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Abstract
In recent years, multi-task learning (MTL) has become a popular field in machine learn-
ing and has a key role in various domains. Sharing knowledge across tasks in MTL can
improve the performance of learning algorithms and enhance their generalization capability.
A new approach called the multi-task least squares twin support vector machine (MTLS-
TSVM) was recently proposed as a least squares variant of the direct multi-task twin support
vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming
problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced com-
putational time. In this paper, we propose an enhanced version of MTLS-TSVM called the
improved multi-task least squares twin support vector machine (IMTLS-TSVM). IMTLS-
TSVMoffers a significant advantage overMTLS-TSVMby operating based on the empirical
risk minimization principle, which allows for better generalization performance. The model
achieves this by including regularization terms in its objective function, which helps control
the model’s complexity and prevent overfitting.We demonstrate the effectiveness of IMTLS-
TSVM by comparing it to several single-task and multi-task learning algorithms on various
real-world data sets. Our results highlight the superior performance of IMTLS-TSVM in
addressing multi-task learning problems.
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1 Introduction

Artificial intelligence includes various subfields, one of which is machine learning (ML)
which focuses on the development of algorithms and models that can learn patterns and
insights from data without being explicitly programmed to do so. It has numerous real-world
applications in areas such as letter and number recognition [20, 32], heart disease diagnosis
[2], face recognition [34], wireless sensor networks [17], and medical sciences [4, 16, 21, 24,
40]. By leveraging large amounts of data and computational power, machine learning algo-
rithms can make predictions, identify correlations, and automate decision-making processes
that humans previously performed.

Multi-task learning (MTL) is a machine learning technique that trains a single model
to perform multiple tasks simultaneously. The main aim of MTL is to leverage the shared
information among related tasks to improve the overall performance compared to training
separate models for each task. This is done by forcing the model to learn task-invariant repre-
sentations that can be shared across tasks, which reduces the risk of overfitting and enhances
generalization. As a result of this approach, numerous multi-task learning methods have been
proposed, including multi-task logistic regression [10], multi-task linear discriminant analy-
sis (MT-LDA) [54], multi-task Gaussian process (MTGP) [57], multi-task Bayesian methods
[3], among others. MTL has been successful in a variety of applications, such as natural lan-
guage processing [6], speech recognition [7], drug discovery [39], and computer vision [12].

MT has been explored in various frameworks by different researchers. However, many
algorithms are complex and difficult to implement due to their mathematical intricacies,
making them challenging for non-experts to understand. As a result, simpler algorithms that
are more accessible are in high demand. Support vector machines (SVMs) have been one of
the most successful single-task learning classification algorithms [5]. Researchers have also
studied multi-task SVMs, with works including [13, 43, 44, 52, 55]. The first approach to
multi-task support vector machines (MTL-SVM) is regularized multi-task learning (RMTL)
[9]. Subsequently, various MTL-SVM approaches have been proposed, including multi-task
one-class support vector machines (MTOC-SVM) [13, 52, 55]. The least squares version
of SVM classifiers (LS-SVM) was proposed in [45]. Fifteen years later, Xu et al. intro-
duced multi-task least squares support vector machine (MTLS-SVM) based on LS-SVM
[51]. Building on the proximal support vector machine (PSVM) [11], Li et al. proposed the
multi-task proximal support vector machine (MTPSVM) [27]. Huang et al. proposed a dif-
ferent approach, using an asymmetric squared loss function called asymmetric least squares
SVM (aLS-SVM) [15]. Finally, utilizing the asymmetric squared loss function and multi-
task learning, Lu et al. introduced two new methods, MTL-aLS-SVM I and MTL-aLS-SVM
II [28]. Many researchers have studied the effectiveness of multi-task learning on support
vector machines, as evidenced by several studies [18, 19, 47, 48, 58].

The twin support vector machine (TSVM) for binary classification was suggested by
Jeyadeva et al. [22] in 2007 on the basis of the primary concept of generalized eigenvalue
proximal SVM (GEPSVM) [29]. Different from SVM’s single large QPP, TSVM solves two
smaller QPPs to separate the positive and negative samples, resulting in two non-parallel
hyperplanes. Because of the amazing performance of TSVMs in single-task learning, they
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have been discussed inmanyworks, including improvements on twin support vectormachines
(TBSVM) [42], ν-twin support vector machine (ν-TSVM) [37], twin support vector regres-
sion(TSVR) [38], least squares twin support vector machine (LS-TSVM) [25, 26], least
squares twin bounded support vector machine (LS-TBSVM) [53], wavelet transform-based
weighted ν-twin support vector regression (WTWTSVR) [46], least squares recursive pro-
jection twin support vector machine (LSRP-TSVM) [41, 56], and generalized twin support
vector machines [33].

Drawing on multi-task learning and TSVM, Xie and Sun suggested a directed multi-task
twin support vector machine(DMTSVM) [49], which adopted the mean-regularized method
as well. DMTSVMassumes all tasks to have twomean hyperplanes in common. It is different
frommulti-task SVMs. TheDMTSVMalgorithm achieves remarkable results when handling
correlated tasks. Although the DMTSVM algorithm has its strengths in managing correlated
tasks, it has a limitation in that it solely relies on the empirical risk minimization principle.
This can lead to over-fitting and, consequently, a decrease in prediction accuracy. To enhance
the generalization ability of the classifier, An et al. [1] presented a multi-task twin bounded
support vector machine (MT-TBSVM), in which a regularization term is introduced into the
objective function. In recent years, other research on multi-task learning and TSVM has been
conducted. Based on LS-TSVM,Mei and Xu proposed the multi-task least squares twin sup-
port vector machine (MTLS-TSVM) [30], which solves two linear equations instead of two
QPPproblems.Additionally, to address the problemof outlier samples in each individual task,
multi-task centroid twin support vector machines (MCTSVM) [50] were introduced. More-
over, Mei and Xu proposed two innovative multi-task ν-twin support vector machines (MTν-
TSVMs) [31] to utilize the regularized multi-task learning and ν-TSVM optimally. Pang et
al. [35] proposed a method based on the Hierarchical Bayes theory, named MTTHSVM.
For a more accurate assessment of the similarity or difference between tasks, MTTHSVM
divides the centers of the hyperspheres into task-specific and task-common regions.

The MTLS-TSVM model is formulated based on the empirical risk minimization princi-
ple, which only considers the training error of the two-class samples in its objective function
for each task. However, this approach may not result in optimal generalization performance.
In this study, we introduce an improved version of MTLS-TSVM, known as IMTLS-TSVM,
which is inspired by research on RMTL that uses the empirical risk minimization principle
instead of the structural risk minimization principle. Our proposed model considers not only
the training errors but also the generalization ability of the classifiers.

To demonstrate the efficacy of IMTLS-TSVMformulti-task learning,we compared it with
four single-task learning algorithms (SVM, LS-SVM, TBSVM, LS-TSVM) and two other
multi-task learning algorithms (DMTSVM and MTLS-TSVM) using different real-world
and medical data sets. The experimental results showed that IMTLS-TSVM outperformed
these methods, highlighting its effectiveness in addressing multi-task learning problems.

The structure of the remainder of the paper is as follows: Section 2 provides a concise
overview of DMTSVM and MTLS-TSVM. In Section 3, the IMTLS-TSVM model is intro-
duced in detail. Section 4 presents the numerical results, and finally, Section 5 concludes the
paper.

2 Preliminaries

In this section, we briefly discuss the direct multi-task twin support vector machine
(DMTSVM) and multi-task least squares twin support vector machine (MTLS-TSVM). We
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assume that the training data set for each task is as follows:

�t = {(xt1, yt1), . . . , (xtnt , ytnt )},

with xti ∈ R
n , yti ∈ {±1}, i = 1, . . . , nt , where t indexes task, and t = 1, . . . , T , and also

let n = ∑T
i=1 nt .

We assume that X p represents the set of positive samples and X pt represents the posi-
tive samples in the t-th task. Similarly, Xn represents the set of negative samples and Xnt

represents the negative samples in the t-th task. This means that the positive class can be
represented as XT

p = [X p1, X p2, . . . X pT ], while the negative class can be represented as

XT
n = [Xn1, Xn2, . . . XnT ].
Now, we define the following matrices:

A = [X p e1], At = [X pt e1t ], B = [Xn e2], Bt = [Xnt e2t ],

where each task t ∈ 1, . . . , T , and e1, e2, e1t , and e2t are vectors of ones with appropriate
dimensions. We assume that the two mean hyperplanes for all tasks are u0 = [w1, b1]T and
v0 = [w2, b2]T . In the t-th task, the hyperplanes for the positive and negative classes are
(u0 + ut ) = [w1t , b1t ]T and (v0 + vt ) = [w2t , b2t ]T , respectively. The vectors ut and vt
indicate the bias between task t and the common mean vectors u0 and v0, respectively.

2.1 Multi-task twin support vector machine

In 2012, Xie et al. proposed the directed multi-task twin support vector machine
(DMTSVM) [49]. They aimed to integrate the concept of regularized multi-task learning
(RMTL) [9] into TSVM.

The DMTSVM mathematical programming problems are stated below:

min
u0,ut ,qt

1

2
(Au0)

T (Au0) + λ1

2T

T∑

t=1

(Atut )
T (Atut ) + c1

T∑

t=1

eT2t qt ,

s.t. − Bt (u0 + ut ) + qt ≥ e2t ,

qt ≥ 0, (1)

and

min
v0,vt ,pt

1

2
(Bv0)

T (Bv0) + λ2

2T

T∑

t=1

(Btvt )
T (Btvt ) + c2

T∑

t=1

eT1t pt ,

s.t. At (v0 + vt ) + pt ≥ e1t ,

pt ≥ 0, (2)

where c1, c2, λ1 and λ2 are positive trade-off parameters. e1t and e2t are one vectors of
appropriate dimensions for t ∈ {1, . . . , T }. Both qt and pt are slack variables. The parameters
λ1 and λ2 may be used to change the relationships of all tasks. If λ1 and λ2 denote small
penalty on vectors ut and vt , then ut and vt are inclined to be larger. Consequently, themodels
provide less similarity. When λ1 → ∞ and λ2 → ∞, ut and vt tend to be smaller and make
the T models similar [30].

123



An improved multi-task...

By defining

Q = B(AT A)
−1

BT , Gt = Bt (A
T
t At )

−1
BT
t ,

α1 = [αT
11, . . . , α

T
1T ]T , G = blkdiag(G1, . . . ,GT ),

where the symbol blkdiag(G1, . . . ,GT ) represents the block-diagonal matrix produced by
G1, . . . ,GT matrices, the dual problem of the problem (1) is formulated as follows:

max
α1

− 1

2
αT
1 (Q + T

λ1
G)α1 + eT2 α1

s.t. 0 ≤ α1 ≤ c1e2. (3)

The solution to the aforementioned dual problem may lead us to:

u0 = −(AT A)−1BTα1,

ut = − T

μ1
(AT

t At )
−1BT

t α1t .

Likewise, the dual problem of the problem (2) can be derived as follows:

max
α2

− 1

2
αT
2 (R + T

λ2
S)α2 + eT1 α2

s.t. 0 ≤ α2 ≤ c2e1, (4)

where α2 = [αT
21, . . . , α

T
2T ]T , R = A(BT B)

−1
AT , and St = At (BT

t Bt )
−1

AT
t and S =

blkdiag(S1, . . . , ST ). Hyperplanes for each task for positive class [w1t , b1t ]T = (u0 + ut )
and for negative class [w2t , b2t ]T = (v0 + vt ) may be determined by solving problems (3)
and (4). The following decision function is used to assign a new data point x in the t-th task
to class i ∈ {+1,−1}.

Class i = arg min
k=1,2

|xTwkt + bkt |. (5)

2.2 Multi-task least squares twin support vector machine

Inspired by the ideas ofDMTSVMand least squares twin support vectormachine (LS-TSVM)
[25], Mei et al. [30] introduced multi-task least squares twin support vector machine, known
as MTLS-TSVM.

The following models are the formulation of the MTLS-TSVM problems:

min
u0,ut ,qt

1

2
(Au0)

T (Au0) + λ1

2T

T∑

t=1

(Atut )
T (Atut ) + c1

2

T∑

t=1

qTt qt ,

s.t. − Bt (u0 + ut ) + qt = e2t , (6)

and

min
v0,vt ,pt

1

2
(Bv0)

T (Bv0) + λ2

2T

T∑

t=1

(Btvt )
T (Btvt ) + c2

2

T∑

t=1

pTt pt ,

s.t. At (v0 + vt ) + pt = e1t , (7)
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where λ1, c1, λ2 and c2 are positive parameters. For the mathematical model (6), the corre-
sponding Lagrangian function is given by

L1 = 1

2
‖Au0‖2 + λ1

2T

T∑

t=1

‖ Atut ‖2 +c1
2

T∑

t=1

‖qt ‖2

−
T∑

t=1

αT
1t

( − Bt (u0 + ut ) + qt − e2t
)
. (8)

Here, α1 = [αT
11, . . . , α

T
1T ]T represents the Lagrangian multipliers.

After setting the partial derivatives of the Lagrangian function (8) with respect to u0, ut ,
qt , and α1t equal to zero, we obtain an expression for α1 as follows:

α1 =
(

Q + T

λ1
G + 1

c1
I

)−1

e2,

where Q = B(AT A)−1BT , Gt = Bt (AT
t At )

−1BT
t , and G = blkdiag(G1, . . . ,GT ).

Next, we will be able to calculate the solution to problem (6):

u0 = −(AT A)−1BTα1, ut = − T

μ1
(AT

t At )
−1BT

t α1t .

Similarly, the solution to (7) may be found by using the following relations:

α2 =
(

R + T

λ2
S + 1

c2
I

)−1

e1,

where R = A(BT B)−1AT , St = At (BT
t Bt )

−1AT
t , S = blkdiag(S1, . . . , ST ) and α2 =

[αT
21, . . . , α

T
2T ]T . Therefore, the parameters of classifiers, i.e. u0, ut , v0 and vt of the t-th

task are specified. The decision function, given by formula (5), is used to assign a class label
i ∈ {+1,−1} to a new data point x in the t-th task.

3 An improvedmulti-task least squares twin support vector machine

In this section, we propose an enhanced version of MTLS-TSVM called an improved multi-
task least squares twin support vector machine (IMTLS-TSVM). Indeed, our IMTLS-TSVM
is an improvement over MTLS-TSVM in that it operates on the empirical risk minimization
principle by introducing regularization terms in each task and using quadratic loss functions.
Instead of solving quadratic optimization problems,wemust solve systems of linear equations
as well as MTLS-TSVM. Similar toMTLS-TSVM, the proposed IMTLS-TSVM tries to find
nonparallel hyperplanes for each task, i.e., (u0 + ut ) and (v0 + vt ).

3.1 Linear IMTLS-TSVM

The linear IMTLS-TSVM can be formulated by the quadratic optimization problems below,

min
u0,ut ,qt

1

2
(Au0)

T (Au0) + λ1

2T

T∑

t=1

(Atut )
T (Atut ) + c1

2
qTt qt + c2

2
uT0 u0 + c3

2

T∑

t=1

uTt ut

s.t. − Bt (u0 + ut ) + qt = e2t , (9)
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and

min
v0,vt ,pt

1

2
(Bv0)

T (Bv0) + λ2

2T

T∑

t=1

(Btvt )
T (Btvt ) + c4

2
pTt pt + c5

2
vT0 v0 + c6

2

T∑

t=1

vTt vt

s.t. At (v0 + vt ) + pt = e1t , (10)

where ci for i = 1, ..., 6, λ1 and λ2 are positive trade-off parameters. In the following, due
to the similarities of the optimization problems (9) and (10), we only focus on the problem
(9). Now, we introduce the Lagrangian function of problem (9) by

L1(u0, ut , qt , α1) = 1

2
‖Au0‖2 + λ1

2T

T∑

t=1

‖Atut‖2 + c1
2

‖qt‖2 + c2
2

‖u0‖2 + c3
2

T∑

t=1

‖ut‖2

−
T∑

t=1

αT
1t (−Bt (u0 + ut ) + qt − e2t ),

(11)

where α1 = [αT
11, . . . , α

T
1T ]T is Lagrangian multiplier. Differentiating L1 with respect to u0,

ut , qt and α1 yields the following KKT conditions,

∂L1

∂u0
= AT Au0 + c2 I u0 + BTα1 = 0, (12)

∂L1

∂ut
= λ1

T
AT
t Atut + c3 It ut + BT

t α1t = 0, (13)

∂L1

∂qt
= c1qt − α1t = 0, (14)

∂L1

∂α1t
= Bt (u0 + ut ) − qt + e2t = 0. (15)

Equations (12), (13), and (14) yield the following results:

u0 = −(AT A + c2 I )
−1BTα1, (16)

ut = − T

λ1
(AT

t At + c3 It )
−1BT

t α1t , (17)

qt = α1t

c1
. (18)

Substituting the equations above into (15) yields:

Bt

[

−(AT A + c2 I )
−1

BTα1 − T

λ1
(AT

t At + c3 It )
−1

BT
t α1t

]

− α1t

c1
= −e2t , t = 1, ..., T .

(19)

By defining Q = B(AT A + c2 I )
−1

BT , Gt = Bt (AT
t At + c3 It )

−1
BT
t and G =

blkdiag(G1, . . . ,GT ), and identical matrix I , the (19) can be rewritten as follows:

Qα1 + T

λ1
Gα1 + 1

c1
Iα1 = e2. (20)

As a results, α1 = (Q + T
λ1
G + 1

c1
I )−1e2 can be obtained. The classifier parameters u0 and

ut of the t−th task can be determined by putting the obtained α1 into the (16) and (17).
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Also, the Lagrangian function of the problem (10) may be expressed as:

L2(v0, vt , pt , α2) = 1

2
‖Bv0‖2 + λ2

2T

T∑

t=1

‖Btvt‖2 + c4
2

‖pt‖2 + c5
2

‖v0‖2 + c6
2

T∑

t=1

‖vt‖2

−
T∑

t=1

αT
2t (At (v0 + vt ) + pt − e1t ),

(21)

where α2 = [αT
21, . . . , α

T
2T ]T is the Lagrangian multiplier. By performing a similar process,

the following equation is achieved:

Rα2 + T

λ2
Sα2 + 1

c4
Iα2 = e1, (22)

where R = A(BT B + c5 I )
−1

AT , St = At (BT
t Bt + c6 It )

−1
AT
t and S = blkdiag(S1, . . .,

ST ). Then, we can obtain α2 as follow:

α2 = (R + T

λ2
S + 1

c4
I )−1e1. (23)

Therefore, by using α1 and α2, the positive and negative hyperplanes can be determined. The
label of a new sample x ∈ R

n in the t−th task can be determined using the decision function
(5). As a result of the preceding discussion, we present the linear IMTLS-TSVM algorithm
in Algorithm 1.

Algorithm 1 Linear IMTLS-TSVM
Input:

– The training set;
– Determine the total number of tasks in the data collection and give this
amount to T;
– Select a classification task �t from the training data set, where t = 1, . . . , T ;
– Select suitable parameters c1, c2, c3, c4,c5, c6, λ1 and λ2.
Outputs:
– u0, ut , v0, and vt .

Process:
1: Get α1 and α2 by solving the two systems of linear equations given in (20) and

(23).
2: Determine the values of u0, ut , v0, and vt .
3: Apply the decision function (5), classify a new point x as belonging to either

class +1 or −1 in the t-th task.

3.2 Nonlinear IMTLS-TSVM

The goal of this subsection is to expand the linear IMTLS-TSVM method to the nonlinear
case by applying the kernel trick. By utilizing a nonlinear kernel function, denoted as K (., .),
the input data is mapped into a higher-dimensional feature space. By utilizing this kernel
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function and defining

C =
[
AT
1 ,BT

1 ,AT
2 ,BT

2 , . . . ,AT
T ,BT

T

]T
,

A =
[
K (A,CT ), e1

]
, At =

[
K (At ,C

T ), e1t
]
,

B =
[
K (B,CT ), e2

]
, Bt =

[
K (Bt ,C

T ), e2t
]
,

the nonlinear version of the optimization problems (9) and (10) can be formulated as follows:

min
u0,ut ,qt

1

2
(Au0)

T (Au0) + λ1

2T

T∑

t=1

(At ut )
T (At ut ) + c1

2
qTt qt + c2

2
uT0 u0 + c3

2

T∑

t=1

uTt ut

s.t. − Bt (u0 + ut ) + qt = e2t , (24)

and

min
v0,vt ,pt

1

2
(Bv0)

T (Bv0) + λ2

2T

T∑

t=1

(Btvt )
T (Btvt ) + c4

2
pTt pt + c5

2
vT0 v0 + c6

2

T∑

t=1

vTt vt

s.t. At (v0 + vt ) + pt = e1t , (25)

where ci for i = 1, ..., 6, λ1 and λ2 are positive trade-off parameters. Similar to the linear
case, we can write the Lagrangian functions of the problems (24) and (25) and apply the
KKT optimality conditions. The Lagrangian function of the problem (24) can be shown as
follows:

L1(u0, ut , qt , α1) = 1

2
‖Au0‖2 + λ1

2T

T∑

t=1

‖At ut‖2 + c1
2

‖qt‖2 + c2
2

‖u0‖2 + c3
2

T∑

t=1

‖ut‖2

−
T∑

t=1

αT
1t (−Bt (u0 + ut ) + qt − e2t ),

(26)

where α1 is Lagrangian multiplier that yields the gradients of (26) based on u0, ut , qt , and
α1 and sets them to zero. Hence, the KKT conditions are as follows:

∂L1

∂u0
= ATAu0 + c2 I u0 + BTα1 = 0, (27)

∂L1

∂ut
= λ1

T
AT
t At ut + c3 It ut + BT

t α1t = 0, (28)

∂L1

∂qt
= c1qt − α1t = 0, (29)

∂L1

∂α1t
= Bt (u0 + ut ) − qt + e2t = 0. (30)

Next, we have

u0 = −(ATA + c2 I )
−1BTα1, (31)

ut = − T

λ1
(AT

t At + c3 It )
−1BT

t α1t , (32)

qt = α1t

c1
. (33)
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By replacing u0, ut , and qt into (30), we have

Bt

[

−(ATA + c2 I )
−1

BTα1 − T

λ1
(AT

t At + c3 It )
−1

BT
t α1t

]

− α1t

c1
= −e2t , t = 1, ..., T .

(34)

By defining Q = B(ATA + c2 I )
−1

BT , Gt = Bt (A
T
t At + c3 It )

−1
BT

t , G = blkdiag(G1,
. . . ,GT ), and identical matrix I , the (34) can be rewritten as follows:

Qα1 + T

λ1
Gα1 + 1

c1
Iα1 = e2, (35)

Therefore, the optimal solution to problems (24)is taken from

α1 = (Q + T

λ1
G + 1

c1
I )−1e2. (36)

Likewise, the optimal solution to problem (25) can be obtained by:

α2 = (R + T

λ2
S + 1

c4
I )−1e1, (37)

where R = A(BTB + c5 I )
−1

AT , St = At (B
T
t Bt + c6 It )

−1
AT
t , and

S = blkdiag(S1, . . . , ST ).

Then, the decision function for the t-th task may be calculated using nonlinear version of
(5). The nonlinear procedure is outlined in Algorithm 2.

Algorithm 2 Nonlinear IMTLS-TSVM
Input:

– The training set;
– Determine the total number of tasks in the data collection and give this
amount to T;
– Select a classification task �t from the training data set, where t = 1, . . . , T ;
– Choose appropriate parameters c1, c2, c3, c4,c5, c6, λ1 and λ2.
– Choose a user-defined kernel function and its corresponding kernel parameter.
Outputs:
–u0, ut , v0, and vt .

Process:
1: Get α1 and α2 by solving the two systems of linear equations given in (36) and

(37).
2: Determine the values of u0, ut , v0, and vt .
3: Apply the nonlinear version of the decision function (5), and classify a new

point x as belonging to either class +1 or −1 in the t-th task.

4 Numerical experiments

To evaluate the effectiveness of our proposed IMTLS-TSVMalgorithm, we compared its per-
formance with six single-task and multi-task learning algorithms, including SVM, LS-SVM,
TBSVM, LS-TSVM, DMTSVM, and MTLS-TSVM. The experiments were conducted on
seven data sets: Monk, Heart, Immunotherapy, Caesarean, Breast Cancer Coimbra, Ljubljana
Breast Cancer, and Landmine. These data sets varied in the number of instances, features, and
tasks, as shown in Table 1. We divided each data set into a number of tasks based on the task
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Table 1 The description of data
sets

Data set # Instances # Features # Tasks

Monk 432 6 3

Heart 270 13 2

Immunotherapy 90 8 3

Caesarean 80 5 2

Breast Cancer Coimbra 116 9 3

Ljubljana Breast Cancer 286 9 5

Landmine 9674 9 4

variable before multi-task learning. We used five-fold cross-validation to assess the accuracy
of the classification and performance of the algorithms. The performance was measured by
averaging the results of five iterations, where each iteration involved using one subset as a
test set and the rest as training data. All numerical experiments were carried out on a personal
computer with Matlab 2018b, an Intel Core(TM) i7 CPU@2.20 GHz, 4 GB of memory, and
Microsoft Windows 7(64-bit).

4.1 Parameters selection

Variousmachine learning algorithms have tuning parameters that need to be optimized for the
best performance. For instance, SVM and LS-SVM have c1, TBSVM and LS-TSVM have
c1 and c2, and DMTSVM and MTLS-TSVM have c1, c2, λ1 and λ2 as tuning parameters.
The proposed IMTLS-TSVM algorithm also has tuning parameters, namely c1, c2, c3, c4,
c5, c6, λ1 and λ2.

Here, we aim to investigate the impact of changing parameters such as c1, c2, c3, λ1 and
λ2 on the behavior of IMTLS-TSVM using the Caesarian data set in a linear state. All other
parameters are kept constant during the experiment. FromFig. 1 ((a) and (b)), we can observe
that different parameter values have a noticeable impact on the accuracy of the model.

Thus, selecting the appropriate parameter values is crucial for achieving optimal perfor-
mance. Grid search is a widely used method for tuning the parameters of machine learning
algorithms. It involves evaluating amodel’s performance for different combinations of hyper-

Fig. 1 The effect of different parameter values on the Caesarian data set
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Table 2 The linear performance
of classifiers on Monk data set

Classifier Accuracy Standard deviation Time

SVM 67.30 ±0.05 47.92

LS-SVM 67.48 ±0.02 0.4

TBSVM 67.65 ±0.02 2.17

LS-TSVM 69.10 ±0.04 0.06

DMTSVM 71.67 ±0.03 2.83

MTLS-TSVM 72.45 ±0.04 2.01

IMTLS-TSVM 73.56 ±0.05 1.99

parameters to identify the optimal set of parameters that result in the best performance [14,
21]. For our experiments, we utilized grid search to identify the optimal parameter values.

We tuned the parameters c1, c2, c3, c4, c5, c6,λ1 andλ2 from the set {2i | i = −10, . . . , 10}.
In our experiments, we used the Gaussian kernel function, i.e., K (x, y) = exp(−γ |x − y|2),
where γ > 0. This kernel function provides better results for inseparable data sets. To set the
kernel parameter γ , we selected the optimal value from the range {2i | i = −10, . . . , 10}.

4.2 Results and discussion on data sets

In this subsection, we compare the single-task and multi-task learning algorithms mentioned
earlier with the proposed IMTLS-TSVM method in both linear and nonlinear cases.

4.2.1 The results of the monk data set

The Monk data set is renowned for being the first international comparison of learning
algorithms. In July 1991, the 2nd European Summer School on Machine Learning presented
a challenge to the monks of Corsendonk Priory, who had spent a week studying various
learning algorithms but were still unsure which one to choose. They decided to create a
simple task that could be used to compare all the algorithms, resulting in the three Monk’s
problems. The data set contains 432 records with six features, classified into two classes.
In this study, we evaluated the performance of our proposed method along with six other
methods on the Monk data set. In Tables 2 and 3, the best values for each performance
measure are bolded to indicate the best results achieved by each method. Our results indicate
that our method performs well in both linear and nonlinear cases, achieving satisfactory
accuracy.

Table 3 The nonlinear
performance of classifiers on
Monk data set

Classifier Accuracy Standard deviation Time

SVM 79.15 ±0.02 287.55

LS-SVM 79.52 ±0.22 3.36

TBSVM 79.65 ±0.01 4.98

LS-TSVM 80.22 ±0.03 3.12

DMTSVM 92.76 ±0.02 27.85

MTLS-TSVM 94.80 ±0.01 25.46

IMTLS-TSVM 95.17 ±0.03 24.11
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Table 4 The linear performance
of classifiers on Heart data set

Classifier Accuracy Standard deviation Time

SVM 84 ±0.02 1.94

LS-SVM 85.18 ±0.03 0.06

TBSVM 84.07 ±0.04 1.40

LS-TSVM 84.87 ±0.00 0.04

DMTSVM 86.42 ±0.09 1.48

MTLS-TSVM 86.43 ±0.02 0.19

IMTLS-TSVM 87.79 ±0.03 0.17

4.2.2 The results of the heart data set

Nowadays, one of the most prevalent illnesses is heart disease (HD), and early detection of
the disease is a crucial responsibility for many medical professionals who aim to protect their
patients fromHD and save their lives. The Heart data set contains 270 instances, each with 13
features. The data set aims to predict the presence or absence of heart disease using these 13
features, which include age, sex, resting blood pressure, chest pain type, fasting blood sugar
levels, serum cholesterol levels, maximum heart rate achieved, resting electrocardiographic
results, exercise-induced angina, old peak (ST depression induced by exercise proportionate
to rest), the number of major vessels, Thalassemia, and the slope of the peak exercise ST
segment. We used the ”sex” feature to categorize the data into male and female groups. In
this part, we compare the efficiency of our proposed method with six other algorithms on the
Heart data set, as reported in Tables 4 and 5. The tables display the best performance values
(Accuracy) obtained by the IMTLS-TSVM algorithm in both linear and nonlinear cases.

4.2.3 The results of the immunotherapy data set

The Immunotherapy data set is publicly available in the UCI database [8]. This data set
comprises 90 patients from the dermatology clinic at Ghaem Hospital in Mashhad, Iran [23].
It contains eight features such as sex, age, types and the number of warts, induration diameter,
area, and the treatment outcome. The first seven features provide patient details, and the last
feature indicates the response to treatment. A ”YES” response indicates a reduction in the
size of the largest wart by more than 75%, while a ”NO” response indicates otherwise. In
this study, the data was divided into three tasks based on the wart type: task 1 (type ”1” =
Common, 47 instances), task 2 (type ”2” = Plantar, 22 instances), and task 3 (type ”3” = Both,

Table 5 The nonlinear
performance of classifiers on
Heart data set

Classifier Accuracy Standard deviation Time

SVM 70 ±0.09 2.76

LS-SVM 71.11 ±0.08 0.09

TBSVM 72.33 ±0.22 1.86

LS-TSVM 73.33 ±0.05 1.26

DMTSVM 71.89 ±0.21 1.68

MTLS-TSVM 70.18 ±0.01 0.51

IMTLS-TSVM 73.49 ±0.02 0.49
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Table 6 The linear performance
of classifiers on Immunotherapy
data set

Classifier Accuracy Standard deviation Time

SVM 79.97 ±0.01 1.62

LS-SVM 80.04 ±0.02 0.05

TBSVM 77.81 ±0.00 1.63

LS-TSVM 80.22 ±0.10 0.04

DMTSVM 84.63 ±0.00 1.49

MTLS-TSVM 86.11 ±0.02 0.22

IMTLS-TSVM 87.37 ±0.01 0.19

21 instances). The wart type was also included in the model. The results presented in Tables
6 and 7 show that the proposed method outperforms other methods on the Immunotherapy
data set. The IMTLS-TSVM classifier achieved 87.37% and 82.48% accuracy and 0.19s and
0.24s running time for linear and nonlinear cases, respectively. In comparison,MTLS-TSVM
achieved 86.11% and 80.22% accuracy for linear and nonlinear cases, respectively, which is
lower than the accuracy achieved by the proposed method.

4.2.4 The results of the caesarean data set

Nowadays, despite the various complications, Caesarean delivery is preferred over natural
birth, and this trend is growing fast throughout the world. Therefore, a Caesarean should
only be carried out if it is deemed necessary for the mother and fetus. To avoid performing
Caesarean delivery unnecessarily, researchers have designed various machine learning-based
clinical decision support systems to predict Caesarean delivery using electronic health records
of pregnant women and collected the Caesarean data set. This data collection contains infor-
mation on whether the delivery is intended to be by cesarean section or natural birth and is
derived from 80 pregnant women who claimed to have experienced the most severe delivery
difficulties in the medical profession. The Caesarean data set consists of 80 samples, each
with five characteristics: age, delivery number, blood pressure, delivery time, and the pres-
ence or absence of a heart problem. We use the feature ”heart problem” to divide the data
into two distinct sections: ”task 1” indicates that the patient suffers from a heart problem,
whereas ”task 2” indicates that there is no heart problem (Tables 8 and 9).

The calculations on the Caesarean data set show that our proposed method has the best
accuracy among seven classifiers in the nonlinear case, with an accuracy of 78.30% and

Table 7 The nonlinear
performance of classifiers on
Immunotherapy data set

Classifier Accuracy Standard deviation Time

SVM 78.27 ±0.01 1.60

LS-SVM 78.92 ±0.01 0.6

TBSVM 78.88 ±0.02 1.50

LS-TSVM 78.88 ±0.21 1.01

DMTSVM 78.88 ±0.79 1.58

MTLS-TSVM 80.22 ±0.00 0.27

IMTLS-TSVM 82.48 ±0.01 0.24
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Table 8 The linear performance
of classifiers on Caesarean data
set

Classifier Accuracy Standard deviation Time

SVM 63.70 ±0.05 1.94

LS-SVM 68.78 ±0.07 0.04

TBSVM 69.09 ±0.00 1.42

LS-TSVM 69.88 ±0.21 0.03

DMTSVM 63.86 ±0.01 1.48

MTLS-TSVM 76.95 ±0.03 0.16

IMTLS-TSVM 76.95 ±0.00 0.16

an acceptable speed of learning. Additionally, in the linear case, our proposed method and
MTLS-TSVM achieved the same accuracy with an acceptable speed of learning

4.2.5 The results of the breast cancer coimbra data set

Breast cancer is known to be the most common invasive cancer in women and is also the
second leading cause of cancer-related deaths among them. A variety of biological factors
influence the recurrence of breast cancer. In recent years, research and prevention of breast
cancer have been a major focus among researchers. Data mining methods have emerged as
effective strategies to extract useful information from databases for classification purposes.
TheBreast Cancer Coimbra data set consists of 116 instanceswith ten attributes for each case,
as reported on March 6th, 2018 [36]. These attributes include age, BMI, insulin, glucose,
HOMA, leptin, resistin, adiponectin, andMCP-1, all of which are quantitative characteristics
obtained from anthropometric data and regular blood analysis. These characteristics are likely
to be used as biomarkers for breast cancer. The data set is divided into three tasks based on
body mass index analysis. Body mass index (BMI) is a basic rule of thumb that classifies a
person as underweight (less than 18.5 kg/m2), normal weight (18.5 kg/m2 to 24.9 kg/m2),
overweight (25 kg/m2 to 29.9 kg/m2), or obese (30 kg/m2 or more) based on their tissue mass
(muscle, fat, and bone) and height. The first task is for underweight individuals, the second
for those who are normal weight, and the third for people who are overweight or obese.

The results presented in Tables 10 and 11 demonstrate that the accuracy of IMTLS-TSVM
is superior to that of six other methods. The best results are highlighted in bold within the
tables.

Table 9 The nonlinear
performance of classifiers on
Caesarean data set

Classifier Accuracy Standard deviation Time

SVM 72.42 ±0.14 1.58

LS-SVM 73 ±0.12 0.06

TBSVM 71.35 ±0.09 1.47

LS-TSVM 72 ±0.07 1.08

DMTSVM 72.56 ±0.13 1.56

MTLS-TSVM 73.15 ±0.01 0.24

IMTLS-TSVM 78.30 ±0.00 0.21
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Table 10 The linear performance
of classifiers on Breast Cancer
Coimbra data set

Classifier Accuracy Standard deviation Time

SVM 72.40 ±0.11 1.65

LS-SVM 74.89 ±0.09 0.05

TBSVM 72.36 ±0.00 1.40

LS-TSVM 78.31 ±0.03 0.03

DMTSVM 82.24 ±0.01 1.50

MTLS-TSVM 83.39 ±0.01 0.19

IMTLS-TSVM 84.63 ±0.02 0.19

4.2.6 The results of the ljubljana breast cancer data set

The Ljubljana Breast Cancer data set was collected in July 1988 from 286 patients at the
UniversityMedical Center, Institute ofOncology, Ljubljana,Yugoslavia [59].All patients had
undergone surgery to remove the cancer-affected tissue. The data set contains nine predictor
variables and one response variable that indicates whether a patient had any recurrence
event(s) within five years of undergoing the operation. Nine incomplete entries, each of
which missed a single predictor value, were removed, resulting in a final data set of 277
complete instances. The data set’s nine attributes include age, PostMeno (whether the patient
is pre- or post-menopausal at the time of diagnosis), Tumor Size (the greatest diameter
(mm) of the removed tumor), Inv Nodes (the number of axillary lymph nodes with visible
metastatic breast cancer at the time of diagnosis), Node Caps (whether cancer metastasized
to a lymph node or not), Deg-Maligi (histological grade (range 1-3) of the removed tumor),
Breast (the left or right breast where the tumor occurred), Quadrant (the location of the
tumor within the breast (upper left, upper right, central, lower left, or lower right)), and
Radiation (whether the patient underwent radiation therapy or not). Using the tumor size
variable, the data was divided into five distinct tasks: task 1 (0 ≤ tumor si ze ≤ 19), task 2
(20 ≤ tumor si ze ≤ 24), task 3 (25 ≤ tumor si ze ≤ 29), task 4 (30 ≤ tumor si ze ≤ 34),
and task 5 (35 ≤ tumor si ze ≤ 54). The results of the proposed method in this study were
compared to those of six other methods on this data set, as shown in Tables 12 and 13. The
tables demonstrate that IMTLS-TSVM achieved higher accuracy than the other methods.

Table 11 The nonlinear
performance of classifiers on
Breast Cancer Coimbra data set

Classifier Accuracy Standard deviation Time

SVM 60.26 ±0.11 1.66

LS-SVM 63.74 ±0.08 0.09

TBSVM 60.39 ±0.07 1.49

LS-TSVM 63.33 ±0.01 1.20

DMTSVM 63.74 ±0.09 1.67

MTLS-TSVM 65.33 ±0.01 0.35

IMTLS-TSVM 69.98 ±0.02 0.30
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Table 12 The linear performance
of classifiers on Ljubljana Breast
Cancer data set

Classifier Accuracy Standard deviation Time

SVM 72.94 ±0.03 2.24

LS-SVM 74.06 ±0.01 0.05

TBSVM 75.13 ±0.00 1.49

LS-TSVM 74.01 ±0.00 0.03

DMTSVM 73.26 ±0.01 1.60

MTLS-TSVM 75.09 ±0.01 0.28

IMTLS-TSVM 75.36 ±0.02 0.25

4.2.7 The results of the landmine data set

The Landmine data set is used to detect the presence of landmines in an area based on radar
images. This data set is a binary classification problem with samples labeled as either 1
for landmines or 0 for clusters, indicating positive and negative classifications, respectively.
The data is collected from 29 landmine fields, each of which corresponds to a separate
geographical region, resulting in a total of 9674 samples. The data set consists of nine
features and the total number of nodes is 29, with the first 15 areas being foliated regions and
the latter 14 belonging to bare ground or uninhabited places.

We followed specific procedures for the Landmine data set to ensure fair and better exper-
imental outcomes. Since the number of negative samples is higher than the positive samples,
we balanced the data set by removing some negative samples. We divided the data set into
four tasks, selecting four densely foliated regions as positive data and four areas from bare
ground or desert regions as negative data. Specifically, we used sites 1, 2, 3, and 4 from
foliated regions and identified areas 16, 17, 18, and 19 from bare earth regions to construct
our experimental data set.

We evaluated our proposed IMTLS-TSVM algorithm on this data set and compared its
performance with other single-task and multi-task methods. As shown in Tables 14 and 15,
our method outperformed the other methods in terms of accuracy on this large-scale data set.
Furthermore, the IMTLS-TSVM algorithm showed acceptable prediction time when dealing
with the Landmine data set.

Table 13 The nonlinear
performance of classifiers on
Ljubljana Breast Cancer data set

Classifier Accuracy Standard deviation Time

SVM 74 ±0.04 5.98

LS-SVM 74.73 ±0.02 0.1

TBSVM 72.54 ±0.05 1.49

LS-TSVM 73.72 ±0.32 1.21

DMTSVM 73.71 ±0.09 2.41

MTLS-TSVM 75.32 ±0.00 0.75

IMTLS-TSVM 75.63 ±0.05 0.71
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Table 14 The linear performance
of classifiers on Landmine data
set

Classifier Accuracy Standard deviation Time

SVM 94.04 ±0.01 117.13

LS-SVM 94 ±0.02 0.33

TBSVM 95.51 ±0.03 5.94

LS-TSVM 96.52 ±0.01 0.14

DMTSVM 96.80 ±0.02 4.99

MTLS-TSVM 97.05 ±0.01 1.21

IMTLS-TSVM 97.36 ±0.02 1.18

4.2.8 Comparison of experiments results

The results of our experiments demonstrate the superiority of our proposed IMTLS-
TSVM algorithm over six other popular algorithms (SVM, LS-SVM, TBSVM, LS-TSVM,
DMTSVM, and MTLS-TSVM) in handling multi-task learning scenarios. The comparisons
were performed on seven multi-task data sets, and Tables 2 to 15 show that IMTLS-TSVM
consistently outperformed all other algorithms in linear and nonlinear situations.

Furthermore, our experiments demonstrate that the proposed IMTLS-TSVM algo-
rithm achieves comparable or superior prediction accuracy to other multi-task algorithms,
includingDMTSVMandMTLS-TSVM.Additionally, in termsof computation time, IMTLS-
TSVM exhibits similar performance to MTLS-TSVM while being significantly faster than
DMTSVM. These findings suggest that IMTLS-TSVM is a promising algorithm for solving
multi-task learning problems, particularly in situations where computational efficiency is a
critical factor.

5 Conclusion

In this study, we proposed the IMTLS-TSVM algorithm, an improved version of the
MTLS-TSVM algorithm for multi-task learning. Our approach incorporates empirical risk
minimization and achieved superior performance compared to several other single-task
and multi-task learning algorithms on seven traditional multi-task data sets. The results
demonstrate the effectiveness and feasibility of the IMTLS-TSVM algorithm for addressing
multi-task learning problems.

Table 15 The nonlinear
performance of classifiers on
Landmine data set

Classifier Accuracy Standard deviation Time

SVM 94 ±0.08 312.81

LS-SVM 94.09 ±0.01 9.30

TBSVM 94.10 ±0.02 11.53

LS-TSVM 94.38 ±0.4 6.26

DMTSVM 94.40 ±0.01 46.60

MTLS-TSVM 94.45 ±0.05 36.69

IMTLS-TSVM 96.76 ±0.01 33.60
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However, further research is needed to explore the scalability and robustness of the
IMTLS-TSVM algorithm on larger and more complex multi-task data sets. Investigating
its applicability to other machine learning tasks beyond classification, such as regression and
clustering, could broaden its scope and enable its use in a wider range of applications. Addi-
tionally, exploring the incorporation of other regularization methods into the IMTLS-TSVM
framework could enhance its performance even more.

In conclusion, the IMTLS-TSVM algorithm shows promising potential for improving
the accuracy and efficiency of multi-task learning. Future research could further enhance its
capabilities and expand its applicability.
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