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Abstract
Rational verification refers to the problem of checking which temporal logic properties 
hold of a concurrent/multiagent system, under the assumption that agents in the system 
choose strategies that form a game theoretic equilibrium. Rational verification can be 
understood as a counterpart to model checking for multiagent systems, but while classical 
model checking can be done in polynomial time for some temporal logic specification lan-
guages such as CTL, and polynomial space with LTL specifications, rational verification is 
much harder: the key decision problems for rational verification are 2EXPTIME-complete 
with LTL specifications, even when using explicit-state system representations. Against this 
background, our contributions in this paper are threefold. First, we show that the complex-
ity of rational verification can be greatly reduced by restricting specifications to GR(1), a 
fragment of LTL that can represent a broad and practically useful class of response prop-
erties of reactive systems. In particular, we show that for a number of relevant settings, 
rational verification can be done in polynomial space and even in polynomial time. Second, 
we provide improved complexity results for rational verification when considering play-
ers’ goals given by mean-payoff utility functions—arguably the most widely used approach 
for quantitative objectives in concurrent and multiagent systems. Finally, we consider the 
problem of computing outcomes that satisfy social welfare constraints. To this end, we 
consider both utilitarian and egalitarian social welfare and show that computing such out-
comes is either PSPACE-complete or NP-complete.
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1  Introduction

The formal verification of computer systems has been a major research area in computer 
science for the past 60 years. Verification is the problem of checking program correctness: 
the key decision problem relating to verification is that of establishing whether or not a 
given system P satisfies a given specification. The most successful contemporary approach 
to formal verification is model checking, in which an abstract, finite state model of the 
system of interest P is represented as a Kripke structure KP (a labelled transition system), 
and the specification is represented as a temporal logic formula φ, the models of which are 
intended to correspond to “correct” behaviours of the system [11]. The verification process 
then reduces to establishing whether the specification formula φ is satisfied in the Kripke 
structure KP (notation: KP⊧φ), a process that can be efficiently automated in many settings 
of interest [7]. For example, model checking Linear Temporal Logic (LTL) specifications 
can be done in polynomial space, and for specifications in Computation Tree Logic (CTL) 
it can be done in polynomial time [8].

In the context of multiagent systems, rational verification forms a natural counterpart of 
model checking [16, 17, 33]. This is the problem of checking whether a given property φ, 
expressed as a temporal logic formula, is satisfied in a computation of a system that might 
be generated if agents within the system choose strategies for selecting actions that form a 
game-theoretic equilibrium. This game theoretic aspect of rational verification adds a new 
ingredient to the verification problem, as it becomes necessary to take into account the 
preferences of players with respect to the possible runs of the system. Typically, in rational 
verification, such preferences are given by associating an LTL goal γi with each player i 
in the game: player i prefers all those runs of the system that satisfy γi over those that do 
not, is indifferent between all those runs that satisfy γi, and is similarly indifferent between 
those runs that do not satisfy γi. In this setting, rational verification with respect to a speci-
fication φ is 2EXPTIME-complete, regardless of whether the representation of the system 
is given succinctly [16, 17] or explicitly simply as a finite-state labelled transition graph 
[15]. This high computational complexity represents a key barrier to the wider take-up of 
rational verification.

Our aim in this work is to improve this state of affairs: we present a range of settings for 
which we are able to give complexity results that greatly improve on the 2EXPTIME-com-
plete result of the general LTL case. We first consider games where the goals of players are 
represented as GR(1) formulae. GR(1) is an important fragment of LTL that can express 
a wide range of practically useful response properties of concurrent and reactive systems 
[4]. We then consider mean-payoff utility functions: one of the most studied reward and 
quality measures used in games for automated formal verification. In each case, we study 
the rational verification problem for system specifications φ given as GR(1) formulae and 
as LTL formulae, with respect to system models that are formally represented as concurrent 
game structures [1].

Our main results, summarised in Table 1, show that in the cases mentioned above, the 
2EXPTIME result can be dramatically improved, to settings where rational verification can 
be solved in polynomial space, NP, or even in polynomial time, if the number of players in 
the game is assumed to be fixed.

In addition to characterising the complexity of the core rational verification problems 
for these settings, we also consider the problem of computing strategy profiles for players 
that maximise social welfare. Measures of social welfare are measures of how well soci-
ety as a whole fares with some particular game outcome; thus social welfare measures are 
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aggregate measures of utility. We look at two well-known measures of social welfare: utili-
tarian social welfare (in which we aim to maximise the sum of individual agent utilities) 
and egalitarian social welfare (in which we try to maximise the utility of the worst-off 
player). We show that, for mean payoff games, computing outcomes for these measures 
with LTL specifications is PSPACE-complete.

Related work  The rational verification problem has been studied for a number of different 
settings, including iterated Boolean games, reactive modules games, and concurrent game 
structures [15–18]. In each of these settings, the main rational verification problems are 
2EXPTIME-complete, and hence highly intractable. Rational verification is closely related 
to rational synthesis, which is also 2EXPTIME-complete both in the Boolean case [13] 
and with rational environments [24]. One might mitigate the problem of intractability by 
considering low-level languages such as omega-regular specifications [10, 31] and turn-
based setting [9]. All of the above cases only consider perfect information. In settings with 
imperfect information, the problem has been shown to be undecidable both for games with 
succinct and explicit model representations [12, 22].

Our work also relates to LTL and mean-payoff (mp) games in general. While the for-
mer are already 2EXPTIME-complete even for two-player games (and in fact already 
2EXPTIME-hard for many LTL fragments [2]), the latter are NP-complete for multi-player 
games [32] and in NP ∩co NP for two-player games [34], and in fact solvable in quasipoly-
nomial time since they can be reduced to two-player perfect-information parity games [6]. 
Even though we provide several complexity results that improve on the complexity of the 
general case, our solutions are unlikely to run in polynomial time, for instance as CTL 
model checking, since rational verification subsumes problems that are typically not known 
to be solvable in polynomial time, such as model checking or automated synthesis with 
temporal logic specifications.

2 � Preliminaries

Linear temporal logic  LTL extends propositional logic with two operators, X (“next”) and 
U (“until”), for expressing properties of paths [11, 27]. The syntax of LTL is defined with 
respect to a set AP of atomic propositions as follows:

 where p ∈AP. As usual, we define ϕ1 ∧ ϕ2 ≡¬(¬ϕ1 ∨¬ϕ2), ϕ1 → ϕ2 ≡¬ϕ1 ∨ ϕ2, 
�𝜙 ≡ ⊤�𝜙 , and Gϕ ≡¬F¬ϕ. We interpret LTL formulae with respect to pairs (α,t), where 

𝜙 ∶∶= ⊤ ∣ p ∣ ¬𝜙 ∣ 𝜙 ∨ 𝜙 ∣ �𝜙 ∣ 𝜙�𝜙

Table 1   Summary of main 
complexity results

Players’ goals Specification E-Nash

LTL LTL 2EXPTIME-complete
GR(1) LTL PSPACE-complete (Corollary 1)
GR(1) GR(1) FPT (Theorem 3)
mp LTL PSPACE-complete (Corollary 2)
mp GR(1) NP-complete (Theorem 5)
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α ∈ (2AP)ω is an infinite sequence of sets of atomic proposition that indicates which propo-
sitional variables are true in every time point and t ∈ ℕ is a temporal index into α. As 
usual, by αt ∈ 2AP we denote the t-th element of the infinite sequence α. Formally, the 
semantics of LTL is given by the following rules:

 If (α,0)⊧ϕ, we write α⊧ϕ and say that α satisfies ϕ.

General reactivity of rank 1  The language of General Reactivity of rank 1, (GR(1)), is the 
fragment of LTL containing formulae that are written in the following form [4]:

 where subformulae ψi and ϕi are Boolean combinations of atomic propositions.

Mean‑payoff value  For an infinite sequence β ∈ ℝ
� of real numbers, let mp(β) be denote 

mean-payoff value of β, that is,

 where, for n ∈ ℕ , we define

Arenas  An arena is a tuple

 where N, Ac, and St are finite non-empty sets of players (write N = |N|), actions, and 
states, respectively; s0 ∈St is the initial state; 𝗍𝗋 ∶ St × ���⃗Ac → St is a transition function 
mapping each pair consisting of a state s ∈St and an action profile a ∈Ac = AcN, one for 
each player, to a successor state; and λ : St → 2AP is a labelling function, which maps every 
state to a subset of atomic propositions—the atomic propositions that are true at that state.

We sometimes refer to an action profile �⃗a = (�1,… , �n) ∈ ���⃗Ac as a decision, and denote 
by ai the action taken by player i. We also consider partial decisions. For a set of players 
C ⊆ N and action profile a, we let aC and a−C be two tuples of actions, respectively, one for 
all players in C and one for all players in N ∖ C. We also write ai for a{i} and a−i for aN∖{i}. 
For two decisions a and �′ , we write (�C, ��−C) to denote the decision where the actions for 
players in C are taken from a and the actions for players in N ∖ C are taken from �′.

A path � = (s0, �
0), (s1, �

1),… is an infinite sequence in (St ×Ac)ω such that 
��(sk, �

k) = sk+1 for all k. Paths are generated in the arena by each player i selecting a 
strategyσi that will define how to make choices over time. We model strategies as finite 
state machines with output. Formally, for arena A, a strategy �i = (Qi, q

0
i
, �i, �i) for player 

(𝛼, t) ⊧ ⊤
(𝛼, t) ⊧ p iff p ∈ 𝛼t
(𝛼, t) ⊧ ¬𝜙 iff it is not the case that (𝛼, t) ⊧ 𝜙

(𝛼, t) ⊧ 𝜙 ∨ 𝜓 iff (𝛼, t) ⊧ 𝜙 or (𝛼, t) ⊧ 𝜓

(𝛼, t) ⊧ �𝜙 iff (𝛼, t + 1) ⊧ 𝜙

(𝛼, t) ⊧ 𝜙�𝜓 iff for some t� ≥ t ∶
(
(𝛼, t�) ⊧ 𝜓 and

for all t ≤ t�� < t� ∶ (𝛼, t��) ⊧ 𝜙
)
.

(���1 ∧… ∧���m) → (���1 ∧… ∧���n),

𝗆𝗉(β) = lim inf
n→∞

𝖺𝗏𝗀n(β)

���n(β) =
1

n

n−1∑

j=0

βj.

A = ⟨N,Ac, St, s0, ��, �⟩
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i is a finite state machine with output (a transducer), where Qi is a finite and non-empty 
set of internal states, q0

i
 is the initial state, �i ∶ Qi × �� → Qi is a deterministic internal 

transition function, and �i ∶ Qi → Aci an action function, Aci ⊆ Ac for all i ∈N. Let Stri be 
the set of strategies for player i. A strategy profile � = (�1,… , �n) is a vector of strategies, 
one for each player. As with actions, σi denotes the strategy assigned to player i in profile 
σ. Moreover, by (�B,�

�
C
) we denote the combination of profiles where players in disjoint B 

and C are assigned their corresponding strategies in σ and �′ , respectively.
Once a state s and a strategy profile σ are fixed, the game has an outcome, a path in A, 

which we denote by π(σ,s). Because strategies are deterministic, π(σ,s) is the unique path 
induced by σ, that is, the sequence (s0, �0), (s1, �1),… such that

–	 sk+ 1 = tr(sk, �⃗ak ), and
–	  �⃗ak+1 = (𝜏1(q

k
1
),… , 𝜏n(q

k
n
)) , for all k ≥ 0.

Where qk+1
i

= �i(q
k
i
, (�1(q

k
1
),… , �n(q

k
n
))) is the unique sequence of internal states of strat-

egy σi in σ obtained by feeding the result of previous computation at each step.
Arenas define the dynamic structure of games (the actions that agents can perform and 

their consequences), but lack the feature of games that gives them their strategic nature: 
players’ preferences. A multi-player game is obtained from an arena A by associating each 
player with a goal. As indicated above, previous work has considered players with goals 
expressed as LTL formulae, with the idea being that an agent will act as best they can to 
ensure their LTL goal is satisfied (taking into account the fact that other players will act 
likewise). In the present article, we consider both goals that are expressed as GR(1) formu-
lae, and mean payoff (mp) goals:

–	 A multi-player GR(1) game is a tuple G��(�) = ⟨A, (�i)i∈N⟩ where A is an arena and γi is 
the GR(1) goal for player i.

–	 A multi-player mp game is a tuple G�� = ⟨A, (�i)i∈N⟩ , where A is an arena and 
𝗐i ∶ St → ℤ is a function mapping every state of the arena into an integer.

When it is clear from the context, we refer to a multi-player GR(1) or mp game as a game 
and denote it by G . In any game with arena A, a path π in A induces a sequence λ(π) = 
λ(s0)λ(s1)⋯ of sets of atomic propositions; if, in addition, A is the arena of an mp game, 
then, for each player i, the sequence wi(π) = wi(s0)wi(s1)⋯ of weights is also induced.

For a GR(1) game and a path π in it, the payoff of a player i is payi(π) = 1 if λ(π)⊧γi and 
payi(π) = 0 otherwise. Regarding an mp game, the payoff of player i is payi(π) = mp(wi(π)). 
Moreover, for a GR(1) game and a path π, by Win(π) = {i ∈N : λ(π)⊧γi} and Lose(π) = {j 
∈N : λ(π)⊮γj} we denote the set of winners and losers, respectively, over π, that is, the set 
of players that get their goal satisfied and not satisfied, respectively, over π. With an abuse 
of notation, we sometime denote Win(σ,s) = Win(π(σ,s)) and Lose(σ,s) = Lose(π(σ,s)), 
respectively, the set of winners and losers over the path generated by strategy profile σ 
when starting the game from s. Furthermore, we simply write π(σ) for π(σ,s0).

Nash equilibrium  Using payoff functions, we can define the concept of Nash equilibrium 
[25]. For a game G , a strategy profile σ is a Nash equilibrium of G if, for every player i and 
strategy ��

i
∈ Stri , we have

���i(�(�)) ≥ ���i(�((�−i, �
�
i
))) .
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 Let NE(G) be the set of Nash equilibria of G.

E‑Nash and rational verification  In rational verification, a key question/problem is 
E-Nash, which is concerned with the existence of a Nash equilibrium that fulfils a given 
temporal specification φ. Formally, E-Nash is defined as follows:

Definition 1 (E‑Nash)  Given a game G and a formula φ:
Does there exist � ∈ NE(G) such that π(σ)⊧φ?

Previous work [15–18] has demonstrated that, if we assume player goals are expressed as 
LTL formulae, the E-Nash problem is 2EXPTIME-complete, and hence highly intractable. 
Motivated by this, in this article, we study E-Nash for a number of relevant instantiations 
of the problem, which we show to have better (lower) computational complexity. In par-
ticular, we study cases where

–	 Specifications φ are LTL and players’ goals are GR(1);
–	 Specifications φ are LTL and players have mp goals;
–	 Both the specification φ and the goals are GR(1);
–	 Specifications φ are GR(1) and players have mp goals.

Automata  Some of the algorithms we present for the E-Nash problem use techniques 
from automata theory. Specifically, we use deterministic automata on infinite words with 
Streett acceptance conditions. Formally, a deterministic Streett automaton on infinite 
words (DSW) is a tuple A = (Σ,Q, q0, �,Ω) where Σ is the input alphabet, Q is a finite set 
of states, � ∶ Q × Σ → Q is a transition function, q0 is an initial state, and Ω is a Streett 
acceptance condition. A Streett condition Ω is a set of pairs {(E1,C1),… , (En,Cn)} where 
Ek ⊆ Q and Ck ⊆ Q for all k ∈ [1,n]. A run ρ is accepting in a DSW A with condition Ω if 
ρ either visits Ek finitely many times or visits Ck infinitely often, i.e., if for every k either 
��� (�) ∩ Ek = ∅ or ��� (�) ∩ Ck ≠ ∅.

3 � Games of general reactivity of rank 1

We consider two variations of GR(1) games: in the first, the specification formula is 
expressed in LTL, while the goals are in GR(1); in the second, both the specification for-
mula and the goals belong to GR(1). We begin by providing a general result characteriz-
ing Nash Equilibrium for GR(1), which is given in terms of punishments. We first require 
some notation.

For a GR(1) game G , player j ∈N, and state s ∈St, the strategy profile σ−j is punishing 
for player j in s if 𝜋((�−j, 𝜎

�
j
), s) ̸⊧ 𝛾j , for every possible strategy �′

j
 of player j. We say that a 

state s is punishing for j if there exists a punishing strategy profile for j on s. Moreover, we 
denote by Punj(G) the set of punishing states in G . A pair (s,a) ∈St ×Ac is punishing-secure 
for player j, if ��(s, (�−j, ��j)) ∈ Punj(G) for every action �′

j
.

Theorem 1  In a given GR(1) game G , there exists a Nash Equilibrium if and only if there 
exists an ultimately periodic path π such that, for every k ∈ ℕ , the pair (sk, �k) of the k-th 
iteration of π is punishing-secure for every j ∈Lose(π).



415On the complexity of rational verification﻿	

1 3

Proof Proof sketch  The proof proceeds by double implication.
From left to right, let � ∈ NE(G) and π be the ultimately periodic path generated by σ. 

Assume by contradiction that π is not punishing-secure for some j ∈Lose(π), that is, there 
is k ∈ ℕ and action �′

j
 such that ��(sk, (�−j, ��j)

k) ∉ Punj(G) . Thus, j can deviate at sk and sat-
isfy γj, which is a contradiction to σ being a Nash equilibrium.

From right to left, recall that π can be generated by a finite transducer, say 
T
� = ⟨T , t0, �� , ��⟩ with δπ : T ×Ac → T being the internal function and τπ : T →Ac being 

the action function that generates π. Moreover, observe that such transducer can be decom-
posed into strategies ��

i
= ⟨T , t0, �� , ��i ⟩ where ��

i
(t) = ��(t)i . Moreover, for every losing 

player j ∈Lose(π), there is a memoryless punishing strategy profile �𝗉𝗎𝗇

−j
∶ St → ��−j for j 

in every s ∈ Punj(G) . Such strategy can also be decomposed and distributed to the agents 
different from j as ����,i

−j
(s) = �

���

−j
(s)i for every i ∈N ∖{j}.

Now, for every agent i, consider the strategy �i = ⟨Qi, q
0
i
, �i, �i⟩ defined as follows:

–	 Qi = T × S × ({⊤}∪Lose(π));
–	 q0

i
= (t0, s0,⊤);

–	 δi is defined as follows:1

	   δi(t,s,j,a) = (δπ(t,a),tr(s,a),j)

–	 𝜏i(t, s, 𝜄) =

{
𝜏𝜋
i
(t) if 𝜄 = ⊤

𝜎
���,i
−𝜄 (s) otherwise

Intuitively, the strategy σi mimics the transducer T� to produce the play π. In addition to 
this, it keeps track of the actions taken by the losing agents, checking whether they adhere 
to the transducer or they deviate unilaterally from it. In case of a deviation of agent j, the 
strategy σi flags the deviating agent and switches from mimicking T� to adopting the pun-
ishment strategy ����

j
.

We need to show that the strategy profile σ is a Nash Equilibrium.
Clearly, as π(σ) = π, all the agents that are winning over π do not have a beneficial 

deviation. For a losing agent j, observe that a unilateral deviation σj triggers the strategy 
profile σ−j to implement a punishment over j. Moreover, observe that GR(1) objectives 
are prefix-independent, which implies that the punishment takes effect no matter at which 
instant of the computation is started being adopted. Therefore, every deviation �′

j
 cannot be 

beneficial for agent j, and hence σ is a Nash Equilibrium. □

With this result in place, the following procedure can be seen to solve E-Nash:

1.	 Guess a set W ⊆ N of winners;
2.	 For each player j ∈ L = N ∖ W, a loser in the game, compute its punishment region 

Punj(G);

𝛿i(t, s,⊤, �) =

{
(𝛿𝜋(t, �), ��(s, �),⊤), if � = 𝜏𝜋(t)

(𝛿𝜋(t, �), ��(s, �), j), if �−j = (𝜏𝜋(t))−j and �j ≠ (𝜏𝜋(t))j

1  Note that we should define the internal and action functions on their entire domains. However, their defi-
nition for the other cases is irrelevant in the proof.
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3.	 Remove from G the states that are not punishing for players j ∈ L and the edges (s, s�) 
that are labelled with an action profile a such that (s,a) is not punishing-secure for some 
j ∈ L, thus obtaining a game G−L;

4.	 Check whether there exists an ultimately periodic path π in G−L such that 𝜋 ⊧ 𝜑 ∧
⋀

i∈W 𝛾i 
holds.

Expressed more formally, the above procedure yields Algorithm 1.

While line 6 requires solving the model checking problem for an LTL formula, which 
can be done in polynomial space, line 5 can be done in polynomial time. Line 4, on the 
other hand, makes the procedure run in exponential time in the number of players, but still 
in polynomial space. We then only need to consider line 3: this step can be done in polyno-
mial time, as we now show.

Theorem 2  For a given GR(1) game G over the arena A = 〈N,Ac,St,s0,tr,λ〉 and a player 
j ∈N, computing the punishing region Punj(G) of player j can be done in polynomial time 
with respect to the size of both G and γj.

Proof  We reduce the problem to computing the winning region of a suitably defined 
Streett game with a single pair as the winning condition, whose complexity is known to 
be O(mnk+ 1kk!) [26]. Given that in our case we have k = 1, we obtain a polynomial time 
algorithm.

Recall that the goal of player j is of the form:

 where � j

l
 ’s and �jr ’s are boolean combinations of atomic propositions. Then, consider the 

arena A� = ⟨N,Ac, St�, s�
0
, ���⟩2 where

–	 St� = St × {0,… ,mj} × {0,… , nj};
–	 s�

0
= (s0, 0, 0);

–	 ���((s, �1, �2), �) = (��(s, �), ��
1
, ��
2
) where

�j =

mj⋀

l=1

���
j

l
→

nj⋀

r=1

���j
r
,

2  We omit the definition of labelling function, as not needed here.
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 And by ⊕k we denote the addition modulo k.
Intuitively, arena A′ mimics the behaviour of A and carries two indexes, ι1 and ι2. Index 

ι1 is increased by one every time the path visits a state that satisfies � j
�1
 and resets to 0 every 

time the path visits a state that satisfies � j
mj

 . Clearly, ι1 is reset infinitely many times if and 
only if the path satisfies every � j

l
 infinitely many times, and so if and only if it satisfies the 

temporal specification 
⋀mj

l=1
���

j

l
 . The same argument applies to index ι2, but with respect 

to the boolean combinations �jr’s.
Now, consider the sets Cj = St ×{0}×{0,…,nj} and Ej = St ×{0,…,mj}×{0}. Clearly, 

the Streett pair (Cj,Ej) is satisfied by all and only the paths in A′ that satisfy γj. There-
fore, the winning region of γj can be computed as the winning set of the Streett game with 
(Cj,Ej) being the only Streett pair. Observe that the winning region is computable as Street 
games are determined. Moreover, having a number of pairs fixed, the computation can be 
done in polynomial time, which proves our statement. □

Based on Theorem 2, we have the following result.

Corollary 1  The E-Nash problem for GR(1) games with an LTL specification is 
PSPACE-complete.

Proof  The upper-bound follows from the procedure described above. Regarding the lower-
bound, note that model-checking an LTL formula φ against a Kripke structure K can be 
easily encoded as an instance of E-Nash where G is played over a Kripke structure K , 
taken to be its arena, players’ goals being tautologies, and the specification being ¬φ. In 
such a case, we have that K ⊧ 𝜑 if and only if E-Nash for the pair (G,�) has a negative 
answer. □

Corollary 1 sharply contrasts with the complexity of E-Nash when goals expressed as 
LTL formulae: in this more general case, E-Nash is 2EXPTIME-complete.

The special case of GR(1) specifications  One of hardest parts of Algorithm 1 is line 6, 
where an LTL model checking problem must be solved, thereby making the running time 
of the overall procedure exponential in the size of the specification and goals of the play-
ers. As we show in the reminder of this section, one way to drastically reduce the com-
plexity of our decision procedure is to require that the specification is also expressed in 
GR(1). In such a case, the LTL model checking procedure in line 6 of Algorithm 1 can be 
avoided, leading to a much simpler construction, which runs in polynomial time for every 
fixed number of players. In this section, we provide precisely such a simpler construction.

Recall that every GR(1) specification φ can be regarded as a Streett condition with a 
single pair over an arena A′ suitably constructed from the original arena A [3]. Thus, by 
denoting (Cφ,Eφ) and (Ci,Ei) the Streett pairs corresponding to the GR(1) conditions φ 
and γi, respectively, the problem of finding a path in A′ satisfying the formula � ∧

⋀
i∈W �i 

𝜄�
1
=

{
(𝜄1 ⊕(mj+1)

1), if 𝜄1 = 0 or s ⊧ 𝜓
j
𝜄1
.

𝜄1, otherwise.

𝜄�
2
=

{
(𝜄2 ⊕(nj+1)

1), if 𝜄2 = 0 or s ⊧ 𝜃
j
𝜄2
.

𝜄2, otherwise.



418	 J. Gutierrez et al.

1 3

amounts to deciding the emptiness of the Streett automaton A = ⟨��, St�, s�
0
, ��,Ω⟩ where 

Ω = {(C�,E�), (C�i
,E�i

)i∈W}.
Note that the size of A′ is polynomial in the size of the GR(1) formulae involved, poly-

nomial in the number of states and actions in the original arena A, and exponential in the 
number of players. More specifically, we have that |St�| = |St| ⋅ |�||N| and so the number 
of edges is at most |St′|2 . Moreover, the emptiness problem of a deterministic Streett word 
automaton can be solved in time that is polynomial in the automaton’s index and its number 
of states and transitions [23, 29]. The complexity of the E-Nash problem takes 2|N| times 
a procedure for computing at most |N| punishing regions (that is polynomial in the size of 
both G and φ,γ1,…,γN) plus the complexity of the emptiness problem for a Streett automa-
ton whose size is polynomial in G φ,γ1,…,γN, and exponential in the number of players.

Based on the constructions described above, we have the following (fixed-parameter 
tractable) complexity result.

Theorem 3  For a given GR(1) game G and a GR(1) formula φ, the E-Nash problem can 
be solved in time that is polynomial in |St|, |Ac|, and |φ|, |γ1|,…,|γN| and exponential in the 
number of players |N|. Therefore, the problem is fixed-parameter tractable, parametrized in 
the number of players.

4 � Mean‑payoff games

We now focus on multi-player mean-payoff (mp) games. As in the previous case, we 
first characterise the Nash Equilibria of a game in terms of punishments and then reduce 
E-Nash to a suitable path-finding problem in the underlying arena. To do this, we first 
need to recall the notion of secure values for mean-payoff games [32].

For a player i and a state s ∈St, by puni(s) we denote the punishment value of i over 
s, that is, the maximum payoff that i can achieve from s, when all other players behave 
adversarially. Such a value can be computed by considering the corresponding two-player 
zero-sum mean-payoff game [34]. Thus, it is in NP ∩co NP, and note that both player i and 
coalition N ∖{i} can achieve the optimal value of the game using memoryless strategies.

For a player i and a value z ∈ ℝ , a pair (s,a) is z-secure for i if ���i(��(s, (�−i, ��i))) ≤ z for 
every ��

i
∈ Ac.

Theorem 4  For every mp game G and ultimately periodic path π = (s0,a0),(s1,a1),…, the 
following are equivalent

1.	 There is � ∈ NE(G) such that π = π(σ,s0);
2.	 There exists � ∈ ℝ

N , where zi ∈{puni(s) : s ∈St} such that, for every i ∈N

(a)	 for all k ∈ ℕ , the pair (sk, �k) is zi-secure for i, and
(b)	 zi ≤payi(π).

Proof  The proof proceeds by double implication.
For the case (1) ⇒ (2), assume that � ∈ NE(G) is such that π(σ) = π. Thus, define 

zi = max{���i(��(sk, (�
k
−i
, ��))) ∶ k ∈ ℕ, �� ∈ Aci} , that is, the max value agent i can 

achieve by unilaterally deviating from any point in π and getting immediately punished. 
By definition, we obtain that (sk, �k) is zi-secure for i, at every k ∈ ℕ . Moreover, assume by 
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contradiction that payi(π) < zi for some agent i. Then, let k ∈ ℕ and ��
i
∈ Aci be such that 

zi = ���i(sk, (�−i, �
�
i
)) . Thus, there exists a strategy �′

i
 that follows σi for k steps and then 

deviates using �′
i
 that ensures a payoff of zi for agent i. Such strategy is a beneficial devia-

tion of agent i from σ, in contradiction with the fact that σ is a Nash Equilibrium.
For the case (2) ⇒ (1), we define a strategy profile σ and then prove it is a Nash Equi-

librium. First observe that, being π ultimately periodic, there exists a finite transducer 
T
� = ⟨T , t0, �� , ��⟩ with δπ : T ×Ac → T being the internal function and τπ : T →Ac being 

the action function that generates π. Moreover, observe that such transducer can be decom-
posed into strategies ��

i
= ⟨T , t0, �� , ��i ⟩ where ��

i
(t) = ��(t)i . In addition to this, for every 

agent j, consider the memoryless strategy �𝗉𝗎𝗇

−j
∶ St → ��−j that minimizes the payoff of 

agent j in every state s ∈St. Such strategy can also be decomposed and distributed to the 
agents different from j as ����,i

−j
(s) = �

���

−j
(s)i for every i ∈N ∖{j}. Now, for every agent i, 

consider the strategy �i = ⟨Qi, q
0
i
, �i, �i⟩ defined as follows:

–	 Qi = T × S × ({⊤}∪N ∖{i});
–	 q0

i
= (t0, s0,⊤);

–	 δi is defined as follows:

	   𝛿i(t, s,⊤, �) =

{
(𝛿𝜋(t, �), ��(s, �),⊤), if � = 𝜏𝜋(t)

(𝛿𝜋(t, �), ��(s, �), j), if �−j = (𝜏𝜋(t))−j and �j ≠ (𝜏𝜋(t))j
	   δi(t,s,j,a) = (δπ(t,a),tr(s,a),j)

–	 𝜏i(t, s, 𝜄) =

{
𝜏𝜋
i
(t) if 𝜄 = ⊤

𝜎
���,i
−𝜄 (s) otherwise

3

Intuitively, the strategy σi mimics the transducer T� to produce the play π. In addition to 
this, it keeps track of the actions taken by the other agents, checking whether they adhere 
to the transducer or they deviate unilaterally from it. In case of a deviation of agent j, the 
strategy σi flags the deviating agent and switches from mimicking T� to adopting the pun-
ishment strategy ����

j
 . Clearly, the strategy profile σ = 〈σ1,…,σn〉 is such that π(σ) = π. It 

remains to show that it is a Nash Equilibrium. Note that, since every strategy σi adopts the 
punishment for agent j at every possible deviation. Note that, being ∓ a prefix independ-
ent condition, the payoff for agent j is punished no matter at which instant the punishment 
strategy is started being adopted. At this point, being every pair (sk, �k) in π zj-secure for 
agent j, it holds that every deviation of agent j does not ensure a payoff greater than zj, that 
is ���j(�−j,�

�
j
) ≤ zj . On the other hand, from condition (b) of item 2 in the statement, we 

have that zj ≤payj(σ). By putting these two conditions together, we obtain

 This proves that every deviation of agent j from σ is not beneficial, and so that σ is a Nash 
Equilibrium. □

The characterization of Nash Equilibria provided in Theorem  4 allows us to turn the 
E-Nash problem for mp games into a path finding problem over G . Similarly to the case of 
GR(1) games, we have the following procedure.

���j(�−j,�
�
j
) ≤ zj ≤ ���j(�).

3  Note that weshould define the internal and action functions on their entire domains. However, their defini-
tion for the other cases is irrelevant in the proof.
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1.	 For every i ∈N and s ∈St, compute the value puni(s);
2.	 Guess a vector z ∈ ℝ

N of values, each of them being a punishment value for a player i;
3.	 Compute the game G[z] by removing the states s such that puni(s) ≤ zi for some player i 

and the transitions (s,a) that are not zi secure for some player i;
4.	 Find an ultimately periodic path π in game G[z] such that π⊧φ and zi ≤payi(π) for every 

player i ∈N.

Step 1 can be done in NP for every pair (i,s), step 2 can be done in exponential time and 
polynomial space in the number of z-secure values, and step 3 can be done in polynomial 
time, similar to the case of GR(1) games. Regarding the last step, its complexity depends 
on the specification language. For the case of φ being an LTL formula, consider the formula

 written in the language LTLLim, an extension of LTL where statements about mean-payoff 
values over a given weighted arena can be made [5]. Observe that formula φE-Nash corre-
sponds exactly to requirement 2(b) in Theorem 4. Moreover, since every path in G[z] sat-
isfies condition 2(a) by construction, every path that satisfies φE-Nash is a solution of the 
E-Nash problem and vice versa. We can solve the latter problem by model checking the 
formula against the arena underlying G[z] . Since this can be done in PSPACE [5], we have 
the following result.

Corollary 2  The E-Nash problem for mp games with an LTL specification formula φ is 
PSPACE-complete.

As for the case of GR(1) games, we can summarize the procedure in the following algo-
rithm (Algorithm 2).

The special case of GR(1) specifications  As in the case of GR(1) games, here we show 
that restricting the specification language to GR(1) also lowers the complexity for mp 
games. The reason for this is that the path finding problem for GR(1) specifications can 
be done while avoiding model-checking an LTLLim formula. In order to do this, we fol-
low a different approach. Using an mp game G and a GR(1) specification ϕ we define a 
linear program such that the linear program has a solution if and only if the pair (G,�) is 
an instance of E-Nash. In particular, this approach is similar to the technique used in [19, 
Theorem 2], where Linear Programming is used to find the complexity of solving a variant 
of E-Nash. Formally, we have the following result.

��-���� ∶= � ∧
⋀

i∈N

(��(i) ≥ zi),
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Theorem  5  The E-Nash problem for mp games with a GR(1) specification φ is 
NP-complete.

Proof  We will define a linear program of size polynomial in G having a solution if and only 
if there exists an ultimately periodic path whose payoff for every player i is at least a mini-
mum threshold zi and satisfies the GR(1) specification.

In order to do that, first recall that φ has the following form

 and let V (ψl) and V (𝜃r) be the subset of states in G that satisfy the Boolean combinations 
ψl and 𝜃r, respectively. Observe that property φ is satisfied over a path π if, and only if, 
either π visits every V (𝜃r) infinitely many times or visits some of the V (ψl) only a finite 
number of times.

For the game G[z] , let ⟨V ,E, (��
i
)i∈N⟩ be the underlying graph, where ��

i
(v) = �i(v) − zi 

for every i ∈N, and v ∈ V ⊆ St . Furthermore, for every edge e ∈ E, we introduce a vari-
able xe. Informally, the value xe is the number of times that the edge e is used on a cycle. 
Formally, let:

–	 src(e) = {v ∈ V : ∃we = (v,w) ∈ E};
–	 trg(e) = {v ∈ V : ∃we = (w,v) ∈ E};
–	 out(v) = {e ∈ E : src(e) = v};
–	 in(v) = {e ∈ E : trg(e) = v}.

Consider ψl for some 1 ≤ l ≤ m, and define the linear program LP(ψl) with the following 
inequalities and equations:

Eq1:	 xe ≥ 0 for each edge e
	   a basic consistency criterion;
Eq2:	 Σe∈Exe ≥ 1
	   ensures that at least one edge is chosen;
Eq3:	 for each i ∈N, Σe∈E�

�
i
(���(e))xe ≥ 0

	   ensures that the total sum of any solution is positive;
Eq4:	 Σ���(e)∩V(�l)≠�

xe = 0

	   ensures that no state in V (ψl) is in the cycle associated with the solution;
Eq5:	 for each v ∈ V, Σe∈out(v)xe = Σe∈in(v)xe
	   says that the number of times one enters a vertex is equal to the number of times one 

leaves that vertex.

By construction, it follows that LP(ψl) admits a solution if and only if there exists a path 
π in G such that zi ≤payi(π) for every player i and visits V (ψl) only finitely many times. Note 
that the condition zi ≤payi(π) is ensured by Eq3. Indeed, the value of a path π in G[z] that 
is represented in a solution to LP(ψl), and thus satisfying Eq3, is such that 0 ≤ ���

G[z]

i
(�) , 

with payG[z]
i

 representing the payoff function for agent i in the game G[z] . Now observe 
that, as the weights in G[z] are all downshifted by a value zi for every agent i, it holds that 
���i(�) = ���

G[z]

i
(�) + zi , which in turns implies that zi ≤payi(π).

Now, consider also the linear program LP(𝜃1,…,𝜃n) defined with the following inequali-
ties and equations:

� =

m⋀

l=1

���l →

n⋀

r=1

���r,
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Eq1:	 xe ≥ 0 for each edge e
	   a basic consistency criterion;
Eq2:	 Σe∈Exe ≥ 1
	   ensures that at least one edge is chosen;
Eq3:	 for each i ∈N, Σe∈E�

�
i
(���(e))xe ≥ 0

	   ensures that the total sum of any solution is positive;
Eq4:	 for all 1 ≤ r ≤ n, Σ���(e)∩V(�r)≠�

xe ≥ 1

	   ensures that for every V (𝜃r) at least one state is in the cycle;
Eq5:	 for each v ∈ V, Σe∈out(v)xe = Σe∈in(v)xe
	   says that the number of times one enters a vertex is equal to the number of times one 

leaves that vertex.

In this case, LP(𝜃1,…,𝜃n) admits a solution if and only if there exists a path π such that zi 
≤payi(π) for every player i and visits every V (𝜃r) infinitely many times.

Since the constructions above are polynomial in the size of both G and ϕ, we can con-
clude it is possible to check in NP the statement that there is a path π satisfying φ such 
that zi ≤payi(π) for every player i in the game if and only if one of the two linear programs 
defined above has a solution. For the lower bound, we use [32] and observe that if ϕ is true, 
then the problem is equivalent to checking whether the mp game has a Nash equilibrium. 
□

5 � Social welfare verification

Until this point, the problems considered primarily concerned about the satisfaction of a 
temporal logic property φ over the game G . However, one might be interested in achiev-
ing an outcome that is somehow best also for the agent society. To capture this setting, 
we introduce social welfare measures. Social welfare measures are aggregate measures 
of utility. Thus, a social welfare measure takes as input a profile of utilities, one for each 
player in the game, and somehow aggregates these into an overall measure, indicating 
how good the outcome is for society as a whole. Note that since social welfare is inher-
ently a quantitative measure, in this section we restrict our attention to mp games.

Formally, for a game G with a set N of agents, a social welfare function sw takes the 
form

Thus, a social welfare function maps a N-tuple of real numbers into a real number 
which represents the aggregated payoff. More specifically, for a strategy profile σ, the 
social welfare of σ is given by sw(pay1(σ),…,payN(σ)). With an abuse of notation, we 
denote sw(σ) the social welfare of σ. Many different social welfare functions have been 
proposed in the literature of economic theory. Here, we confine out attention to the two 
best known: utilitarian and egalitarian social welfare. These functions are defined as 
follows:

–	 The utilitarian social welfare function is given by ���(�) =
∑

i∈N���i(�).
–	 The egalitarian social welfare function is given by ���(�) = min

i∈N
{���i(�)}.

𝗌𝗐 ∶ ℝ
N → ℝ
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For simplicity, for a given game G and a formula φ, by 
�-����G(𝜑) = {� ∈ NE ∶ 𝜋(�) ⊧ 𝜑} we denote the set of Nash equilibria that satisfy φ, 
that is, that are a solution to the E-Nash problem of (G,�) . For a fixed social welfare func-
tion sw on a game G , by:

–	 �������(G,�) = max
𝝈∈�-����G(�)

{��( �⃗𝝈)} , and

–	 �������(G,�) = min
𝝈∈�-����G(�)

{��( �⃗𝝈)}  

we denote the maximal and minimal social welfare achieved over a Nash equilibrium pro-
file, respectively, satisfying a given specification φ.

The values of MaxNE and MinNE determine how good or bad the E-Nash solutions 
are from the perspective of the agents in the game collectively. Here, we consider both the 
decision and function problem.

Definition 2 (Threshold social welfare)  For a given mp game G�� , a social welfare 
function sw, and a threshold value t, decide whether there exists a strategy profile σ in 
�-����G(�) such that t ≤sw(σ). In case of a positive answer to this decision question, the 
pair (G,�) is called t-increase.

Analogously, decide whether there exists a strategy profile σ in �-����G(�) such that 
t ≥sw(σ). In case of a positive answer to this decision question, the pair (G,�) is called 
t-decrease.

Definition 3 (Max and Min social welfare)  For a given mp game G�� and a social wel-
fare function sw, compute �������(G,�) and �������(G,�).

The two definitions above can be instantiated with many different social welfare func-
tions. In the following two subsections, we consider them in the context of the utilitarian 
and egalitarian welfare measures defined above.

5.1 � Social welfare computation with LTL specifications

We first show how to check that a given mp game G�� and a LTL specification meets a 
given threshold t. As the utilitarian and egalitarian functions require different proofs, we 
address them separately. For the utilitarian function, we have the following.

Theorem  6  For a given mp game G�� = ⟨A, (�i)i∈N⟩ , an LTL specification φ, and a 
threshold value t, deciding whether there exists a strategy profile � ∈ �-����G(�) such that 
t ≤usw(σ) is PSPACE-complete. Analogously, deciding whether there exists a strategy 
profile � ∈ �-����G(�) such that t ≥usw(σ) is PSPACE-complete.

Proof  It is enough to show the case t ≤usw(σ) as the other one is similar. The solution is 
a slight modification of the E-Nash problem for mp games with LTL specifications. Con-
sider the arena A� = ⟨N ∪ {n + 1}, Ac, St, s0, ��

�, �⟩ with ��′ defined as

 for every (�1,… , �n, �n+1) ∈ Ac|N|+1 , and the mp game G�
��

= ⟨A�, (�i)i∈N, (�n+1)⟩ with 
�n+1(s) =

∑
i∈N(�i(s)) for every s ∈St.

���(�1,… , �n, �n+1) = ��(�1,… , �n)
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Intuitively, we have included an extra agent in the game, having no effect/impact on 
the executions, in a way that it carries information about the social welfare of the original 
game. Indeed, observe that, for every strategy profile σ in G′

��
 , it holds that

We can employ the same construction for solving the E-Nash problem for mp games 
with LTL specifications to solve the threshold problem. It suffices to replace the LTLLim 
formula φE-Nash with

The computational complexity of the procedure is PSPACE as for E-Nash. The lower 
bound easily follows from the model checking of LTL. □

For the case of egalitarian social welfare, we have the following.

Theorem  7  For a given mp game G�� = ⟨A, (�i)i∈N⟩ , an LTL specification φ, and a 
threshold value t, deciding whether there exists a strategy profile � ∈ �-����G(�) such that 
t ≤esw(σ) is PSPACE-complete. Analogously, deciding whether there exists a strategy 
profile � ∈ �-����G(�) such that t ≥esw(σ) is PSPACE-complete.

Proof  It is enough to show the case t ≤esw(σ) as the other one is similar. As for the case 
of utilitarian social welfare functions, the solution is a slight modification of the E-Nash 
problem for mp games with LTL specifications. Indeed, observe that we can specify that 
the payoff of agent i is greater than the threshold t by the LTLLim formula mp(i) ≥ t. There-
fore, specifying that the egalitarian social welfare is at least t can be done by the conjunc-
tion 

⋀
i∈N ��(i) ≥ t . Thus, it suffice to replace the LTLLim φE-Nash for the E-Nash problem 

with

Again, the computational complexity of the procedure is PSPACE and the lower bound 
follows from the model checking of LTL. □

5.2 � Social welfare computation with GR(1) specifications

In this section, we address social welfare threshold problems with GR(1) specifica-
tions. The techniques are similar to the ones used in the case of LTL specifications. 
Firstly, we consider the utilitarian social welfare function. For a given mp game 
G�� = ⟨A, (�i)i∈N⟩ , we build the arena A′ and the game G′

��
 analogous to the way it is 

done in the proof of Theorem 6. Now, to solve the case t ≤usw(σ), we adapt the pro-
cedure for solving E-Nash for mp games with GR(1) specifications (Theorem 5) as 
follows. We construct the corresponding multi-weighted graph W = ⟨V ,E, (��

i
)i∈N∪n+1⟩ 

where ��
n+1

(v) = �n+1(s) − t . Then, solving E-Nash problem for such an instance 

����
n+1

( �⃗𝝈) =
∑

i∈N

����
i
( �⃗𝝈) =

∑

i∈N

���i( �⃗𝝈−(n+1)) = ���( �⃗𝝈−(n+1))

����,t

�-����
∶= ��-���� ∧��(n + 1) ≥ t.

����,t

�-����
∶= ��-���� ∧

⋀

i∈N

��(i) ≥ t.
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corresponds exactly to the threshold social welfare problem t ≤usw(σ). For the case 
t ≥usw(σ), we simply define ��

n+1
(v) = t − �n+1(s) . To obtain the lower bounds, we 

reduce from the E-Nash problem for mp games with GR(1) specifications. For 
the case t ≤usw(σ), we set t = min{�n+1(s) ∶ s ∈ St} , and the other case, we fix 
t = max{�n+1(s) ∶ s ∈ St} . Thus, we obtain the following result.

Theorem  8  For a given mp game G�� = ⟨A, (�i)i∈N⟩ , a GR(1) specification φ, and a 
threshold value t, deciding whether there exists a strategy profile � ∈ �-����G(�) such that 
t ≤usw(σ) is NP-complete. Analogously, deciding whether there exists a strategy profile 
� ∈ �-����G(�) such that t ≥usw(σ) is NP-complete.

Now we turn our attention to the egalitarian social welfare function. To solve the 
social threshold problem t ≤esw(σ), we directly adapt from the procedure for solving 
E-Nash for mp games with GR(1) specifications (Theorem 5). For the game G[z] , we 
build the underlying graph ⟨V ,E, (��

i
)i∈N⟩ where ��

i
(v) = �i(s) − (max{zi, t}) . Then we 

define the linear programs LP(ψl) and ��(�1,… , �n) in the same way. Observe that, one 
of the two linear programs has a solution if and only if there is a path π satisfying 
φ such that for every player i, zi ≤payi(π) and t ≤payi(π). To obtain the lower bound, 
again, we reduce from the E-Nash problem for mp games with GR(1) specifications. 
The reduction simply follows from the fact that by fixing t = min{�i(s) ∶ i ∈ N, s ∈ St} , 
we can encode E-Nash problem into the social threshold problem. The case t ≥esw(σ) 
is similar. Therefore, we obtain the following result.

Theorem  9  For a given mp game G�� = ⟨A, (�i)i∈N⟩ , a GR(1) specification φ, and a 
threshold value t, deciding whether there exists a strategy profile � ∈ �-����G(�) such that 
t ≤esw(σ) is NP-complete. Analogously, deciding whether there exists a strategy profile 
� ∈ �-����G(�) such that t ≥esw(σ) is NP-complete.

The threshold social welfare calculation can be used to approximate the MaxNE and 
MinNE values of a game, be it either utilitarian or egalitarian. Note that, for every agent i ∈N 
and every strategy profile σ in the game, it holds that

 This establishes a bound also on the social welfare function, which is given by

Moreover, observe that, for two values t < t′ , if (G,�) is t-increase but not t′-increase, then 
it holds that t ≤ �������(G,𝜑) < t� . Analogously, if (G,�) is t′-decrease, but not t-decrease, 
then it holds that t ≤ �������(G,𝜑) < t�.

These observations allow to apply a bisection-like method to approximate MaxNE and 
MinNE. Moreover, note that at each iteration of the method, the absolute error is halved, which 
ensures linear convergence of the method [30]. Particularly, we obtain an approximation of the 
values within a fixed tolerance 𝜖 > 0 in a number n of iterations bounded by n� = ⌈log2(

b−a

�
)⌉ , 

with a =
∑

i∈N min(�i) and b =
∑

i∈N max(�i).

min(�i) = min
s∈St

{�i(s)} ≤ ���i(�) ≤ max
s∈St

{�i(s)} = max(�i).

∑

i∈N

min(�i) ≤ �������(G,�) ≤ �������(G,�) ≤
∑

i∈N

max(�i).
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6 � Other rational verification problems

E-Nash is, we believe, the most fundamental problem in the rational verification frame-
work, but it is not the only one. The two other key problems are A-Nash and Non-empti-
ness. The former is the dual problem of E-Nash, which asks, given a game G and a speci-
fication ϕ, whether ϕ is satisfied in all Nash equilibria of G . The latter simply asks whether 
the game G has at least one Nash equilibrium, and it can be thought of as the special case of 
E-Nash where the specification ϕ is any tautology.

We can conclude from (the proofs of) the results presented so far, which are summa-
rised in Table 1, that while A-Nash for GR(1) games is also PSPACE and FPT, respec-
tively, in case of LTL and GR(1) specifications, for mp games the problem is, respectively, 
PSPACE and coNP, in each case. In addition, we can also conclude that whereas Non-
emptiness for GR(1) games is FPT, for mp games is NP-complete. These results contrast 
with those when players’ goals are general LTL formulae, where all problems are 2EXP-
TIME-complete since LTL synthesis, which is 2EXPTIME-hard [28], can be encoded. 
These results also contrast with those presented in [14], where it is shown that, in succinct 
model representations given by iterated Boolean games or reactive modules, all problems 
in the rational verification framework can be polynomially reduced to Non-emptiness, 
which clearly cannot be the case here, unless the whole polynomial hierarchy collapses.

7 � Concluding remarks

We have presented improved complexity results for rational verification problems in three 
different settings: in the analysis of response properties of reactive systems modelled as 
multiagent systems; verification of mean-payoff games; and verification of collective prop-
erties of multiagent systems through the analysis of social welfare properties. The first sce-
nario mostly concerns the verification of qualitative properties of reactive systems; the sec-
ond the verification of quantitative properties; and the third the verification of “community” 
properties, as opposed to individual properties of agents in a system. In the remainder of this 
article, we discuss further the impact and relevance of our results in these three areas.

Reactive systems  The logical analysis of reactive systems is typically carried out using 
either linear temporal logics, such as LTL, or branching time temporal logics, such as CTL 
and CTL*. Such analysis may involve verifying that a temporal logic property holds in a 
given system (model checking) or automatically constructing the system from a temporal 
logic specification (automated synthesis). Rational verification subsumes both problems, 
and applies to systems modelled in a distributed way as a collection of semi-autonomous 
agents (a multiagent system). Despite the greater scope of rational verification with respect 
to both model checking and automated synthesis, previous work has shown that the overall 
complexity of rational verification is typically not higher/worse than the combined com-
plexity of the associated synthesis problem. This connection also transfers when consider-
ing goals expressed in the GR(1) fragment of LTL, where an initial solution in 2EXPTIME 
is reduced to complexities lying in the polynomial hierarchy. However, to do so, careful 
attention must be paid to how the additional game-theoretic analysis that rational verifi-
cation entails must be done without blowing up the combined computational complexity. 
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This is particularly important since, in rational verification, strategies for multiple agents 
must be synthesised, rather than a single model for a reactive system.

Mean‑payoff games  In the computer science literature, mean-payoff games have been 
considered as a way of understanding the long-term behaviour (the average performance) 
of a system—the most common setting is that of a two-player game in which one of the 
players model the system and the other player models the environment. From a game-the-
oretic point of view, these are two-player games, which in a perfect information setting can 
be solved in NP∪coNP, thus without a known polynomial time algorithm to solve them. In 
case of rational verification with mean-payoff objectives, the problem is definitely harder, 
(unless P=NP, which is unlikely). We have shown that if the principal has an LTL goal, 
the problem matches the complexity of LTL model checking, a complexity gap that cannot 
be avoided since LTL model checking is a particular case. But, even with GR(1) specifi-
cations, the problem is very likely to be strictly harder than solving (two-player perfect-
information) mean-payoff games since we have shown that with mean-payoff objectives the 
problem is NP-Complete.

Social welfare  While rational verification tends to privilege the preferences of individual 
agents in a system, social welfare measures focus, instead, on what is considered to be best 
for a society of agents. Because of this, our results regarding social welfare outcomes may 
complement nicely the analysis performed in rational verification as originally defined, 
where the perfromance of society as a whole was irrelevant. We have shown that even in 
this scenario, better complexity results can be achieved with respect to the complexity of 
the problem when only individual preferences are considered, as in a Nash equilibrium. In 
the specific scenario that we considered in the paper, we have shown that the problem is 
PSPACE-complete, and therefore still efficient with respect to the space complexity of the 
problem.

Future work  A limitation in adopting widely the use of rational verification instead of 
other reasoning techniques is its combined complexity, which is closely related to the com-
plexity of associated automated synthesis problems. Our results are important because they 
show that for several significant settings, rational verification can be done with polyno-
mial space algorithms. These results are much more attractive than in the general case, and 
hold out the hope of efficient practical tools (c.f. the Equilibrium Verification Environment 
(EVE) [20, 21], a tool for the automated analysis of temporal equilibrium properties). Fur-
ther practical implementations thus seem to be a natural step forward towards the deploy-
ment of rational verification in more realistic scenarios.

8 � Concluding remarks

We have presented improved complexity results for rational verification problems in three 
different settings: in the analysis of response properties of reactive systems modelled as 
multiagent systems; verification of mean-payoff games; and verification of collective prop-
erties of multiagent systems through the analysis of social welfare properties. The first sce-
nario mostly concerns the verification of qualitative properties of reactive systems; the sec-
ond the verification of quantitative properties; and the third the verification of “community” 
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properties, as opposed to individual properties of agents in a system. In the remainder of this 
article, we discuss further the impact and relevance of our results in these three areas.

Reactive systems  The logical analysis of reactive systems is typically carried out using 
either linear temporal logics, such as LTL, or branching time temporal logics, such as CTL 
and CTL*. Such analysis may involve verifying that a temporal logic property holds in a 
given system (model checking) or automatically constructing the system from a temporal 
logic specification (automated synthesis). Rational verification subsumes both problems, 
and applies to systems modelled in a distributed way as a collection of semi-autonomous 
agents (a multiagent system). Despite the greater scope of rational verification with respect 
to both model checking and automated synthesis, previous work has shown that the overall 
complexity of rational verification is typically not higher/worse than the combined com-
plexity of the associated synthesis problem. This connection also transfers when consider-
ing goals expressed in the GR(1) fragment of LTL, where an initial solution in 2EXP-
TIME is reduced to complexities lying in the polynomial hierarchy. However, to do so, 
careful attention must be paid to how the additional game-theoretic analysis that rational 
verification entails must be done without blowing up the combined computational com-
plexity. This is particularly important since, in rational verification, strategies for multiple 
agents must be synthesised, rather than a single model for a reactive system.

Mean‑payoff games  In the computer science literature, mean-payoff games have been 
considered as a way of understanding the long-term behaviour (the average performance) 
of a system—the most common setting is that of a two-player game in which one of the 
players model the system and the other player models the environment. From a game-the-
oretic point of view, these are two-player games, which in a perfect information setting can 
be solved in NP∪coNP, thus without a known polynomial time algorithm to solve them. In 
case of rational verification with mean-payoff objectives, the problem is definitely harder, 
(unless P=NP, which is unlikely). We have shown that if the principal has an LTL goal, 
the problem matches the complexity of LTL model checking, a complexity gap that cannot 
be avoided since LTL model checking is a particular case. But, even with GR(1) specifi-
cations, the problem is very likely to be strictly harder than solving (two-player perfect-
information) mean-payoff games since we have shown that with mean-payoff objectives the 
problem is NP-Complete.

Social welfare  While rational verification tends to privilege the preferences of individual 
agents in a system, social welfare measures focus, instead, on what is considered to be best 
for a society of agents. Because of this, our results regarding social welfare outcomes may 
complement nicely the analysis performed in rational verification as originally defined, 
where the perfromance of society as a whole was irrelevant. We have shown that even in 
this scenario, better complexity results can be achieved with respect to the complexity of 
the problem when only individual preferences are considered, as in a Nash equilibrium. In 
the specific scenario that we considered in the paper, we have shown that the problem is 
PSPACE-complete, and therefore still efficient with respect to the space complexity of the 
problem.

Future work  A limitation in adopting widely the use of rational verification instead of 
other reasoning techniques is its combined complexity, which is closely related to the com-
plexity of associated automated synthesis problems. Our results are important because they 
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show that for several significant settings, rational verification can be done with polyno-
mial space algorithms. These results are much more attractive than in the general case, and 
hold out the hope of efficient practical tools (c.f. the Equilibrium Verification Environment 
(EVE) [20, 21], a tool for the automated analysis of temporal equilibrium properties). Fur-
ther practical implementations thus seem to be a natural step forward towards the deploy-
ment of rational verification in more realistic scenarios.
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