encoding based on prime-implicants of Boolean functions. It uses Clingo [36] as the underly-
ing ASP solver. In contrast, our ASP encoding uses the disjunctive normal forms of Boolean
functions only. We used both Clingo and our own solver system (i.e., HC-asp [16]) as the
underlying ASP solvers.

Table 2 shows the running time comparison between PyBoolNet and our new approach on
the reduced-dynamics networks. Columns n and e denote the number of nodes and the number
of interactions of the reduced-dynamics Boolean network, respectively. Column |F | denotes
the number of stable configurations. Columns 6-7 denote the running time (in seconds) of our
approach using the Clingo solver and the HC-asp solver, respectively. Columns 8-9 denote
the speedups compared to PyBoolNet of our approach using the Clingo solver and theHC-asp
solver, respectively.

From the results shown in Table 2, we can first see that the HC-asp solver is quite faster
than the Clingo solver in most networks (except the Colon-Cancer network with very small
running time). This is consistent to the conclusion shown in [16] that HC-asp (even with
its initial prototype) is better than Clingo. In addition, when the number of solutions (i.e.,
stable configurations) increases, the difference between HC-asp and Clingo also increases.
This trend is also reported in [16]. Hereafter, we shall only compare PyBoolNet with our
approach using Clingo.

First, our approach ismuchmore efficient than PyBoolNet. The speedup is significant even
between one and two orders of magnitude. Second, our approach seems to scale much better
than PyBoolNet with respect to the problem complexity (i.e., the number of nodes n and the
number of solutions F). Finally, ourmethod depends on not only n and F but also the Boolean
functions that can be partially exhibited by the average number of interactions (i.e., e/n) [22].
For example, the number of stable configurations of the PROSTATE-CANCER network is
smaller than that of the IL6-Signalling network (24800 and 32768, respectively). However,
the running time of our approach for the PROSTATE-CANCER network is much slower

123



744 T. Khaled et al.

Table 2 Running time in seconds of PyBoolNet (PBN) and our new approach on the reduced-dynamics
networks used in [22]

New approach (sec) Speedup
Network n e |F | PBN Clingo HC-asp Clingo HC-asp

IL6-Signalling 55 99 32768 4.86 2.16 1.20 2.25 4.05

TLGL-Survival 58 195 3236 0.55 0.22 0.13 2.50 4.23

Colon-Cancer 66 154 52 0.12 0.02 0.04 6.00 3.00

A-Model 74 209 14 0.17 0.02 0.01 8.50 17.00

Cell-Cycle-2019 87 370 4176 10.50 0.56 0.32 18.75 32.81

PROSTATE-CANCER 116 390 24800 274.36 5.27 3.10 52.06 88.50

CASCADE3 176 468 58 0.60 0.06 0.05 10.00 12.00

than that for the IL6-Signalling network (5.27s and 2.16s, respectively). The reason may be
that e/n of the PROSTATE-CANCER network is much larger than that of the IL6-Signalling
network (3.36 and 1.80, respectively).

5.3 Stable configurations and cycles of circular networks

To illustrate the validity of our approach on the discovery of circular Boolean network attrac-
tors, we experimented the proposed approach on a large number of randomly generated
networks. The networks are generated by choosing for each node, independently and uni-
formly, exactly one predecessor and one successor from the set of n nodes. The transition
functions were also generated randomly by choosing each time a sign between positive and
negative arcs. We then applied the presented approach to these randomly generated Boolean
networks where the size is up to 7,000 nodes for positive circular networks and up to 40
nodes for negative circular networks. Figure 8 shows the running time of our approach.

We can notice that the method is very efficient as it computed the two attractors of each
positive circuit very quickly. In particular, the running time is less than 60 seconds for
the networks with 7,000 nodes. For the negative circuits, it computed the stable cycles for
networks very quickly, in particular in less than 60 seconds for networks of 40 nodes.

The number of simple attractors (stable configurations) in the case of positive circuit
graphs is always 2 whereas the size of the cyclic attractors (stable cycles) of the negative
circuit graphs having n nodes is 2n. This confirms the results that are known on attractors in
Bioinformatics for the case of circular networks in [26].

6 Related work

Boolean networks were first introduced in [3]. This modeling formalism is simple yet power-
ful in systems biology. Boolean networks have been used to describe gene regulatory network
dynamics in cases where we have good knowledge about the interactions between genes but
have no good kinetic information. The dynamics of Boolean networks, particularly the attrac-
tors, generally correspond to biologically relevant phenotypes such as cell types. For example,
in [9, 37], the evolution of Arabidopsis thaliana was modeled using Boolean networks. The

123



Using answer set programming to deal with attractor computation 745

Fig. 8 The runtime obtained on the randomly generated circular graphs

attractors were shown to correspond to levels of gene expression during the stages of the
development of Arabidopsis thaliana. In [38], the authors used a Boolean network to model
the different stages of the yeast cell cycle, where the attractors were shown to correspond
to phases of the process. The authors of [39] described the different states of the immune
system, using a Boolean network. Boolean networks were also used in [40–42] to study the
gene regulatory networks of the development of Drosophila melanogaster.

Several methods and tools have been developed to detect attractors in Boolean networks.
In [32], the authors used Binary Decision Diagrams (BDDs) to compute the attractors of both
synchronous and asynchronous Boolean networks. The implemented tool called genYsis has
been widely used in the systems biology community. The tool geneFatt [24] was developed
with slight improvements to genYsis. geneFAttwas reported a littlemore efficient for attractor

123



746 T. Khaled et al.

detection than genYsis. Although genYsis and geneFatt use BDDs to symbolically represent
the transition graph of the Boolean network, they still rely on the traversal of the whole state
space. Hence, their efficiency is limited to small to medium networks. In [33], the authors
developed a mathematical approach that also uses BDDs. By using state-space pruning and
random state space traversalmethods, they have improved the scalability of attractor detection
compared to the BDD method [32]. However, the method of [33] only computes stable
configurations, whereas the BDD-based methods [24, 32] compute all attractors of a Boolean
network. Berntenis et al. [43] studied the detection of attractors in large networks by limiting
the detection to only relevant sub-spaces of the transition graph of an asynchronous Boolean
network. Specifically, their proposed method detects the stable configurations and stable
cycles with up to a given size of the asynchronous Boolean network.

Dubrova et al. [31] developed a method based on the SAT formalism to compute all attrac-
tors (i.e., stable configurations and cycles, unstable cycles) of a Boolean network under the
synchronous updatemode. In this approach, the attractors are searched on the transition graph
of Boolean networks with SAT-Based Model Checking, in which the length of trajectories
is incrementally varied. It has been shown more efficient in running time and space required
than the BDD-based approach. Some slightly improved studies [44, 45] in the line of using
SAT have been done, but they are all inefficient with Boolean networks where Boolean func-
tions are complex and it is difficult to extend them to deal with the asynchronous update
scheme.

Besides, ASP has been used to model Boolean networks [46–48] and thus benefited to the
computation of attractors in Boolean networks [47, 48]. The work [46] concerned a use of
ASP to detect and characterize inconsistency in large biological networks. It is not intended
to deal with attractors at least with its current form.

The approach in [48] simulates the dynamics of gene regulatory networks expressed in
the framework of Boolean networks [48, 49]. It is difficult to compare our approach with
the method presented in [48]. With this method, the user must select a particular activation
semantics onwhich the dynamic trendwill be established. There are two activation semantics.
The first one consists of activating a gene if at least one of its activators is active and no
inhibitor is active. In the second semantics, a gene is activated if it has more expressed
activators than inhibitors. The chosen activation semantics are applied to all genes, whereas
our method’s activation rules are specific to each gene and based on transition functions.

In [47], the authors use a fix-point semantics [50] for logic programming to character-
ize Boolean networks’ trajectories and stable configurations. This is done by translating the
Boolean networks to a logic program. At the theoretical level, there are therefore two fun-
damental differences with our work: on the one hand they use the semantics of the fixed
point (captured by that of the stable models) and we use the semantics of the stable models
and an extension of this semantics to the extra-stable models. The second difference lies in
the fact that they only deal with simple attractors reduced to a stable configuration because
of the semantics used, whereas in our case the extension of the semantics of stable models
to extra-stable models allowed us to treat the attractors corresponding to the stable cycles.
In practice, Inoue et al. only proposed a method for computing stable configurations of a
Boolean network. This method has not been implemented yet. Moreover, since it requires to
compute supported models (not stable models) of the ASP encoding, it is hard to implement
this method directly using a more standard ASP solver.

123



Using answer set programming to deal with attractor computation 747

7 Conclusion

Boolean networks are a well-established modeling technique for analyzing the dynamics of
gene regulatory networks. By using Boolean networks, we can detect the attractors, which
are pertinent to study cell’s biological functions. We have developed an ASP based method
to identify the attractors of general Boolean networks where we can detect both the stable
configurations and the stable cycles for both the chosen update modes: synchronous and
asynchronous. v We have also addressed the particular case of circuits that play an essential
role in biological systems. Thanks to the use of the semantics introduced in [18], we were
able to demonstrate several theoretical proprieties that express the characteristics and the
dynamics of cyclic Boolean networks. In particular, the stable cycles of such networks have
been represented in the form of linked sets of extra-stable models. The extension of stable
models to extra-stable models introduced in [18] is very important for the characterization
of cyclic attractors.

Using the proven theoretical results, we have designed a reliable method for the com-
putation of attractors of Boolean networks for a chosen update mode. It is a declarative
method based on the ASP paradigm that has the advantage of guaranteeing an exhaustive
enumeration of all the attractors of the Boolean network considered. We have succeeded in
designing a system that allows to compute all the stable models and the extra-stable models
representing the stable configurations and the stable cycles of the associated transition graph,
respectively. The approach for general Boolean networks have been applied to real-life gene
regulatory networks, the obtained results seem promising and significant improvements were
obtained. The approach dedicated to circular Boolean networks enumerates all the attractors
without going through any simulation. The logical representation of a positive circuit has two
stable mirror extensions (two stable models) corresponding to the two stable configurations
of the transition graph. In addition, the logical representation of a negative circuit has a set
of 2n extra-extensions inducing 2n extra-stable models that express the single stable cycle
of the transition graph. Both the theoretical and practical results confirm the validity of our
approach, since they are consistent with the results obtained in [26] but using other proof
techniques.

As a perspective work, we are first interested in improving the method that deals with
general Boolean network by considering some necessary optimizations in order to handle
larger Boolean networks. The technique we currently use could be memory intensive when
processing large networks. Second, we want to perform the stable configurations and cycle
detection in a fully declarative way by adding some specific rules. Finally, for the approach
dedicated to circular networks, we seek to consider other updating modes than the asyn-
chronous mode, such as the synchronous mode and the generalization to sequential blocks,
which are periodic deterministic updates.

Data Availability The benchmarks are available with the identifier https://zenodo.org/record/8103494

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

References

1. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol.
9(1), 67–103 (2002)

123

https://zenodo.org/record/8103494


748 T. Khaled et al.

2. Tran, N., Baral, C.: Hypothesizing about signaling networks. J. Appl. Log. 7, 253–274 (2009)
3. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol.

22(3), 437–467 (1969)
4. Kauffman, S.A., et al.: Theorigins of order: Self-organization and selection in evolution.OxfordUniversity

Press, (1993)
5. Shmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic Boolean networks as models

of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792 (2002)
6. Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G: An efficient method for dynamic analysis of gene

regulatory networks and in silico gene perturbation experiments, pp. 62–76 (2007). Springer
7. De Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic

regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinforma. 5(2), 208–222 (2008)
8. Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSyst. 84(2),

101–114 (2006)
9. Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for

cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers exper-
imental gene expression profiles. Plant Cell 16(11), 2923–2939 (2004)

10. Marek, V.W., Truszczynski, M.L.: Stable models and an alternative logic programming paradigm. Logic
Programming Paradigm, pp. 375–398 (1999)

11. Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence,
pp. 115–137 (2004)

12. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso,
M.M. (ed.) IJCAI 2007, Proceedings of the 20th International joint conference on artificial intelligence,
Hyderabad, India, January 6-12, 2007, p. 386 (2007)

13. Simons, P., Nimelä, I., Soininen, T.: Extending and implementing the stable model semantic. Artif. Intell.
138, 181–234 (2002)

14. Alviano, M., Dodaro, C., Faber, W, Leone, N., Ricca, F.: Wasp: A native ASP solver based on constraint
learning. In: International conference on logic programming and nonmonotonic reasoning, pp. 54–66
(2013). Springer

15. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37, 53–68 (2016)
16. Khaled, T., Benhamou, B., Siegel, P.: A new method for computing stable models in logic programming.

Tools with Artificial Intelligence (ICTAI), pp. 800–807 (2018)
17. Khaled, T., Benhamou, B.: Symmetry breaking in a new stable model search method. 22nd Interna-

tional Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR-22), Kalpa
Publications in Computing 9, 58–74 (2018)

18. Benhamou, B., Siegel, P.: A new semantics for logic programs capturing and extending the stable model
semantics. Tools with Artificial Intelligence (ICTAI), pp. 25–32 (2012)

19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. ICLP/SLP 50, 1070–1080
(1988)

20. Khaled, T., Benhamou, B.: An ASP-based approach for attractor enumeration in synchronous and asyn-
chronous Boolean networks. Proceedings 35th International Conference on Logic Programming, ICLP
2019, Las Cruces, NM, USA, 295–301 (2019)

21. Khaled, T., Benhamou, B.: An ASP-based approach for boolean networks representation and attractor
detection. In: LPAR, pp. 317–333 (2020)

22. Trinh, V.-G., Hiraishi, K., Benhamou, B.: Computing attractors of large-scale asynchronous Boolean
networks using minimal trap spaces. In: Proceedings of the 13th ACM International conference on bioin-
formatics, computational biology and health informatics, pp. 1–10 (2022)

23. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3(3),
318–356 (1961)

24. Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for computing attractors of
synchronous and asynchronous Boolean networks. PloS One 8(4), 60593 (2013)

25. Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple
steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, pp.
180–193 (1981)

26. Remy, E.., Mossé, B.., Chaouiya, C.., Thieffry, D..: A description of dynamical graphs associated to
elementary regulatory circuits. Bioinforma. 19(suppl–2), 172–178 (2003)

27. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener.
Comput. 9, 365–385 (1991)

28. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. Int. Jt. Conf. Artif. Intell.
18, 1173–1178 (2003)

123



Using answer set programming to deal with attractor computation 749

29. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commun. ACM 5,
394–397 (1962)

30. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract.
Log. Program. 19(1), 27–82 (2019)

31. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean net-
works. IEEE/ACM Trans. Comput. Biol. Bioinforma. 8(5), 1393–1399 (2011)

32. Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G.: An efficient method for dynamic analysis of gene
regulatory networks and in silico gene perturbation experiments. In: Annual international conference on
research in computational molecular biology, pp. 62–76 (2007). Springer

33. Ay, F., Xu, F., Kahveci, T.: Scalable steady state analysis of Boolean biological regulatory networks. PloS
One 4(12), 7992 (2009)

34. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PloS
One 3(2), 1672 (2008)

35. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visual-
ization of Boolean networks. Bioinform. 33(5), 770–772 (2017). https://doi.org/10.1093/bioinformatics/
btw682

36. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The
Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011). https://doi.org/10.3233/
AIC-2011-0491

37. Sanchez-Corrales, Y.-E., Alvarez-Buylla, E.R., Mendoza, L.: The Arabidopsis thaliana flower organ spec-
ification gene regulatory network determines a robust differentiation process. J. Theor. Biol. 264(3),
971–983 (2010)

38. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc.
Natl. Acad. Sci. 101(14), 4781–4786 (2004)

39. Kaufman, M., Urbain, J., Thomas, R.: Towards a logical analysis of the immune response. J. Theor. Biol.
114(4), 527–561 (1985)

40. Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211(2),
115–141 (2001)

41. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of
the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

42. González, A., Chaouiya, C., Thieffry, D.: Logical modelling of the role of theHh pathway in the patterning
of the Drosophila wing disc. Bioinforma. 24(16), 234–240 (2008)

43. Berntenis, N., Ebeling, M.: Detection of attractors of large Boolean networks via exhaustive enumeration
of appropriate subspaces of the state space. BMC Bioinforma. 14(1), 1–10 (2013)

44. He, Q., Xia, Z., Lin, B.: An efficient approach of attractor calculation for large-scale Boolean gene
regulatory networks. J. Theor. Biol. 408, 137–144 (2016). https://doi.org/10.1016/j.jtbi.2016.08.006

45. He,Q., Xia, Z., Lin, B.: P_UNSATapproach of attractor calculation for Boolean gene regulatory networks.
J. Theor. Biol. 447, 171–177 (2018). https://doi.org/10.1016/j.jtbi.2018.03.037

46. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with
answer set programming. Theor. Prac. Log. Program. 11(2–3), 323–360 (2011). https://doi.org/10.1017/
s1471068410000554

47. Inoue, K.: Logic programming for Boolean networks. In: 22nd International joint conference on artificial
intelligence (2011)

48. Mushthofa, M., Torres, G., Van de Peer, Y., Marchal, K., De Cock, M.: Asp-g: an ASP-based method for
finding attractors in genetic regulatory networks. Bioinforma. 30(21), 3086–3092 (2014)

49. Fayruzov, T., De Cock, M., Cornelis, C, Vermeir, D.: Modeling protein interaction networks with answer
set programming. In: 2009 IEEE International conference on bioinformatics and biomedicine, pp. 99–104
(2009). IEEE

50. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of deduc-
tive databases and logic programming, pp. 89–148 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1016/j.jtbi.2016.08.006
https://doi.org/10.1016/j.jtbi.2018.03.037
https://doi.org/10.1017/s1471068410000554
https://doi.org/10.1017/s1471068410000554


750 T. Khaled et al.

Authors and Affiliations

Tarek Khaled1 · Belaid Benhamou1 · Van-Giang Trinh1

Belaid Benhamou
belaid.benhamou@univ-amu.fr

Van-Giang Trinh
trinh.van-giang@lis-lab.fr

1 Aix-Marseille University, University of Toulon, CNRS, LIS, Marseille, France

123


	Using answer set programming to deal with boolean networks and attractor computation: application to gene regulatory networks of cells
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Boolean networks
	2.1.1 Transition graphs
	2.1.2 Interaction graphs
	2.1.3 Circular Boolean networks

	2.2 Answer set programming
	2.2.1 Semantics of normal programs
	2.2.2 Search method for stable models and extra-stable models
	2.2.3 Semantics of extended programs


	3 Detection of attractors in general Boolean networks
	3.1 General approach
	3.1.1 Representation of interaction graphs
	3.1.2 Detection of attractors

	3.2 Detection of stable configurations

	4 Detection of attractors in circular Boolean networks
	4.1 Representation of interaction graphs
	4.2 The relation between the transition graph and the logical representation of its interaction graph

	5 Empirical validation
	5.1 Stable configurations and cycles of general networks
	5.2 Stable configurations of reduced-dynamics networks
	5.3 Stable configurations and cycles of circular networks

	6 Related work
	7 Conclusion
	References


