
https://doi.org/10.1007/s10472-023-09835-4

Deductive belief change

Theofanis Aravanis1

Accepted: 29 January 2023 /
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
In a 2003-article, Sven Ove Hansson discusses the justificatory structure of a belief base, by
highlighting that some beliefs of the belief base are held only because they are (deductively)
justified by some other beliefs. He concludes that the relation between the justificatory
structure of a belief base and the vulnerability of its beliefs (which in turn reflects their
resistance to change) remains an open issue, both on a conceptual and on a technical level.
Motivated by Hanssons’ remarks, we introduce in this article a new interesting type of
change-operation, called deductive belief change (contraction and revision), and abbrevi-
ated as DBC. DBC associates in a natural manner the deductive justification that the logical
sentences of the language have, in the context of a belief base B, with their vulnerability
relative to B. According to DBC, the more explicit B-beliefs imply a sentence ϕ, the more
resistant to change ϕ is, with respect to B. We characterize DBC both axiomatically, in
terms of natural postulates, and constructively, in terms of kernel belief change, illustrating
its simple and intuitive structure. Interestingly enough, as we prove, kernel belief change
(and its central specialization partial-meet belief change) already encodes a strong coupling
between justificatory structure and vulnerability, as it implements DBC. Furthermore, we
show that deductive belief revision, properly adapted to the belief-sets realm, is indistin-
guishable from Parikh’s relevance-sensitive revision, a fundamental type of revision which,
due to its favourable properties, constitutes a promising candidate for a variety of real-world
applications. As a last contribution, we study relevance in the context of belief bases, and
prove that kernel belief change respects Parikh’s notion of relevance.
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1 Introduction

An intelligent agent should be capable of gathering information about the world, and mod-
ifying their state of belief in response to new evidential input. As a consequence, the agent
should be able to perform belief change —namely, belief contraction (simply contraction)
and belief revision (simply revision)— an operation which is heavily studied in the realm of
Artificial Intelligence [16].

The process of belief change was formalized by Alchourrón, Gärdenfors and Makinson
in the cornerstone work [1], in which a versatile framework was introduced, now called
the AGM paradigm, after the initials of its three founders. Within the AGM paradigm,
the belief corpus of an agent is typically represented by a logical theory K (which
is an infinite set of sentences closed under logical consequence, also referred to as a
belief set), the epistemic input (i.e., new information) is represented by a logical formula
ϕ, and the contraction/revision of K in response to ϕ is constrained by well-accepted
rationality-postulates.

One of the most controversial assumptions of the AGM paradigm is the modelling of an
agent’s belief corpus as a belief set [32]. The main concerns regarding belief sets can be
summarized in the following points: Belief sets make no distinction between explicit beliefs
and implicit beliefs (with the latter ones being “merely derived” from the former ones), they
are computationally intractable, and they cannot distinguish between different inconsistent
states of belief. In response to these weaknesses of belief sets, several authors have proposed
the use of belief bases as a model for representing states of belief. A belief base is a set
of sentences of the language, which, contrary to a belief set, is not closed under logical
consequence, and for all practical purposes it is finite; as such, a belief base does not suffer
from the aforementioned shortcomings of belief sets.1

In a 2003-article [34], Sven Ove Hansson introduces ten principal open problems of the
belief-change theory, related to the representation of states of belief, to different notions of
degrees of belief, and to the nature of change-operations. In that article, Hansson discusses
the justificatory structure of a belief base, by highlighting that some beliefs of the belief base
are held only because they are (deductively) justified by some other beliefs. He, thereafter,
wonders to what degree that justificatory structure relates to the vulnerability of the beliefs,
which in turn reflects their resistance to change. Finally, Hansson concludes to the following
statement, which is borrowed directly from [34, Section 5].

“The relation between vulnerability and justificatory structure remains an open issue.
It is not clear, either on a conceptual or a technical level, to what degree the
justificatory structure can be expressed in terms of vulnerability, or vice versa.”

Motivated by the aforementioned Hanssons’ remarks, we introduce in this article a new
interesting type of change-operation, called deductive belief change (abbreviated as DBC).
DBC comes to associate in a natural manner the deductive justification that the logical sen-
tences of the language have, in the context of a belief base B, with their vulnerability relative
to B. The core principle of DBC is that, if a sentence ψ is implied by set-theoretically more
explicit B-beliefs than a sentence ϕ, then ψ is more resistant to change than ϕ, with respect

1The assumption that the belief-base approach corresponds to a foundationalist epistemology, whereas, a
belief-set approach represents a coherentist epistemology constitutes a common ground in the belief-change
literature [25].
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to B. For demonstrating its simple and intuitive structure, DBC is defined both axiomati-
cally, in terms of natural postulates, and constructively, in terms of kernel belief change [31]
(in the context of which, belief bases are modified via a mechanism that selects sentences
to be retracted).

As we prove, kernel belief change —and thus all its specializations, including partial-
meet belief change originally developed by the AGM trio in [1]— implements DBC, hence,
it provides a proof of concept for the introduced type of belief change. This is an impor-
tant result pointing out that the fundamental kernel belief change already encodes a strong
coupling between the justificatory structure of belief bases and the vulnerability of their
beliefs.

Beyond belief bases, we study DBC in the realm of belief sets. Accordingly, we show
that an appropriate refinement of deductive belief revision for belief sets is indistinguishable
from Parikh’s relevance-sensitive revision, a principal type of revision that is more well-
behaved than the one identified by the AGM paradigm, which has been criticized as overly
liberal towards relevance [47, 48].2 As a last contribution, we study relevance in the context
of belief bases, and prove that kernel belief change (on belief bases) respects Parikh’s notion
of relevance.

The remainder of this article is organized as follows: The next section establishes the
formal background for our discussion. Thereafter, Section 3 presents a brief overview of
the AGM paradigm, followed by Section 4 which discusses kernel belief change on belief
bases. Section 5 explores representative works on change-operations for belief bases. In
Section 6, DBC is introduced, whereas, in Section 7, it is shown that the introduced type of
belief change is in fact implemented by kernel belief change. Section 8 investigates DBC in
the realm of belief sets, as well as the relevance-sensitivity of change-operations on belief
bases. The article closes with some concluding remarks and promising avenues for feature
research.

2 Formal prelude

In the present article, we shall work with a propositional language L, built over a finite,
non-empty set P of atoms (propositional variables), using the standard Boolean connec-
tives ∧ (conjunction), ∨ (disjunction), → (implication), ↔ (equivalence), ¬ (negation), and
governed by classical propositional logic. The classical consequence relation is denoted by
|=.

A sentence ϕ of L is contingent iff it is neither a tautology (i.e., � ϕ) nor a contradiction
(i.e., � ¬ϕ). For a set of sentences �, Cn(�) denotes the set of all logical consequences of
�; i.e., Cn(�) = {

ϕ ∈ L : � |= ϕ
}
. For a set of sentences � and a sentence ϕ ∈ L, � |= ϕ

stands for an abbreviation of ϕ ∈ Cn(�). For sentences ϕ1, . . . , ϕn of L, we shall write
Cn

(
ϕ1, . . . , ϕn

)
instead of Cn

({ϕ1, . . . , ϕn}
)
. Since the language L is governed by classical

propositional logic, it follows that the operator Cn satisfies the standard Tarskian properties,
hence, among others, it satisfies deduction; that is, for any set of sentences � and any two
sentences ϕ,ψ ∈ L, ψ ∈ Cn

(
� ∪ {ϕ}) iff (ϕ → ψ) ∈ Cn(�).

2Relevance is a vital principle, not only in the realm of belief change, but also in the context of Artificial
Intelligence in general [27].
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A set of sentences of L that is closed under logical consequence is called a belief set
(or theory); otherwise, it is called a belief base. A sentence ϕ of L is a belief of a belief
base (or belief set) B iff B |= ϕ, or equivalently ϕ ∈ Cn(B). Although belief bases
need not be finite, most work on them focuses on the finite case, and this tactic shall be
followed herein as well. For a belief set K and a sentence ϕ, we define the expansion
of K by ϕ, denoted by K + ϕ, as the logical closure of the set K ∪ {ϕ}; in symbols,
K + ϕ = Cn

(
K ∪ {ϕ}).

A literal is an atom p ∈ P or its negation. For a set of literals Q,
∨

Q denotes the
sentence of L resulting from the disjunction of all the literals in Q, and Q denotes the set of
all the negated literals in Q. A possible world (simply world) r is a consistent set of literals,
such that, for every atom p ∈ P , either p ∈ r or ¬p ∈ r . The set of all possible worlds is
denoted by M. For a sentence or set of sentences ϕ of L, [ϕ] denotes the set of worlds at
which ϕ is true.

A preorder over a set of possible worlds M is a reflexive, transitive binary relation in M .
A preorder � is total iff, for all r, r ′ ∈ M , r � r ′ or r ′ � r . The strict part of � is denoted
by ≺; i.e., r ≺ r ′ iff r � r ′ and r ′

� r . The indifference part of � is denoted by ≈; i.e.,
r ≈ r ′ iff r � r ′ and r ′ � r . Furthermore, min(M, �) denotes the set of all �-minimal
worlds of M; i.e.,

min(M, �) =
{
r ∈ M : for all r ′ ∈ M, if r ′ � r, then r � r ′}.

3 The AGMparadigm

As already stated, within the AGM paradigm, the belief corpus of an agent is represented by
a belief set K and the epistemic input is represented by a sentence ϕ of L. Between K and ϕ,
the AGM paradigm considers two fundamental change-operations, that is, belief contraction
(or simply contraction) and belief revision (or simply revision). In their seminal article [1],
Alchourrón, Gärdenfors and Makinson characterized both these types of change-operations
axiomatically, in terms of well-accepted rationality-postulates, as well as constructively, in
terms of the so-called partial-meet constructive model, which is based on a mechanism that
selects sets of sentences of a belief corpus that are eligible to be retained. In a subsequent
work [39], Katsuno and Mendelzon developed another popular constructive model for the
change-operations of the AGM paradigm, which is based on a special type of total preorders
over possible worlds, called faithful preorders. In this section, we present the axiomatic side
of the AGM paradigm, as well as the faithful-preorders constructive model (given that it
shall be used in Section 8). Furthermore, we highlight a well-known connection between
the operations of contraction and revision.

3.1 Axiomatic characterization

Alchourrón, Gärdenfors and Makinson model the process of contraction by a contraction
function .−, which is a binary function that maps a belief set K and a sentence ϕ to a belief
set K

.− ϕ, representing the result of contracting ϕ from K . We shall say that a contraction
function .− is an AGM contraction function iff it respects the following postulates, known
as the AGM contraction postulates [1].
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(K
.− 1) K

.− ϕ is a theory.

(K
.− 2) K

.− ϕ ⊆ K .

(K
.− 3) If ϕ /∈ K , then K

.− ϕ = K .

(K
.− 4) If ϕ is not tautological, then ϕ /∈ K

.− ϕ.

(K
.− 5) If ϕ ∈ K , then K ⊆ (K

.− ϕ) + ϕ.

(K
.− 6) If Cn(ϕ) = Cn(ψ), then K

.− ϕ = K
.− ψ .

(K
.− 7) (K

.− ϕ) ∩ (K
.− ψ) ⊆ K

.− (ϕ ∧ ψ).

(K
.− 8) If ϕ /∈ K

.− (ϕ ∧ ψ), then K
.− (ϕ ∧ ψ) ⊆ K

.− ϕ.

Likewise, the process of revision is encoded into a revision function ∗, which is a binary
function that maps a belief set K and a sentence ϕ to a belief set K ∗ ϕ, representing the
result of revising K by ϕ. We shall say that a revision function ∗ is an AGM revision function
iff it respects the following postulates, known as the AGM revision postulates [1].

(K ∗ 1) K ∗ ϕ is a theory.

(K ∗ 2) ϕ ∈ K ∗ ϕ.

(K ∗ 3) K ∗ ϕ ⊆ K + ϕ.

(K ∗ 4) If ¬ϕ /∈ K , then K + ϕ ⊆ K ∗ ϕ.

(K ∗ 5) K ∗ ϕ is inconsistent iff ϕ is inconsistent.

(K ∗ 6) If Cn(ϕ) = Cn(ψ), then K ∗ ϕ = K ∗ ψ .

(K ∗ 7) K ∗ (ϕ ∧ ψ) ⊆ (K ∗ ϕ) + ψ .

(K ∗ 8) If ¬ψ /∈ K ∗ ϕ, then (K ∗ ϕ) + ψ ⊆ K ∗ (ϕ ∧ ψ).

A discussion on the AGM contraction/revision postulates can be found in [23, Chapter 3] and
[49, Section 8.3]. Herein, we will suffice to state that the guiding principle behind (K

.− 1)–
(K

.−8) and (K ∗1)–(K ∗8) is the economy of information; that is, the modification of K , in
response to the new information ϕ, should be done so that K is changed as little as possible.

Each one of the two aforementioned sets of postulates does not uniquely define particu-
lar change-operations; it only identifies the class of all different rational change-strategies.
The definition of specific change-operations that respect the AGM contraction/revision pos-
tulates is implemented through the so-called constructive models for belief change, which
constitute formalizations that provide “recipes” for specifying particular change-strategies.
Two such constructive models are the partial-meet model, which was already proposed by
the AGM trio in their seminal article [1], and the faithful-preorders model by Katsuno and
Mendelzon [39]. Herein, we shall focus on the latter constructive model, which we discuss
subsequently.

3.2 Constructive characterization: the faithful-preorders model

Katsuno and Mendelzon built their constructive model for the case of revision, based on
Grove’s system of spheres [28]. At the heart of Katsuno and Mendelzon’s approach lies a
special kind of total preorder over all possible worlds, called faithful preorder [39].
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Definition 1 (Faithful Preorder, [39]) A preorder �K over M is faithful to a belief set K iff
it is total, and such that [K] �= ∅ entails [K] = min(M, �K).

Intuitively, a total preorder �K over M encodes the comparative plausibility of the pos-
sible worlds of M, relative to the belief set K . Hence, r �K r ′ states that the world r is at
least as plausible as the world r ′, with respect to K .

Relying on the notion of faithful preorder, Katsuno and Mendelzon proved in [39] that
a revision function ∗ satisfies the AGM revision postulates iff, for each belief set K , there
exists a faithful preorder �K over M, such that, for any ϕ ∈ L:

(F∗) [K ∗ ϕ] = min([ϕ], �K).

Therefore, an AGM revision function ∗ can be constructed by means of a family {�K }∀ K

of faithful preorders (one for each belief set K), with the aid of condition (F∗); that is, by
specifying the revised belief set K ∗ ϕ as the theory corresponding to the most plausible
ϕ-worlds, with respect to K .

3.3 From contraction to revision

The change-operation identified by the AGM contraction postulates and that identified by
the AGM revision postulates are not independent to each other; on the contrary, they are
closely related. That connection was suggested by Isaac Levi in [43], before Alchourrón,
Gärdenfors and Makinson formulated their rationality-postulates. According to Levi, one
should in principle be able to define revision in terms of contraction by means of the fol-
lowing procedure: For revising a belief set K by an epistemic input ϕ, first, retract ¬ϕ from
K (thus anything that may contradict the epistemic input is removed), and then expand the
resulting belief set with ϕ. This method connecting revisions and contractions is encoded
into the following condition (LV), which is known as the Levi Identity.

(LV) K ∗ ϕ = (
K

.− ¬ϕ
) + ϕ.

Interestingly, Alchourrón, Gärdenfors and Makinson proved that the revision function
∗ generated from an AGM contraction function .−, through the Levi Identity, is an AGM
revision function, and, conversely, any AGM revision function ∗ can be generated from an
AGM contraction function .−, by means of the Levi Identity [1].

We conclude our discussion on the AGM paradigm noting that several AGM-compliant
types of change-operations (particularly, revision-operations) have been proposed in the
literature, each one with its own favourable properties that make it suitable for certain
applications — the interested reader is, indicatively, referred to the Hamming-based change-
method by Dalal [9], its generalization parametrized-difference belief revision [50], as well
as uniform belief revision [3, 8] and theory-relational belief revision [5]. Following this line
of research, the main aim of this article is the introduction of a well-behaved type of change-
operation applicable (primarily) to belief bases. In order to facilitate our presentation, we
shall consider in what follows only the principal case of the modification of consistent belief
corpora by contingent epistemic inputs.

4 Kernel belief change on belief bases

As noted in the Introduction section, one of the most controversial assumptions of the AGM
paradigm is the modelling of an agent’s belief corpus as a belief set [32]. A common concern
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regarding belief sets is that they are infinite objects, and, as such, cannot be incorporated
directly into real-world Artificial-Intelligence applications.3 In response to this concern,
belief bases have been proposed as an alternative to belief sets.

Beyond computational considerations, one may also argue in favour of belief bases
due to their ability of distinguishing the unique syntax/structure of beliefs. For example,
given that P = {a, b}, the belief bases B1 = {a, b} and B2 = {a, a ↔ b} represent
identical beliefs, as they have the same logical closure, yet, they represent genuinely dis-
tinct states of belief. This can be evident if we consider the dynamics of B1 and B2.
Suppose, for instance, that we revise B1 and B2 so that the new belief ¬a be included
into both of them. A plausible outcome for the revision of B1 by ¬a is the belief base
B ′

1 = {¬a, b}, whereas, a plausible outcome for the revision of B2 by ¬a is the belief base
B ′

2 = {¬a, a ↔ b}. Notice, now, that a belief of B ′
1 is the sentence b, whereas, a belief

of B ′
2 is the sentence ¬b. The aforementioned scenario indicates that two statically equiv-

alent belief bases (i.e., two belief bases that represent identical beliefs) are not in general
dynamically equivalent, as their modification (with respect to new epistemic input) may
lead to different outcomes. Thus, in a sense, belief bases are more expressive than belief
sets.4

One other favourable feature of belief bases —which is not present in belief sets— is
their ability of distinguishing the explicit from the implicit beliefs. The explicit beliefs of
a belief base B are all the sentences contained in B, whereas, the implicit beliefs of B are
all the sentences that logically follow from B, but are not in B. In this sense, the explicit
beliefs are independent of any other beliefs, whereas, the implicit beliefs have no inde-
pendent standing and are “merely derived” from the explicit beliefs; hence, if an implicit
belief loses its (deductive) support from the explicit beliefs, then it will be automatically
discarded.

In this article, we shall focus on a fundamental type of change-operation on belief bases,
called kernel contraction. Kernel contraction was proposed by Hansson in [31], and origi-
nates from Alchourrón and Makinson’s safe contraction [2]. Before discussing Hansson’s
proposal, we note that, in the realm of belief bases, a contraction function .− is a binary
function that maps a belief base B and a sentence ϕ to a belief base B

.− ϕ, representing
the result of contracting ϕ from B. Likewise, a revision function ∗ is a binary function that
maps a belief base B and a sentence ϕ to a belief base B ∗ϕ, representing the result of revis-
ing B by ϕ. On that premises, let us introduce the notions of kernel and incision function,
upon which Hansson defines his contraction functions.

Definition 2 (Kernel, [31]) Let B be a belief base and let ϕ be a sentence of L. A ϕ-kernel
of B is a ⊆-minimal subset of B that entails ϕ; i.e., B ′ is a ϕ-kernel of B iff B ′ ⊆ B,
B ′ |= ϕ, and no proper subset of B ′ entails ϕ.

The set of all ϕ-kernels of B shall be denoted by B ⊥⊥ ϕ.
Now, in order to retract a belief ϕ from B, at least one element of each ϕ-kernel of

B must be removed from B, since otherwise ϕ would still be implied. This retraction is

3Although, for a propositional language L built from finitely many atoms (as it is the case herein), any belief
set is finitely axiomatizable (i.e., it can be represented as the logical closure of a single sentence of L).
4A consequence of that feature is that belief bases allow us to express different types of inconsistent states of
belief, contrary to belief sets, in the context of which there is only one inconsistent belief set, which coincides
with the whole language L.
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implemented through an incision function, which makes an incision (cut) into each ϕ-kernel
of B.

Definition 3 (Incision Function, [31]) An incision function σ is a function such that, for
every belief base B and all sentences ϕ ∈ L, σ(B ⊥⊥ ϕ) ⊆ ⋃

(B ⊥⊥ ϕ), and if ∅ �= X ∈
B ⊥⊥ ϕ, then X ∩ σ(B ⊥⊥ ϕ) �= ∅.

Every incision function σ gives rise to a contraction function .−σ , defined by means of
condition (K .−), for any belief base B and any sentence ϕ ∈ L.

(K
.−) B

.−σ ϕ = B − σ
(
B ⊥⊥ ϕ

)
.

Thus, the .−σ -contraction of ϕ from B produces a set that contains all the elements of B

that have not been cut off by the incision function σ .
Any contraction function .−σ induced from an incision function σ , by means of condition

(K .−), shall be called kernel contraction function. Hansson establishes the following repre-
sentation result, which axiomatically characterizes the class of kernel contraction functions,
in terms of four postulates.

Theorem 1 ([33]) A contraction function .− is a kernel contraction function iff it satisfies
the following postulates (B .− 1)–(B .− 4):

(B .− 1) If ϕ is not tautological, then B .− ϕ � ϕ.

(B .− 2) B .− ϕ ⊆ B.

(B .− 3) If, for all subsets B ′ of B, B ′ |= ϕ iff B ′ |= ψ , then B .− ϕ = B .− ψ .

(B .− 4) If ψ ∈ B and ψ /∈ B .− ϕ, then there is a subset B ′ of B, such that B ′
� ϕ

and B ′ ∪ {ψ} |= ϕ.

The rationale behind postulates (B
.− 1)–(B

.− 4) that follows is borrowed from [31] and
[16]. Postulate (B

.−1), named Success, states that, if the epistemic input is not tautological,
then it is not a belief of the belief base B

.− ϕ. Postulate (B
.− 2), named Inclusion, requires

that the contracted belief base B
.−ϕ is a subset of the initial belief base B.5 Postulate (B

.−3),
called Uniformity, asserts that, if two sentences ϕ and ψ have the same behaviour relative to
a belief base B (that is, if they are implied by the same subsets of B), then the contraction of
ϕ from B is identical to the contraction of ψ from B. Lastly, postulate (B

.−4), also referred
to as Core-Retainment, prevents unnecessary losses of beliefs, by requiring that, if a belief
ψ is removed from a belief base B due to the contraction of ϕ from B, then ψ contributes
in some way to make B imply ϕ.

The following example concretely illustrates the operation of kernel contraction.

Example 1 (Kernel Contraction) Let P = {a, b, c} and let B = {
a, a ↔ b, a ∨ b

}
be

a belief base. Clearly then, the sentence ϕ = a ∧ b is an implicit belief of B. The set of

5Postulates (B
.−1) and (B

.−2) encode the intuition of the AGM contraction postulates (K
.−2) and (K

.−4),
respectively.
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all ϕ-kernels of B is B ⊥⊥ ϕ = {{a, a ↔ b}, {a ∨ b, a ↔ b}}. Now, let σ1 be an incision
function such that σ1

(
B ⊥⊥ ϕ

) = {a ↔ b}, and let σ2 be an incision function such that
σ2

(
B ⊥⊥ϕ

) = {a, a ↔ b}. The incision functions σ1, σ2 induce in turn, via condition (K .−),
two kernel contraction functions .−σ1 , .−σ2 , respectively, such that B

.−σ1 ϕ = {
a, a ↔

b, a∨b
}−{a ↔ b} = {a, a∨b} and B

.−σ2 ϕ = {
a, a ↔ b, a∨b

}−{a, a ↔ b} = {a∨b}.
Observe that the contraction-strategies of the operators .−σ1 and .−σ2 are distinct, which is
to be expected since σ1 �= σ2.

It is noteworthy that kernel contraction circumscribes a very general category of
contraction-strategies, which has close connections with a plethora of important frame-
works, such as Truth Maintenance Systems [10–12] and Argumentation Systems [52]. By
imposing restrictions on the operation of incision functions, several well-studied sub-classes
of kernel contraction functions can be identified. For example, by imposing smoothness on
incision functions, we get the so-called smooth kernel contraction [31]. By further restrict-
ing incision functions, we get partial-meet contraction, which basically constitutes the
belief-base counterpart of the partial-meet constructive model for belief sets, discussed in
Section 3 [13].6 Both the aforementioned indicative types of kernel contraction play a cor-
nerstone role in the belief-change literature; the interested reader can find details on them
in [33]. We only mention here the following result by Hansson, which concerns the relation
between (smooth or unsmooth) kernel contraction and partial-meet contraction.

Proposition 1 [31] The family of smooth kernel contraction functions forms a proper sub-
class of the family of kernel contraction functions, and the family of partial-meet contraction
functions forms a proper sub-class of the family of smooth kernel contraction functions.

We conclude our discussion on kernel contraction noting that, although Theorem 1 refers
to contraction functions, a variant of the Levi Identity, presented below as condition (LVB),
allows us to construct a revision function ∗ on belief bases from a contraction function .−
on belief bases; notice that condition (LVB), contrary to condition (LV) of Section 3, yields
an outcome that is not closed under logical consequence.

(LVB) B ∗ ϕ = (
B

.− ¬ϕ
) ∪ {ϕ}.

Hence, with the aid of condition (LVB), we can specify (smooth or unsmooth) ker-
nel revision functions from (smooth or unsmooth) kernel contraction functions, as well as
partial-meet revision functions from partial-meet contraction functions. Note, lastly, that
a result totally symmetric to Proposition 1 can also be formulated for the relation among
kernel revision, smooth kernel revision and partial-meet revision.7

6Let us briefly outline the formal mechanism of partial-meet contraction. Let � be a set of sentences of L,
representing a belief corpus (either belief base or belief set), and let ϕ be a sentence of L that we would
like to contract from �. Denote by �⊥ϕ the set of ⊆-maximal subsets of � that do not entail ϕ. A selection
function γ is a function such that, for every set � of sentences and all sentences ϕ ∈ L, if �⊥ϕ �= ∅,
then γ (�⊥ϕ) is a non-empty subset of �⊥ϕ, whereas, if �⊥ϕ = ∅, then γ (�⊥ϕ) = {�}. On that basis,
the selection function γ gives rise to an operator .−γ of partial-meet contraction, such that, for any set � of
sentences and any sentence ϕ ∈ L, �

.−γ ϕ = ⋂
γ (�⊥ϕ). Thus, contrary to kernel contraction which is

based on incision functions that select sentences that are relevant to derive the information to be retracted,
partial-meet contraction is based on selection functions that select sets of sentences of a belief corpus that
are eligible to be retained.
7The processes of kernel revision, smooth kernel revision and partial-meet revision are axiomatically
characterized in [21, 54] and [29], respectively.
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5 Related work

The favourable properties of belief bases, mentioned in the previous section, have made
them a proper finite representation of belief corpora, in the context of Artificial Intelli-
gence. It is, therefore, expected that several aspects of belief bases have extensively been
discussed in the literature. In this section, and before proceeding to our contribution, we
briefly overview some cornerstone works on belief bases.

We begin by stating that several important types of change-operations for belief bases,
along with notable properties of them, are presented in Hansson’s book [33], as well as
in the surveys [16, Chapter 6] and [49, Section 8.4]. Now, an interesting type of change-
operations on belief bases, which are implemented by means of a total preorder over a
belief base, that essentially prioritizes its elements, is presented by Nebel [45]. Nebel’s
approach was generalized by Weydert [57], who also associated it to the AGM revision
and contraction postulates. In a subsequent work [46], Nebel explored the computational
complexity of change-operations on belief bases.

Non-prioritized change-operations, namely, operations that do not always accept the
epistemic input, have also been adapted to the belief-base context. For example, [17] and
[22] recast the model of credibility-limited revision, initially proposed for belief sets [35],
in the realm of belief bases. In a more recent work [20], Garapa adapted selective revision,
proposed for belief sets in [15], to the belief-base context, obtaining a model for revising
belief bases that allows the acceptance of only part of the new information.

In a different vein, Fuhrmann in [18] pointed out that change-operations on a belief base
B induce change-operations on its logical closure K = Cn(B), which is of course a belief
set. Hence, if .− is a contraction function for B, a base-generated contraction function ÷
can be defined, such that, for any sentence ϕ ∈ L,

K ÷ ϕ = Cn
(
B

.− ϕ
)
.

Hansson in [30] and [31] obtained an axiomatic characterization for operations on
belief sets, generated by partial-meet and kernel contraction of belief bases, respectively.
In Section 8.5, we shall highlight some interesting connections between deductive belief
change and base-generated change-operations. In his subsequent book [19], Fuhrmann
explored multiple change-operations on belief bases; i.e., operations on belief bases in the
context of which the epistemic input is a set of sentences, instead of a single sentence.
Falappa et al. also covered this issue in [14], by studying a prioritized and a non-prioritized
approach to multiple change applicable to belief bases.

We close our overview with the approach of Di Giusto and Governatori [26], in the
realm of which the sentences of a belief base are partitioned into two classes; facts, which
can be removed if new facts is necessary to be accommodated, and rules, which cannot be
removed, but can instead be changed. Clearly, Di Giusto and Governatori’s proposal pre-
scribe guidelines on the vulnerability of sentences of belief bases. Deductive belief change,
to be introduced in the next section, also imposes directives on the vulnerability of the sen-
tences of a belief base, through the deductive justification that these sentences have within
the belief base.

6 Deductive belief change

Deductive belief change (DBC) is a type of contraction and/or revision that is implemented
by particular change-operations on belief bases, namely, change-operations that respect
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Fig. 1 Abstract representation of all the explicit beliefs (grey areas) of a belief base B that imply ϕ and ψ ,
where ϕ �B ψ (left) and ϕ ∼B ψ (right)

specific constraints. This section is devoted to the presentation of the axiomatic and con-
structive side of these constraints, which, as we shall see, highlight the simple and intuitive
structure of the introduced type of belief change. To that end, we first introduce the notion
of degree of support of sentences, in the context of a belief base.8

Definition 4 (Unequal Degree of Support) Let B be a belief base, and let ϕ,ψ be two
sentences of L. We shall say that ψ is better supported than ϕ in B, which we shall denote
by ϕ �B ψ , iff, for any sentence μ ∈ B, μ |= ϕ entails μ |= ψ , and there is a sentence
ν ∈ B such that ν � ϕ and ν |= ψ .

Intuitively, ψ is better supported than ϕ in a belief base B whenever the explicit beliefs
of B that (deductively) justify ψ are set-theoretically more than the explicit beliefs of B that
(deductively) justify ϕ. Thus, if one remove enough “links” (deductions) to disconnect ψ

from B, then ϕ gets also disconnected (cf. Figure 1, left).

Definition 5 (Equal Degree of Support) Let B be a belief base, and let ϕ,ψ be two sen-
tences of L. We shall say that ϕ and ψ are equally supported in B, which we shall denote
by ϕ ∼B ψ , iff, for any sentence μ ∈ B, μ |= ϕ iff μ |= ψ .

In a similar vein, ϕ and ψ are equally supported in a belief base B whenever the explicit
beliefs of B that (deductively) justify ϕ are identical to the explicit beliefs of B that (deduc-
tively) justify ψ . Thus, ϕ gets disconnected from B iff ψ gets disconnected from B (cf.
Figure 1, right). Evidently then, the degree of support that a sentence ϕ has in a belief base
B is specified by the explicit beliefs of B that (deductively) make ϕ a belief of B.

Remark 1 Let B be a belief base, and let ϕ, ψ be two sentences of L. It follows from
Definition 4 that, if B � ϕ and B |= ψ , then ϕ �B ψ . Furthermore, in view of Definition 5,
we have that, if B � ϕ and B � ψ , then ϕ ∼B ψ . Therefore, all the non-beliefs of B are

8The notion of degree of support presented herein is inspired by [7].
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equally supported in B, and, at the same time, they are the least supported sentences of L,
with respect to B.

The following concrete example illustrates the notion of degree of support.

Example 2 (Degree of Support) Let P = {
a, b, c, d, e, f

}
and let B = {

a ↔ b, c ↔
d, e, e → f

}
be a belief base of a rational agent. Moreover, let ϕ = ¬a ∨ b ∨ c ∨ d,

χ = ¬a ∨ b ∨ ¬c ∨ ¬d and ψ = ¬a ∨ b ∨ ¬c ∨ d be three sentences of L, which are all
implicit beliefs of B. Firstly, observe that, for any sentence μ ∈ B, μ |= ϕ entails μ |= ψ ,
and there is a sentence ν ∈ B (i.e., c ↔ d) such that ν � ϕ and ν |= ψ . Furthermore, for
any sentence μ ∈ B, μ |= χ entails μ |= ψ , and there is a sentence ν ∈ B (i.e., c ↔ d)
such that ν � χ and ν |= ψ . Therefore, in view of Definition 4, we derive that the belief ψ

is better supported than the belief ϕ and χ in B; that is, ϕ �B ψ and χ �B ψ . Thereafter,
observe that, for any sentence μ ∈ B, μ |= ϕ iff μ |= χ . Thus, in view of Definition 5, it
follows that the beliefs ϕ and χ are equally supported in B; that is, ϕ ∼B χ .

6.1 Axiomatic characterization

In view of the notion of degree of support, let .− be an arbitrary contraction function, and consider
the following two postulates (DC1) & (DC2), which reflect specific properties of .−.

(DC1) If ϕ �B ψ, then B
.− (ϕ ∧ ψ) |= ψ .

(DC2) If ϕ ∼B ψ, then B
.− (ϕ ∧ ψ) � ϕ.

Both postulates (DC1) & (DC2) relate the degree of support of two arbitrary sentences
in a belief base B —which reflects the justificatory structure of B— with their resistance to
change (i.e., vulnerability). The idea underlying postulates (DC1) & (DC2) is that, when we
contract the belief ϕ ∧ ψ from a belief base B, we are forced to give up at least one of the
beliefs ϕ and ψ . Bearing that in mind, postulate (DC1) states that, if ψ is better supported
than ϕ in B, then the belief ψ should be retained (and of course the belief ϕ should be
withdrawn). Postulate (DC2) deals with the limiting case of two sentences ϕ and ψ that
are equally supported in B. For such sentences, (DC2) requires that they should be both
contracted from the belief base B.9 We shall say that any contraction function that satisfies
postulates (DC1) & (DC2) implements deductive belief contraction.

Obviously, a contraction function .− that implements deductive belief contraction
induces, through condition (LVB), a corresponding revision function ∗. Theorem 2, pre-
sented subsequently, proves that .− satisfies postulates (DC1) & (DC2) iff ∗ satisfies the
following two postulates (DR1) & (DR2), respectively.

(DR1) If ϕ �B ψ, then B ∗ (¬ϕ ∨ ¬ψ) |= ψ .

(DR2) If ϕ ∼B ψ, then B ∗ (¬ϕ ∨ ¬ψ) � ϕ.

Theorem 2 Let .− be a contraction function, and let ∗ be the corresponding revision func-
tion induced from .−, by means of (LVB). Then, .− satisfies postulates (DC1) & (DC2) iff ∗
satisfies postulates (DR1) & (DR2), respectively.

9Given that we confine our study to the principal case of contingent epistemic inputs, postulate (DC2) implies
postulate (B

.−1), which any kernel contraction function respects (cf. Theorem 1); to see that, simply replace
ψ with ϕ in (DC2).
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Proof Let B be a belief base, and let ϕ,ψ be two sentences of L. It suffices to prove
that B

.− (ϕ ∧ ψ) |= ψ iff B ∗ (¬ϕ ∨ ¬ψ) |= ψ , as well as that B
.− (ϕ ∧ ψ) � ϕ iff

B ∗ (¬ϕ ∨ ¬ψ) � ϕ.
The left-to-right implication of B

.− (ϕ ∧ ψ) |= ψ iff B ∗ (¬ϕ ∨ ¬ψ) |= ψ fol-
lows directly from condition (LVB). The right-to-left implication of B

.− (ϕ ∧ ψ) |= ψ

iff B ∗ (¬ϕ ∨ ¬ψ) |= ψ follows from the deduction-property of the operator Cn (cf.
Section 2). In particular, assume that B ∗ (¬ϕ ∨ ¬ψ) |= ψ . Then, from the deduction-
property of Cn and condition (LVB), it follows that B

.− (ϕ ∧ ψ) |= (¬ϕ ∨ ¬ψ) → ψ .
Observe, however, that the sentence (¬ϕ∨¬ψ) → ψ is logically equivalent to (ϕ∧ψ)∨ψ ,
which is in turn logically equivalent to ψ . Therefore, we obtain that B

.− (ϕ ∧ ψ) |= ψ , as
desired.

The left-to-right implication of B
.−(ϕ∧ψ) � ϕ iff B∗(¬ϕ∨¬ψ) � ϕ follows, like above,

from the deduction-property of the operator Cn. In particular, assume that B
.− (ϕ ∧ψ) � ϕ,

and suppose towards contradiction that B ∗ (¬ϕ ∨ ¬ψ) |= ϕ. Then, from the deduction-
property of Cn and condition (LVB), it follows that B

.−(ϕ∧ψ) |= (¬ϕ∨¬ψ) → ϕ. Hence,
B

.− (ϕ ∧ ψ) |= ϕ, a conclusion that contradicts our initial assumption. For the right-to-left
implication of B

.− (ϕ ∧ ψ) � ϕ iff B ∗ (¬ϕ ∨ ¬ψ) � ϕ, assume that B ∗ (¬ϕ ∨ ¬ψ) � ϕ.
Suppose towards contradiction that B

.− (ϕ ∧ ψ) |= ϕ. Then, we derive from condition
(LVB) that B ∗ (¬ϕ ∨ ¬ψ) |= ϕ, which is a contradiction once again.

Like in the case of contraction, we shall say that any revision function that satisfies
postulates (DR1) & (DR2) implements deductive belief revision.

6.2 Constructive characterization

We now turn to the constructive characterization of DBC in terms of kernel belief change.
To that end, consider the following two conditions (DK1) & (DK2), which reflect specific
properties of an incision function σ .

(DK1) If B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ, then there is a X ∈ B ⊥⊥ ψsuch that σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X = ∅.

(DK2) If B ⊥⊥ ϕ = B ⊥⊥ ψ, then, for every X ∈ B ⊥⊥ ϕ, σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X �= ∅.

Condition (DK1) states that, if the ψ-kernels of B are set-theoretically more than the ϕ-
kernels of B, then there is a ψ-kernel of B which is disjoint from the set σ

(
B ⊥⊥ (ϕ ∧ ψ)

)
.

Condition (DK2), on the other hand, deals with the case where the ϕ-kernels of B

are identical to the ψ-kernels of B, in which circumstance (DK2) requires that the set
σ
(
B ⊥⊥ (ϕ ∧ ψ)

)
intersects every ϕ-kernel of B (and of course every ψ-kernel of B as

well).
Subsequently, we shall establish a correspondence between the contraction-postulates

(DC1) & (DC2) and conditions (DK1) & (DK2); thus, in view of Theorem 2, a correspon-
dence between the revision-postulates (DR1) & (DR2) and (DK1) & (DK2) shall be also
established. Let us first, however, present the following lemma, which points out a natural
connection between the degree of support of two sentences ϕ, ψ , in the context of a belief
base B, and the ϕ-kernels and ψ-kernels of B.

Lemma 1 Let B be a belief base, and let ϕ, ψ be two sentences of L. Then, ϕ �B ψ iff
B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ , and ϕ ∼B ψ iff B ⊥⊥ ϕ = B ⊥⊥ ψ .
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Proof Obvious from Definition 2 of Section 4, and Definitions 4 and 5 of the present
section.

Against this background, Theorem 3 is a representation result that establishes the alluded
correspondence between the contraction-postulates (DC1) & (DC2) and conditions (DK1)
& (DK2), and thus, it constructively characterizes DBC in terms of kernel belief change.

Theorem 3 Let σ be an incision function, and let .−σ be a kernel contraction function
induced from σ , by means of (K .−). Then, .−σ satisfies postulates (DC1) & (DC2) iff σ

satisfies conditions (DK1) & (DK2), respectively.

Proof For the left-to-right implication, assume first that .−σ satisfies postulate (DC1). We
show that σ satisfies condition (DK1). Let B be a belief base, and let ϕ, ψ be two sen-
tences of L such that B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ (thus, B |= ψ). Then, it follows from Lemma 1
that ϕ �B ψ . Therefore, from postulate (DC1), we have that B

.−σ (ϕ ∧ ψ) |= ψ . Hence,
we conclude from condition (K .−) that the set B − σ

(
B ⊥⊥ (ϕ ∧ ψ)

)
contains a ψ-

kernel. Consequently, there is a X ∈ B ⊥⊥ ψ such that σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X = ∅, as
desired.

Next, assume that .−σ satisfies postulate (DC2). We show that σ satisfies condi-
tion (DK2). Let B be a belief base, and let ϕ, ψ be two sentences of L such that
B ⊥⊥ ϕ = B ⊥⊥ ψ . If B � ϕ, then B ⊥⊥ ϕ contains only the empty set, and thus (DK2) triv-
ially holds. Assume, therefore, that B |= ϕ. Then, from B ⊥⊥ ϕ = B ⊥⊥ ψ and Lemma 1,
we have that ϕ ∼B ψ . Therefore, from postulate (DC2), we obtain that B

.−σ (ϕ ∧ ψ) � ϕ.
Hence, we conclude from condition (K .−) that the set B − σ

(
B ⊥⊥ (ϕ ∧ ψ)

)
does not con-

tain a ϕ-kernel. Consequently, it follows from condition (K .−) that, for every X ∈ B ⊥⊥ ϕ,
σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X �= ∅, as desired.
For the right-to-left implication, assume first that σ satisfies condition (DK1). We show

that .−σ satisfies postulate (DC1). Let B be a belief base, and let ϕ, ψ be two sentences
of L such that ϕ �B ψ . Then, it follows from Lemma 1 that B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ . There-
fore, from condition (DK1), we have that there is a X ∈ B ⊥⊥ ψ such that σ

(
B ⊥⊥ (ϕ ∧

ψ)
) ∩ X = ∅. This again entails from condition (K .−) that B

.−σ (ϕ ∧ ψ) |= ψ , as
desired.

Next, assume that σ satisfies condition (DK2). We show that .−σ satisfies postulate
(DC2). Let B be a belief base, and let ϕ, ψ be two sentences of L such that ϕ ∼B ψ . Then,
it follows from Lemma 1 that B ⊥⊥ϕ = B ⊥⊥ψ . Therefore, from condition (DK2), we have
that, for every X ∈ B ⊥⊥ ϕ, σ

(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X �= ∅. This again entails from condition
(K .−) that B

.−σ (ϕ ∧ ψ) � ϕ, as desired.

Figure 2 presents a visual representation of the conjunction of Theorems 2 and 3.

7 Kernel belief change implements deductive belief change

Having axiomatically and constructively introduced DBC in terms of natural constraints
on the behaviour of change-operations on belief bases, we shall prove in this section that
the well-established kernel belief change implements DBC and, thus, it provides a proof of
concept for the introduced type of belief change. This result is established by Theorem 4
below, which proves that every kernel-based change-operation implements DBC.
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Fig. 2 An incision function σ satisfying conditions (DK1) & (DK2) induces, via condition (K .−), a kernel
contraction function .− that satisfies (DC1) & (DC2). The kernel contraction function .− induces in turn, via
condition (LVB), a kernel revision function ∗ that satisfies (DR1) & (DR2)

Theorem 4 Let σ be an incision function, and let .−σ be a kernel contraction function
induced from σ , by means of (K .−). Moreover, let ∗σ be the kernel revision function corre-
sponding to .−, by means of (LVB). Then, .−σ satisfies postulates (DC1) & (DC2), and ∗σ

satisfies postulates (DR1) & (DR2).

Proof In view of Theorems 2 and 3, it suffices to prove that the incision function σ satisfies
conditions (DK1) & (DK2). To that end, let B be a belief base, and let ϕ, ψ be two sentences
of L.

For (DK1), assume that B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ . It follows then that B ⊥⊥ (ϕ ∧ ψ) = B ⊥⊥ ϕ.
Since, by definition, it is true that σ

(
B ⊥⊥ (ϕ ∧ ψ)

) ⊆ ⋃(
B ⊥⊥ (ϕ ∧ ψ)

)
, we derive that

σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ⊆ ⋃(
B ⊥⊥ ϕ

)
. This, combined with B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ , entails that there

is a X ∈ B ⊥⊥ ψ such that σ
(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X = ∅, as desired.
For (DK2), assume that B ⊥⊥ϕ = B ⊥⊥ψ . It follows then that B ⊥⊥ (ϕ ∧ψ) = B ⊥⊥ϕ =

B⊥⊥ψ . Since, by definition, the set σ
(
B⊥⊥(ϕ∧ψ)

)
intersects every element of B⊥⊥(ϕ∧ψ),

we derive that it also intersects every element of B ⊥⊥ ϕ. Consequently, we conclude that,
for every X ∈ B ⊥⊥ ϕ, σ

(
B ⊥⊥ (ϕ ∧ ψ)

) ∩ X �= ∅, as desired.

Theorem 4 attributes an important property on kernel belief change, as it shows that
this fundamental type of change-operation already encodes a strong connection between
the justificatory structure of a belief base and the vulnerability of its beliefs. Furthermore,
Theorem 4, in conjunction with Proposition 1 of Section 4, implies the subsequent corollary,
which indicates that smooth kernel belief change and partial-meet belief change implement
DBC as well.

Corollary 1 Smooth kernel contraction functions and partial-meet contraction functions
satisfy postulates (DC1) & (DC2). Moreover, smooth kernel revision functions and partial-
meet revision functions, obtained through condition (LVB), satisfy postulates (DR1) &
(DR2).

Figure 3 summarizes the results established so far, by illustrating the classes of the
principal change-operations on belief bases and their relation to DBC.
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Partial-Meet Belief Change

Smooth Kernel Belief Change

Kernel Belief Change

Deductive Belief Change

Fig. 3 The classes of the principal change-operations on belief bases and their relation to DBC

We conclude this section with Example 3, which demonstrates a concrete application of
DBC (contraction and revision) implemented through kernel-based change-operations.

Example 3 (DBC via Kernel Belief Change, Cont’d Example 2) Recall that B = {
a ↔

b, c ↔ d, e, e → f
}

is a belief base, and ϕ = ¬a ∨ b ∨ c ∨ d, χ = ¬a ∨ b ∨ ¬c ∨ ¬d

and ψ = ¬a ∨ b ∨ ¬c ∨ d are three implicit beliefs of B. Observe that B ⊥⊥ ϕ =
B ⊥⊥ χ = {{a ↔ b}}, B ⊥⊥ ψ = {{a ↔ b}, {c ↔ d}} and B ⊥⊥ (ϕ ∧ ψ) =
B ⊥⊥ (ϕ ∧ χ) = {{a ↔ b}}. Clearly, B ⊥⊥ ϕ ⊂ B ⊥⊥ ψ and B ⊥⊥ ϕ = B ⊥⊥ χ , which,
in view of Lemma 1, gives that ϕ �B ψ and ϕ ∼B χ , respectively. Now, let σ be an inci-
sion function. It follows then that σ

(
B ⊥⊥ (ϕ ∧ ψ)

) = σ
(
B ⊥⊥ (ϕ ∧ χ)

) = {a ↔ b}, and
obviously σ satisfies conditions (DK1) & (DK2), as expected due to Theorems 3 and 4.
The incision function σ induces, through condition (K .−), a kernel contraction function
.−σ , such that B

.−σ (ϕ ∧ ψ) = B
.−σ (ϕ ∧ χ) = {

a ↔ b, c ↔ d, e, e → f
} − {a ↔ b} ={

c ↔ d, e, e → f
}
. The kernel contraction function .−σ induces in turn, through condi-

tion (LVB), a corresponding kernel revision function ∗σ , such that B ∗σ (¬ϕ ∨ ¬ψ) ={
c ↔ d, e, e → f,

(
a ∧ ¬b ∧ ¬c ∧ ¬d

) ∨ (
a ∧ ¬b ∧ c ∧ ¬d

)}
and B ∗σ (¬ϕ ∨ ¬χ) =

{
c ↔ d, e, e → f,

(
a ∧ ¬b ∧ ¬c ∧ ¬d

) ∨ (
a ∧ ¬b ∧ c ∧ d

)}
. Observe that B

.−σ (ϕ ∧
ψ) |= ψ and B

.−σ (ϕ ∧ χ) � ϕ, according to the dictates of postulates (DC1) & (DC2), as
well as that B ∗σ (¬ϕ ∨ ¬ψ) |= ψ and B ∗σ (¬ϕ ∨ ¬χ) � ϕ, according to the dictates of
postulates (DR1) & (DR2), as expected due to Theorem 4.

8 Deductive belief change in the realm of belief sets

So far, we have studied DBC on belief bases. This section is devoted to the translation of
DBC in the realm of belief sets, which, contrary to belief bases, are logically closed (thus,
infinite) sets of sentences. We first proceed to a naı̈ve translation of DBC in the context of
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belief sets, and discuss its relation to AGM belief change (Section 8.1). Thereafter, we turn
to a more interesting circumstance. We introduce a relevance-sensitive variant of the notion
of degree of support (developed in Section 6), and, based on this variant, we reformulate
postulates (DR1) & (DR2) in terms of belief sets. As we prove, in that case, deduc-
tive belief revision and Parikh’s relevance-sensitive revision, [47, 48], are two different
manifestations of the same operation (Section 8.3). Furthermore, we explore the relevance-
sensitivity of kernel belief change on belief bases (Section 8.4). We shall close this section
with a discussion on the relation between DBC and base-generated change-operations
(Section 8.5).

8.1 A naı̈ve translation

For a naı̈ve translation of DBC in the realm of belief sets, one has to note that the defi-
nition of degree of support, as well as postulates (DC1) & (DC2) and (DR1) & (DR2) of
Section 6, can all straightforwardly be formulated in terms of belief sets, simply be replacing
B (denoting belief bases) with K (denoting belief sets).

On that premises, it follows immediately that every AGM contraction function satisfies
the reformulated postulate (DC2). To see this, let .− be an AGM contraction function, let K

be a belief set, and let ϕ, ψ be two sentences of L, such that ϕ ∼K ψ . Firstly, observe that
the case where one of ϕ, ψ is contained in K , and the other one is not contained in K , is
excluded by the reformulated definition of ∼K . Hence, either ϕ,ψ ∈ K or ϕ, ψ /∈ K . In the
former case where ϕ,ψ ∈ K , it follows, by the reformulated definition of ∼K , that ϕ and
ψ are logically equivalent; that is, Cn(ϕ) = Cn(ψ) = Cn(ϕ ∧ ψ). Therefore, postulates
(K

.− 3) and (K
.− 6) entail that ϕ, ψ /∈ K

.− (ϕ ∧ ψ). In the latter case where ϕ, ψ /∈ K

(thus, ϕ∧ψ /∈ K), postulate (K
.−3) entails again that ϕ, ψ /∈ K

.− (ϕ ∧ ψ). Consequently,
in any case, the naı̈ve recast of postulate (DC2) holds. Yet, contrary to (DC2), the naı̈ve
recast of postulate (DC1) is not respected by all AGM contraction functions, as one can
easily find AGM contraction functions that violate it.

It is not hard to verify that a result analogous to Theorem 2 can be established, connecting
the reformulated contraction-postulates (DC1) & (DC2) with the reformulated revision-
postulates (DR1) & (DR2), via the Levi Identity (LV). By means of this result, and with
a line of reasoning symmetric to the aforementioned one concerning contraction, we can
obtain that, contrary to the naı̈ve recast of (DR2), the naı̈ve recast of (DR1) is respected by
every AGM revision function.

Let us now turn to a more interesting case. As we shall prove in Section 8.3, a relevance-
sensitive variant of the notion of degree of support suffices to make deductive belief revision
indistinguishable from Parikh’s relevance-sensitive revision. Parikh’s relevance-sensitive
revision is a fundamental type of revision that is more well-behaved than the one identi-
fied by the AGM revision postulates, which have been criticized as overly liberal towards
relevance [47, 48]. Before further discussing Parikh’s notion of relevance in the following
subsection, it should be emphasized that relevance is a particularly important principle, both
conceptually and computationally, that plays a cornerstone role, not only in the realm of
belief change [4, 6, 24, 36, 40, 42, 44, 48, 51, 55, 56], but also in the context of Artificial
Intelligence in general [27].

8.2 Parikh’s notion of relevance

Parikh highlighted in [47] that there exist AGM revision functions —thus, AGM contraction
functions as well generated by the Levi Identity— that are overly liberal towards relevance.
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He showed, for example, that there is an AGM revision function ∗, such that, for any belief
set K and any epistemic input ϕ that contradicts K , K ∗ ϕ = Cn(ϕ).10 Observe that,
during the ∗-revision of K by ϕ, all the K-beliefs that are not logical consequences of the
epistemic input ϕ are thrown away, regardless of whether these beliefs are related to ϕ or
not. In response to this unsatisfactory background, Parikh proposed an additional axiom that
supplements the AGM revision postulates in handling relevance [47].

The main intuition of Parikh’s axiom is that, if a belief set K is splittable —namely, it can
be expressed in two syntax-disjoint compartments representing distinct subject matters—,
then the revision of K by an epistemic input ϕ affects only the part of K that is syntactically
relevant to ϕ. In a later work [51], Peppas et al. pointed out two different interpretations of
Parikh’s axiom, namely, is weak and its strong version, which are both plausible depending
on the context. Herein, we shall focus on the weak version of Parikh’s axiom, as it is more
general and intuitive.

Before presenting the weak version of Parikh’s axiom, let us firstly introduce the required
notation and terminology. For a (proper) subset Q of P , LQ denotes the sublanguage of L
defined over Q, using the standard Boolean connectives; if Q is empty, then LQ is empty as
well. For a sentence (resp., set of sentences) x ofL, Lx denotes the unique minimal language
within which (resp., the sentences of) x can be expressed. The complement language of Lx

is denoted by Lx ; that is, Lx is the language built from the atoms that do not appear in Lx

(if there are no atoms that do not appear in Lx , then Lx is empty). Furthermore, consider the
definitions of the finest theory-splitting by Parikh [47], and the difference between a theory
and a possible world by Peppas et al. [51].

Definition 6 (Finest Theory-Splitting, [47]) Let K be a theory, and let Q = {
Q1, . . . , Qn

}

be a partition of P ; i.e.,
⋃

Q = P , Qi �= ∅, and Qi ∩ Qj = ∅, for all 1 � i �= j � n.
The set Q is a K-splitting iff there exist sentences ϕ1 ∈ LQ1 , . . . , ϕn ∈ LQn , such that
K = Cn

(
ϕ1, . . . , ϕn

)
. For each theory K , there exists a unique finest K-splitting (i.e., one

which refines every other K-splitting), denoted by FK .11

Definition 7 (Difference between Theories and Possible Worlds, [51]) Let K be a theory
with a finest K-splitting FK , and let r be a possible world of M. The difference between K

and r , denoted by Diff (K, r), is the union of the elements F of FK , for which there exists a
sentence μ that can be expressed in the sublanguage LF , on that K and r disagree. In symbols:

Diff (K, r) =
⋃ {

F ∈ FK : for some μ ∈ LF , K |= μ and r |= ¬μ
}

.

As it has been shown in [51], it is true that Diff (K, r) = ∅ iff r ∈ [K]. Lastly, in
the spirit of Definition 7, we define the difference between two possible worlds r , r ′ of M,
denoted by Diff (r, r ′), as the set of atoms over which r and r ′ disagree; in symbols,

Diff (r, r ′) =
(
(r − r ′) ∪ (r ′ − r)

)
∩ P .

We are now ready to present the weak version of Parikh’s axiom, which is encoded into
the next postulate (RW). Postulate (RW) states that, if a belief set K splits between two

10The type of revision encoded into the AGM revision function ∗ is called maxichoice revision [1].
11A partition Q′ refines another partition Q iff, for every Q′

i ∈ Q′, there exists a Qj ∈ Q, such that
Q′

i ⊆ Qj .
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syntax-disjoint compartments Cn(x) and Cn(y), then the revision of K by an epistemic
input that can be asserted within the sublanguage Lx should not affect anything outside Lx .

(RW) If K = Cn(x, y), Lx ∩ Ly = ∅ and Lϕ ⊆ Lx , then (K ∗ ϕ) ∩ Lx = K ∩ Lx .

Peppas et al. in [51] formulated a semantic characterization of postulate (RW), which
turns out to be the following two constraints (Q1) & (Q2) on a faithful preorder �K ,
associated with a belief set K .12

(Q1) If Diff (K, r) ⊂ Diff (K, r ′) and Diff (r, r ′) ∩ Diff (K, r) = ∅, then r ≺K r ′.

(Q2) If Diff (K, r) = Diff (K, r ′) and Diff (r, r ′) ∩ Diff (K, r) = ∅, then r ≈K r ′.
Both conditions (Q1) & (Q2) relate the plausibility of a possible world r to its difference

Diff (K, r) from the belief set K . In particular, condition (Q1) states that, if a world r

differs from K in strictly fewer atoms than r ′, and moreover r and r ′ agree on the atoms in
Diff (K, r), then r should be strictly more plausible than r ′, with respect to K . Condition
(Q2), on the other hand, asserts that, if two worlds r and r ′ differ from K on exactly the
same atoms, and moreover both worlds agree on these atoms, then r and r ′ should be equally
plausible, with respect to K .

Theorem 5 is a representation result by Peppas et al. that establishes the correspondence
between postulate (PW) and the semantic conditions (Q1) & (Q2).

Theorem 5 [51] Let ∗ be an AGM revision function, and let {�T }∀ T be the family of faithful
preorders that corresponds to ∗, by means of (F∗). Then, ∗ satisfies postulate (PW) iff
{�T }∀ T satisfies conditions (Q1) & (Q2).

8.3 Refined deductive belief revision and Parikh’s relevance-sensitive revision: two
sides of the same coin

Having discussed relevance-sensitive revision, we present the following relevance-sensitive
variants of Definitions 4 and 5 in the realm of belief sets.

Definition 8 (Unequal Degree of Support for Belief Sets) Let K be a belief set with a finest
K-splitting FK , and let ϕ,ψ be two sentences of L. Denote by S ϕ

K the set containing any
element F ∈ FK , such that, for any sentence μ ∈ K ∩ LF , μ |= ϕ iff μ |= ψ . We shall
say that ψ is better supported than ϕ in K , denoted by ϕ �K ψ , iff there is an element
F ′ ∈ FK − S ϕ

K , such that, for any sentence ζ ∈ K ∩ LF ′
, ζ � ϕ, and for a sentence

ν ∈ K ∩ LF ′
, ν |= ψ .

Definition 9 (Equal Degree of Support for Belief Sets) Let K be a belief set with a finest
K-splitting FK , and let ϕ,ψ be two sentences of L. We shall say that ϕ and ψ are equally
supported in K , denoted by ϕ ∼K ψ , iff, for each F ∈ FK and any sentence μ ∈ K ∩ LF ,
μ |= ϕ iff μ |= ψ .

Intuitively, ψ is better supported than ϕ in a belief set K whenever, every belief of every
finest compartment of K , identified by S ϕ

K (which is a proper subset of FK ), entails ϕ iff

12For a concrete example of a faithful preorder that satisfies conditions (Q1) & (Q2), which also demonstrates
the concepts of Definitions 6 and 7, the reader is referred to [51, Section 7]. We note, moreover, that a
semantic characterization of Parikh’s axiom in terms of a collection of popular constructive models for belief
revision has been developed in [7].
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Fig. 4 Abstract representation of all the beliefs of the finest compartments (grey areas) of a belief set K that
imply ϕ and ψ , where ϕ �K ψ (left) and ϕ ∼K ψ (right)

it entails ψ , and, moreover, there is a finest compartment of K , which is not identified by
S ϕ

K , whose beliefs do not entail ϕ, yet a belief of this compartment entails ψ . Thus, if one
remove enough finest compartments of K to disconnect ψ from K , then ϕ gets also dis-
connected (cf. Figure 4, left). Analogously, ϕ and ψ are equally supported in a belief set
K whenever, every belief of every finest compartment of K entails ψ iff it entails ϕ. Thus,
the removal of enough finest compartments of K disconnects ϕ iff it disconnects ψ (cf.
Figure 4, right). Hence, according to Definitions 8 and 9, the degree of support that a sen-
tence ϕ has in a belief set K is specified by the finest compartments of K that (deductively)
justify ϕ in K — in a sense, in the context of the degree of support for belief sets, (the
beliefs of) the finest compartments of K take the role that the explicit beliefs have for belief
bases.

Remark 2 As in the case of belief bases (cf. Remark 1), for a belief set K and two sentences
ϕ, ψ of L, it is true that, if ϕ /∈ K and ψ ∈ K , then ϕ �K ψ , and, moreover, if ϕ,ψ /∈ K ,
then ϕ ∼K ψ .

Based on Definitions 8 and 9, we can restate postulates (DR1) & (DR2) of Section 6
in terms of belief sets.13 Accordingly, we end up to the following postulates (DRS1) &
(DRS2), which essentially identify a refined version of deductive belief revision; in (DRS1)
& (DRS2), K is a belief set, ϕ, ψ are arbitrary sentences of L, and ∗ is a revision function
for belief sets.

(DRS1) If ϕ �K ψ , then ψ ∈ K ∗ (¬ϕ ∨ ¬ψ).

(DRS2) If ϕ ∼K ψ , then ϕ /∈ K ∗ (¬ϕ ∨ ¬ψ).

Assuming that ∗ is an AGM revision function, Theorem 6 proves that the conjunction of
postulates (DRS1) & (DRS2) is equivalent to postulate (PW), namely, to the weak version
of Parikh’s axiom.

13The focus here is on the revision-postulates (DR1) & (DR2), and not on the contraction postulates (DC1)
& (DC2), since Parikh formulated his axiom in terms of revision.
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Theorem 6 Let ∗ be an AGM revision function. Then, ∗ satisfies postulates (DRS1) &
(DRS2) iff ∗ satisfies postulate (PW).

Proof Let {�T }∀ T be the family of faithful preorders that corresponds to ∗, by means of
(F∗). In the presence of Theorem 5, it suffices to show that ∗ satisfies postulates (DRS1) &
(DRS2) iff {�T }∀ T satisfies conditions (Q1) & (Q2).

For the left-to-right implication, assume first that ∗ satisfies (DRS1). We show that
{�T }∀ T satisfies (Q1). Let K be a belief set, and let r , r ′ be two possible worlds of M such
that Diff (K, r) ⊂ Diff (K, r ′) and Diff (r, r ′) ∩ Diff (K, r) = ∅. If Diff (K, r) = ∅, then
r ∈ [K], and of course r ′ /∈ [K]. Then, the faithfulness of �K entails that r ≺K r ′, as
desired. Assume, therefore, that Diff (K, r) �= ∅.

Firstly, note that Definition 7 entails that the set
{
Diff (K, r) , P−Diff (K, r)

}
is

a K-splitting. Consequently, there exist sentences x, y ∈ L such that K = Cn(x, y),
Lx = LDiff (K,r), and Lx ∩ Ly = ∅. Now, construct the contingent sentences ϕ and ψ ,
such that ϕ = ∨

r and ψ = ∨
r ′.14 Clearly by construction, it is true that [¬ϕ] = {r}

and [¬ψ] = {r ′}. From Diff (r, r ′) ∩ Diff (K, r) = ∅, it follows that, for any sentence μ ∈
K∩LDiff (K,r) = Cn(x), μ |= ϕ iff μ |= ψ . Furthermore, from Diff (K, r) ⊂ Diff (K, r ′),
it follows that there is a sentence ν ∈ K ∩ LDiff (K,r) = Cn(y) such that ν |= ψ , and
that there is no sentence ζ ∈ K ∩ LDiff (K,r) = Cn(y) such that ζ |= ϕ. Combining the
above, we derive that ϕ �K ψ , which, in view of postulates (DRS1) and (K ∗ 2), entails
that K ∗ (¬ϕ ∨ ¬ψ) |= ψ and K ∗ (¬ϕ ∨ ¬ψ) � ϕ. It follows, then, that all the worlds
in

[
K ∗ (¬ϕ ∨ ¬ψ)

]
are ψ-worlds and that there is a ¬ϕ-world in

[
K ∗ (¬ϕ ∨ ¬ψ)

]
.

Given that [¬ϕ] = {r} and [¬ψ] = {r ′} (thus, [¬ϕ ∨ ¬ψ] = {r, r ′}), we obtain that[
K ∗ (¬ϕ ∨ ¬ψ)

] = {r}. This again entails from condition (F∗) that r ≺K r ′, as desired.
Next, assume that ∗ satisfies (DRS2). We show that {�T }∀ T satisfies (Q2). Let K be a

belief set, and let r , r ′ be two possible worlds of M such that Diff (K, r) = Diff (K, r ′) and
Diff (r, r ′) ∩ Diff (K, r) = ∅. If Diff (K, r) = P , then r = r ′, and therefore (Q2) trivially
holds. Moreover, if Diff (K, r) = ∅, then r, r ′ ∈ [K], and the faithfulness of �K entails
that r ≈K r ′, as desired. Assume, therefore, that ∅ ⊂ Diff (K, r) ⊂ P .

Firstly, note again that the set
{
Diff (K, r) , P−Diff (K, r)

}
is a K-splitting. Conse-

quently, there exist sentences x, y ∈ L such that K = Cn(x, y), Lx = LDiff (K,r), and
Lx ∩ Ly = ∅. Now, construct the contingent sentences ϕ and ψ , such that ϕ = ∨

r

and ψ = ∨
r ′. Clearly again, it is true that [¬ϕ] = {r} and [¬ψ] = {r ′}. From

Diff (r, r ′) ∩ Diff (K, r) = ∅, it follows that, for any sentence μ ∈ K ∩ LDiff (K,r) =
Cn(x), μ |= ϕ iff μ |= ψ . Furthermore, from Diff (K, r) = Diff (K, r ′), it follows that
there is no sentence ζ ∈ K ∩ LDiff (K,r) = Cn(y) such that ζ |= ϕ, and that there is
no sentence ξ ∈ K ∩ LDiff (K,r) = Cn(y) such that ξ |= ψ . Combining the above, we
derive that ϕ ∼K ψ , which, in view of postulate (DRS2), entails that K ∗ (¬ϕ ∨ ¬ψ) � ϕ

and K ∗ (¬ϕ ∨ ¬ψ) � ψ . It follows, then, that there is a ¬ϕ-world and a ¬ψ-world in[
K ∗ (¬ϕ ∨ ¬ψ)

]
. Given that [¬ϕ] = {r} and [¬ψ] = {r ′} (thus, [¬ϕ ∨ ¬ψ] = {r, r ′}), we

obtain that
[
K ∗ (¬ϕ ∨ ¬ψ)

] = {r, r ′}. This again entails from condition (F∗) that r ≈K r ′,
as desired.

We have shown so far that, if ∗ satisfies (DRS1) & (DRS2), then {�T }∀ T satisfies (Q1)
& (Q2), respectively. We shall now prove the converse, namely that, if {�T }∀ T satisfies

14Recall that, for a set of literals Q,
∨

Q denotes the sentence of L resulting from the disjunction of all the
literals in Q, and Q denotes the set of all the negated literals in Q.
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(Q1) & (Q2), then ∗ satisfies (DRS1) & (DRS2), respectively. To that end, assume first that
{�T }∀ T satisfies (Q1). We show that ∗ satisfies (DRS1). Let K be a belief set, and let ϕ, ψ

be two sentences of L, such that ϕ �K ψ .
Let FK be the finest K-splitting. Since ϕ �K ψ , we have by definition that, for each

F ∈ S ϕ
K and any sentence μ ∈ K ∩ LF , μ |= ϕ iff μ |= ψ . Hence, for each F ∈ S ϕ

K and
any sentence μ ∈ K ∩ LF , ¬ϕ |= ¬μ iff ¬ψ |= ¬μ. Therefore, for each F ∈ S ϕ

K , any
sentence μ ∈ K ∩LF , any world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], r |= ¬μ iff r ′ |= ¬μ.
Consequently, for any world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], Diff (K, r) ∩ (⋃S ϕ

K

) =
Diff (K, r ′)∩( ⋃S ϕ

K

)
and Diff (r, r ′) ∩

(
Diff (K, r) ∩ (⋃S ϕ

K

)) = ∅. Furthermore, from

the fact that there is an element F ′ ∈ FK − S ϕ
K , such that, for any sentence ζ ∈ K ∩

LF ′
, ζ � ϕ, and for a sentence ν ∈ K ∩ LF ′

, ν |= ψ (or ¬ψ |= ¬ν), we derive that
there is an element F ′ ∈ FK − S ϕ

K , such that, for any sentence ζ ∈ K ∩ LF ′
, some

world r ∈ [¬ϕ], some sentence ν ∈ K ∩ LF ′
, and any world r ′ ∈ [¬ψ], r � ¬ζ and

r ′ |= ¬ν. Combining the above, we conclude that, for some world r ∈ [¬ϕ] and any world
r ′ ∈ [¬ψ], Diff (K, r) ⊂ Diff (K, r ′) and Diff (r, r ′) ∩ Diff (K, r) = ∅. Consequently, it
follows from condition (Q1) that, for some world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], r ≺K

r ′. This, in view of condition (F∗), entails that there is no ¬ψ-world in
[
K ∗ (¬ϕ ∨ ¬ψ)

]
,

which means that K ∗ (¬ϕ ∨ ¬ψ) |= ψ , as desired.
Next, assume that {�T }∀ T satisfies (Q2). We show that ∗ satisfies (DRS2). Let K be a

belief set, and let ϕ, ψ be two sentences of L, such that ϕ ∼K ψ .
Let FK be the finest K-splitting. Since ϕ ∼K ψ , we have by definition that, for each

F ∈ FK and any sentence μ ∈ K ∩ LF , μ |= ϕ iff μ |= ψ . Hence, for each F ∈ FK

and any sentence μ ∈ K ∩ LF , ¬ϕ |= ¬μ iff ¬ψ |= ¬μ. Therefore, for each F ∈ FK ,
any sentence μ ∈ K ∩ LF , any world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], r |= ¬μ iff
r ′ |= ¬μ. Consequently, for any world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], Diff (K, r) =
Diff (K, r ′) and Diff (r, r ′) ∩ Diff (K, r) = ∅. This again entails from condition (Q2) that,
for any world r ∈ [¬ϕ] and any world r ′ ∈ [¬ψ], r ≈K r ′. This, in view of condition (F∗),
entails that there is a ¬ϕ-world and a ¬ψ-world in

[
K ∗ (¬ϕ ∨ ¬ψ)

]
, which means that

K ∗ (¬ϕ ∨ ¬ψ) � ϕ, as desired.

Theorem 6 shows that the class of AGM revision functions implementing the refined
deductive belief revision (thus, satisfying postulates (DRS1) & (DRS2)) coincides with
the class of AGM revision functions satisfying postulate (PW), namely, the weak version
of Parikh’s axiom. Therefore, the refined deductive belief revision and Parikh’s relevance-
sensitive revision are, as a matter of fact, indistinguishable. Theorem 6 provides, also,
an alternative (equivalent) interpretation/characterization of Parikh’s notion of relevance
in terms of deductive-based structures; conversely, it provides an alternative (equivalent)
interpretation/characterization of the refined deductive belief revision in terms of relevance-
sensitive structures. Thus, responding to Hanssons’ observations on the relation between
justificatory structure and vulnerability, we show herein that the well-behaved Parikh’s
relevance-sensitive revision (for belief sets) is a type of belief change that indeed relates the
aforementioned two concepts.

Example 4 demonstrates an instance of the refined version of deductive belief revision,
which, as just shown, is equivalent to Parikh’s relevance-sensitive revision.
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Example 4 (Refined Deductive Belief Revision) Let P = {
a, b, c, d, e, f

}
, x = a ↔ b,

y = c ↔ d, z = e ∧ (e → f ), and let K = Cn(x, y, z) be a belief set of a ratio-
nal agent.15 Clearly, the belief set K is splittable, and its finest K-splitting is FK ={{a, b}, {c, d}, {e, f }}. Moreover, let ∗ be an AGM revision function that satisfies postu-
lates (DRS1) & (DRS2) (thus, postulate (PW) as well), and let ϕ = ¬a ∨ b ∨ c ∨ d and
ψ = ¬a∨b∨¬c∨d be two sentences of L, which are all beliefs of K; i.e., ϕ, ψ ∈ K . Then,
it follows from Definition 8 that ϕ�K ψ . Consider, now, the epistemic input ω = ¬ϕ ∨¬ψ

which contradicts K , and for which it is true that Lω ⊆ Lx ∧ y . On that premises, we obtain
from postulate (DRS1) that ψ ∈ K ∗ ω. Therefore, from postulate (K ∗ 2), we have that
¬ϕ ∈ K∗ω. Since ∗ also satisfies postulate (PW), it holds that (K∗ω)∩Lx ∧ y = K∩Lx ∧ y .

Combining the above, we derive that K ∗ ω = Cn
(
a ∧ ¬b ∧ ¬c ∧ ¬d , e ∧ (e → f )

)
.

8.4 Parikh’s notion of relevance in the realm of belief bases

As stated at the beginning of Section 8.2, the well-established change-operations on belief
sets —that is, those identified by the AGM trio— are not necessarily relevance-sensitive.
But, what about the relevance-sensitivity of change-operations on belief bases? In this final
subsection, we study this issue and prove that, contrary to the case of belief sets, the well-
established operations on belief bases —that is, kernel contraction and revision— respect
syntax-relevance. To that end, consider the following postulate (PB), which is a straightfor-
ward recast of postulate (PW) in terms of belief-bases contraction, and, as such, encodes
Parikh’s notion of relevance.

(PB) If B = B1 ∪ B2, LB1 ∩ LB2 = ∅ and Lϕ ⊆ LB1 , then (B
.− ϕ) ∩ LB1 = B ∩ LB1 .

On that premise, Theorem 7 proves that kernel contraction respects postulate (PB), thus,
it is relevance-sensitive.

Theorem 7 Every kernel contraction function satisfies postulate (PB).

Proof Let σ be an incision function, and let .−σ be the kernel contraction function induced
from σ , by means of condition (K .−). Moreover, let B be a belief base such that B = B1∪B2
and LB1 ∩LB2 = ∅, and let ϕ be a sentence of L such that Lϕ ⊆ LB1 . Since, by definition,
a ϕ-kernel of B is a ⊆-minimal subset of B that entails ϕ, it follows that, for each element
X ∈ B ⊥⊥ ϕ, LX ⊆ LB1 . This again entails that Lσ(B⊥⊥ϕ) ⊆ LB1 . Consequently, we derive
from condition (K .−) that no sentence of B ∩ LB1 is affected by the .−σ -contraction of ϕ

from B. That is, (B
.−σ ϕ) ∩ LB1 = B ∩ LB1 , as desired.

An important implication of Theorem 7, in view of Proposition 1 of Section 4, is the fol-
lowing corollary, which states that smooth kernel contraction and partial-meet contraction
are relevance-sensitive as well.

Corollary 2 Smooth kernel contraction functions and partial-meet contraction functions
satisfy postulate (PB).

Example 5 presents a kernel-contraction operation (on a belief base) that respects
postulate (PB).

15Notice that the belief set K coincides with the logical closure Cn(B) of the belief base B of Example 2
(Section 6).
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Example 5 (Kernel Contraction & Relevance) Let P = {a, b} and let B = {a, b} be a
belief base. Clearly, B is the union of the belief bases B1 = {a} and B2 = {b}. Moreover,
let ϕ = a be a sentence of L, for which it is true that Lϕ ⊆ LB1 = L{a}. Then, we have
that B ⊥⊥ ϕ = {{a}}. Notice that the minimal language of the single element of B ⊥⊥ ϕ is
the language Lϕ = L{a}. Thus, for any incision function σ , it holds that Lσ(K⊥⊥ϕ) ⊆ LB1 .
Therefore, the kernel contraction of ϕ from B respects postulate (PB), as expected due to
Theorem 7.

We conclude this subsection noting that, in view of condition (LVB), a result analogous to
Theorem 7 (and thus to Corollary 2) can straightforwardly be established for kernel revision
as well.

8.5 Deductive belief change and base-generated change-operations

In the remainder of this section, we highlight some interesting connections between DBC
and base-generated change-operations. As mentioned in Section 5, change-operations on a
belief base B induce change-operations on its logical closure K = Cn(B) [18]. Hence, if
.− is a contraction function for B, a base-generated contraction function ÷ can be defined,

such that, for any sentence ϕ ∈ L,

K ÷ ϕ = Cn
(
B

.− ϕ
)
.

Then, it follows directly from conditions (DC1) & (DC2) that the contraction function
÷ respects the following two properties, which encode the intuition of deductive belief
contraction.

• If ϕ �B ψ , then ψ ∈ K ÷ (ϕ ∧ ψ).
• If ϕ �B ψ , then ϕ /∈ K ÷ (ϕ ∧ ψ).

Notice that, in the above properties, the degree of support of sentences relative to the
belief base B specifies the vulnerability of the sentences relative to the logical closure K of
B. Analogous connections can be established between deductive belief revision and base-
generated revision functions. Further relations between DBC and base-generated change-
operations are left for future investigation.

9 Conclusion

Prompted by Sven Ove Hansson’s observation that the relation between the justificatory
structure of a belief corpus and the vulnerability of its beliefs remains an open issue [34], we
introduced in the present article deductive belief change (DBC), a new well-behaved type of
change-operation, identified by its simple and intuitive structure. DBC relates in a natural
manner the deductive justification that the sentences of the language have, in the context of
a belief base B, with their vulnerability relative to B. The core principle of DBC is that the
more explicit B-beliefs imply a sentence ϕ, the more reluctant to change ϕ is, with respect
to B.

The introduced type of belief revision was characterized both axiomatically (postula-
tionally), as well as constructively, in terms of kernel belief change. Interestingly enough,
we proved that DBC is implemented by kernel belief change, an important result pointing
out that this fundamental kernel-based change-operation already encodes a strong coupling
between justificatory structure and vulnerability. Immediate corollary of this outcome is
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that the well-established smooth kernel and partial-meet change-operations also implement
DBC.

Beyond belief bases, DBC was studied in the realm of belief sets as well. As we proved,
a proper adaptation of deductive belief revision for belief sets is indistinguishable from
Parikh’s relevance-sensitive revision, a central type of revision which, due to its favourable
properties, constitutes a promising candidate for a variety of practical applications.
Therefore, as shown, a refined version of deductive belief revision for belief sets and
Parikh’s relevance-sensitive revision are, as a matter of fact, two different manifestations
of the same operation. Last but not least, we examined the notion of syntax-relevance in
the context of belief bases, and showed that kernel belief change (on belief bases) is in fact
relevance-sensitive, as it respects the counterpart of Parikh’s axiom for belief bases.

As stated, DBC associates the deductive justification of sentences in a belief base B with
their vulnerability relative to B. Of course, one can think of other properties of a belief base
that could determine the vulnerability of its beliefs. For example, the vulnerability of the
beliefs of B could be determined by the degree of inconsistency within B. Consider, for
instance, the inconsistent belief base B = {a, b, ¬b}, where a and b are atoms of P . One
may argue that the belief a should be more resistant to withdrawal than b, since, contrary
to a, the removal of b from B makes the logical closure of B consistent. By extending the
intuition of the previous example, a type of belief-change could be defined in the context of
which a sentence ϕ is more vulnerable than a sentence ψ , if the removal of ϕ from B makes
B “more consistent” than the removal of ψ from B — measures of inconsistency of belief
corpora have been widely discussed in the literature [37, 38, 41, 53]. Future investigation
shall be devoted to this promising line of research.

Future work shall also be devoted to the exploration of potential interrelations of DBC
with other notable types of change-operations, or frameworks such as the Truth Maintenance
Systems [12] and the Argumentation Systems [52], in the context of which the justifications
of beliefs play a cornerstone role (for example, in the explanations of the agents’ actions).
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16. Fermé, E., Hansson, S.O.: Belief Change: Introduction and Overview. Springer, Berlin (2018)
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