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Abstract
The k-nearest neighbors (k/NN) algorithm is a simple yet powerful non-parametric classifier
that is robust to noisy data and easy to implement. However, with the growing literature
on k/NN methods, it is increasingly challenging for new researchers and practitioners to
navigate the field. This review paper aims to provide a comprehensive overview of the latest
developments in the k/NN algorithm, including its strengths and weaknesses, applications,
benchmarks, and available software with corresponding publications and citation analysis.
The review also discusses the potential of k/NN in various data science tasks, such as anomaly
detection, dimensionality reduction and missing value imputation. By offering an in-depth
analysis of k/NN, this paper serves as a valuable resource for researchers and practitioners to
make informed decisions and identify the best k/NN implementation for a given application.

Keywords k-nearest neighbor classifier · Lazy learning · Instance-based learning ·
Software · Benchmarks

Mathematics Subject Classification (2010) 62H30 · 68T05 · 68Q32

1 Introduction

The k-nearest neighbors algorithm (kNN) is a non-parametric, supervised learning classifier,
which performs classification regarding the grouping of a given data point. Although kNNcan
be used for either classification or regression tasks, it is typically applied as a classification
algorithm based on the assumption that similar points can be found near one another. In
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general, in this approach the most commonly used distance is the Euclidean distance. The
starting concept about the kNN approach is due to Fix and Hodges in 1951 [1], while Cover
and Hart expands this approach in 1967 [2]. kNN is well-known and widely used algorithm.
It is simple and accurate, particularly in the case of small datasets. In general, it is applied for
tackling problems including amongothers, pattern recognition, datamining, recommendation
systems, intrusion detection and financial predictions.

The kNN algorithm is related to applicable geometry as well as to notions of convex and
discrete geometry. Specifically, from mathematical point of view the kNN approach is based
on the problem to determine the radius of an n-dimensional sphere in the Euclidean space
E
n centered at a given point c ∈ E

n that encloses k points of a given set of points in En . This
problem first appeared in 1860 by Sylvester in [3] who proposed the problem of drawing the
smallest circle enclosing a given finite set of points in the plane. Also in 1901 Jung gave an
answer to the question of best possible estimate of the size of an n-dimensional sphere in
E
n of a given diameter, (i.e. the maximal distance of any two points of the set). Specifically,

first, Jung established the following result in his dissertation in 1901:

Theorem 1 (Jung’s covering theorem (1901) [4, 5]) Let δ be the diameter of a bounded
subset M of E

n, (containing more than a single point). Then, (1) there exists a unique
spherical surface Sn−1

r of smallest radius r enclosing M, and (2) r � [n/(2n + 2)]1/2δ.
Also, an elegant proof of Theorem 1 was given by Blumenthal and Wahlin in 1941 [6].
Furthermore, for a more recent proof applying Helly’s Theorem see [7].

Next, by defining the barycentric radius of a simplex to be the radius of the smallest
ball centered at the barycenter and containing the simplex as well as the barycentric radius
β = β(M) of a subsetM ofEn to be the supremum of the barycentric radii of simplices with
vertices in M, then by applying the Helly’s theorem we have proved in [8] that a bounded
setM can be covered by a ball of radius the barycentric radius β(M), which in many cases
gives a better result than Jung’s covering theorem.

To this end, suppose that σm = {v0, v1, . . . , vm} is an m-simplex in E
n , m � n, (i.e.

the convex hull of m + 1 affinely independent points vi , i = 0, 1, . . . ,m in E
n) and let

K = (m + 1)−1 ∑m
i=0 vi be its barycenter. Consider now the barycentric radius β of σm

as β = maxi ‖K − vi‖. Based on the above we give the following covering theorem for
simplices.

Theorem 2 (Covering theorem for simplices (1986) [8, 9]) Any m-simplex σm =
{v0, v1, . . . , vm} in E

n, m � n, is enclosable by the spherical surface Sm−1
β with

β = 1

m + 1
max

0�i�m

⎧
⎪⎪⎨

⎪⎪⎩

m
m∑

j=0
j �=i

||vi − v j ||2 −
m−1∑

p=0,p �=i

m∑

q=p+1
j �=i

||vi − v j ||2
⎫
⎪⎪⎬

⎪⎪⎭

1/2

.

The computation of the barycentric radius does not require any additional computational cost
and it can be easily achieved during the computation of the longest edge δ that it is required
for the Jung’s estimate.

Suppose now that M is a bounded subset of En , with diameter δ containing more than
n+1 points, then the barycentric radius β ofM is the supremumof barycentric radii between

123



every set of n + 1 points of M ; if M contains � points, � � n + 1, then the barycentric
radius β of M is given by

β = 1

� + 1
max
0�i��

⎧
⎪⎪⎨

⎪⎪⎩

�

�∑

j=0
j �=i

||vi − v j ||2 −
�−1∑

p=0,p �=i

�∑

q=p+1
j �=i

||vi − v j ||2
⎫
⎪⎪⎬

⎪⎪⎭

1/2

.

Now, since M is bounded and β � n(n + 1)−1δ, the set of barycentric radii of M is a
bounded set and β is a positive (finite) number. Taking into consideration the above we give
the following theorem.

Theorem 3 (Improved Jung’s covering theorem (1988) [8]) Let δ and β be the diameter
and the barycentric radius, respectively, of a bounded subsetM ofEn (containing more than
a single point). Then (1) there exists a unique spherical surface Sn−1

r of smallest radius r
enclosing M and (2) r � min{β, [n/(2n + 2)]1/2δ}.
From the above it is evident that issues related to kNN algorithms have been in the spotlight
for many years. Next, we give additional introductory topics concerning kNN.

As already mentioned, kNN classification algorithm is a well-known and widely used
non-parametric supervised learning approach. It belongs to the family of instance-based
learning algorithms, a concept explained by Aha et al. [10]. That is, the training instances
are stored in memory without explicitly learning a model. The training instances (referred to
as “knowledge”, training set, or simply dataset) will only be processed in the prediction phase.
For each new data instance, a query to the database returns the k closest training instances
based on some distance function. In the simplest case, the new object is classified to the
majority class of its neighbors. The same approach is employed for non-parametric regression
[11], the value of the query can be determined by the average of its neighboring training
points. Distance always refers to distances between the d-dimensional feature vectors. The
k-neighborhood of a vector x is denoted Nk(x) and contains the k closest training points to
x . If C = {1, 2, . . . ,m} is the set of class labels, and C(x ′) denotes the class label of point
x ′, then the majority rule classifies query x by the expression:

Ĉ(x) = max
i∈C

⎧
⎨

⎩

∑

x ′∈Nk (x)

1
(
C(x ′) = i

)
⎫
⎬

⎭
,

where 1(·) is the indicator function. Thus, the estimated probability of class i conditional on
the position of the query in feature space, x , can be calculated as:

p̂
(
C(x) = i | x) = 1

k

∑

x ′∈Nk (x)

1
(
C(x ′) = i

)
.

Analogous formulas can be given for regression tasks. For a binary classification task (where
|C | = 2), the decision can be given in terms of a threshold function

Ĉ(x) = i ⇐⇒ 1
(
p̂(i | x) � 0.5

)
.

Notice that the inequality is not strict, indicating that ties can be settled arbitrarily. The
simple kNN majority rule exposes weaknesses that are relevant in all kNN revisions. Firstly,
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different values of the hyperparameter k result in different classifications. A natural trade-off
between large and small values of k can be observed. Suppose that the training set consists
of n classified points, x1, x2, . . . , xn , and denote the number of observations of each class
as Ci = |{x : C(x) = i}|. Naturally, we would expect unequal class representations, that
is, for some class i , Ci > C j for all j �= i . If we choose the value of the hyperparameter
k to be equal to be large enough, then the kNN majority rule will always yield Ĉ(x) = i .
On the other hand, if we choose k = 1, classification will be susceptible to errors due to
outliers. Secondly, we can measure distances with a variety of functions, and each would
produce a possibly different k-neighborhood. The choice of distance function is not obvious.
Last but not least, the k-neighborhood has to be determined during classification at run-time.
Additionally,modern day applications usually entail vast amounts of data. Howdowe address
run-time complexity and storage complexity? What is more, the majority rule is just one of
the available kNN classification rules. Is there merit in choosing a different classification
rule? The answers to these questions form the four pillars of a good kNN application. That
is, if the practitioner makes an informed choice of (a) the hyperparameter k, (b) the distance
function, (c) the classification rule and (d) the query algorithm, then there is high probability
that their implementation can reach their accuracy and complexity targets. These issues are
further explored in subsequent sections. However, one should note that kNN is regarded as
one of the top 10 algorithms in data mining, Wu et al. [12]. Many advocate its use even in
competitive domains such as image classification, Boiman et al. [13], where it’s currently
found in the state-of-the-art, Bandaragoda et al. [14].

Despite the aforementioned challenges in classification, kNN plays a central role in data
science in general. In fact, it is the weaknesses of kNN that inspired innovative ways to tackle
data related issues. For example, in the area of noise reduction, a general idea is scoring points
based on their similarity to their neighbors, e.g. Bandaragod et al. [15], Pang et al. [16].
Anomaly detection methods based on kNN also show competitive performance. Theoretical
evidence show that kNN based anomaly detection methods show a ‘gravity defiant behavior’.
Specifically, Ting et al. [17] use computational geometry to find a closed form expressions
for the lower and upper bounds of the area under the receiver operating characteristic curve
for the 1NN anomaly detector. The proportion of anomalies (among other things) determines
that optimal performance bounds occur at finite data volumes. A similar behavior is observed
for other kNN-based anomaly detection methods. Another major area of application is in
missing data imputators, a review is given by Berreta and Santaniello [18]. Triguero et al.
[19] advocate the use of kNN methods as means of creating smart data out of big data.
Additionally, the intuition that ‘close’ or ‘similar’ points have similar characteristics makes
for an obvious use in recommender systems (e.g. Adeniyi et al. [20]). Other useful aspects
of kNN can be found in subsequent sections.

This review article aims to provide an overview of the current research on k-nearest
neighbor, help identify potential new applications, assess the advantages and limitations of
the algorithm, teach readers how they can use the algorithm to solve specific problems, and
list the available benchmarks, software, publications, along with citation analyses. Related
review works include: [21] which is a very nice but short discussion of the advantages and
disadvantages of kNN, [22] which provides a brief and insightful examination of distance
metrics used in kNN, [23] an imbalanced-focused kNN study through weighting strategies,
and [24] provides a comparison of different kNN variants and concludes that ARSkNN
[25] outperforms the others in the examined large datasets. Another interesting study is
[26] where it was concluded that Hassanat kNN was the best model for predicting diseases,
due to its highest average accuracy of 83.62%, precision and recall values. However, we
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have exhaustively searched the literature and to our knowledge there is no other work that
gathers the wide variety of kNN related topics in one paper, and this is what we attempt
in this paper. The kNN is an incredibly versatile machine learning algorithm. It is a non-
parametric method that achieves strong performance across a wide range of tasks in many
domains.An effective k-nearest neighbor reviewarticle can be beneficial for both research and
industry applications. Getting the most out of the kNN algorithm requires understanding the
underlyingmathematics, parameter selection, and feature preprocessing.With this knowledge
users can tailor their kNN model to the specific task at hand.

The paper is structured as follows. Section 2 is a review of the basic theory behind kNN
in statistical discrimination. Section 3 is solely concerned with classification: we delineate
the sources of error, discuss methods for the determination of k, give an introduction to
the concept of metric learning, and describe some key variations of the kNN classification
rule. Section 4 discusses data reduction techniques, and Section 5 is a short survey on query
algorithms. Sections 6 and 7 present available software and benchmarks. Section 8 is a
synopsis with concluding remarks. Throughout the paper, the reader will find tables with
publications and citation counts, as well as citations and links to available software. All
presented tables include bibliometric data that were indexed by Google Scholar.

2 kNN theory

This section provides an account of advances in the literature of kNN theory. Our aim is to
substantiate the four pillars of kNN methods as argued in the introduction. These are:

(1) the choice of hyperparameter k,
(2) the choice of classification rule,
(3) the choice of distance function and
(4) the choice of query algorithm.

We decided to include only what we believe are absolutely essential publications, and pro-
vide detailed high-level overviews on some of the results. In doing so, our purpose is to assist
new researchers in developing a solid understanding of the theoretical foundation behind
kNN, and provide a bridge between theory and application for the practitioner. The results
presented here will help in the interpretation of several kNN variations cited in subsequent
sections.

kNN was introduced by Fix and Hodges [27], originally published in 1951, and proposed
as a method for non-parametric statistical discrimination1. First and foremost, the authors
make a formal distinction between parametric and non-parametric methods. Consider the two
population discrimination problem. Suppose a random variable Z , whose value is observed
to be z, is distributed over a d-dimensional space according to either distribution F , or
distribution G. The problem of statistical discrimination is to decide on the distribution of Z
based on its observation. More specifically, we would like to find a function whose value at z
determines at which population it belongs to. According to Fix and Hodges, the practitioner
may find themselves in three possible scenarios where:

(i) the density functions of F and G (denoted f and g) are known,

1 The word ‘discrimination’ refers to methods of assigning an observation to its probability distribution,
deciding over a finite set of possible distributions of origin. The subtle difference between ‘discrimination’
and ‘classification’ is that the later assigns one out of a chosen number of labels.
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(ii) the densities of F and G are known except for a subset of parameter values,
(iii) the existence of density functions f and g can only be assumed.

In the first case, an optimal discrimination rule (in terms of expected accuracy) has been
proven by Welsh in 1936 [28], and is given by a threshold function determined by the ratio
of the two densities at point z. Notice that case (ii) reverts back to case (i) after estimation
of the missing parameters (based on some sample of observations). In case (iii), i.e. in the
absence of any knowledge, an informed decision to be made from the sample of observations
only. The kNN rule is particularly designed for case (iii), non-parametric2 as it makes no
assumption of the underlying distributions other than that they exist, and is the first of its
kind. Obviously, any approach in cases (ii) or (iii) can never surpass the performance of the
optimal decision rule in the setting of perfect information. The question of interest is: how
does the kNN rule compare to the optimal rule if knowledge about the densities were to be
known?

Fix and Hodge’s result can be summarised as follows. Consider samples X =
{X1, X2, . . . , Xn} from F and Y = {Y1, Y2, . . . , Ym} from G. Assume a metric with which
distances can be measured. The critical assumption about F and G is that they are absolutely
continuous. This will ensure that the density functions f and g are continuous almost every-
where with respect to the Lebesgue measure. Given observation z, consider a neighborhood
around z, N (z) with a given diameter, and denote by rX and rY the ratio of points of X and Y
in N (z) respectively. In the asymptotic case where the number of observations n andm grow
to infinity (with similar speeds), and the diameter of the neighborhood around z is decreasing
slowly, the ratio rX/rY coincides with the optimal rule (derived from perfect information)
with probability one.

There are several observations to bemade. First, the rule described above concerns the ratio
rX/rY , which is different from the majority rule generally employed in kNN applications.
Thus, we shall refer to this rule as the kNN discrimination rule. Secondly, the classification
decisions of the kNN discrimination rule coincide with those of the optimal rule for (almost)
every point in space. That is, asymptotically, the two rules have the same error rates and agree
on their assignments with probability one. Additionally, the relative representation of points
from F and points from G need not be balanced. The only requirement is that the ratio m/n,
together with its inverse, is bounded away from zero in the limit. However, questions can be
raised regarding the applicability of this rule. For a good approximation of the optimal rule,
a large number of nearest neighbors is required, but with a count still relatively minuscule
compared to the total number of observations. Nevertheless, the result provides a theoretically
sound method for non-parametric point density approximation. The ratio rX/rY corresponds
to the ratio of the estimated densities at point z. The formula for the estimated density is
given later in this subsection. Note that the same result can be extended to discrimination of
several populations.

The first theoretical result about the majority rule was published by Cover and Hart in
1967 [2]. Upper and lower bounds were given on the performance of: (a) the kNN majority
rule in the two class problem, (b) the 1NN majority rule in M class problems. The inter-
mediate result is that, in any separable metric space, and sample of n i.i.d random variables
x1, x2, . . . , xn , the k’th nearest neighbor of a point x , denoted by xk , converges to x with
probability one as the sample size, n, increases to infinity. Furthermore, the aforementioned
result is true for any probability measure. The bounds found by Cover and Hart are as tight
as possible and are given in terms of the (optimal) Bayes risk which we define below.

2 Due to the non-parametric nature of kNN methods, the parameter k, and any other parameter found in
variants of kNN, are correctly referred to as hyperparameters.
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Assume M probability density functions f1, f2, . . . , fM corresponding to M classes with
prior class probabilities h1, h2, . . . , hM summing to one. The probability of class i , condi-
tional on observation x (referred to simply as conditional class probability) is denoted hi (x).
From Bayes theorem it follows that:

hi (x) = hi fi (x)
∑M

j=1 h j f j (x)
. (1)

The Bayes risk is given in terms of the conditional class probabilities and a loss function
L(i, j), which reflects the cost of allocating an observation of class i to class j . It follows
that the risk associated with placing observation x to category j is:

r j (x) =
M∑

i=1

hi (x)L(i, j). (2)

The optimal decision rule selects the index j for which the risk is minimal, denote it by
r∗(x). We can define risk for the kNN rule in the same manner. Following this paradigm,
the bounds on the expected risk of the 1NN rule, denoted by R, are given in terms of the
expected risk of the optimal strategy, R∗ = E[r∗(x)]. For a 0-1 loss function, risk coincides
with error rate and we have the following inequalities:

R∗ < R < R∗(1 − R∗), M = 2,

R∗ < R < R∗(2 − M

M − 1
R∗), M > 2.

In both cases (for all values of M), the 1NN rule is bounded above by twice the Bayes risk.
In that sense, in the asymptotic case, half of the available information is contained in the
nearest neighbor, i.e. any other decision rule can at best reduce the 1NN error by a half. In
the paper it is also shown that the bounds for 1NN and kNN coincide for M = 2.

Contrary to the intuitive belief that a large k value should prove more robust, Cover and
Hart demonstrate by example that the 1NN rule has a strictly lower probability of error
than any other rule with k �= 1 for problems where the densities have disjoint support. This
raises questions regarding the optimal value of k for different kinds of problem. Furthermore,
the combinatorial nature of the given argument considers all possible class assignments of
samples of fixed size. Thus, undoubtedly, we shall expect that the optimal k value for a
particular sample depends (apart from the true distributions) on the relative representation
of each class, however, in classifying unseen observations, the k value that yields minimal
expected risk should also depend on the prior probabilities. The later issue in the literature
of classification is known as the class imbalance problem. Finally, notice that for M = 2
the upper and lower bounds coincide in situations of perfect certainty (R∗ = 0) and perfect
uncertainty (R∗ = 1/2).

Following these results many kNN variants followed shortly after. An idea that led to
another theoretical milestone was the one proposed by Hellman in 1970 [29]. Designed to
be of practical interest, this kNN rule rejects points whose k-nearest neighbors fail to form
a large enough majority. The idea is that by sacrificing the ability to classify every single
point, the performance of the kNN rule with rejection option can improve in terms of error
rate. More specifically, the (k, l) rule rejects points if the majority class fails to amass at
least l > k/2 observations among the k-nearest neighbors. It was proven later by Loizou
and Maybank [30] that the asymptotic behavior of (k, l) rules can approximate the Bayesian
error rate with rejection option, a conjecture at the time. There could be more kNN rules with
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error rates consistent with the Bayesian rule, or at least within acceptable bounds of error.
A lot of the modern kNN variations come without analogous proofs, nevertheless, there has
been a lot of success in improving the error rates.

So far wewere concernedwith the asymptotic behaviors of kNN.However, on the applica-
tion side, the topic of interest is performance on finite samples. A crucial paper by Fukanaga
and Hostetler in 1981 [31], calculates the locally optimal value of k for the kNN density
estimate. The approximate expression uncovers a relationship between the number of dimen-
sions, the distancemetric used, and the local curvature of the density function with the locally
optimal value of k. Although cumbersome, we provide an outline of this result because it
induces strong intuitions regarding what constitutes a good choice of k and a good choice of
distance metric.

The outline goes as follows. Consider a random variable X in d-dimensional space having
distribution F , and a random sample of n independent, identically distributed (i.i.d.) points
from F . Furthermore, assume a quadratic distancemetric s.t. d2(X , Y ) = (Y−X)	A(Y−X)

for some symmetric and positive-definite matrix A. We can form the following random
variables:

distance to the k’th NN : dk,

k-sphere around X : S(X) = {Y : d(X , Y ) � dk},
volume of the k-sphere : v(X) =

∫

S(X)

dY ,

kNN density estimate from Fix and Hodges : f̂n(X) = k − 1

Nv(X).

The sphere around a random point X , denoted S(X), has radius defined by the distance to the
k’th nearest neighbor. Consequently, the volume of S(X), denoted v(X), also depends on the
distribution F and the number of sample points n (and also dimension d). This dependence
is exploited to find an expression for the expected square error between the kNN density
estimate and the true density, which is given by:

Jn(X) = E{[ f̂n(X) − f (X)]2}
= E

{ 1

v2(X)

}(k − 1

n

)2−2E
{ 1

v(X)

}(k − 1

n

)
f (X) + f 2(X).

(3)

The idea is to optimize the expression above in terms of k. In order to do this, estimates for
the expectations of 1/v(X) and 1/v2(X) are required. The authors decide to approach this
issue by expressing the volume in terms of the coverage of the sphere S(X), given by:

u(X) =
∫

S(X)

f (Y ) dY .

The advantage identified by the authors is that u(X), seen as a randomvariable, follows a Beta
distribution with parameters (k, n− k + 1). Assuming continuity of the partial derivatives of
third order for the density f , and using the symmetry of the sphere S(X), a Taylor expansion
of f yields the following relationship:

u(X) ≈ f (X)v(X) + c(X)v1+2/d(X), (4)

where c(X) contains dependence on (i) the dimension, (ii) the matrix A used in the distance
calculations, and (iii) the curvature of the density f . The expression above can be exploited
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for an approximate solution for v(X) in terms of f (X), c(X), and u(X)3.What is left is taking
expectations and substituting in (3) for J (X). After minimizing J (X) for k, the optimal k
value is given by:

k0(n) =
⎛

⎜
⎝

d(d + 2)2π2 f 2+2/d(X)

�4/d
(
d+2
2

)
Tr2

{[
A

|A|1/d
]−1[

∂2 f (X)

∂X2

]}

⎞

⎟
⎠

d
d+4

, (5)

where � is the Gamma function, Tr(A) the trace, and |A| the determinant of operator A.
Equation (5) delineates the relationship between the locally optimal k, the dimensionality

of the space d , the distance metric (induced by matrix A), and the curvature of the probability
density function.We canmake the following observations regarding the optimal k0(n) at point
X for a sample of n observations:[-0.25cm]

(a) the optimal k depends on the dimensionality in a non-trivial manner,
(b) the optimal k is inversely related to a ‘measure’ of curvature (given by the trace in the

denominator),
(c) the optimal k depends on how the distance metric ‘measures’ curvature.

We should expect that if the density function changes abruptly in the local region, a smaller
sphere around the point X will yield a better estimate. Choosing a smaller k valuewill produce
a smaller sphere S(X), and therefore, possibly, a more precise estimate. To unpack the effect
of the distance metric, the authors optimize the overall square error (integral of (3)):

In =
∫

Jn(X) dX .

For the class of Gaussian density functions, it was found that the optimal Amatrix is given
by the inverse of the covariance matrix A∗ = 	−1. That is, distances along directions of low
variance should contribute more in the distance calculation.

To summarize, we have provided overviews of crucial theoretical results concerning kNN.
We clarified the difference between parametric and non-parametric estimations. We have
seen that the kNN discrimination rule coincides with the (optimal) Bayesian rule in the
asymptotic case, and touched upon the subject of imbalanced learning. We have seen that
the error rate of the kNN majority rule is bounded above by the twice the Bayes error, and
established that different problems have different optimal values of k. We provided resources
for theory behind the kNN rule with rejection option. Finally, we provided intuition regarding
the relationships between error rates, distance measure, k value, and dimensionality with
mathematical evidence.

3 Classification

This section focuses on kNN classification. We discuss the sources of error as well as survey
someof the kNNvariations.Weexplore the core issues related to the choice of hyperparameter
k, the choice of distance metric, and the choice of decision rule in association with possible
characteristics of the observed distributions in the data.

3 The key observation here is that the volume containing the k-nearest neighbors of X shrinks in expectation
as the number n of observations increases. Therefore, we can solve for the volume v(X) in equation (4), and
use the approximation u(X) = v(X) f (X) to replace the v2/d term.
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3.1 Sources of error

As inmany classificationmethods the sources of error include overlapping class regions, class
imbalances, outliers and noise. Apart from data preprocessing methods, the means by which
we can tackle these issues are: the choice of k, the choice of distance metric, and the choice of
classification rule. For example, the following figures depict the decision boundaries locally
and globally for the kNN majority rule under the Euclidean metric. Notice that in Fig. 1(a)
the classification of the query point (depicted as x) is different for k = 3 and for k = 6.

As a general principle, the severity of each source of error should be evaluated in associa-
tion to the observed distributions of the data.We can identify class overlap as the fundamental
source of error. This can be argued directly from the fact that the kNN discrimination rule
(and the majority rule within an error bound) approximate the Bayesian rule as the sample
size tends to infinity. To be precise, consider two normal distributions with different means
and unit variance, N (μ1, 1) and N (μ2, 1). Suppose the priors are equal and the density func-
tions f and g overlap. Assuming μ1 < μ2, we can find a point μ1 < x∗ < μ2 such that
f (x∗) = g(x∗) = p∗. At x∗, the optimal Bayes rule given by the ratio f (x∗)/g(x∗) = 1 is
at a state of complete uncertainty, i.e. the classification of x∗ can be settled arbitrarily. At the
same time, points in the interval I(−) = (x∗ − ε, x∗) satisfy f (x)/g(x) > 1 and are always
classified as coming from f . However, there is always a probability that the true density
of origin was g, which results in an inevitable source of error in the Bayesian framework.
The same argument can be made for points in I(+) = (x∗, x∗ + ε). In this case, the effect
on the error rate depends on p∗. In small samples the effect of overlaps can be even more
severe. Tang and He [32] demonstrate by example that the deviation of the kNN majority
rule from the Bayes rule can be significant. They ascribe this issue to differences in density:
the distribution with higher density at the query point is more likely to win the majority vote.
They attempt to tackle this challenge with the proposed Extended-NN (ENN) rule. The idea
deployed here is to look at classified datapoints which consider the unseen example to be
in their k-neighborhood, and iteratively calculate a coherence statistic. The coherence of a
class is based on the average number of correct inclusions in the k-neighborhoods of the
corresponding datapoints. The assignment that maximizes the sum of the class coherence
statistics wins. It can be argued that this rule matches the Bayes decision more closely near
the intersection of the observed densities. A recent approach on the matter is that of Yuan
et al. [33].

Fig. 1 In plot (a) the unseen observation is classified as blue for k = 3 while it is classified as orange for
k = 6. Plot (b) exhibits the decision boundary formed in a 3-class example
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The problem of class imbalance has beenwidely studied in the context ofmachine learning
(see for exampleHe andGarcia [34], Fernández et al. [35]).Data imbalance generally refers to
cases where one or more classes are underrepresented in the dataset. Reasons for imbalances
in the data can be intrinsic (some classes have naturally smaller priors compared to others),
or extrinsic (these usually relate to data acquisition or maintenance costs). We can further
differentiate between relative imbalance, e.g. cases where some classes are underrepresented
but still there is a reasonable volume of data in each class, and imbalance due to rarity, where
some classes are rare to find even in the region of space where they reside. In occurrences
of relative imbalance, it would be natural to try to incorporate the prior probabilities in the
decision rule. Cases of imbalance due to rarity are different. Whether or not there are reasons
to believe that the dataset provides a good approximation of the priors, the complication here
is that the k-neighborhood of a query will rarely include a minority instance. A common
approach is to look for the k-nearest neighbors within each class and bias the decision
appropriately. For example, Zhang et al. in [36] propose the K-Rare Nearest Neighbors
(KRNN) where k is variable so as to include at least some examples of the under-represented
classes. The decision is made based on the confidence levels of globally and locally defined
confidence intervals.A recent surveybySunandChen [23] outlines several kNNclassification
rules specifically designed for imbalanced datasets. In another recent survey by Zhang [37],
several generic classification rules are defined and tested on artificially imbalanced datasets.
The following table, Table 1, consists of kNNalgorithms specifically designed for imbalanced
datasets sorted by year together with their citations:

Noise can be divided into noise in the attributes and noise in the class labels. The later
implies that some points in the knowledge-base have erroneous class labels. Their effect can
bemitigated by simply choosing a larger k value. The same applies in the presence of outliers,
larger k values are generally more resistant. When it comes to noise in the attributes there is
evidence that certain distance metrics are more resilient than others (Abu Alfeilat et al. [53]).

Table 1 kNN for handling
imbalanced datasets, where
“Ref.” indicates the Reference,
“TNC” stands for total number of
citations, while “CpY” indicates
the citations per year

Ref. Author(s) Year TNC CpY

[38] Zeraatkar and Afsari 2021 13 6.5

[39] Wang et al. 2020 13 4.3

[40] Patel and Thakur 2017 28 4.7

[41] Liu et al. 2017 58 9.7

[42] Li and Zhang 2017 72 12.0

[43] Nikpour et al. 2017 13 2.2

[44] Ando 2016 26 3.7

[45] Yu et al. 2015 107 13.4

[46] Zhu et al. 2015 41 5.1

[47] Hajizadeh et al. 2014 14 1.6

[48] Dubey and Pudi 2013 67 6.7

[49] Zhang and Li 2013 33 3.3

[36] Zhang et al. 2013 87 8.7

[50] Kriminger et al. 2012 37 3.4

[51] Liu and Chawla 2011 195 16.3

[52] Song et al. 2007 320 20.0
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An effective noise reduction technique is to simply disregard what would be misclassified
points in the training set (Fig. 2).

The final remark, and perhaps the biggest challenge in kNN classification, is that the
sources of error can manifest in different ways at different regions of space. For example,
a class may be dense in a region of space but rare in another. The magnitude of noise may
correlate with certain attribute values. The density of a class may vary rapidly in some
region (suggesting a small k value), but slowly in another. We believe that a systematic
way of identifying sources of error locally would quickly translate to significant accuracy
improvements.

3.2 Choice of k

In Section 2 the locally optimal k value was shown to depend on (a) the dimensionality
of the problem, (b) the distance metric used, (c) the convexity of the probablity density.
Efficient methods for selecting the value of the hyperparameter k is an ongoing endeavor. In
terms of accuracy we believe that the most clear-cut approaches performs the best. A notable
example, is the assignment of a k value to each observation in the dataset, through ten-fold
cross-validation. This idea was proposed by García-Pedraja et al. [54] and experiments show
improved accuracy over regular kNN. The selection of k values considers both the local best
k and the global best k so as to avoid large deviations in the values assigned to neighboring
points. During classification, every new instance, inherits its nearest neighbor’s k value. There
also are approaches based on direct (convex) optimization, that may improve accuracy. For
instance, Zhang et al. [55] propose a reconstruction method. The knowledge base is divided
in a training set and a test set. Let each row of the matrices X , Y correspond to a datapoint
in the training set and test set respectively. Reconstruction methods attempt to find a weight
matrix W that minimizes the loss function L = ‖WX − Y‖ where ‖ · ‖ is the Frobenius
norm. Achieving a sparse W matrix is key, so, L1 and L2 regularization terms are added to
the loss. Zhang includes a locality preserving regularization term and positivity constraints
to ensure that points are reconstructed from their neighbors. For each data point in the test
set, the number of non-zero elements of the corresponding row of W determine a suitable
k value. The k value of future queries is inherited from neighbors. This work is extended in
Zhang et al. [56], a decision tree (named k∗-tree) is constructed for faster queries for a loss
in accuracy.

Fig. 2 k-nearest Neighbor challenges in classification problems
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3.3 Choice of distancemetric

Generally speaking, data instances with d features are considered as points within an d-
dimensional feature space. Since the prediction is determined by comparing the distances to
the query, the absolute position of instances is less significant than their relative positions.
Ideally, the distance metric should maximize the distance between instances of different
classes, while minimizing the distance between instances belonging to the same class.

AbuAlfeilat et al. [53] experimented upon a large number of different distance functions on
real world datasets and concluded that classification performance is drastically affected by the
choice of distance function. In particular, they came to the conclusion that there is no optimal
distance function that suits all datasets, and metrics belonging to the same families showed
analogous classification results. This could be attributed to the fact that some application
domains favor certain metrics over the others. For example, a similar expariment for the
medical domain conducted by Hu et al. [57] found that the Chi-square distance function
performs the best. Moreover, it was found that a few distance metrics were more resilient to
noise compared to others.Noteably, one of the best distance functions in [53]was non-convex.

Apart from employing cross validation, one could use distance metric learning to find
an appropriate distance metric. For the purpose of maximizing classification accuracy these
methods involve applying a linear or nonlinear transformation to the feature space. A convex
optimization approachwas for the first time proposed byXing et al. [58]. They considered the
Mahalanobis distance which is defined by dA(x, y) = (x − y)	A(x − y), where A = W	W
is a positive semi-definite matrix A � 0, Here W corresponds to the space transformation.
The intuition behind their idea was to find the optimal matrix A that maximizes distances
between points in different classes and minimizes distances between points belonging to the
same class. Let yi j = 1 if the i’th and j’th points in the knowledge base are part of the same
class, that is yi = y j and zero otherwise. The objective function can be written as:

maximize
∑

i, j

(1 − yi j )
√
dA(xi , x j ),

subject to:
∑

i, j

yi j dA(xi , x j ) � 1,

A � 0.

(6)

The first condition forces points belonging to the same class to stay close, while the
objective maximizes distance between points of different classes. Similarly, in the approach
of Shalev-Shwartz et al. [59] a Mahalanobis metric is learned online. A scalar threshold b
forces points belonging to the same class to be at most b−1 distance apart. Conversely, points
in different classes are at least b + 1 distance apart. Both approaches boost the performance
of kNN and also have the advantage of being convex optimization problems. However due to
the nature of kNN methods a weakness of linear space transformations shows up. Different
patterns in the relevant positions of pointsmay be observed in different locations of the feature
space. Neighborhood Component Analysis (NCA) is a novel idea that tries to circumvent
this problem. Proposed by Goldberger et al. [60], in NCA points are assigned random
neighborhoods. The probability that point j ends up in the assigned neighborhood point i
in the transformed space is inversely related to their distance. Weinberger et al. [61] based
on the idea that only the distances of neighboring points are relevant, formulated a convex
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optimization problem which shows similarity to that of Eq. (6), but instead of summing over
all pairs of points, it sums over neighbors. The resulting transformation is known as the Large
Margin Nearest Neighbor (LMNN).

Taking into account the aforementioned points, it is evident that the choice of metric is
crucial to kNN applications. Linear transformations do improve the accuracy of kNN, how-
ever, one disadvantage is that they are global. Attempts to localize the optimal distancemetric
are certainly relevant. By extension, all literature on space transformations can contribute to
improve the accuracy of kNN classification.

3.4 Variations of kNN

In this section we showcase a number of different kNN rules that address the sources of
error in different ways. Certain categories of kNN rules are often used as building blocks
of more elaborate classifiers. Our rough categorization is: local hyperplane methods, fuzzy
methods, weighting methods, and reconstruction methods. Many of the latest kNN rules
involve combining these approaches meaningfully.

The kNN variant of k-local hyperplanes was introduced by Pascal and Yoshua [62]. The
general intuition is that each class lays on a non-linear manifold in feature space. The rule
assigns unlabeled data points to the closest manifold. Let C = {1, 2, . . . ,m} be the set of
class labels. The k-nearest neighbors from each class are determined for a total of km nearest
neighbors. If NCi = {x1, x2, . . . , xk} are the k-nearest neighbors belonging to class i , then
the local approximation of the corresponding manifold consists of a linear combination of
the points inNCi . For each i in C the coefficients of the linear combinations are optimised in
such a way, so as to minimize the distance to the unclassified observation. Another notable
kind of kNN algorithms are fuzzy kNN algorithms. Further study material can be found in
Derrac et al. [63]. Weighting schemes to weight the labels and/or features, some examples
are Gou et al. [64], Dudani [65], Liu andChawla [51]. An example of reconstructionmethods
is in Zhang et al. [66]. They employee the locality preserving projection developed by He
and Niyogi [67] to reconstruct the test sample from the training sample, thus producing a
weighting of nearest neighbors and a good selection of k.

Recent years have seen many researchers combine the known approaches and embed
their own innovation into them. Yu et al. [45] integrated the method of k-local hyperplanes
to a fuzzy relative transform decision rule for the purpose of dealing with class imbalances.
Susan and Kumar [68] applied a linear transformation (e.g., LMNN or NCA) to the feature
space. Then, the k-nearest neighbors were partitioned into two clusters: the points that are
closest to the farthest neighbor, and the points that are closest to the closest neighbor. The
second cluster is used for a final decision. These are but a subset of examples with fruitful
combinations of ideas.

There are many more recent algorithms, e.g. the algorithm presented in [69] is an effi-
cient and improved version of the k-Nearest Neighbor algorithm called Ensemble Centroid
Displacement-Based k-NN. The algorithm leverages the homogeneity of nearest neighbors
of test instances to increase accuracy. In [70] a non-parametric method for nearest neighbor
classification using global dissimilarities in variance was proposed and tested on twelve real
datasets. The results showed that the proposed algorithm achieved higher accuracy compared
to the Local Mean k-Nearest Neighbor algorithm.
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4 Feature selection and data reduction

It is known that the performance of query algorithms is severely degraded in the presence
high-dimensional data. Feature selection (FS) methods reduce the dimensionality of the data
but can also improve performance by disregarding irrelevant or redundant dimensions of
the data. A comparative study by Rogati and Yang [71] showed that the accuracy of kNN
can benefit greatly from FS. A broad categorization of FS methods comprises of filter-based
methods, wrapper-based methods, embedded methods, and hybrid methods. The purpose is
to identify small subsets of features that produce the same or even greater accuracy. For more
informationwe refer the reader to Li et al. [72]. There are advantages in using a kNNclassifier
as a base for many of these approaches. Consider a general wrapper-based strategy for FS that
includes (a) a feature subset selector, (b) a feature subset evaluator. There are many strategies
for selecting feature subsets, for kNN, Tahir et al. [73] propose a Tabu search strategy. The
feature subset evaluator is a classifier, which in most cases needs to be re-trained and tested
for every feature subset. Fundamentally, kNN has minimal to no-training stage. Additionally,
many distance functions can be calculated recursively. For example the Euclidean distance
satisfies:

dE (x, x ′)2 =
d−1∑

i=1

(xi − x ′
i )
2 + (xd − x ′

d)
2.

Thus, in practise, a distance matrix can be calculated once and updated recursively to reflect
the distances in the current feature subset (Wang et al. [74]).

A major challenge in the FS literature is the algorithmic instability caused when the
number of features far exceeds the number of observations. Ensemble kNN wrapper-based
methods are believed to be able to tackle instability issues (Li et al. [75], Park and Kim [76]).

An alternatinve FS approach for kNN, is proposed by Xiao and Chaovalitwongse [77].
They showed that if the kNN rule is based on the distance to the centroids of each class,
then the FS problem can be cast as a convex optimisation problem. The idea is to learn a
Mahalanobis matrix and perform l1 regularization to promote sparsity for the Mahalanobis
matrix. The sparse matrix can effectively nullify certain dimensions of the data.

Complementary to FS, data reduction methods reduce the space requirements by reducing
the number of training instances. The efficiency of the data reductionmethods are often judged
by the trade-off between storage requirements and classifier accuracy, and run-time complex-
ity. A complete taxonomy, comparison, and extensive experimentation of these methods is
given by Garcia et al. [78]. The empirical finding is that approximate query methods on the
complete dataset compete in run-time performance with basic kNN search on the reduced
dataset. A notable algorithm is that of Arnaiz-González et al. [79]. In contrast to most other
methods, the proposed algorithm has linear complexity. Even though the data reduction rates
and the resulting classification accuracy were not among the top performers, it is a solution
for extremely large datasets. Alternatively, there are solutions in distributed frameworks, i.e.
a MapReduce solution by Triguero et al. [80]. Recent publications, among others, include
prototype selection for imbalanced datasets: Sisodia and Sisodia [81], prototype selection
with local feature weighting: Zhang et al. [82], prototype selection for kNN regression:
Song et al. [83]. The authors of [82] presented an improved k-Nearest Neighbor algorithm
(IKNN_PSLFW) combining prototype selection and local feature weighting as an approach
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to address the drawbacks of the traditional kNN rule, such as poor efficiency and class over-
lapping. Experiments were conducted to examine the success of the IKNN_PSLFW, and the
results displayed superior performance in comparison to kNN and other machine learning
algorithms, in addition to high efficiency.

5 Nearest neighbor matching algorithms

From a historical perspective, the problem of identifying nearest neighbors was posed inde-
pendently by many researchers. For example, Minsky and Papert posed the ‘best match’
problem [84], a special case of kNN where the dataset is composed of binary words of fixed
length4, and Knuth named the ‘post office search’ problem, again a special case where the
dataset consists of points in the plane [86]. The introduction of kNN methods for density
estimation and classification drew significant attention to these problems with the aim of gen-
eralizing to high-dimensional spaces, general distance functions, and finding efficient query
algorithms. A query algorithm is composed of two parts: an algorithm that maps the data
into mathematical objects that can be searched effectively (preprocessing), and, a searching
algorithm. Thus, performance can be assessed in terms of three components:[-0.25cm]

(a) the time complexity of the preprocessing step (computation cost),

(b) the space complexity of the mathematical objects produced by preprocessing and

(c) the time complexity of the searching method (query complexity).

When d = 1 the optimal strategy involves sorting the points for aO(n log n) preprocessing
time, and performing the query with binary search, resulting in O(log n) query time for
the 1NN case. As shown by Shamos [87] in 1975, the same procedure can be followed
for d = 2 with O(n2) space, only this time binary search is performed on slices of the
Voronoi diagram of the data. For a dataset of n points, the Voronoi diagram consists of
n distinct regions, each containing exactly one point. For metrics satisfying the triangle
inequality, the Voronoi diagram partitionRd into convex regions, sharing only their common
boundaries of equidistant points. The regions are defined such that if a query falls within
a Voronoi region, its closest neighbor is the associated data point. As shown by Chew and
Dyrsdale III [88] in 1985, violating the triangle inequality results in non-convex regions,
which cannot be searchedwith the same efficiency. The first tree structure approach for d > 2
was the quad tree proposed by Finkel and Bentley in 1974 [89], however, the prevailing
data structure is the kd-tree (Friedman et al. [90]) due to logarithmic (expected) query
complexity and linear space complexity. Several authors have modified kd-trees for better
performance. Beygelzimer et al. [91] proposed cover-trees, Silpa-Anan and Hartley [92]
proposed optimised kd-trees. Nister and Stewenius [93] proposed the vocabulary tree, which
uses hierarchical k-means. Ball-trees partition the manifold the points are on. Ball-trees is an
example of ‘multidimensional’ tree-structures. The decision at each node does not depend
solely on a single dimension of the dataset. The method is shown to perform much better in
higher dimensions that other binary tree-structures. In a comparison by Muja and Lowe [94]
it was shown that the multiple randomized trees are the most effective for high dimensional
data. However, there is evidence that these partitioningmethods scale poorly with the number
of dimensions (see Indyk [95]).

4 For this particular case, an optimal algorithm has been proven by Ronald [85] in 1974.
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For many data intensive applications, there is no known exact nearest-neighbor search
algorithm with acceptable efficiency. In practise, most applications settle for approximate
search. A simple and popular hashing method is the locality sensitive hashing (LSH), Indyk
and Motwani [96]. The idea is to encode data points into hashes. Hashes are designed so that
the probability of two points sharing a hash is much higher for points that are closer together.
Given some distance function d , Indyk and Motwani define a family of hash functions H to
be (r1, r2, p1, p2)-sensitive if for any two points p, q in the dataset the following conditions
are satisfied:[-0.2cm]

1. if p ∈ B(q, r1), then Prh∈H[h(p) = h(q)] � p1,[-0.1cm]
2. if p /∈ B(q, r2), then Prh∈H[h(p) = h(q)] � p2,

where B(p, r) denotes the hypersphere centered at point p with radius r . A hash family
is meaningful if p1 > p2 and r1 < r2. The gap between p1 and p2 can be amplified by
concatenating several hash functions. Practically, a collection of hashes split the data points
into several partitions. To process a query, brute force search is applied to elements with
the same hash values. LSH is grounded in the theory of random projections. In the simplest
case, points are projected on random lines passing through the origin. These lines are then
discretized into small line segments each with a corresponding id. Thus, a table of hash codes
is created, with pointers to the points corresponding to each hash. Hashing methods result
in fast and effective queries. Query times achieved are sublinear. In general, the quality of
the hash functions determine the quality of the method (for details see Muja and Lowe [97]).
However, until recently, space partitions produced by random projections had been widely
studied in the average case. In the last decade a lot of work has been dedicated in studying
worst case scenarios. If a dataset consists of points sparsely distributed around the origin, the
probability of collision of far away points is small. On the contrary, points in dense clusters
are more likely to collide with far away points. For these reasons, recent methods take into
account the distribution of the data locally, for details see He et al. [98], Xu et al. [99],
Iwamura et al. [100], Andoni and Razenshteyn [101]. The literature on hashing methods is
growing fast and we direct the reader to a recent survey by Wang et al. [102].

In other lines of work, Jegou et al. [103] proposed a product quantization approach in
which the feature space is decomposed into low dimensional subspaces and the data points
are represented by compact codes. Babenko and Lempitsky [104] proposed the inverted
multi-index, obtained by replacing standard quantization with product quantization. A more
in-depth analysis is given in review papers by Vasuki and Vanathi [105], and a more recent
by Wu and Yu [106].

Another family of methods is graph-based. These are fundamentally different from tree
methods. Instead of reccursively cutting the dataset, these methods build general graphs in
which vertices associate to data points (or subsets of data points). The query is an effective
exploration of the graph(s). Empirical results place graph methods in the current state of the
art. We direct the reader to recent surveys by Wang et al. [107] and Shimomura et al. [108].

Concluding, a lot of work has been done for decentralized framework solutions. Chatz-
imilioudis et al. [109] developed Spitfire, a high performance distributed algorithm. Gieseke
et al. [110] presented a GPU based algorithm for kd-trees. Kim et al. [111] propose paral-
lel kNN using MapReduce. Maillo et al. [112] also provided a solution for exact k-nearest
neighbor classification based on Spark.
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6 Available software

In this section, we provide a selection of available Nearest Neighbor software implementa-
tions in no particular order. These software packages and tools are open-source and available
for free use, originating from industry, academia, and individuals. The purpose of this sec-
tion is to provide readers with a list of available software for their use and reference. We
conclude this section with a table containing software packages, their publication reference,
and citation count (Table 2).

6.1 Annoy

Approximate Nearest Neighbors Oh Yeah (Annoy)5 is a C++ library with Python bindings
that was initially developed in 2013 during Spotify’s Hack Week by Erik Bernhardsson.
This library is currently used for music recommendations by Spotify. Annoy distinguishes
itself from other nearest neighbor tools by allowing the use of static files as indexes, which
enables parallel and distributed processing by sharing memory and indexes across differ-
ent processes. Annoy supports various distance measures, including Euclidean, Manhattan,
Cosine, Hamming, and Dot (Inner) Product distance [113]. It is memory-efficient, and can
build indexes on disk for big datasets that will not fit into memory. The developers claim
that Annoy performs better on datasets with less than a hundred dimensions, but it is still
effective on datasets with up to a thousand dimensions.

While, the construction of indexes is separate from the lookup procedure, it is not possible
to add more items to the tree after its creation. Annoy builds a tree structure using a LSH
algorithm that is based on random projections. The algorithm randomly selects a hyperplane
that divides the space into two sub-spaces at each intermediate node of the tree. This process is
repeated n_trees times, resulting in a forest of trees. Annoy has two main parameters: n_trees
and search_k. The first parameter specifies the number of trees in the index, and it affects
the build time and the index size. Larger values of this parameter will return more accurate
results, but larger indexes. The developers recommend setting n_trees to the largest possible
value based on the available computer memory. The second parameter, search_k, determines
the number of nodes to inspect during searching, and affects the search performance. Setting
higher values improve the accuracy of the results but require more run time. By default,
Annoy sets search_k to n*n_trees, where n is the number of approximate nearest neighbors.
The developers advise setting search_k to the largest possible value that meets the time
constraints of the queries. These two parameters are mostly independent.

Annoy is available onC++ andwraps for Python 2 and 3 and other programming languages
such as R, Java, Scala, Ruby, Go, Lua, Node, Scala and Rust.

6.2 FAISS

Facebook AI Similarity Search (FAISS)6 [114] is a library developed by Facebook AI
Research for efficient similarity search and clustering. It includes both exact and approx-
imate k-nearest neighbor searching, and offers a range of features to improve speed and
memory usage. For example, FAISS can batch process multiple vectors, store indexes on

5 Github Annoy repository.
6 Github FAISS repository.
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disk instead of RAM to enable processing of large datasets, and trade precision for speed or
memory usage.

FAISS supports L2 (Euclidean) and Dot Product vector comparison. However, a number
of the available indexes support the L1,L∞, L p , Canberra, BrayCurtis and Jensen-Shannon
metrics [113]. Furthermore, Cosine similarity and Mahalanobis distance can be used by first
preprocessing the data. Currently, FAISS offers 10 different indexes that are tailored for
high-dimensional and large datasets. However, it is not recommended for low-dimensional
data. FAISS also includes auto parameter tuning for specifically run time parameters.

FAISS is written in C++ with complete wrappers for Python. Lastly, FAISS provides
multiprocessing on CPU and GPU level.

6.3 SPTAG

Space Partition Tree and Graph (SPTAG) [115] is a library developed byMicrosoft Research
and Microsoft Bing for large scale approximate k-nearest neighbor searching. SPTAG sup-
ports only L2 (Euclidean) distance and Cosine distance, and the supported indexes are K-D
trees [116] (SPTAG-KDT) and balanced k-means trees [117] (SPTAG-BKT). K-D trees have
a lower index building cost, but k-means trees have higher search accuracy in very high-
dimensional datasets. Both are combined with relative neighborhood graphs. SPTAG offers
more than 10 parameters for parameter setting, regardless of the index used. Tuning of these
parameters can be automated through Microsoft’s Neural Network Intelligence (NNI) 7 tool.

SPTAG supports GPU and distributed processing (e.g., performing searches over multiple
machines). SPTAG is written in C++, but is also available in Python 3, Java, and C#.

6.4 NGT

Neighborhood Graph and Tree for Indexing High-dimensional Data (NGT)8 is a library
for approximate nearest neighbor searching in high dimensional vector spaces against a
large volume of data. It was developed by Yahoo! JAPAN and is used by the search engine
Vald(NGT)9. It employs one of the following three searching methods: NGT, a graph and
tree-based method; QG, a quantized graph-based method; and QBG, a quantized blob graph-
based method.

The NGT method can employ both tree-based and graph-based indexes. Graph-based
indexes are divided into two categories: Approximate k-Nearest Neighbor Graphs (i.e.,
ANNG [118], ANNGT[119, 120], PANNG [121, 122]) and Optimized Nearest Neighbors
Graph (ONNG [123]). NGT supports several distances and similarities, including Manhat-
tan, Euclidean, Angular, Hamming, Jaccard, Poincare, Lorentz distances, and the Cosine
Similarity [113]. On the other side, QG supports only the Euclidean distance and the Cosine
Similarity, while QBG supports only the Euclidean distance.

According to the developers, QG performs better than NGT, while QBG can handle
datasets with billions of objects. However, NGT supports distributed processing, shared
memory and batch processing making it more appropriate for server use. All three methods
are available in Linux and macOS operating systems. NGT is compatible with Python, Ruby,

7 NNI tool
8 Github NGT repository.
9 Vald search engine
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Rust, Javascript, NodeJS, Go, C, and C++, while QB and QBG support only C and C++.
Searching can be done in Python for all three methods.

6.5 Scikit-learn

Scikit-learn10 [124] is a widely-usedmachine learning library in Python, which offers several
exact k-nearest neighbor methods for search, classification, regression, and component anal-
ysis, among others. Scikit-learn implements these functionalities using three nearest neighbor
algorithms: Brute Force searching, kd-tree, andBall-tree data structures [125].While the user
can choose the algorithm, Scikit-learn can also automatically select an appropriate algorithm
based on various problem conditions, such as the number of samples, dimensionality of the
dataset, intrinsic dimensionality and sparsity of the dataset, number of neighbors k, number
of query points, and leaf size of the trees. Specifically, the Brute Force algorithm is picked
if any of the following conditions apply: the input data is sparse, the ‘precomputed’ metric
is used, the number of features exceeds 15, the value of k is greater or equal than half of
the number of samples, and if the effective_metric_ is not part of the VALID_METRICS for
either ‘kd_tree’ or ‘ball_tree’. Otherwise, the first algorithm out of ‘kd_tree’ and ‘ball_tree’
with an effective_metric_ in its VALID_METRICS list is selected. However, this heuristic
is based on the following assumptions: the number of query points being at least the same
order as the number of training points, the leaf_size being close to its default value of 30,
and the intrinsic dimensionality of the data being generally too high for tree-based methods
if the number of features is greater than 15.

Scikit-learn supports a variety of distance metrics, which can be found in its DistanceMet-
ric class. These include metrics intended for real, integer, and Boolean valued vector spaces,
as well as support for user-defined distances. Furthermore, Scikit-learn provides support for
CPU-based multiprocessing for the classification, regression, and transformation tasks.

6.6 SciPy

SciPy11 [126] is a Python library that focuses on scientific computing, including modules
for optimization, linear algebra, differential equations, and integration. One of its packages,
called spatial, contains algorithms for spatial structures such as kd-trees. The method ’query’
of the provided KDTree class returns either the approximate or exact k-nearest neighbors.
SciPy provides only the Minkowski p-norms [113], but the user can select which one to use
through the parameter p of themethod.Moreover, CPU-based parallel processing is available
via the ’workers’ parameter. Although written in Fortran, C, and C++, SciPy is available in
Python.

6.7 WEKA

Waikato Environment for Knowledge Analysis (Weka)12 [127] is a user-friendly data anal-
ysis and machine learning tool that comes with a graphical user interface (GUI), making it
easily accessible to users without programming knowledge. It includes algorithms and data
structures for exact nearest neighbor search, such as Ball-tree, CoverTree [91], kd-tree and

10 Scikit-learn website
11 Scipy website
12 Weka website
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Table 2 kNN Software, where “Ref.” indicates the Reference, “TNC” stands for total number of citation,
while “CpY” indicates the citations per year

Ref. Author(s) Year TNC CpY URL

[130] Jayaram Subramanya et al. 2019 62 15.5 link

[114] Johnson et al. 2019 2153 538.3 link

[131] Chen et al. 2018 30 6.0 link

[132] Curtin et al. 2018 77 15.4 link

[133] Malkov and Yashunin 2018 825 165.0 link

[134] Muja and Lowe 2014 1582 175.8 link

[135] Boytsov and Naidan 2013 118 11.8 link

[124] Pedregosa et al. 2011 72278 6023.2 link

[127] Hall et al. 2009 24445 1746.1 link

[129] Arya et al. 1998 3759 150.4 link

LinearNNSearch (i.e., Brute Force search). Weka also has k-nearest neighbor classification
functionalities, which can be found in its Instance Based knowledge (IBk) class, the IBkLG
package which extends the original IBk class, and the NNge package. WEKAwas developed
at the University of Waikato, New Zealand, and is fully implemented in Java.

6.8 ANN

ANN13 [128] is a C++ library that features data structures and algorithms for both exact
and approximate k-nearest neighbor searching. For approximate searching, the user must
specify an approximation factor ε ≥ 0. By default, ANN uses the Euclidean distance, but
it can be modified to support any of the other Minkowski distance metrics, including the
L1 (Manhattan) and the L∞ (Max) metrics. However, ANN does not support other types
of similarity or distance measures, such as the Cosine similarity, and modifying ANN’s
structure to support these measures is challenging. For high-dimensional data, brute-force
searching is preferred. ANN supports kd-Trees andBox-decomposition trees (bd-trees) [129]
data structures. Both of the trees can be modified and tailored to a specific problem. ANN
provides two methods to search both trees: standard search and priority search. The first,
visits the tree nodes based on the hierarchy of the search tree structure. The latter, visits tree
nodes in increasing order of distance from the query point, but it has a higher overhead since
it uses a heap. Standard search is preferred when the error bound ε is small while priority
search seems superior when the error bound has larger value or early termination is used (an
upper limit to the number of points that will be searched before termination).

ANNalso includes twoprograms: ann_test, and ann2fig.Thefirst, facilitates the generation
of data and query sets and provides performance statistics about the conducted experiments.
Ann2fig has the ability to illustrate the data structure in a simple graphics format through a
dumped data structure file.

13 ANN website
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7 Available benchmarks

This section presents several freely available and open-source benchmarking tools that have
been developed to address the need for standardized, fair and trustworthy comparisons of
algorithm implementations. These benchmarks facilitate easy and reliable comparison of
different algorithm implementations and enable researches to identify the most promising
solution to specific problems. Moreover, these benchmarks can be used to improve upon
automatic parameter tuning. It is important to note that benchmarks compare the code imple-
mentations of algorithms rather than the algorithms themselves [136].However, by comparing
multiple implementations, one may infer about the nature of algorithms.

7.1 ANN-benchmarks

ANN-Benchmarks14 [137] is a nearest neighbor specific benchmarking tool which has been
widely used to benchmark approximate nearest neighbor algorithm implementations such
as Annoy, FAISS, SPTAG, and NGT. This tool allows for automatic testing of a range of
parameter settings and its results can be visualized as Python’s matplotlib plots, LATEX plots,
or interactive plots on a website. The effectiveness of the implementations is measured using
quality and performance measures. Quality measures include a distance-based definition of
the recall measure and (1 + ε)-approximate recall which use the distance of the k-th true
nearest neighbor as threshold distance. Performance measures are split into two categories:
preprocessing step performance and query implementation performance. The former is mea-
sured by the index size in kB of the data structure after completion and its build time in
seconds. The latter is measured by the number of distance computations needed, and the
time to execute and retrieve query results. Performance and quality measurements require a
programmatic interface for the construction of data structures and query execution. While
a Python interface is recommended, a text-based protocol whose overhead is not entirely
negligible is also available. ANN-Benchmarks is installed via a Docker build file, and by
default, it uses only one thread on a single CPU to avoid unfair advantages of multi-threaded
implementations. However, the tool provides a batch mode that makes the entirety of the sys-
tem resources available to the experiment. is worth noting that ANN-Benchmarks is aimed
at in-memory nearest neighbor algorithms.

An evaluation of 15 algorithm implementations on 7 datasets for many different parameter
configurations was conducted. The implemented algorithms belonged to one of the three
groups: graph-based, tree-based, or hashing-based algorithms. The results suggest that graph-
based algorithms have the highest number of queries per second, with HNSW [133, 135] and
ONNG being the fastest, with ONNG being more robust if there is no global structure in the
dataset.However, graph-based algorithms require a high preprocessing time to build their data
structures, which is not ideal for regularly changing datasets. In this case, a small and quick-to
build index data structures like FAISS’ inverted file index is preferred. For applications that
prioritize high recall values, then generally speaking, a larger index will yield better results
than a smaller index and ismore robust to the choice of query parameters. Lastly, exact nearest
neighbor searching algorithms seem to be a viable option for lower-dimensional datasets.

14 ANN-Benchmarks Github repository.
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Abillion-scale dataset version ofANN-Benchmarks, Big-ANN-Benchmarks15 [138], was
introduced as a challenge in NeurIPS 2021. Big-ANN-Benchmarks consisted of three dif-
ferent tracks. Track T1 used FAISS as baseline and evaluated implementations on an Azure
Virtual Machine with limited DRAM, which usually is a bottleneck in serving billion-scale
indices. The winning implementation of this track was: KST-ANN-T1. In track T2, compet-
ing implementations had access to SSDs in addition to the limited DRAM, and the baseline
used was DiskANN16 [130]. The winning implementation of this track was Block-based
Approximate Nearest Neighbor (BBAnn)17. In track T3, any hardware configurations were
allowed, and FAISS was used as the baseline. The two co-winners of this track were: Intel’s
OptaNNE GraphNN18 and Nvidia’s CUANNS MultiGPU19.

7.2 NNS benchmark

Nearest Neighbor Search (NNS) Benchmark20 [139] is another nearest neighbor bench-
mark that specializes in the Euclidean distance. In their original work, the authors evaluated
the performance of 15 state-of-the-art algorithms from various scientific domains and their
newly proposed algorithm. They used 18 real-world datasets, which included image, audio,
video, and textual data, as well as 2 synthetic datasets. The authors employed the speedup
of Algorithm A as a performance evaluation metric, which is defined as tBF/tA, where tx
is the average search time of Algorithm x , and tBF is the query time of a brute-force (BF)
linear scan algorithm. They used the standard recall measure to assess the quality of the
implementations. Both measures were averaged over all queries in the query workload.

Most of the algorithms are implemented in C++, and all their implementations were
modified to disable hardware-specific optimizations and other implementation tricks for
fairer comparisons. The experimental evaluation consisted of two rounds. In the first round,
the authors compared implementations of algorithms that belonged to the same category.
These categories were LSH-based methods, encoding-based methods, tree-based space par-
tition methods, and neighborhood-based methods. Then, representatives of each category
were chosen based on their performance. SRS [140] was picked as the representative of the
LSH-based methods. For the encoding-based category, OPQ [141] was chosen. Annoy and
FLANN [134] were the representatives of the tree-based space partition methods. Lastly,
KGraph21 and HNSW represented the neighborhood-based methods. Their newly proposed
algorithm Diversified Proximity Graph (DPG) [139], was also part of the second round.

In the second round of evaluation, these representatives were compared, and the following
conclusions were made. Supposing sufficient computing resources for the off-line index con-
struction and main memory to store that index, DPG and HNSW seem to be the best choices
for approximate nearest neighbor searching on high dimensional data. Annoy is also rec-
ommended for its better trade-off between search performance and index size, as well as its
construction time. This means that search performance is not drastically reduced by lowering
the number of trees. In the case of large-scale datasets with moderate computing resources,

15 big-ANN-Benchmarks Github repository
16 Github DiskANN repository
17 BBBAnn Github repository
18 GraphNN Python Implementation
19 CUANNS Python file
20 NNS benchmark Github repository
21 KGraph Github Repository
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OPQ and SRS are recommended due to their small index sizes and construction time. More-
over, SRS has a theoretical guarantee of searching quality and handles data updates easily.
Lastly, the authors did a further analysis of the features of each representative algorithm.

7.3 Other machine learning benchmarks

Other machine learning benchmarks that do not specifically cater to nearest neighbor tech-
niques include among others: Mlpack [132], OpenML benchmarking suites [142], and the
ShinyLearner benchmarking tool [143]. While these tools offer similar functionalities such
as automation of some parts of experiments, each has unique features.

Mlpack in conjunction with Valgrind [144] can display memory usage over time for a par-
ticular implementation. The OpenML benchmarking suites, such as OpenML-CC18 [142]
and its predecessor OpenML100 [145], are sets of OpenML tasks designed to evaluate
algorithms under a specific set of conditions. Numerous suites, published along with exper-
iment results and configurations, are available on the OpenML platform22 [146]. Lastly,
ShinyLearner23 is a classification only benchmarking tool that does not require program-
ming but rather a set of commands. These sets of commands can also be generated through
a Web-based tool24.

8 Synopsis and concluding remarks

We have conducted a review of kNN methods. The kNN approach is typically applied as a
classification algorithm based on the assumption that similar points can be found near one
another.

We have contributed to the large literature of kNN methods by reviewing a diverse range
of material related to kNN, from theoretical work in non-parametric discrimination, decision
rules and kNN related methods, matching algorithms, as well as a comprehensive discussion
of benchmarks and available software together with citation analysis.

The kNN classifier is a transparent method with great intuitive appeal. It is part of the
family of instance based algorithms, and it makes no assumptions about the underlying data
distribution, hence non-parametric. This trait is crucial because real world data rarely obey
typical theoretical assumptions. The work of Cover and Hart [2] peaked interest in the kNN
classifiers and ignited a lot of research in nearest-neighbor search algorithms. We defined the
four pillars of a good kNN applications to be:

(1) the choice of hyperparameter k,
(2) the choice of classification rule,
(3) the choice of distance function and
(4) the choice of query algorithm.

This opinion is based on both practical and theoretical considerations. The theory of non-
parametric estimation and discrimination unveils a relationship between the locally optimal
choice of k and the convexity of the probability density function. What is more, deviation
from the (optimal) Bayes rule can be improved with a proper choice of distance metric. These

22 OpenML website
23 ShinyLearner Github repository.
24 ShinyLearner web tool.
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Table 3 kNN citations, where
“Ref.” indicates the Reference,
“TNC” stands for total number of
citations, while “CpY” indicates
the citations per year

Ref. Author(s) Year TNC CpY

[70] Deng et al. 2023 0 0

[69] Wang et al. 2023 1 1

[26] Uddin et al. 2022 51 51

[82] Zhang et al. 2022 9 9

[24] Agarwal and Poornalatha 2021 7 3.5

[147] Cunningham and Delany 2021 1035 517.5

[14] Dwibedi et al. 2021 204 102.0

[23] Sun and Chen 2021 9 4.5

[68] Susan and Kumar 2021 8 4.0

[33] Yuan et al. 2021 9 4.5

[148] Shaban et al. 2020 161 53.7

[21] Taunk et al. 2019 228 57

[66] Zhang et al. 2018 151 30.2

[112] Maillo et al. 2017 319 53.2

[56] Zhang et al. 2017 864 144.0

[55] Zhang et al. 2017 511 85.2

[36] Zhang et al. 2017 87 14.5

[20] Adeniyi et al. 2016 455 65.0

[44] Ando 2016 26 3.7

[18] Beretta and Santaniello 2016 463 66.1

[149] Deng et al. 2016 506 72.3

[57] Hu et al. 2016 452 64.6

[150] Miao et al. 2016 26 3.7

[101] Andoni and Razenshteyn 2015 311 38.9

[151] Begum et al. 2015 47 5.9

[54] GarcÃa-Pedrajas et al. 2015 109 13.6

[32] Tang and He 2015 117 14.6

[74] Wang et al. 2015 156 19.5

[77] Xiao and Chaovalitwongse 2015 33 4.1

[45] Yu et al. 2015 107 13.4

[104] Babenko and Lempitsky 2014 421 46.8

[63] Derrac et al. 2014 120 13.3

[134] Muja and Lowe 2014 1582 175.8

[152] Van Hulse and Khoshgoftaar 2014 99 11.0

[48] Dubey and Pudi 2013 67 6.7

[153] Eirola et al. 2013 55 5.5

[154] Guo et al. 2013 1301 130.1

[155] Imandoust et al. 2013 560 56.0

[100] Iwamura et al. 2013 55 5.5

[156] Jin et al. 2013 233 23.3

[22] Kataria and Singh 2013 197 19.7

[78] Garcia et al. 2012 749 68.1

[64] Gou et al. 2012 260 23.6
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Table 3 continued Ref. Author(s) Year TNC CpY

[75] Li et al. 2011 149 12.4

[51] Liu and Chawla 2011 195 16.3

[157] Triguero et al. 2011 145 12.1

[99] Xu et al. 2011 189 15.8

[98] He et al. 2010 171 13.2

[103] Jegou et al. 2010 3705 285.0

[25] Ting et al. 2010 72 5.54

[13] Boiman et al. 2009 1538 109.9

[158] Fayed and Atiya 2009 170 12.1

[159] Kamath and Mahato 2009 13 0.9

[94] Muja and Lowe 2009 3838 274.1

[61] Weinberger and Saul 2009 4469 319.2

[160] Wong et al. 2009 987 70.5

[92] Silpa-Anan and Hartley 2008 921 61.4

[73] Tahir et al. 2007 260 16.3

[91] Beygelzimer et al. 2006 1061 62.4

[93] Nister and Stewenius 2006 4922 289.5

[161] Wang et al. 2006 131 8.2

[162] Sfetsos and Siriopoulos 2004 83 4.4

[95] Indyk 2004 246 12.9

[67] He and Niyogi 2003 5307 265.4

[129] Arya et al. 1998 3759 150.5

[96] Indyk and Motwani 1998 5619 224.8

[163] Wettschereck and Dietterich 1993 81 2.7

[164] Yianilos 1993 1639 54.6

[11] Altman 1992 6004 193.7

[27] Fix and Hodges 1989 3481 102.4

[10] Aha, Kibler, et al. 7213 1991 232.7

[30] Loizou and Maybank 1987 38 1.1

[90] Friedman et al. 1977 3964 86.2

[65] Dudani 1976 1779 37.9

[31] Fukunaga and Hostetler 1973 240 4.8

[29] Hellman 1973 275 5.5

relationships can be inferred from Fukanaga and Hostetler’s closed-form approximation of
the locally optimal k value [31]. Their result applies to the kNNdensity estimate, but, it forms
a basis for understanding many of the kNN variations. Many variants of kNN classifiers have
not received the same theoretical attention, however, the classification accuracy has been
raised considerably in practice. For those that hold Bayesian estimation to a golden standard,
the kNNdensity estimator approximates the optimal Bayesian rule asymptotically, which also
implies that a sufficiently large dataset is required to achieve reliable predictions. However,
variations of kNN have shown good resilience in the presence of overlapping classes, which
is the fundamental source of error in Bayesian thinking, and in class imbalances. Moreover,
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modern kNN methods also involve a fair bit of learning. A locally optimal k value can be
found with cross validation or estimated with convex optimization techniques. We note that
distance metric learning methods continue to advance. All these reasons lead us to believe
that kNN methods may prove competitive with the state of the art in classification.

The main consideration in kNN applications is storage and run-time complexity. Exact
nearest neighbors algorithms such as tree-based methods have efficient query times but
scale poorlywith dimensionality.Approximate nearest neighbormethods significantly reduce
query run-times in high-dimensional datasets. Hashing, quantization, graph techniques, and
indexing methods all contribute to the diverse literature of query algorithms that enable the
use of kNN in large data domains. GPU based algorithms and adaptations for data streams
also exist. Furthermore, there is a big literature in data reduction techniques that can be
applied to the kNN classifier efficiently. Wrapper methods for feature selection synergize
with kNN, especially when the distance metric can be calculated recursively. Methods of
prototype selection and generation can reduce the number of training instances without
hindering classification accuracy greatly.

An important final remark is that kNN based methods find utility in virtually every aspect
of data science. There are competitive noise reduction, outlier detection, missing value impu-
tation and sampling methods, often paired with theoretical results. We close with Table 3
which contains publications related to kNN classification together with citation counts.
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