Annals of Mathematics and Artificial Intelligence (2022) 90:455-479
https://doi.org/10.1007/510472-021-09774-y

$704: UNIFICATION - UNIF 2020 e

®

Check for
updates

Functions-as-constructors higher-order unification:
extended pattern unification

Tomer Libal' © . Dale Miller?

Accepted: 10 September 2021/ Published online: 30 September 2021
© The Author(s) 2021

Abstract

Unification is a central operation in constructing a range of computational logic systems
based on first-order and higher-order logics. First-order unification has several properties
that guide its incorporation in such systems. In particular, first-order unification is decidable,
unary, and can be performed on untyped term structures. None of these three properties hold
for full higher-order unification: unification is undecidable, unifiers can be incomparable,
and term-level typing can dominate the search for unifiers. The so-called pattern subset of
higher-order unification was designed to be a small extension to first-order unification that
respects the laws governing A-binding (i.e., the equalities for «, 8, and n-conversion) but
which also satisfied those three properties. While the pattern fragment of higher-order unifi-
cation has been used in numerous implemented systems and in various theoretical settings,
it is too weak for many applications. This paper defines an extension of pattern unification
that should make it more generally applicable, especially in proof assistants that allow for
higher-order functions. This extension’s main idea is that the arguments to a higher-order,
free variable can be more than just distinct bound variables. In particular, such arguments
can be terms constructed from (sufficient numbers of) such bound variables using term con-
structors and where no argument is a subterm of any other argument. We show that this
extension to pattern unification satisfies the three properties mentioned above.

Keywords Higher-order unification - Pattern unification - Deterministic unification
algorithms - Type-free unification algorithms
1 Introduction

Unification is the process of solving equality constraints by the computation of substi-
tutions. This process is used in computational logic systems ranging from automated

< Tomer Libal
tomer @libal.info

Dale Miller
dale.miller@inria.fr

University of Luxembourg, Belval, Luxembourg

Inria Saclay, LIX/Ecole Polytechnique, Palaiseau, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-021-09774-y&domain=pdf
http://orcid.org/0000-0003-3261-0180
mailto: tomer@libal.info
mailto: dale.miller@inria.fr

456 T. Libal, D. Miller

theorem provers, proof assistants, type inference systems, and logic programming. First-
order unification—that is, unification restricted to first-order terms—enjoys at least three
important computational properties: decidability, determinacy, and type-freeness. These
properties of unification shaped the way it can be used within computational logic systems.
The first two of these properties ensures that unification—as a process—will either fail to
find a unifier for a given set of pairs of term or will succeed and return the most general
unifier (mgu). The notion of type-freeness means that unification can be performed indepen-
dently of the possible typing discipline employed with terms. Thus, first-order unification
can be performed on untyped first-order terms (as terms are usually considered in, say,
Prolog). Since such unification is untyped, it is often possible to employ such unification
within various typed disciplines. Since typing is usually an open-ended design issue (con-
sider, for example, higher-order types, subtypes, dependent types, parametric types, linear
types, etc.), the type-freeness of unification is one of its an important characteristics.

Of course, many syntactic objects are not represented well by purely first-order terms:
this is the case when such objects contains bindings. Instead, many computational systems
follow Church’s approach used in his Simple Theory of Types [12]: there, terms, formulas,
and equality are taken directly from the A-calculus. All binding operations—e.g., quantifi-
cation in first-order formulas, function arguments in functional programs, local variables,
etc.—can be represented using the sole binder of the A-calculus. Early papers showed that
second-order pattern matching can support interesting program analysis and program trans-
formation [23] and that a higher-order version of Prolog could be used to do more general
manipulations of programs and formulas [27]. Today, there is a rich collection of computa-
tional logic systems that have moved beyond first-order term unification and rely on some
form of unification of simply typed A-terms (a.k.a. higher-order unification). These include
the theorem provers TPS [3], Leo [8] and Satallax [11]; the proof assistants Isabelle [33],
Coq [47], Matita [4], Minlog [38], Agda [10], Abella [6], and Beluga [36]; the logic pro-
gramming languages AProlog [29] and Twelf [35]; and various application domains such as
natural language processing [13] and proof checking [30].

The integration of full higher-order unification into computational logic systems is not
as simple as it is in first-order systems since the three properties mentioned above do
not hold. The unification of simply typed A-terms is undecidable [16, 21] and there can
be incomparable unifiers, implying that no most general unifiers exist in the general sit-
uation. Also, types matter a great deal in determining the search space of unifiers. For
example, let i and j be primitive types, let a be a constant of type i, and let F' and X
be variables of type « — i and «, respectively, where « is a type variable. Consider the
unification problem (F X) = a. If we set « to j, then there is an mgu for this problem,
namely [F — Aw.a]. If we set « to i, then there are two incomparable solutions, namely
[F — Aw.a] and [F — Aw.w, X +— a]. If we set « to i — i, then there is an infi-
nite number of incomparable solutions: [F +— X\f.a] and, for each natural number n > 1,
[F — Af.f"a, X — Aw.w]. If we instantiate o with types of still higher order, the pos-
sibility of unifiers becomes dizzying. For these reasons, the integration of unification for
simply typed A-terms into computational logic systems is complex: most such integration
efforts attempt to accommodate the (pre-)unification search procedure of Huet [22].

Instead of moving from first-order unification to full higher-order unification, it is pos-
sible to move to an intermediate space of unification problems. Given that higher-order
unification is undecidable, there is an infinite number of decidable classes that one could
consider. The setting of higher-order pattern unification (proposed in [26] and called Lj-
unification there) could be seen as the weakest extension of first-order unification in which
the equations of &, 8, and n conversion hold. In this fragment, a free variable cannot be

@ Springer

Functions-as-constructors higher-order unification... 457

applied to general terms but only to bound variables that cannot appear free in eventual
instantiations for the free variable. This restriction means that all forms of B-reduction
encountered during unification are actually («-equivalent) to the rule (Ax.B)x = B (a con-
version rule called fg in [26]). Notice that in this setting, S-reduction reduces the size of
terms: hence, unification takes on a much simpler nature. The unification problems that
result retain all three properties we listed for first-order unification [26]. As a result, the
integration of pattern unification into a prover is usually much simpler than incorporating
all the search behavior implied by Huet’s (pre-)unification procedure.

A somewhat surprising fact about pattern unification is that many computational logic
systems need only this subset of higher-order unification to be “practically complete”: that
is, restricting unification to just this subset did not stop the bulk of specifications from
being properly executed. For example, while both early implementations of AProlog and
LF [31, 35] implemented full higher-order unification, the most recent versions of those
languages implement only pattern unification [1, 37]. A design feature of both of those
systems is to treat any unification problem that is not in the pattern fragment as a suspended
constraint: usually, subsequent substitutions will cause such delayed problems to convert
into the pattern fragment. Processing of constraints may also be possible: the application
of pruning to flexible-flexible constraints in [28] is such an example. Also, since pattern
unification does not require typing information, it has been possible to describe variants of
such unification in settings where types can play a role during unification: see, for example,
generalizations of pattern unification for dependent and polymorphic types [34], product
types [14, 15], and sum types [2].

Since pattern unification is a weak fragment of higher-order unification, it is natural to
ask if it can be extended and still keep the same high-level properties. There have been
a few extensions of pattern unification considered in the literature. The generalization by
Fettig and Lochner [15] and Duggan [14] allows for constructors denoting projections to
be admitted in the scope of free functional variables. These projections are specific unary
functions that are closed under several properties, such as associativity. When attempting
to encode the meta-theory of sequent calculus proofs for quantificational logic, McDow-
ell and Miller [25] encoded the abstraction represented by eigenvariables using a single
bound variable to encode a list of eigenvariables. Thus, to encode the sequent judgment
X0y .-.sXnp F Cxg...x, (for n > 0 and all variables being of the same primitive type),
they instead used the simply typed term Al.C(fst) ... (fst(snd"l)), where the environment
abstraction / has type, say, evs, and fst and snd are constructors of type evs — i and
evs — evs, respectively. Tiu showed how to lift pattern unification to this setting [41].

The problems of extending an algorithm from first-order to higher-orders exist not only
in unification but also in matching. Yokoyama et al. have shown how an extension to patterns
can be used in higher-order matching and have presented a linear higher-order matching
algorithm [45].

In proof assistants, such as Coq, where functions can be defined using both lambda
abstraction and iteration, the role of unification (see, for example, [5]) could be increased
if it could be used with occurrences of such functions and lambda abstractions. In Coq,
however, allowing unification in such more general settings (for example, with the bigop
library of SSReflect) produces non-pattern unification problems [17]. Consider, for exam-
ple, the problem of unifying Ax.Y (gx) with Ax. f(gx), where Y is a free variable (a question
mark variable in Coq) of type i — i and f and g are functions of type i — i.If f and g are
defined functions, then find instances of Y that make this equality true can involve rather
deep mathematical reasoning: for example, if the function g always returns fixed points of
the function f, then Y could be the identity function. We shall consider such equations to be

@ Springer

458 T. Libal, D. Miller

addressed by unification, only when all functions are considered to be constructors. When
this example equation is considered as a unification problem, then this problem has the most
general unifier Y +— Az. fz. We note, however, that this problem is not a pattern unification
problem. Fortunately, the restriction of functions-as-constructors is still a sound restric-
tion since any solution for the restricted setting is a solution for the richer, mathematical
interpretation of functions.

Let us return to the definition of pattern unification problems. The restriction on occur-
rences of the free variable, say, M is that (1) it can be applied only to variables that cannot
appear free in terms that are used to instantiate M and (2) that those arguments are dis-
tinct. Condition (1) essentially says that the arguments of M form a primitive pattern that
allows one to form an abstraction to solve a unification problem. Thus, M x y can equal,
say, (s x) + y simply by forming the abstraction AxAy.(s x) 4+ y. Condition (2) implies that
such abstractions are unique.

The examples of needing richer unification problems above illustrate that it is also nat-
ural to consider arguments built using variables and term constructors: that is, we should
consider generalizing condition (1) above so that the open term Al(M (fstl) (fst (snd [))) is
permitted. If this term is required to unify with a term of the form Al.f then all occurrence
of [in t must occur in subterms of the form (fst /) or (fst (snd /)). In that case, this uni-
fication problem can be solved by substituting for M the result of abstracting out of ¢ the
expressions (fst /) and (fst (snd 7)) with separate bound variables. To guarantee uniqueness
of such solutions, we shall also generalize condition (2) so that the arguments of M cannot
be subterms of each other. This additional constraint is required here (but not in the papers
by Duggan [14] and Tiu [41]) since we wish to handle richer signatures than just those with
monadic constructors.

Many of the examples leading to this generalization of pattern unification arise in situ-
ations where operators (such as fst and snd) are really functions and not constructors: the
intended meaning of those two operators are as functions that map lists to either their first
element or to their tail. When they arise in unification problems, however, we can only
expect to treat them as constructors. Thus, we shall name this extended pattern unification
as function-as-constructor (pattern) unification, or just FCU for short.

The rest of this paper is structured as follows. We cover the basic concepts related to
higher-order unification in Section 2. The class of unification problems addressed in this
paper, the functions-as-constructor class, is defined in Section 3 as is a unification algo-
rithm for that class. We prove the correctness of that algorithm in Section 4 and consider
extensions in the FCU class in Section 5. We conclude in Section 6.

This paper extends the conference paper [24] by containing revisions to all sections and
by including a new section that discusses the relationships of our results to other works and
contains an extension of the algorithm in the second-order case.

2 Preliminaries

2.1 The lambda-calculus

In this section we will present the logical language that will be used throughout the paper.
The language is a version of Church’s simple theory of types [12] following presentations

given in [7] and [39]. Unless stated otherwise, all terms are treated up to o-conversion and
are implicitly converted to long Bn-normal form, i.e., S-normal and n-expanded form.

@ Springer

Functions-as-constructors higher-order unification... 459

Let T, be a set of basic types, then the set of types T is generated by T := %, | T — ¥.
Let € be a signature of function symbols and let U be a countably infinite set of variable
symbols. Variables are normally denoted by the letters [, x, y, w, z, X, Y, W, Z and function
symbols by the letters a, f, g, h, k or fixed width font names such as cons. We sometimes
use subscripts and superscripts as well. Occasionally, we use a superscript to indicate the
type of a symbol. The set Term® of terms of type « is generated by the grammar Term® :=
£ x* | (AxB.Term’) | (Term?~?Termf) where f € ¢, x € Wand o € ¥ (in the
abstraction case, « = 8 — y). Applications associated are to the left. We will sometimes
omit brackets when the meaning is clear. We will also normally omit typing information
when it is not crucial for the correctness of the results. The set Term denotes the set of all
terms. Subterms and positions within terms are defined as usual. We denote the fact that ¢
is a (strict) subterm of s using the infix binary symbol () C. The size of a position denotes
the length of the path to the position. We denote the subterm of ¢ at position p by #|,.
Bound and free variables are defined as usual. We will use the convention of denoting bound
and universally quantified variables by lower letters while existentially quantified variables
will be denoted by capital letters. Given a term ¢, we denote by hd(¢) its head symbol and
distinguish between flexible terms, whose head is a free variable and rigid terms, whose
head is a function symbol or a bound variable.

Substitutions are defined as usual and their composition (o) is given as (6 060) X = 0(0 X).
The trivial substitution that maps each variable to itself is denoted by id. We denote by o |w
the substitution obtained from substitution o by restricting its domain to variables in W. We
denote by o[X + t] the substitution obtained from o by composing it with the substitution
X +— t. We extend the application of substitutions to terms in the usual way and denote it
by postfix notation. Bound variables are changed as necessary in order to avoid variable
capture during substitution. A substitution o is more general than a substitution 6, denoted
o < 0, if there is a substitution § such that o o § = 6. The domain of a substitution o is
denoted by dom(o).

We introduce also a vector notation f, for the sequence of terms ty,...,%.
This notation also holds for nesting of sequences. For example, the term
f (X121 22) (X2 21 22) (X3 21 z2) will be denoted by f X37;. The meaning of the notation
AZn 1S Az1 ... AZ,. When the order of the sequence is not important, we will use this notation
also for multisets. We will use both set union (U) and disjoint set union (v) in the text.

2.2 Higher-order pre-unification

In this section we follow the presentation in [39] of Huet’s pre-unification procedure [22].
The procedure will be shown, in Section 3.2, to be deterministic for the class of FCU prob-
lems. This result, together with the completeness of the procedure, implies the existence of
most-general unifiers for unifiable problems of this class.

For the sake of our presentation of unification, we use the following non-standard nor-
mal form: all terms, including existential variables but excluding the arguments of these
variables, are considered to be in n-expanded form. The arguments of these variables are
expected to be in n-normal forms. In a similar manner to the one in [39], one can prove that
all substitutions used in this paper preserve this normal form.

Definition 1 (Unification Problem) An equation is a formula r=s where ¢ and s are Bn-
normalized (see remark above) terms. A unification problem is a formula of the form
IX,u[e1 A ... A ey] where ¢; for 0 < i < n is an equation. Let bvars(e;) = z, for
e; = (AZy.li=AZy.5).

@ Springer

460 T. Libal, D. Miller

Definition 2 (Unification System) A unification system over a signature Cis the following
quadruple (Q3, Qv, S, o) where O3 and Qv are disjoint sets of variables, S is a set of
equations and o a substitution. Given a unification problem IX,u[e1 A ... Ae,] we consider
the unification system over signature € by setting O3 = X,,;, Ov = {}, S = {e1, ..., en}
ando = id.

Given a unification system (Q3, Qv, S, 1d) over €, a unification algorithm attempts to
find a substitution ¢ such that for each equation t=s € S, tc = so. Matching problems
and matching systems are variants of their unification counterparts in which we try to find a
substitution o such that for each matching problem r=s € S, to0 =ys.

Before presenting Huet’s procedure for pre-unification, we will repeat the definition of
partial bindings as given in [39]. Note that this definition is inline with our non-standard
n-normal forms.

Definition 3 (Partial bindings) A partial binding of type &y — ... —> «, — B where
B € T, is a term of the form

AYn.a (Az},l X1, Z1171) R)Lz;,f‘m XmOn,s Z’I’,’m)
for some constant or variable a where

— y;hastype o for0 < i < n.

- ahastypey) — ... —> yu — Bwherey; =8 — ... > 8 — y/for0<i <m.

= Vs Vm € %o

- ziihastypecsi.for0<i§mand0<j§p,-.

- Xi,..., X is a list of distinct free variables and X; has type &y — ... — o, —
8’i—>...—>8i,i—>yi’f0r0<i§m.

A partial binding is either an imitation binding, denoted by PB(a, «), if a is either a constant
or a free variable of type «, or it is a projection binding denoted by PB(i, o), where a is
the bound variable y; of type « for some 0 < i < n. Since partial bindings are uniquely
determined by a bound variable index, a type and an atom (up to renaming of the free
variables X,,), this defines a particular term.

Definition 4 (Huet’s Pre-unification Procedure) Huet’s pre-unification procedure is given
by the non-deterministic rewriting system that is given in Table 1. Note that the sets Q3 and
Qv are fixed during the execution and are mentioned explicitly just for compatibility with
the algorithms given later in the paper.

Table 1 Huet’s pre-unification procedure

(Delete) (Q3, Qv,SW{t=t},o) — (Q3, Ov,S,0)

(simpl) (Q3, Qv, SW{AZk. fTn=AZk.fSu}, 0)—>(Q3, Ov, SW{AZL 11=AZk 51, - - o, ATk n=AZk.5p}, O)

(Bind) (Q3, Qv, S W{AZx. XZk=AZk 1}, 0) = (Q3, Qv, SO W {X=AZr.1},0 0 0)
where X ¢ fvars(t) and 0 = [X +— Azg.t]

(Imitate)(Q3, Qv, SW{AZL. X (52)=AZk. [(tm)}, 0) > (Q3, Qv, SW{X=u, AZg. X* (Su)=AZk.f (tm)}, o)
where u = PB(f, @) and f € €

(Project)(Q3, Qv, SW{Az.X* 5)=AZk.a(tm)}, o) — (03, Qv, SY{X=u, Azx. X*) =Azk.a(tm)}, o)
where 0 < i < k,u = PB(i, @) and eithera € Cora = z; forsome 0 <i <k

@ Springer

Functions-as-constructors higher-order unification... 461

A unification problem is in a reduced form if it cannot be reduced further by the algo-
rithm. A unification problem in a reduced form is pre-solved if it contains only the so-called
flexible-flexible pairs, i.e., equations between two flexible terms. Otherwise, the problem is
unsolvable.

Note that it is possible to have an infinite series of valid steps in this pre-unification
procedure: such is the case when we start with an equation, such as X= f(X) where f is a
constant. Note that a first-order unification algorithm will fail on a first-order version of this
equation due to an occur check. These checks cannot always determine non-unifiability in
the higher-order case and are therefore not used by the pre-unification algorithm to eliminate
such cases.

The next theorem states the completeness of this procedure (the proof can be found in
[22, 39]).

Theorem 1 Consider a system (Q3, Qv, S, 1d) and assume it is unifiable by o. Then there
is a sequence of rule applications in Definition 4 resulting in {(Q3, Qv, S', 0) such that
0 < o and S’ is in pre-solved form.

The following corollary of this theorem will be used in Section 4.

Corollary 1 Given a system {(Q3, Qv, S, 0) and assuming it is unifiable by 6 o o, then the
following hold:

— An application of (Bind) or (Simpl) results in a system {Q3, Qv, S’,0') which is
unifiable by 6’ o o.

— If (Imitate) or (Project) are applicable to the system, then there is a particular
application of (Imitate) or (Project), which results in a system (Q3, Qv, S’, ")
such that it is unifiable by 6’ o o.

2.3 Pattern unification

In this section we describe the higher-order pattern unification algorithm given in [26]
although we use notation more similar to Nipkow’s notation in [32]. This algorithm forms
the basis for our algorithm.

Definition 5 (Pattern Systems) A system (Q3, Qv, S, o) is called a pattern system if for
all equations ¢; € S and for all subterms Xz, in these equations such that X € Qg itis the
case that zy, ..., z, is a list of distinct variables from the set Qv U bvars(e;).

The following simplification will be called during the execution of the algorithm given
in Definition 7.

Definition 6 (Pruning) Let (Q3, Qv, S, o) be a pattern system that contains the equation
X7z,=r € S.If r contains an occurrence of a variable y € Qv and that y is not a member of
Zn, then:

— if there is a subterm Wwy,, of r such that y = w; for some 0 < i < m, then return
(Q3 W {W'}\ {W}, Qv, S8, 0 o 0) where W’ is a fresh variable with respect to S,
0 = [W = AW, Wit—1] and Uy —1 = Wi \ {wi}.

— otherwise, the algorithm fails

@ Springer

462 T. Libal, D. Miller

Example 1 Consider a pattern system that contains the equation
AXAYAZ. Xyx=AxAyrz.XxZ

and where X is an existential variable. If we pick the subterm » and the variable y from
the above definition to be Xxz and z, respectively, then the pruning substitution [X +>
AxAz.W’x]is produced. The resulting equation is AxAyAz. W' y=AxAyAz.W’x. This pruning
process can be performed also on this resulting equation, yielding the substitution [W'
Ax.W”]. The resulting equation is now trivial: AxAyAz. W”=AxAyAz.W”. Thus, the original
pattern system has the unifier [X — AxAyiz.W”].

Definition 7 (The Pattern Unification Algorithm) The pattern unification algorithm is the
application of the rules from Table 2 in the following order. First, apply rules (0), (1), and (2)
until they are no longer applicable. Second, apply the pruning rewriting rules until exhaus-
tion. Finally, select an equation and apply either rule (3), if that equation (or its converse)
is flexible-rigid, and either rule (4) or (5) if that equation is flexible-flexible. Repeat these
steps until no steps can be taken.

A proof that the rewriting in Definition 7 is terminating, sound, and complete can be
found in [26].

2.4 Deterministic second-order matching

As was mentioned in the introduction, Miller’s pattern fragment is too weak for some appli-
cations. Yokoyama, Hu, and Takeichi have presented an extension [44] that proved useful
for matching problems that arose from some program transformation applications. Their
fragment, called deterministic second-order patterns (DSP), relaxes the requirements on the
arguments of second-order variables.

We discuss their fragment in detail in Section 5. Nevertheless, we find it informative to
present this fragment before proceeding with ours, due to the similarity of some of their
restrictions to the ones used in the algorithm we present in the next section.

Definition 8 (DSP restricted terms[44]) Given € and Qv, a DSP restricted term ¢ is a term
such that:

— tis afirst-order term using only the constants and variables in € and Qv, and

Table 2 Pattern Unification
Algorithm (0)(Q3, Ov, SW{r=t},0) (O3, Ov, S}, 0)

(1)(Q3, Qv, SW {Ax.s=Ax.t}, o) (Q3, Qv W {x}, SW {s=1}, o)
(2)(Q3, Qv, SW{fta=[5n}, 0){Q3, Qv, SW{t1=s1, ..., th=su}, 0)
where f € €U Qy
(3)(Q3w {X}, Qv, SW{XZ=/f5u}, 0) (Qa, Qv, 56,0 0)
where f € €, X & fvars(fs,)and 6 = [X — AZ,.fsn]
BH(Q3 W {X}, Qv, SW{XZ =Xy}, 0) (Q3W{W}, Ov, S0, 0 06)
0 =[X+ Az Wwrlandwy = {z; | 2 = yi}
(5)(Q3 W {Y}, Qv, SW{XZ,=YYn}, 0) (Q3, Qv, 56,0 0)
where X # Y, 0 = [Y > AYin.XYg(m)] and ¢ is a permutation
suchthat¢(j) =iifz; = y;forO0 <i <nand0 < j<m

@ Springer

Functions-as-constructors higher-order unification... 463

— t has a free occurrence of a variable in Qy.

The next several examples will make use of fixing € = {cons, f£st, snd, nil} and

Qv =1{lz}.

Example 2 Theterms/, (cons z 1), (cons (fst/)]), (snd (cons z!l)) and (cons znil)
are DSP restricted terms over the above € and Qvy, while nil is not.

Definition 9 (DSP Systems[44]) A system (Q3, Qv, S, o) is a DSP system if the following
two conditions are satisfied:

— DSP-argument restriction: For all occurrences of X7, in § where X € Qs,
the term #;, for all 0 < i < n, is a DSP restricted term.

— DSP-local restriction: For all occurrences X7, in S where X € Q5 and for
each#; and ¢j suchthatO0 < i, j <nandi # j,t; Et;.

In [44], Yokoyama, Hu, and Takeichi present an efficient second-order matching
algorithm and prove its correctness.

3 A unification algorithm for FC higher-order unification problems
3.1 FChigher-order unification (FCU) problems

The main difference between pattern and FCU problems is in the form of arguments of
existentially quantified variables. In pattern unification problems, the arguments to an exis-
tentially quantified variable must be a list of distinct universally quantified variables whose
binders are in the scope of the binder for the existentially quantified variable. In FCU
problems, these restrictions on the structure of the arguments are relaxed. We discuss the
relationship between our restrictions and those of Deterministic Second-order terms in
Section 5.

The following definition generalizes the pattern unification arguments of higher-order
variables. These arguments are extended from bound variables to more complex terms.
These terms allow function symbols, as long as bound variables occupy all leaf positions.
There are no existential variables or abstractions allowed though.

Definition 10 (Restricted Terms) Given €, Qv and an equation e, a restricted term in e is
defined inductively as follows:

— a € Qv Ubvars(e) is a restricted term.
- ftisarestricted term if n > 0, f € €U Qv Ubvars(e) and ¢; is a restricted term for
all0 < i <n.

When e is clear from the context, we will refer to these terms just as restricted terms. Note
that restricted terms do not contain A-abstractions.

Example 3 The terms [, (cons z 1), (cons (£st /) [) and (snd (cons z [)) are restricted
terms over the above € and Qvy, while nil and (cons z nil) are not.

@ Springer

464 T. Libal, D. Miller

Definition 11 (FCU Systems) A system (Q3, Qv, S, o) is an FCU system if the following
three conditions are satisfied.

— argument restriction: For every occurrence of X7, in S where X € Qg, it is
the case that ¢; is a restricted term for all 0 < i < n.

— local restriction: Whenever S contains an occurrence of X7, where X € QOs3,
then the arguments #, are constrained so that for every distinct pair of members of
{1,...,n},sayi and j, itis the case that ; £t;.

— global restriction: Foreach two different occurrences X1, and Y's,, in S where
X,Y € Qsand forevery 0 <i <nand0 < j < m,itis the case thatt; [Cs;.

Example 4 Pattern unification equations, such as {X [z=fst (snd l)}, are also FCU
systems. The equation

{cons (X (fst!l)) (sndl)=snd (Y (fstl) (fst (sndl)))}

yields an FCU system. Examples of non-FCU problems are the following:

— {X (cons z nil)=snd [}, which violates the argument restriction, since
(cons znil) is not a restricted term;

— {X (f£st l) I=cons z I}, which violates the local restriction since X is
applied to an argument that is a subterm of another argument; and

- {X (£st I)=snd (Y (cons (fst /) (snd l)))}, which violates (only) the global
restriction, since the argument of X is a strict subterm of an argument of Y.

The next proposition is easy to verify.
Proposition 2 Pattern systems are FCU systems.

Before going on to show some properties of these problems, we provide some motivation
behind the restrictions above. The three restrictions are used in the next section to prove the
determinacy of Huet’s pre-unification procedure over FCU problems. Nevertheless, we do
not prove that this result does not hold when weakening the above restrictions. The 1ocal
restriction and global restriction can easily be shown to be required even
for very simple examples. This is not the case for the argument restriction. One
alternative is to weaken the restricted term definition from above to require only one sub-
term in the second condition to be restricted: that is, allow terms such as (cons z nil) as
arguments of existential variables. In the following, we will give a counter-example to this
weaker restriction. Still, it should be noted that the counterexample depends on allowing
inductive definitions containing more than one base case (in particular, we allow for differ-
ent empty list constructors nil; and nil,). When such definitions are not allowed, it may
be possible to prove the results given in this paper for a stronger class of problems.

Example 5 The unification system
{X, Y}, {z, 22}, {X (cons znil) (cons zniljy)=cons z (Y z2)}, id)

is unifiable by the following two incompatible substitutions:

1. [Y > Azi.nily, X — Az1,22.21)-
2. [Y = Azi.nily, X — Az1, 22.22].

@ Springer

Functions-as-constructors higher-order unification... 465

3.2 The existence of most-general unifiers

From this section on, an FCU problem will be referred to simply as a system, unless
indicated otherwise.

It is pointed out in [39] that the only “don’t-know” non-determinism in the gen-
eral higher-order procedure stems from the choice between the different applications of
(Imitate) and (Project). We prove that fulfilling the three restrictions in Defini-
tion 11 makes these choices deterministic.

We first prove a couple of lemmas.

Lemma 1 If r is a restricted term and Xt,=r is a unifiable equation e, then there is 0 <
i < n such that t; is a subterm of r.

Proof By induction on the structure of the restricted term r. In the base case, r € Qv U
bvars(e). We first note that the substitution cannot be an imitation as r contains only
bound variables (those in Qv contain variables which are bound as well). The only way a
substitution applied to X can unify with r is in the case it projects one of the bound variables.
In that case, one of the #; arguments will appear at the head of the result substitution instance.
Since the latter must equal r, then r contains that #; as a subterm. In the inductive case, r has
the form f7,, where m > 0, f € €U Qv Ubvars(e) and r; is a restricted term for all 0 <
i < m. The unifier must be covered by a projection or imitation term. In the former case, the
argument above proves the conclusion. In the latter case, [X +— Aw.f (X w) - - - (X, w)] for
m > 0and Xy, ..., X,, new free variables. We thus have that (X f,)=r is unifiable and,
by inductive assumption, some #; is a subterm of ry, implying that ¢#; is a subterm of r. [

Lemma 2 Consider the equation t ty=fs,, where t is a restricted term and f € €U Qy.
If this equation is unifiable then t = f v,_x for restricted terms v, _.

Proof Since t is restricted, it does not contain abstractions and existential variables and
since the equation is unifiable, ¢ can be written as f v,_x. Since ¢ is restricted, all its
subterms are restricted as well. O

The next two lemmas prove the determinism claim on applications of (Project) and
(Imitate). The first of these lemmas states that applying different projection substitu-
tions to an equation in an FCU system yield two systems that cannot both lead to a successful
unification.

Lemma 3 Consider the equation X t,= f s, where X does not occurin f sp,. Leti and j be
such that0 <i < j < nandlet oy = [X > Az,.2; Xiz,] and 6y = [X > AZ,.2;YiZ,] be
two projection substitutions. Applying these substitutions yield, respectively, the following
two equations:

ti Xitha=f5m €))
ViS5)
There are no substitutions o and 0 such that o unifies (1) and 0 unifies (2).

Proof We assume the existence of two such unifiers and then obtain a contradiction.
According to Lemma 2, we can rewrite the two equations as

fom— Xity=fsm and fum—g Yitn=f5n

@ Springer

466 T. Libal, D. Miller

for restricted terms v,,—; and u,,_. Without loss of generality, we assume that / > k. Note
also, that since t; # t; and ¢, t; have f as a head symbol, m > m — k > 0. We consider
two cases:

— Allsy,..., s, are ground terms. In this case and since both equations are unifiable,
we get the equation

SOt Xk tn)o = fSu—k = fUm—k (3)

Clearly, k # [since otherwise #; = t; which violates the local restriction
from Definition 11. We can now conclude that

(X11)0 = Upm—i41 4

Since Uy ;41 is a restricted term then, according to Lemma 1, there is 0 < k; < n
such that #, is a subterm of u,, ;1. Since u,, ;41 is a subterm of ¢;, we get that #, is
a subterm of #; which contradicts the local restriction.

— Thereis s, for 0 < k1 < m —k which contains an occurrence of Z 7, . This must occur
as a subterm of s, as otherwise the subterm Z 7y, r’ where r’ is not a restricted term,
violates the argument restriction. Since ug, is a restricted term, any subterm
of it is restricted as well. Therefore and as s¢, 0 = uy,, we have that there exists a
restricted term #’ such that Z TK,0 = u’. Using Lemma 1, we can conclude that there is
0 < k3 < kp such that ry, is a subterm of u’, which is a subterm of uy, which is a strict
subterm of ¢;, which violates the global restriction. O

The following lemma states that applying an imitation and a projection substitution to
an equation in an FCU system yields two system that cannot both lead to a successful
unification.

Lemma 4 Consider the equation X t,=f s, where X does not occur in fs,,. Let oy =
[X = AZp.f XpwZu) and 6y = [X > AZ,.2j Yi 2] for some O < j < n. Applying these
substitutions yield, respectively, the following two equations:

S Xmtn=fSm &)

tj Y ty=f Sm (6)
There are no substitutions o and 6 such that o unifies (5) and 6 unifies (6).

Proof We assume the existence of the two such unifiers and obtain a contradiction. Using
Lemma 2, we can rewrite (6) as:

FOm i Yatn=f5m ©)

where vy, ..., vy, are restricted terms and strict subterms of ¢;. Since f is imitated, it is
not a restricted term and f # t; which implies that m — k > 0. Equation 7 tells us that
v; = 516 which implies that 516 is a strict subterm of ¢; and a restricted term. On the other
hand, we have that X; 7, = sjo from Eq. 5. We consider two cases:

— s is ground. In this case we can use Lemma 1 and the fact that s; is a restricted term
to conclude that there is 0 < k1 < n such that #, is a subterm of s;. On the other hand,
we know that sy is a strict subterm of #; and therefore we get that #;, is a strict subterm
of ¢;, which contradicts the local restriction..

— If 51 is not ground, it must contain an occurrence Z r;. This occurrence cannot occur
as the subterm Z 7;r’ where r’ is not a restricted term as it violates the argument

@ Springer

Functions-as-constructors higher-order unification... 467

restriction. Therefore, Z 7 is a subterm of s1. Since vy is a restricted term, any
subterm of it is restricted as well. Therefore and as s;60 = v, we have that there is
a restricted term v’ such that Z7 = v’. Now we use Lemma 1 and get that there is
0 < ki <[such that ¢, is a subterm of v/, which is a strict subterm of ¢ - We get again
a contradiction to the global restriction.

(]
3.3 The unification algorithm

For defining the FC unification algorithm, we need to slightly extend the definition of
pruning.

Definition 12 (Covers) A cover for X 7, and a restricted term g is a substitution o such that
X tn)o =q.

Note that uniqueness of covers follows from Theorem 5

Example 6 The substitution [X +— AzjAzz.cons (fst z1) z2] is a cover for (X [z) and
(cons (fstl) 7).

Definition 13 (Pruning) Given an FCU system (Q3, Qv, S, o) such that (X ,=r) € S and
r contains an occurrence of a restricted term ¢ such that g ¢ . The result of pruning this
system is one of the following three systems.

— If there is a subterm Wy, of r such that ¢ = s; for some 0 < i < m, then return
(QaW{W'I\{W}, Qv, S0, 000) where 0 = [W +— AZ,,. W'z, _landz), | =Zu\{zi}.

— If there is no cover p for Xz, and ¢, then the algorithm fail.

— Otherwise, return the original system.

Example 7 Given the system

X, Y, W, Z},{l,w, z},{X (sndl) z=Y z (fst]),
W (fstl) z=snd (Z w (fst 1))}, id),

we can apply the following three prunings, oy = [Z +> Az1,22.Z'22), o0 =
[Y = Az1,z2.Y'z1] and o3 = [X +— Az],22.X'z2] and obtain the system
(XY W, 2" {l,w, 2}, {X" z=Y" z, W (Est]) z=snd (Z' (fst 1))}, 01 0 03 0 03).

For the next definition, we will use the following replacement operator r | ™ to denote the
simultaneous replacement of each occurrence ¢; in r with z; for0 < i < n. We note that this
replacement operator will be used only when none of the term in the list 7, are subterms of
another term in that list: as a result, this replacement operation will be well-defined. Also,
replacement respects the rules of «, 8, and n-conversion: in particular, the replacement of
Aw.w with the variable u in the expression (f (Ax.x) (Ly.y)) yields (f u u), where f is a
constructor.

Definition 14 (Algorithm for FCU Systems) The rules of an algorithm for the unification

of FCU systems is given in Table 3 where before the application of rules (3) and (5), we
apply exhaustively first rule (1) and then pruning.

@ Springer

468 T. Libal, D. Miller

Example 8 The quantified equation
AXAY M Al X (Est ly) (Est (snd l1))=AliAlr.snd (Y (Est) (Est l}))

is proved using the rewriting for FCU systems, as illustrated in Table 4.

One can also find examples of FCU problems in the libraries of proof assistants. The
bigop library of the Coq proof assistant [9] contains various occurrences of FCU instances.
Since the proof assistant, so far, has not implemented FCU, it cannot resolve such lem-
mas and constructors are sometimes being stripped away manually! in order for pattern
unification to be applicable [40].

The following example from Coq and Elpi is adapted from [17].

Example 9 The unification problem from [17]
IF .(sum n (Aj.add (project j) (project j))=(sum n (Aj. F (project j)))

is proved using the rewriting for FCU systems, as illustrated in Table 5, where the first
rewriting step (2) is elided.

Example 10 To illustrate the FCU algorithm on flexible-flexible unification problems, we
first introduce the f be a constructor of two arguments. The equation
Arv. X (fuv) (fou) =Aurv. X (fou) (fuv)
is solved by using rule (4) to produce the substitution X — Awj;Awy. W. The equation
MIv. X (fuv) (fou) =Aurv.Y (fou) (fuv)

is solved by using rule (5) to produce the substitution ¥ — AwjAw;. X wy wy.

By dropping the requirement that terms are in n-long form, this algorithm can also work
with terms that are untyped: the algorithm only requires applying n-expansion enough so
that terms in an equation have bindings of the same length (see [26, Section 9.3]). It is the
presence or absence of constructors and bound variables that matters in this algorithm and

ISee, for example, (rewrite - (big.mkord _ (fun _ => _) G)) in the bigop library.

Table 3 An algorithm for FCU problems

) (Q3, Qv, S W {t=t}, o) (Q3, Qv, S, 0)

(1) (Q3, Qv, SW{Ax.s=Ax.t},0) (Q3, Qv W {x}, SW {s=t}, o)

2) (Q3, Qv, SW{fty=f5,},0) (Q3, Qv, SW{t=s1,..., th=Sn}, 0)
where f € €W Qv

(3) (03 W (X}, Ov. S W {X1t,=f5,},0) (Q3, Qv. 86,0 0 6)
where f € €, X ¢ Efvars(f5y) and 6 = [X > 2. /T [2]

“4) (Q3W{X}, Qv, SW {Xt,=X5,},0) (Q3 W {W}, Qv, 56,0 00)

where W & 03,1, #5,,60 =[X — Az,.WZz,] and
={i10<i<nAti=s;}

(5) (Q3W{Y}, Qv, SW{Xt,=Y5u}, 0) (03, Qv, 8,0 00)
where X # Y, 0 = [Y > AZy.XZp(m)] and ¢ is a permutation (see

Lemma 11) such that ¢(j) =i if ; =s; forO <i <nand0 < j <m

@ Springer

Functions-as-constructors higher-order unification... 469

Table 4 An example of a reduction on an FCU

Y}, 0, DAl X (Est 1)) (Fst (snd (1)))=Al Ab.snd (Y (£st L) (Fst 1)}, id)

({x
—(x2 UX, Y}, {1, b}, {X (Est I}) (Est (snd (I})))=snd (Y (£st) (Est 1))}, id)
—prun {X, Y}, {1, b}, {X (Est I}) (£st (snd (I1)))=snd (Y’ (Est 1))}, [V — Az1r22.Y'22])
- ({y } {l1.). {snd (Y’ (£st I}))=snd (Y'(£st 1))},
[Y = Az1Az2.Y 22, X — Az1Azp.snd (Y'z1)])
-© (Y} AL LY 3, [Y B Az1Az2.Y 22, X+ Azihzo.snd (Y'z)])

not the types of those constructors and variables. Rich typing can, of course, be imposed to
disallow unifiers that might be over-generated when one considers the untyped case.

4 Correctness of the algorithm

The unification algorithm transforms systems by the application of substitutions and by the
elimination of equations. We prove next that the application of rules of the algorithm in
Definition 14 on FCU problems results in FCU problems as well.

Lemma 5 Given an FCU problem, then the application of rules from Definition 14 results
in an FCU problem.

Proof Removing equations from the system clearly preserves the restrictions of FCU prob-
lems. This result is also immediate when applying substitutions as the only change to the
arguments of the variables in the problem is to eliminate them. O

The following lemma states that projected arguments of variables on one side of the
equation must always match arguments on the other side.

Lemma 6 Let Xt,=r be an equation such that r contains an occurrence of Ys,, where
r # Y5, and let o be a unifier of this equation such that oY = Az, .s. Then, for each bound
variable z; with a free occurrence in s for 0 < i < m, thereis 0 < j < n such that s; = t;.

Proof We prove by induction on the number of bound variables with free occurrences. If s
does not contain such a bound variable, then the lemma holds vacuously. Assume s contains
a free occurrence of z; for 0 < i < m and that there isno 0 < j < n such that 5; = ¢;. In
case there is more than one such occurrence in s, choose this occurrence to be in a minimal
such subterm, i.e. z; occurs in a subterm z; Ux such that all occurrences of z € z, in v fulfill
the requirement that there is #; = z for some 0 < j < n. Let (AZ,,.2; V) (5m) = s; v,’c. Since
r # Ys,, and the argument restriction, we have that Ys,,Cr. Since (X1,)0 = ro,
we get that s,‘vil’([(Xa)a. Since s; is a restricted term, we get that there is 0 < j < n such
that either

Table 5 An example of a reduction on an FCU, adapted from [17]

({F}, {sum,n}, {(Aj.add (project j) (project j))=(rj. F (project j))}, id)
- ({F}, {sum, n, j}, {(add (project j) (project j))=(F (project j))}, 1d)
—-® (3, {sum, n, j}, 0, {F — Az.(add z 2)})

@ Springer

470 T. Libal, D. Miller

- s v,’(l;t j. By the minimality assumption, if v,/(contains a restricted term, then it must
be equal to some #; (0 < [< n) and therefore, that #;Ct;, which contradicts the
local restriction. Therefore, since ¢; is arestricted term, k = 0. We obtain that
5;Ct; and since s; # t; by assumption, we get, again, a contradiction to the global
restriction.

— t;Cs;. Again, since s; # t;, we get a contraction to the global restriction. O

We now prove, for each rule in the FCU algorithm, a relative completeness result. We
start by the non-unifiability of problems with a positive occur check.

Lemma 7 Let (Q3, Qv, SU{Xt,=f5n}, o) be a system such that X occurs in sy, then the
system is not unifiable.

Proof Assume it is unifiable by 6 and 6 X = A7,.s. Consider two cases:

— s does not contain any occurrence of a variable z; for 0 < i < n. Let #f be the number of
occurrences of symbols from € in ¢. Then, #((X1,)0) = #(0X) < #(5,0) < #((f5m)0)
and we get a contradiction to (X7,,)0 = (f5,,)0.

— In case s contains such an occurrence and let Xg, be the occurrence in s;,,. According
to Lemma 6, we know that for all occurrences of z; in s for 0 < i < n, there is an
index 0 < j < n such that #; = ¢g;. Let p be the mapping between indices defined as
above such that p(i) = j. Let 7 be the set of indices 0 < i < n which occur in s for
some k < n. Let p’ be the non-trivial position of Xg, in f5,, and let p be the maximal
position of a z; in s for i € . This means we have g; at position p’ o p in (f5,)0
and since #,(;y = ¢; and (X1,)0 = (f5,,)0, we get that #,(;) occurs at position pop
in (X1,)0. Since t,; is a restricted term, there is an occurrence of z,(;) in s at position
p’ o p, in contradiction to the maximality of p. O

Lemma 8 Given a system {Q3, Qv, S, p} where Xt,=r € S and assuming we apply prun-
ing in order to obtain system {Q3, Qv, S’, p'} as defined in Definition 13, then, if S is
unifiable by substitution o, then there is a substitution o', such that o = 0 o o/, for some
substitution 0. If S is not unifiable, then S’ is not unifiable.

Proof Assume we apply pruning as in Definition 13. Let g be the restricted term appearing
in the equation according to the definition. The rule is applicable only if there is such an
occurrence g. Otherwise, § = §’ and = id. We consider the two cases in the lemma:

— there is a subterm Y5, of r such that g = s; for 0 < i < m. If § is not unifiable,
then assume S’ is unifiable by ¢’ and since §' = S0, we get that S is unifiable by
0 o o', a contradiction. Assume the system is unifiable and let oY = AZ,,.s. Then,
according to Lemma 6, either there is 0 < j < n, such that t; = s;, which contradicts
the assumption, or s does not contain an occurrence of s;. In the second case, by taking

o' = olgs\nW = Az, YZmo] where 7, \ z, | € Qv, we get that Y'5,,0 =
Ws;, 0’ =Ysu0 00’
— If there is no such cover, then there is no substitution which unifies this equation. [

@ Springer

Functions-as-constructors higher-order unification... 471

Lemma 9 Given a system {Q3, Qv, S, p) where Xt,=s € S and X does not occur in s and
assuming we apply the substitution 6 as defined in rule (3) in Table 3. Then, if o is a unifier
of S, then there is o' such thato =0 o o',

Proof We prove by induction on the structure of 5. Note that two base cases are also defined
in the last two cases below for m = 0.

— s =YY%, for 0 < m. In this case, mutual pruning will ensure that we have X7 = Y14
for ¢ defined as in rule (5) in Table 3 and k < n, m. The rest of the proof is similar to
the proof of Lemma 11.

— s = tisy forsome 0 < i < n and 0 < m and therefore 6 X =)»E-Zia for some %
Assume applying (Project) with the substitution 8’ = AZ,.z; X;,Z, as defined in
Definition 4. After applying (Bind) and possibly also several (Simpl), we get the
problem, since X cannot occur in s,

S'0"U{Xity=s1, ., Xty =sm} ®)

Since, by assumption, X7,=t;5,, is unifiable and #; is a restricted term, it follows, using
an argument similar to the one in the proof of Lemma 3, that also each of the X ;#,=s;
is unifiable by some 0/.0 for 0 < j < m. By following lemmas 3 and 4, we have that
applying any other projection or imitation to Xt,=t;s,, will render it non-unifiable. By
using Corollary 1, we have that o' can be extended into a unifier o of S'0'U(X jt,=s;}
forall0 < j <mando = 6’ oo0j o...o00,. By applying the induction hypothesis,
we get that there are substitutions oj/. unifying 8’0’ U (X ;f,=s;} forall0 < j < m
such that o; = 0; o o for 6;X; = Az,.s". Le.thato = 6’061 00{0...006, 00,
Since each o is a unifier of the above equations and o is a unifier of S, we get that
for eachm > j' > j, oj’., < ‘7,,'|dom(aj’.,)- From this, together with the fact that the

domain and range of each oj/. do not contain variables from the domain of each 6; for
0<j<j <m,wegetthatoc =006 0...06, 00(0...00,,. On the other hand,
by applying 6, we get the problem

S'OU{s|=s1, ..., 8,=Sm} 9

But, since # = 6’ 06 o...086,, we just need to choose 6’ = o o... 00, and we have
oc=000".

— 5= f5p for0 < m and therefore 8 X = AZ,.fs/,. Assume applying (Imitate) with
the substitution 8’ = AZ,. f X,,Z,. After applying (Bind) anda (Simpl), we get the
problem, since x cannot occur in s,

S0 ULX 1 th=5s1, ooy Xinln=5m} (10)

From here we follow as before and use again Corollary 1 and Lemma 4. O

Lemma 10 Given a system (Q3, Qv, S’ U {X1,=X5,}, o) and assuming we apply the sub-
stitution 0 as defined in rule (4) in Table 3. Then, if the system is unifiable by a substitution
o, then there is o’ such thato = 0 o o’

Proof Assume that 0 X = AZz,.s, we first prove that there is no occurrence z; in s such that
there is 0 < j < k where i = r; and #; # s;. Assume on the contrary, then (X1,)0 =
(Xs,)o which implies that #; = s;. Now we can define 0’ = o |ygs)\(x}[W = AZ.0 XZ,]
where 7, \ Z,, € Qv are new variables. O

@ Springer

472 T. Libal, D. Miller

Lemma 11 Given a system (Q3, Qv, S’ U{X1,=Y5,,}, p) where X # Y and assuming we
apply the substitution 6 as defined in rule (5) in Table 3. Then, if the system is unifiable by
a substitution o, then there is o' such thato = 6 o o’.

Proof First note that since we apply pruning beforehand (in a symmetric way), n = m and
¢ is indeed a permutation. Assume, without loss of generality, that 0 X = 1z,,.s. We know
that for each occurrence z; in s for 0 < i < n, 5; = t4(;). By choosing 6’ = o |y (s)\(v}, We
get that (Y5,)0 = (XSpm))o = (X5¢m))0’ = (Y'5,)(0 o 0’). Therefore,c =0 o0’. O

Theorem 3 (Termination) Given a system (Q3, Qv, S, o), the algorithm in Definition 14
always terminates.

Proof Let the tuple m = (m, my) where m is the size of the set O3 and m> is the number
of all symbols except = in S. Consider its lexicographical order, it is clear that m is well
founded. We show that it decreases with every rule application of the algorithm:

rules (0), (1) and (2) decrease m> and do no increase m.

— rule (3) decreases m .

— rule (4) decreases m; and does not increase m|.

— rule (5) decreases m .

— pruning decreases m and does not increase m. O

Theorem 4 (Completeness) Let (Q3, Qv, S, 1d) be a system with unifier o. There is a
sequence of rule applications in Definition 14 resulting in (Q5, Oy, @,) such that 6 < o.

Proof Since the algorithm terminates and since it has a rule application for each unifiable
equation, we obtain at the end the above system. Lemmas 7, 8, 9, 10 and 11 then give us that
for any unifier o of S, there is a substitution o’ such that o = 6 oo’. Therefore, § < o. O

The next theorem is an easy corollary of the completeness theorem.

Theorem 5 (Most-general unifier) Given a system (Q3, Qv, S, 1d), if the algorithm
defined in Definition 14 terminates with system (Q5, Oy, ¥, o), then o is an mgu of S.

Proof Since the algorithm in Definition 14 is deterministic, then we can use Theorem 4 in
order to prove that o is an mgu. O

The next theorem is proved by simulating the algorithm in Definition 14 using the
procedure in Definition 4.

Theorem 6 (Soundness) Given a system (Q3, Qv, S, 1d) and assuming there is a sequence
of rule applications in Definition 14 resulting in (Q5, Qy, ¥,), then 6 is a unifier of S.

Proof 1tis obvious we can simulate each of the rules (0), (1), (2) and (3) using the procedure
in Definition 4. We get the required result by using Theorem 5. For rules (4), (5) and the
first case of pruning, assume there is another substitution p such that p unifies the problem
and p # 6. This can only happen if pX = AZ,.W’rp such that 7y C r- Lemma 10 states
that there is no unifier w and a substitution y such that w = p o y. Since the second case of
pruning results in failure, we are done. O

@ Springer

Functions-as-constructors higher-order unification... 473

5 Discussion and extensions of FC unification

Hamana [18] has remarked on the strong similarity between FCU and DSP problems, when
restricted to the second-order case. In this section we discuss this similarity and compare the
two fragments. This comparison allows us to discuss possible extensions to FCU which are
strictly stronger than the one defined in Section 3. We will also discuss the developments
with regard to FCU which have taken place in the last 4 years (2016-2020).

5.1 A comparison of FCU and DSP

FCU and DSP differ on the following points:

1. FCU problems are unification problems while DSP are matching problems.

2. FCU problems are higher-order while DSP are restricted to second-order.

3. The set of DSP restricted terms strictly contains the set of second-order (FCU) restricted
terms.

4. DSP matching problems are deterministic without the global restriction
defined for FCU systems, while FCU problems are not.

When considering these 4 points, it seems appropriate to compare the two fragments over
the following 2 properties:

1. Matching vs. unification
2. Second-order vs. higher-order terms

In fact, the first point was already discussed by Hamana in [18]. According to which,
Yokoyama, Hu and Takeichi have given an example of a unification problem over DSP
terms which admits two incompatible unifiers [46]>

Example 11 Let € = {fst} and Qv = {/1, [2}. The DSP problem
{X (Est) (fst h)=fst (Y b 1)}

admits the two incompatible unifiers [Y +— Azy,22.21, X — XAz1,22.22] and [V —
Az1,22.22, X = Az1, 22.21]

This example is not an FCU problem since the arguments of Y are strict subterms of those
of X, which violates the global restriction. We will further discuss an extension
of FCU to the second-order case in the next section.

We will come back to the question whether this condition is the only one required when
moving from matching problems to unification ones. We can now shift our attention to the
second point of comparison — second-order vs. higher-order terms — and note our strictly
more restrictive definition of terms (see Definition 10) than DSP terms (see Definition 8).

Proposition 3 A second-order (FCU) restricted term is a DSP restricted term but not vice
versa.

Proof Let t be a second-order (FCU) restricted term. According to the inductive definition
in Definition 10, there is at least one position p such that |, € Qv, which is exactly the

2We could not find the example in the English version of the paper and refer to the one mentioned by Hamana
in [18].

@ Springer

474 T. Libal, D. Miller

requirement of DSP terms. Conversely, the following is a DSP term but not a second-order
(FCU) term (cons z nil). O

Can DSP terms be extended to higher-order? Yokoyama et at. have extended their frag-
ment to higher-order matching [45]. Their fragment has the same restrictions as in the
second-order case and depends on the standard higher-order definition of the subterm
relation. 3

Example 12 Let € = {nil} and Qv = {fun}. The third-order problem
{X (funnil) fun =(funnil)},

admits the incompatible matchers [X +— Azy, z2.z1] and [X +— Az1, 22.(z2 nil)]. This
problem, however, is not in the higher-order DSP fragment, since the second argument of
X is a subterm of the first one.

In the introduction to this paper, we have noted three properties which are admitted by
the pattern unification algorithm and which are desirable in extensions of it: decidability,
determinism and type-freeness. In [44], only the first two requirements were desired. This is,
of course, appropriate since type-freeness plays no role in second-order terms. Clearly, since
our restricted terms do not admit abstractions in the arguments of higher-order variables,
type-freeness makes sense only if we do not restrict those arguments to be in n-extended
form. In our presentation, we require those arguments to be, in fact, in n-normal forms (as
are the arguments in [45]). In a similar way to [45], the above example is also not an FCU
problem, since we have the same subterm restriction.

This example might hint that DSP problems can be used for unification, if the additional
global restriction isadded. The following example shows that this is not the case,
already in second-order.

Example 13 Let € = {nilp,nil, cons}and Qv = {w}. The second-order problem
{X (cons w nilp) (cons w nily)) =(cons w Y))},

admits the two incompatible unifiers [X +— Xz1,22.21,Y +— nilpg] and [X +—
Az1,22.22, Y = nilg].

We now discuss an extension to FCU which is based on the observations in this section.
5.2 Second-order FCU

Previously we have discussed Hamana’s second-order fragment [18], which restricts FCU
to the second-order case. One might conjecture that we can extend second-order FCU to
DSP restricted terms. The unification problem in Example 13 involves DSP terms which
are not FCU, since it contains constant symbols in leaf positions. Since this problem is not
deterministic, it serves as a counterexample to this conjecture.

This example shows that as long as restricted arguments allow for subterms not contain-
ing bound variables, such as nil; and nil, in the above example, these arguments can

3Hamana, in private discussions, has described another class discussed by Yokoyama et al. [46], which is
restricted to linear second-order terms but is more permissive with regard to the arguments of second-order
variables.

@ Springer

Functions-as-constructors higher-order unification... 475

be projected and determinism might be lost. One can now ask if the FCU restricted terms
can be relaxed in the second-order setting in another way. In fact, the above example is
prevented if we add the following further restriction

Definition 15 (local and global restrictions) Let the abstract projection operator (apo)
be defined as following. Given a restricted term ¢, apo(t) replaces all subterms not con-
taining a bound variable (from Qv U bvars) with the new constant €. Then, local
restriction and global restriction are defined not over the restricted terms
but over their abstract projections. We define problems of this variant of FCU, restricted to
the second-order case, as FC? problems.

Example 14 Example 13 is not an FC? unification problem since the abstract projections
of the arguments of X, (cons w nilp) and (cons w nily), are both (cons w €) and
violate the local restriction.

Does this fragment strictly contain the FCU one?

Proposition 1 A second-order (FCU) restricted terms is a FC 2 yestricted term but not vice
versa.

Proof Consider the following problem, which is FC? but not FCU.

Let ¢ = {nilg,cons} and Qv = {w}, The second-order problem
{X (cons w nilg)) =(cons w Y))} is an FC2 problem but not FCU, since there is a
constant at a leaf position. O

We can now move forward and prove that the unification problem of FC? terms is deter-
ministic. The key to this argument is the observation as to why restricted terms play a role
in ensuring the determinism of unification, which can be found in the proof of lemmas 3, 4
and the auxiliary lemmas.

Adaptation of Lemma 3 to FC? terms In the second-order case, the proof is much simpler.
Each of the projections projects first order terms, so equations 1 and 2 become

= f5m (an

1= 5w (12)
where #; and ¢; are not subterms of each other, do not contain free variables and each contain
at least one variable from Qvy. We proceed by finding a contradiction. Let p be the first
position in the abstract projections of #; and ¢; such that the symbol at this position differs
between the two terms or equal to €. Clearly, this means that f7,,|, must be a variable Y v,
where k > 0, We prove by considering different cases

— ti|p (or tj|p) contains a variable from Qv U bvars. In this case, we get a violation to
global restriction in a similar way to the one in in the proof of Lemma 3.

— Otherwise, both positions must be equal to € and we get a violation of local
restriction. O

Adaptation of Lemma 4 to FC? terms This proof is also simpler in the second-order case,
since the (5) and (6) become

fXmtn=f5m (13)

@ Springer

476 T. Libal, D. Miller

Table 6 A summary of the properties of the three fragments discussed in this section

Fragment SO matching HO matching SO unification HO unification
DSP v v X X
FC? v v v ?
FC v v v v
1i=fsm (14)
Since ¢; does not contain free variables, it can be written as
SVm=fSm (15)

Since, t; is a restricted term, there is 0 < I < m such that v; contains a bound variable. We
again proceed by considering different cases.

— s is ground. We obtain that there is 0 < k < n such that #; is a subterm of ¢;, in a
similar way to the proof of Lemma 4, which violates the local restriction.

— Otherwise, s; contains a variable and we get again a violation to global
restriction in a similar way to the proof of Lemma 4. O

We leave proving this extension to HO FCU as a future work.

We have already proved, in this section, that the DSP fragment is strictly bigger than
the FCU? one, which is strictly bigger than the second-order FCU one. Table 6 summa-
rizes the determinism results of this section, as well as of [44] and [46]. DSP corresponds
to the fragment defined by Yokoyama et al., F'C is the functions as constructors fragment
discussed in this paper while FC? is the extension of the restricted terms discussed in this
section. The v' symbol denotes that the specific matching/unification problem is determin-
istic and terminating over the specific fragment, while ‘X’ denotes the existence of a counter
example. If the answer is unknown, the corresponding cell is denoted by ‘?’. ‘HO’ and ‘SO’
denote higher-order and second-order, respectively. In order to clarify further, we stress that
the FC? restriction is more general than that of FCU and we have therefore managed to
show its termination and determinism for the second-order case only.

6 Conclusion

We have described an extension of pattern unification called function-as-constructor uni-
fication. Such unification problems typically show up in situations where functions are
applied to bound variables and where such functions are treated as term constructors (at
least during the process of unification). We have shown that the properties that make first-
order and pattern unification desirable for implementation—decidability and the existence
of mgus for unifiable pairs—also holds for this class of unification problems.

The current trend in higher-order theorem proving is to apply deterministic unification
algorithms as often as possible to help reduce the search space. To the best of our knowledge
Hamana’s system SOL [20] is the only system that has implemented the algorithm described
in this paper [19].

The need to check for the subterm relation between different arguments of variables
makes this algorithm less efficient than pattern unification. Nevertheless, the possibility to
preserve completeness while using a deterministic algorithm is advantageous. One place

@ Springer

Functions-as-constructors higher-order unification... 477

where such an approach is essential is when one is looking for a complete set of higher-
order unifiers, instead of pre-unifiers. One of the systems which have taken this approach
is the Zipperposition theorem prover [43], where FCU is mentioned as a desirable “oracle”
for solving fragments.

Another possible extension of the work is to improve its complexity. The current algo-
rithm, like the one in [26] and the first-order unification algorithms which are used in
practice, is of exponential complexity. We want to follow the work of Qian [42] and prove
that FCU is of linear complexity.

An interesting question is how the algorithm presented in this paper compares to other
higher-order unification algorithms, such as the one in [43], when operating on the FC frag-
ment. Clearly, such a comparison is unfair to the more general algorithms, which, as we have
seen above, actually use dedicated unification algorithms to tackle decidable fragments.
One thing which stands out, though, is the application of pruning, which is deterministic in
our algorithm and is non-deterministic in, for example, [43].

Acknowledgements We thank Enrico Tassi, Tetsuo Yokoyama and Makoto Hamana for discussions related
to this paper. We benefited greatly from the many comments of the anonymous reviewers of an earlier draft as
well as of the current draft of this paper. This work has been funded by the ERC Advanced Grant ProofCert.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

. The Twelf project. http://twelf.org/ (2016)
. Abel, A., Pientka, B.: Higher-order dynamic pattern unification for dependent types and records. In:
Typed Lambda Calculi and Applications, pp. 10-26. Springer (2011)
3. Andrews, P.B., Pfenning, F,, Issar, S., Klapper, C.P.: The TPS theorem proving system. In: Siekmann,
J.H. (ed.) CADE 8, LNCS 230, pp. 663—-664. Springer (1986)
4. Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: Crafting a Proof Assistant. In: Types for Proofs and
Programs, pp. 18-32. Springer (2006)
5. Asperti, A., Ricciotti, W., Coen, C.S., Tassi, E.: Hints in Unification. In: International Conference on
Theorem Proving in Higher Order Logics, pp. 84-98. Springer, Berlin (2009)
6. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y.: Abella: A system for
reasoning about relational specifications. J. of Formalized Reasoning (2014)
7. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Volume 103 of Studies in Logic and
the Foundations of Mathematics. Elsevier, New York (1984)
8. Benzmiiller, C., Kohlhase, M.: LEO — a Higher Order Theorem Prover. In: 15Th Conf. on Automated
Deduction (CADE), pp. 139-144 (1998)
9. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical Big Operators. In: Theorem Proving in Higher
Order Logics, Montreal, Canada (2008)
10. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda - A Functional Language with Dependent
Types. In: TPHOLS, vol. 5674, pp. 73-78. Springer (2009)
11. Brown, C.E.: Satallax: An Automatic Higher-Order Prover. In: Automated Reasoning, pp. 111-117.
Springer (2012)
12. Church, A.: A formulation of the Simple Theory of Types. J of Symbolic Logic (1940)
13. Dalrymple, M., Shieber, S.M., Pereira, F.C.N.: Ellipsis and higher-order unification. Linguist. Philosop.
14, 399-452 (1991)

N =

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://twelf.org/

478 T. Libal, D. Miller

14. Duggan, D.: Unification with extended patterns. Theor. Comput. Sci. 206(1), 1-50 (1998)

15. Fettig, R., Lochner, B.: Unification of higher-order patterns in a simply typed lambda-calculus with finite
products and terminal type. In: RTA 1996, LNCS, pp. 347-361 (1103)

16. Goldfarb, W.: The undecidability of the second-order unification problem. Theor. Comput. Sci. 13, 225—
230 (1981)

17. Guidi, E., Coen, C.S., Tassi, E.: Implementing type theory in higher order constraint logic programming.
Math. Struct. Comput. Sci. 29.8, 1125-1150 (2019)

18. Hamana, M.: How to prove your calculus is decidable: practical applications of second-order algebraic
theories and computation. In: Proceedings of the ACM on Programming Languages 1.ICFP, pp. 1-28
(2017)

19. Makoto, H.: A functional implementation of function-as-constructor higher-order unification. In: Proc.
31st International Workshop on Unification (UNIF’17) (2017)

20. Hamana, M., Abe, T., Murase, Y., Sakaguchi, K.: The System SOL: Second-Order Laboratory. In: 6th
International Workshop on Confluence (2020)

21. Huet, G.: The undecidability of unification in third order logic. Inf. Control. 22, 257-267 (1973)

22. Huet, G.: A unification algorithm for typed A-calculus. Theor. Comput. Sci. 1, 27-57 (1975)

23. Huet, G., Lang, B.: Proving and applying program transformations expressed with second-order patterns.
Acta Informatica 11, 31-55 (1978)

24. Libal, T., Miller, D.: Functions-as-constructors higher-order unification. In: Proceedings of the Ist
International Conference on Formal Structures for Computation and Deduction (2016)

25. McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical framework. ACM
Trans. on Computational Logic 3(1), 80-136 (2002)

26. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple
unification. J. of Logic and Computation 1(4), 497-536 (1991)

27. Miller, D., Nadathur, G.: Some uses of higher-order logic in computational linguistics. In: Proceedings
of the 24th Annual Meeting of the Association for Computational Linguistics, pp. 247-255 (1986)

28. Miller, D.: Unification under a mixed prefix. J. Symb. Comput. 14(4), 321-358 (1992)

29. Miller, D., Nadathur, G.: Programming with Higher-Order logic. Cambridge University Press, Cam-
bridge (2012)

30. Miller, D.: Proof checking and logic programming. Form. Asp. Comput. 29(3), 383-399 (2017)

31. Nadathur, G., Mitchell, D.J.: System description: Teyjus — A compiler and abstract machine based
implementation of Aprolog. CADE 16, LNAI 1632, 287-291 (1999)

32. Nipkow, T.: Functional unification of higher-order patterns. In: Vardi, M. (ed.) 8th Symp. on Logic in
Computer Science, pp. 64-74. IEEE (1993)

33. Nipkow, T., Paulson, L.C., Markus, W.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
Number 2283 in LNCS. Springer, Berlin (2002)

34. Pfenning, F.: Unification and anti-unification in the Calculus of Constructions. In: Kahn, G. (ed.) 6th
Symp. on Logic in Computer Science, pp. 74-85. IEEE (1991)

35. Pfenning, F., Schiirmann, C.: System description: Twelf — A meta-logical framework for deductive
systems. CADE 16, LNAI 1632, pp. 202-206 Trento (1999)

36. Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning with deductive systems
(system description). In: Giesl, J., Hihnle, R. (eds.) JICAR, LNCS, vol. 6173, pp. 15-21 (2010)

37. Qi, X., Gacek, A., Holte, S., Nadathur, G., Snow, Z.: The Teyjus system — version 2. http://teyjus.cs.
umn.edu/ (2015)

38. Schwichtenberg, H.: Minlog. In: Wiedijk, F. (ed.) The Seventeen Provers of the World, volume 3600 of
LNCS, pp. 151-157. Springer (2006)

39. Snyder, W., Gallier, J.H.: Higher order unification revisited: Complete sets of transformations. J. Symb.
Comput. 8(1-2), 101-140 (1989)

40. Tassi, E.: Private communication (Unknown Month 2016)

41. Tiu, A.F.: An extension of L-lambda unification http://www.ntu.edu.sg/home/atiu/llambdaext.pdf (2002)

42. Qian, Z.: Linear Unification of Higher-Order Patterns. Proc. Coll. Trees in Algebra and Programming
(1993)

43. Vukmirovié, P.,, Bentkamp, A., Nummelin, V.: Efficient full higher-order unification. 5th International
Conference on Formal Structures for Computation and Deduction (FSCD 2020) Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik (2020)

44. Yokoyama, T., Hu, Z., Takeichi, M.: Deterministic second-order patterns. Inform. Process. Lett. 89.6,
309-314 (2004)

45. Tetsuo, Y., Hu, Z., Takeichi, M.: Deterministic Higher-Order patterns for program transformation
international symposium on Logic-Based program synthesis and transformation. Springer, Berlin (2004)

@ Springer

http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
http://www.ntu.edu.sg/home/atiu/llambdaext.pdf

Functions-as-constructors higher-order unification... 479

46. Tetsuo, Y., Hu, Z., Takeichi, M.: Deterministic second-order patterns for program transformation.
Comput. Softw. 21(5), 71-76 (2004). In Japanese

47. Ziliani, B., Sozeau, M.: A unification algorithm for Coq featuring universe polymorphism and overload-
ing. ICFP, 179-191 (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Functions-as-constructors higher-order unification...
	Abstract
	Introduction
	Preliminaries
	The lambda-calculus
	Higher-order pre-unification
	Pattern unification
	Deterministic second-order matching

	A unification algorithm for FC higher-order unification problems
	FC higher-order unification (FCU) problems
	The existence of most-general unifiers
	The unification algorithm

	Correctness of the algorithm
	Discussion and extensions of FC unification
	A comparison of FCU and DSP
	Second-order FCU

	Conclusion
	References

