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Abstract
The support vector classification-regression machine for K-class classification (K-SVCR)
is a novel multi-class classification method based on the “1-versus-1-versus-rest” struc-
ture. In this paper, we propose a least squares version of K-SVCR named LSK-SVCR.
Similarly to the K-SVCR algorithm, this method assesses all the training data into a “1-
versus-1-versus-rest” structure, so that the algorithm generates ternary outputs {−1, 0,+1}.
In LSK-SVCR, the solution of the primal problem is computed by solving only one system
of linear equations instead of solving the dual problem, which is a convex quadratic pro-
gramming problem in K-SVCR. Experimental results on several benchmark, MC-NDC, and
handwritten digit recognition data sets show that not only does the LSK-SVCR have better
performance in the aspects of classification accuracy to that of K-SVCR and Twin-KSVC
algorithms but also has remarkably higher learning speed.

Keywords Support vector machine · Twin-KSVC · K-SVCR · Multi-class classification ·
Least squares

1 Introduction

Support vector machines (SVM) were proposed for binary classification problems by Vap-
nik and his colleagues [1, 2]. They were used in many application areas including face
recognition [3], heart disease detection [4], energies prediction [5–7], Raman spectroscopy
[8], biomedicine [9], diagnosis of Alzheimer’s disease [10] and so on. The idea of this
method is based on finding the maximum margin between two hyperplanes, which leads to
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solving a constraint convex quadratic programming problem (QPP). Inspired by the gener-
alized eigenvalue proximal support vector machine (GEPSVM) [11], which seeks for two
nonparallel hyperplanes such that each of them is as close as possible to its class and as far
as possible to the other class, Jayadeva et al. [12] proposed twin support vector machine
(TWSVM). Indeed, TWSVM obtains two non-parallel hyperplanes by solving two small-
sized quadratic programming problems (QPPs) instead of one large QPP in classical SVM.
In the past decades, many variants, extensions, and applications of SVM and TWSVM were
proposed [13–17].

The variants and extensions of SVM and TWSVM can only solve binary classification
problems, whereas the multi-class classification often occurs in practical problems [18]. For
the multi-class classification problems in the SVM framework, two strategies are typically
used. The first strategy “1-versus-1” constructs k(k−1)

2 binary classifiers [19]. This method
may obtain unfavorable results due to omitting the remaining training samples in the training
process of each classifier. The second strategy “1-versus-rest” constructs K binary classi-
fiers so that each of them is involving all of the training samples [20]. Therefore in this case
the class imbalance problem may occur.

Angulo et al. [21] proposed a new and effective method based on “1-versus-1-versus-
rest” structure with ternary output {−1, 0,+1} for K-class classification problems, called
K-SVCR. This method constructs k(k−1)

2 classifiers so that each classifier is trained with
all of the training data, which overcomes the risk of information loss and class imbalance
problems, thus the K-SVCR provides better performance than SVM methods for multi-class
classification problems.

By using the less computational time of the TWSVM and the structural advantage of K-
SVCR, Xu et al., [22] proposed a new method for multi-class classification problems and
termed it Twin-KSVC. Some improvements in this method were proposed by researchers.
For instance, Nasiri et al. [23] proposed a version of least squares for Twin-KSVC and
named as LSTKSVC, and also as another example, Tanveer et al. [24] suggested a least
squares version of K-nearest neighbor based weighted Twin-KSVC.

In this paper, which is a revised and expanded version of our conference paper [25],
we propose a least squares version of K-SVCR, named the least squares K-class support
vector classification-regression machine (LSK-SVCR). Indeed, we replaced the inequality
constraints with equality constraints and used 2-norm instead of 1-norm for minimizing the
slack variables in the primal problem of K-SVCR. This smart modification leads to a fast
algorithm with powerful generalization performance. Therefore in LSK-SVCR, we need to
solve only one system of linear equations rather than solving a QPP in K-SVCR. Also in this
paper, motivated by Lee and Huang [26], for large-scale data set, we propose the reduced
LSK-SVCR. This method aims to reduce kernel matrix from N × N to a much smaller
N × Ñ . It is worth to mention that the reduced kernel technique affects on computational
time and the final results.

Numerical experiments on several benchmark data sets, USPS handwriting data set, and
MC-NDC [27] indicate that the suggested LSK-SVCR has higher accuracy with lower
computational time than the original K-SVCR and Twin-KSVC.

For classifying multi-class problems, most papers focused on solving QPP problems in
primal or dual spaces. The main contribution of the paper is classifying multi-class clas-
sification problems by solving only a system of linear equations instead of solving QPP
problems so that this leads to a fast and tailored algorithm that enjoys a satisfactory gener-
alization performance. The experiments carried out on several artificial and real-world data
sets verify the effectiveness of the proposed method.
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The following are the highlights of our proposed LSK-SVCR method:

– The multi-class classification method based on the K-SVCR method is suggested.
– For finding the solution of our proposed method, LSK-SVCR, we just solve a system of

linear equations which is different from K-SVCR and Twin-KSVC that require solving
QPPs.

– The Sherman–Morrison–Woodbury (SMW) formulation is proposed to reduce the
complexity of nonlinear LSK-SVCR.

– LSK-SVCR, similar to K-SVCR and Twin-KSVC, evaluates all training data into a
“1-versus-1-versus-rest” structure with ternary outputs {−1, 0,+1}.

– We assess performance of our proposed method on real well-known UCI problems as
well as on the US Postal (USPS) data set, which is a handwritten digit recognition data
set, and MC-NDC

– In some experiments, for solving large-scale nonlinear LSK-SVCR a rectangular kernel
technique is proposed.

– The results are analyzed by a well-known statistical method.

The rest of this paper is organized as follows: Section 2 briefly describes SVM, Twin
SVM, Twin-KSVC, and K-SVCR. Section 3 presents our LSK-SVCR method in linear and
non-linear cases as well as a classification decision rule and time complexity. Section 4
presents experimental results on UCI, USPS handwriting data sets, and MC-NDC, to show
the efficiency of the proposed algorithm, and concluding remarks are given in Section 5.

Notations Let a = [ai] be a vector in Rn. If f is a real-valued function defined on the n-
dimensional real space Rn, the gradient of f with respect to x is denoted by ∂f

∂x
, which is a

column vector in Rn. By AT we mean the transpose of a matrix A. For two vectors x and y

in the n-dimensional real space, xT y denotes the scalar product. For x ∈ Rn, ‖x‖ denotes
2-norm. A column vector of ones of arbitrary dimension is indicated by e. For A ∈ Rm×n

and B ∈ Rn×l , the kernel k(A,B) is an arbitrary function which maps Rm×n × Rn×l into
Rm×l . In particular, if x and y are column vectors in Rn and A ∈ Rm×n, then k(xT , y) is
a real number, k(xT ,AT ) is a row vector in Rm , and k(A,AT ) is an m × m matrix. The
identity n × n matrix is denoted by In, and [A; B] stands for the matrix operation

[A; B] =
[
A

B

]
.

2 Background

2.1 Support vector machine

For a classification problem, a data set (xi, yi) is given for training with the input xi ∈ Rn

and the corresponding target value or label yi = 1 or −1, i.e.,

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1}. (1)

The two parallel supporting hyperplanes are defined as follow:

wT x − b = +1 and wT x − b = −1.
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In the canonical form, the optimal hyperplanes are found by solving the following primal
optimization problem [28]:

min
w,b,ξ

1

2
wT w + ceT ξ

subject to D̃(Aw − eb) ≥ e − ξ, (2)

ξ ≥ 0,

where the matrix A ∈ Rm×n records the whole data, the diagonal matrix D̃ ∈ Rm×m (with
ones or minus ones along its diagonal) is according to membership of each point in the
classes +1 or −1, c > 0 is the regularization parameter, and ξ is a slack variable.

As for the primal problem, SVM solves its Lagrangian dual problem as follows:

min
α

m∑
i=1

m∑
j=1

αiαjyiyj xixj −
m∑

i=1

αi

subject to
m∑

i=1

yiαi = 0, (3)

0 ≤ αi ≤ c, i = 1, . . . , m,

where αi are the Lagrange multipliers, for 1 ≤ i ≤ m.

2.2 Twin support vector machine

Twin support vector machine (TWSVM), suggested by Jayadeva et al. [29], finds two non-
parallel hyperplanes for binary classification such that each plane is close to one of the two
classes and as far as possible from the other class. The main idea of this method was inspired
by GEPSVM [11]. However, TWSVM has a formulation similar to SVM formulation except
that not all the patterns appear in the constraints of either problem at the same time. This
makes TWSVM faster than standard SVM [29].

In fact TWSVM finds two nonparallel hyperplanes as follows:

f1(x) = wT
1 x + b1 and f2(x) = wT

2 x + b2, (4)

where w1 ∈ Rn, w2 ∈ Rn, b1 ∈ R and b2 ∈ R.
Suppose that all the data points in class +1 are associated with a matrix A ∈ Rm1×n

and the data points of class −1 are associated with a matrix B ∈ Rm2×n. The TWSVM
classifiers are obtained by solving the following pair of quadratic programming problems:

min
w1, b1, q1

‖Aw1 + e1b1‖2 + c1e
T
2 q1,

subject to −(Bw1 + e2b1) + q1 ≥ e2, (5)

q1 ≥ 0.

min
w2, b2, q2

‖Bw2 + e2b2‖2 + c2e
T
1 q2,

subject to (Aw2 + e1b2) + q2 ≥ e1, (6)

q2 ≥ 0,

where c1, c2 > 0 are penalty parameters, e1, e2 are vectors of ones of appropriate
dimensions, and q1 and q2 are slack vectors.
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By using the KKT conditions, we can derive the Wolfe dual formulations of (5) and (6),
respectively as follows:

max
α

eT
2 α − 1

2αT G(HT H)−1GT α, (7)

subject to 0 ≤ α ≤ c1.

max
γ

eT
1 γ − 1

2γ T H(GT G)−1HT γ , (8)

subject to 0 ≤ γ ≤ c2,

where α and γ are the Lagrangian coefficients, H = [A e1] and G = [B e2]. The non-
parallel hyperplanes can be obtained from the solution of (7) and (8) by

[w1; b1] = −(HT H)−1GT α,

and
[w2; b2] = (GT G)−1HT γ,

respectively.
To avoid the possible ill-conditioning, when GT G or HT H are (nearly) singular,

the inverse matrices (GT G)−1and (HT H)−1 are approximately replaced by (GT G +
δIn+1)

−1and (HT H + δIn+1)
−1, where δ is a small positive scalar.

2.3 Twin k-class support vector classification

Twin k-class support vector classification (Twin-KSVC), proposed in [22], is a new multi-
class classification based on TWSVM. This method evaluates all the training data in a “1-
versus-1-versus-rest” structure with ternary outputs {−1, 0,+1} and solves two quadratic
programming problems to obtain two non-parallel hyperplanes for classes +1 and −1, and
the remaining sample data is labeled by 0. Figure 1 illustrates a graphical representation of
the Twin-KSVC method. The Twin-KSVC seeks two nonparallel hyperplanes:

xT w1 + b1 = 0, xT w2 + b2 = 0. (9)

Throughout this paper, we suppose without loss of generality that there are three classes
Am1×n, Bm2×n, and Cm3×n marked by class labels +1, −1, and 0, respectively.

The Twin-KSVC classifiers are obtained by solving the following pair of QPPs:

min
w1, b1, q1, q2

1

2
‖Aw1 + e1b1‖2 + c1e

T
2 q1 + c2e

T
3 q2, (10)

subject to −(Bw1 + e2b1) + q1 ≥ e2,

−(Cw1 + e3b1) + q2 ≥ e3(1 − ε),

q1 ≥ 0, q2 ≥ 0,

and

min
w2, b2, q3, q4

1

2
‖Bw2 + e2b2‖2 + c3e

T
1 q3 + c4e

T
3 q4, (11)

subject to (Aw2 + e1b2) + q3 ≥ e1,

(Cw2 + e3b2) + q4 ≥ e3(1 − ε),

q3 ≥ 0, q4 ≥ 0.

Where c1, c2, c3, c4 ≥ 0 are regularization parameters, e1, e2, e3, and e4 are vectors of
ones with appropriate dimensions, q1, q2, q3, and q4 are slack variables, and ε is a positive
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Fig. 1 Geometric representation of Twin-KSVC method

parameter. By introducing the Lagrangian function, the dual formulations of (10) and (11)
can be represented as follows:

max
γ

eT
4 γ − 1

2γ T N(HT H)−1NT γ , (12)

subject to 0 ≤ γ ≤ F,

where H = [A e1], G = [B e2], M = [C e3], N = [G; M], F = [c1e2; c2e3] and
e4 = [e2; e3(1 − ε)].

max
α

eT
5 α − 1

2αT P (GT G)−1P T α, (13)

subject to 0 ≤ α ≤ F ∗,

where P = [H ; M], F ∗ = [c3e1; c4e3] and e5 = [e1; e3(1 − ε)]. Now by solving the
above quadratic problems, the separating hyperplanes (9) are given by the formula

[w1; b1] = −(HT H + δIn+1)
−1NT γ and [w2; b2] = (GT G + δIn+1)

−1P T α.

Where the term δIn+1 (δ is a small positive number) is introduced in the case when the
matrix is (nearly) singular.

2.4 K-support vector classification regression

K-SVCR, which is a new method of multi-class classification with ternary outputs
{−1, 0,+1}, proposed in [21]. This method introduces the support vector classification-
regression machine for K-class classification. This new machine evaluates all the training
data into a “1-versus-1-versus-rest” structure during the decomposing phase using a mixed

878



Least squares approach to K-SVCR multi-class classification with its applications

Fig. 2 Geometric representation of K-SVCR method

classification and regression support vector machine (SVM). Figure 2 illustrates the
K-SVCR method graphically.

K-SVCR can be formulated as a convex quadratic programming problem as follows:

min
w,b,ζ1,ζ2,φ,φ∗

1

2
‖w‖2 + c1(e

T
1 ζ1 + eT

2 ζ2) + c2e
T
3 (φ + φ∗) (14)

subject to Aw + e1b ≥ e1 − ζ1,

−(Bw + e2b) ≥ e2 − ζ2,

−δe3 − φ∗ ≤ Cw + e3b ≤ δe3 + φ,

ζ1, ζ2, φ, φ∗ ≥ 0.

Where c1 > 0 and c2 are the regularization parameters, ζ1, ζ2, φ and φ∗ are positive
slack variables, and e1, e2, and e3 are vectors of ones with proper dimensions. To avoid
overlapping, the positive parameter δ must be lower than 1.

The dual formulation of (14) can be expressed as

max
γ

qT γ − 1
2γ T Hγ , (15)

subject to 0 ≤ γ ≤ F,

where Q = [
AT −BT CT −CT

]
, H = QT Q, q = [

e1; e2; −δe3; −δe3
]
, and F =[

c1e1; c1e2; c2e3; c2e3
]
. By solving this quadratic box constraint optimization problem,

we can obtain the separating hyperplane f (x) = wT x + b.
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3 Least squares K-SVCR

In this section, we propose a least squares type of K-SVCR method, called LSK-SVCR, in
both linear and nonlinear cases. This algorithm evaluates the training points in a structure
“1-versus-1-versus-rest” with ternary outputs {−1, 0,+1}.

3.1 Linear case

We modify the primal problem (14) of K-SVCR as (16), which uses the square of the 2-
norm of slack variables ζ1, ζ2, φ and φ∗ instead of the 1-norm of the slack variables in
the objective function, and it uses equality constraints instead of inequality constraints in
K-SVCR. Then, the following minimization problem can be considered:

min
w,b,ζ1,ζ2,φ,φ∗

1

2
‖w‖2 + c1

(‖ζ1‖2 + ‖ζ2‖2) + c2‖φ‖2 + c3‖φ∗‖2 (16)

subject to e1 − (Aw + e1b) = ζ1,

e2 + (Bw + e2b) = ζ2,

Cw + e3b − δe3 = φ∗,
−Cw − e3b − δe3 = φ.

Where ζ1, ζ2, φ, and φ∗ are positive slack variables, c1, c2, and c3 are penalty parameters,
and the positive parameter δ is restricted to be lower than 1 to avoid overlapping.

In fact, the LSK-SVCR seeks for two parallel hyperplanes with maximum margin to
separate classes A and B and at the same time, the middle separating hyperplane defines a
δ-band that includes class C. Now by substituting the constraints into the objective function,
we have the following unconstrained QPP:

min
w,b

1

2
‖w‖2 + c1‖e1 − Aw − e1b‖ + c1‖e2 + Bw + e2b‖

+c2‖ − Cw − e3b − δe3‖2 + c3‖Cw + e3b − δe3‖. (17)

The objective function of problem (17) is convex, so for obtaining the optimal solution, we
set the gradient of this function with respect to w and b to zero. Then we have:

∂f

∂w
= w + 2c1(−AT )(e1 − Aw − e1b) + 2c1B

T (e2 + Bw + e2b)

+2c2(−CT )(−Cw − e3b − δe3) + 2c3C
T (Cw + e3b − δe3) = 0,

∂f

∂b
= 2c1(−eT

1 )(e1 − Aw − e1b) + 2c1e
T
2 (e2 + Bw + e2b)

+2c2(−eT
3 )(−Cw − e3b − δe3) + 2c3e

T
3 (Cw + e3b − δe3) = 0.

The above equation can be displayed in the matrix form as

2c1

[
AT A AT e1

eT
1 A eT

1 e1

] [
w

b

]
+ 2c1

[
BT B BT e2

eT
2 B eT

2 e2

] [
w

b

]
+ 2(c2 + c3)

[
CT C CT e3

eT
3 C eT

3 e3

] [
w

b

]

+
[

2c1(−AT )e1 + 2c1B
T e2 + 2c2C

T δe3 + 2c3C
T (−δe3)

2c1(−eT
1 e1) + 2c1e

T
2 e2 + 2c2δe

T
3 e3 + 2c3e

T
3 (−δe3)

]
= 0.
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Algorithm 1 Linear LSK-SVCR.

Input: A ∈ R
m1×n of class +1, B ∈ R

m2×n of class −1, and the rest of sample data
C ∈ R

m3×n of class 0.
1: Set E = [A e1], F = [B e2], and G = [C e3].
2: Select penalty parameters c1, c2, and c3 and parameter δ.
3: Determine parameters of hyperplane (w, b) by using (18).
4: Assign a data point to class +1, −1, or 0 by using the decision function (22).

Therefore w and b can be computed as follows:[
w

b

]
=

[
c1(A

T A + BT B) + (c2 + c3)C
T C c1(A

T e1 + BT e2) + (c2 + c3)C
T e3

c1(e
T
1 A + eT

2 B) + (c2 + c3)e
T
3 C c1(e

T
1 e1 + eT

2 e2) + (c2 + c3)e
T
3 e3

]−1

[
c1(−AT )e1 + c1B

T e2 + c2C
T δe3 + c3C

T (−δe3)

c1(−eT
1 e1) + c1e

T
2 e2 + c2δe

T
3 e3 + c3e

T
3 (−δe3)

]
.

We rewrite it as[
w

b

]
= −[

c1
[
AT eT

1

] [A e1]+c1
[
BT eT

2

] [B e2]+c2
[
CT eT

3

] [C e3]+c3
[
CT eT

3

] [C e3]
]−1

(
−c1

[
AT e1
m1

]
+ c1

[
BT e2
m2

]
+ c2δ

[
CT e3
m3

]
− c3δ

[
CT e3
m3

])
.

Denote E = [A e1], F = [B e2], and G = [C e3], then we can obtain the separating
hyperplane by solving a system of linear equations and the solution becomes as follows:[

w

b

]
= −

[
c1E

T E + c1F
T F + c2G

T G + c3G
T G

]−1
(18)

(−c1E
T e1 + c1F

T e2 + c2δG
T e3 − c3δG

T e3).

For clarity, the overall process for finding a label of a new sample is summarized in
Algorithm 1.

3.2 Nonlinear case

In real-world problems, a linear kernel cannot always separate most of the classification
tasks. To make the nonlinear types of problems separable, the samples are mapped to a
higher dimensional feature space. Thus, in this subsection, we extend the linear case of
LSK-SVCR to the nonlinear case. We would like to find the following kernel surface:

k(xT ,DT )w + b = 0,

where k(·, ·) is an appropriate kernel function and D = [A; B; C]. After a careful selection
of the kernel function, the primal problem of (14) becomes

min
w,b,ζ1,ζ2,φ,φ∗

1
2‖w‖2 + c1(‖ζ1‖2 + ‖ζ2‖2) + c2‖φ‖2 + c3‖φ∗‖2, (19)

subject to e1 − (k(A,DT )w + e1b) = ζ1,

e2 + (k(B,DT )w + e2b) = ζ2,

k(C,DT )w + e3b − δe3 = φ∗,
−k(C, DT )w − e3b − δe3 = φ.
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By substituting the constraints into the objective function, the problem takes the form

min
w,b

1
2‖w‖2 + c1‖e1 − k(A,DT )w − e1b‖ + c1‖e2 + k(B,DT )w + e2b‖
+c2‖ − k(C,DT )w − e3b − δe3‖2 + c3‖k(C,DT )w + e3b − δe3‖. (20)

Similarly to the linear case, the solution of this convex optimization problem can be derived
as follows: [

w

b

]
= −

[
c1M

T M + c1N
T N + c2P

T P + c3P
T P

]−1

(−c1M
T e1 + c1N

T e2 + c2δP
T e3 − c3δP

T e3),

where M = [k(A,DT ) e1] ∈ Rm1×(m+1), N = [k(B, DT ) e2] ∈ Rm2×(m+1), P =
[k(C, DT ) e3] ∈ Rm3×(m+1), D = [A; B; C] and m = m1 + m2 + m3.

The solution to the nonlinear case requires the inversion of a matrix of size (m + 1) ×
(m + 1). In general, a matrix has a special form if the number of features (nF ) is much less
than the number of samples (nS), i.e., nS � nF ; in this case, the inverse matrix can be
inverted by inverting a smaller nF ×nF matrix by using the Sherman–Morrison–Woodbury
(SMW) [30] formula. Therefore, in this paper, to reduce the computational cost, the SMW
formula is applied.

More concretely, the SMW formula gives a convenient expression for the inverse matrix
of A + UV T , where A ∈ Rn×n and U, V ∈ Rn×K , as follows:

(A + UV T )−1 = A−1 − A−1U(IK + V T A−1U)−1V T A−1.

Herein, A and IK + V T A−1U are nonsingular matrices.
By using this formula, we can reduce the computational cost and rewrite the above

formula for the hyperplane as follows:

[
w

b

]
= −

(
Z − ZMT

(
1

c1
Im1 + MZMT

)−1

MZ

) (
− c1M

T e1 (21)

+c1N
T e2 + (c2 − c3)δP

T e3

)
,

where Z = (
c1N

T N + (c2 + c3)P
T P

)−1. When we apply SMW formula on Z again, then
we have

Z = 1

c2 + c3

(
Y − YNT

(
c2 + c3

c1
Im2 + NYNT

)−1

NY

)
,

where Y = (P T P )−1. Due to possible ill-conditioning of P T P , we use a regularization
term αI , (α > 0 and small enough). Then we have Y = 1

α
(Im3 − P T (αI + PP T )−1P) .

We now give an explicit statement of our nonlinear LSK-SVCR in Algorithm 2.

3.3 Decision rule

The multi-class classification techniques evaluate all training points into the “1-versus-
1-versus-rest” structure with ternary outputs {−1, 0,+1}. For a new testing point xi , we
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Algorithm 2 Non linear LSK-SVCR.

Input: A ∈ R
m1×n of class +1, B ∈ R

m2×n of class −1, the rest of sample data C ∈ R
m3×n

of class 0, and D = [A; B; C].
1: Choose a kernel function K .
2: Set M = [k(A, DT ) e1] ∈ Rm1×(m+1), N = [k(B, DT ) e2] ∈ Rm2×(m+1), P =

[k(C,DT ) e3] ∈ Rm3×(m+1).
3: Select parameters c1, c2, c3, δ and also the parameter of the Gaussian kernel γ .
4: Determine parameters of hyperplane (w, b) by using (21).
5: Assign a data point to class +1, −1, or 0 by using the decision function (23).

predict its class label by the following decision functions: For linear Twin-KSVC :

f (xi) =

⎧⎪⎨
⎪⎩

+1, xT
i w1 + b1 > −1 + ε,

−1, xT
i w2 + b2 < 1 − ε,

0, otherwise.

For nonlinear Twin-KSVC :

f (xi) =

⎧⎪⎨
⎪⎩

+1, K(xT
i ,DT )w1 + b1 > −1 + ε,

−1, K(xT
i ,DT )w2 + b2 < 1 − ε,

0, otherwise.

For linear K-SVCR and LSK-SVCR:

f (xi) =

⎧⎪⎨
⎪⎩

+1, xT
i w + b ≥ δ,

−1, xT
i w + b ≤ −δ,

0, otherwise.

(22)

For nonlinear K-SVCR and LSK-SVCR:

f (xi) =

⎧⎪⎨
⎪⎩

+1, k(xT
i , DT )w + b ≥ δ,

−1, k(xT
i , DT )w + b ≤ −δ,

0, otherwise.

(23)

For k-class classification problem, the “1-versus-1-versus-rest” constructs K(K−1)
2 clas-

sifiers in total, and for decision about final class label of testing sample xi we get a total
vote of each class. So the given testing sample will be assigned to the class label that gets
the most votes (i.e., max-voting rule).

3.4 Time complexity

In this subsection, we discuss the time complexity of Twin-KSVC, K-SVCR, and LSK-
SVCR. In three-class classification problems, suppose the total size of each class is equal to
m/3 (where m = m1 + m2 + m3).

In the K-SVCR problem, samples in the third class (i.e. C) are used twice in the
constraints so this problem has 4m/3 inequality constraints in total.

Twin-KSVC requires solving two box-constrained QPPs, each of them in 2m/3 vari-
ables.
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The computational complexity of K-SVCR is the complexity of solving one convex
quadratic problem in dimension n + 1 and with 4m/3 constraints, where n is the dimension
of the input space.

In our proposed methods for the linear LSK-SVCR, we need to compute only one square
system of linear equation of size n + 1.

In nonlinear LSK-SVCR, the inverse of a matrix of size (m + 1) × (m + 1) must be
computed. The Sherman–Morrison–Woodbury (SMW) formula reduces the computational
cost by finding the inverses of three matrices of smaller sizes m1 × m1, m2 × m2, and
m3 × m3.

4 Numerical experiments

To assess the performance of the proposed method, we apply LSK-SVCR on several UCI
benchmark data sets [31] as well as handwriting data set and MC-NDC and compare our
method with the K-SVCR and Twin-KSVC. All experiments were carried out in Matlab
2019b on a PC with Intel(R) CORE(TM) i7-7700HQ CPU@2.80GHz machine with 16
GB of RAM. For solving the dual problems of K-SVCR and Twin-KSVC, we used the
quadprog.m function in Matlab. Also, we used 5-fold cross-validation to assess the per-
formance of the algorithms in the aspect of accuracy and training time. Note that in 5-fold
cross-validation, the data set is split randomly into five almost equal-size subsets, and one
of them is reserved as a test set and the others play the role of a training set. This process is
repeated five times, and the average accuracy of five testing results was used as the classi-
fication performance measure. Notice that the accuracy is defined as the number of correct
predictions divided by the total number of predictions; to display it into a percentage we
multiplied it by 100.

4.1 Parameter selection

The classification accuracy depends on the choice of parameters. Figure 3a and b show
the influence of penalty and kernel parameters on the classification accuracy of K-SVCR
and LSK-SVCR, respectively, for the Glass data set. In our computations for K-SVCR and

Fig. 3 Effect of penalty and kernel parameters on accuracy (K-SVCR and LSK-SVCR) for Glass data
(ε = 0.5)
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Fig. 4 Effect of epsilon parameter on accuracy of LSK-SVCR for Iris data set

LSK-SVCR, we set c1 = c2 and c1 = c2 = c3, respectively and ε = 0.5. Figure 4 shows
the effect of ε parameter on the classification accuracy of LSK-SVCR for the Iris data set.
Fig. 3 and Fig. 4 illustrate that the accuracy highly depends on the parameters. Therefore
choosing the parameters is very important for the performance of classifiers. In other words,
the classification performance is a function of parameter selection in these algorithms and
we adopted the grid search method to choose the optimal values of the parameters [16, 32].

In the experiments, we opt for the Gaussian kernel function k(xi, xj ) = exp
(−‖xi−xj ‖2

γ 2

)
.

In this paper, to reduce the computational cost of the parameter selection, we set the reg-
ularization parameter values c1 = c3 and c2 = c4 in Twin-KSVC and the optimal value
for c1, c2, c3, c4, were selected from the set {2i |i = −8,−7, . . . , 7, 8}, the parameters of
the Gaussian kernel γ were selected from the set {2i |i = −8, −7, . . . , 7, 8}, parameter δ

in K-SVCR and LSK-SVCR was chosen from set {0.1, 0.3, . . . , 0.9} and parameter ε in
Twin-KSVC was selected from {0.1, 0.2, 0.3, 0.4}.

4.2 Results comparisons and discussion for UCI data sets

In this subsection, to compare the performance of K-SVCR, Twin-KSVC, and LSK-SVCR,
we ran these algorithms on several benchmark data sets from the UCI machine learning
repository [31]; they are described in Table 1.
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Table 1 The characterization of data sets

Data set Number of instances Number of attributes Number of classes

Iris 150 4 3

Balance 625 4 3

Soybean 47 35 4

Wine 178 13 3

Breast Tissue 106 10 4

Hayes-Roth 132 5 3

Ecoli 327 7 5

Teaching 151 5 3

Thyroid 215 5 3

Car 1728 6 4

Glass 214 9 6

Satimage 6435 36 6

PageBlock 5473 10 5

Contraceptive 1473 9 3

To analyze the performance of the Twin-KSVC, K-SVCR, and LSK-SVCR algorithms,
Tables 2 and 3 show a comparison of classification accuracy and training time, respectively
for Twin-KSVC, K-SVCR, and LSK-SVCR on several data sets. The bold value shows the
best accuracy and time of algorithms. These tables indicate that for the Iris data set, the
performance of LSK-SVCR (accuracy: 98.67, time: 0.03 s) was better than Twin-KSVC
(accuracy: 94.46, time: 10.15 s) and K-SVCR (accuracy: 96.54, time: 1.72 s), so our pro-
posed method was more accurate and faster than original K-SVCR and also Twin-KSVC.
A similar discussion can be made for Balance, Soyabean, Wine, Brest Tissue, Hayes-Roth,

Table 2 Classification accuracy of Twin-KSVC, K-SVCR, and LSK-SVCR with Gaussian kernel

Data set Twin-KSVC K-SVCR LSK-SVCR

Acc ± std Acc ± std Acc ± std

Iris 94.46 ± 5.79 96.54 ± 2.04 98.67 ± 1.82

Balance 95.52 ± 1.58 94.21 ± 2.04 94.89 ± 2.01

Soybean 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Wine 97.12 ± 3.14 98.81 ± 2.51 99.45 ± 1.24

Breast Tissue 46.49 ± 16.65 47.06 ± 9.73 46.59 ± 15.39

Hayes-Roth 59.94 ± 10.05 46.33 ± 12.86 75.72 ± 8.81

Ecoli 84.26 ± 5.13 77.36 ± 4.28 89.01 ± 5.89

Teaching 70.91 ± 6.93 63.68± 5.58 70.19 ± 7.46

Thyroid 91.62± 5.57 83.25 ± 6.02 93.49 ± 2.55

Car 72.80 ± 4.57 77.55 ± 5.28 97.85 ± 2.08

Glass 69.64 ± 5.27 72.41 ± 5.40 73.46 ± 4.88

Satimage 85.83 ± 6.59 80.04 ± 5.09 90.68 ± 5.42

PageBlock 79.09 ± 6.28 90.57 ± 6.14 93.29 ± 5.92

Contraceptive 39.91 ± 4.70 45.82 ± 4.26 54.85 ± 5.64
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Table 3 Training time of Twin-KSVC, K-SVCR, and LSK-SVCR with Gaussian kernel

Data set Twin-KSVC K-SVCR LSK-SVCR

Time(s) Time(s) Time(s)

Iris 10.15 1.72 0.03

Balance 200.31 3.39 0.57

Soybean 10.92 1.44 0.07

Wine 10.91 0.27 0.03

Breast Tissue 13.13 1.37 0.09

Hayes-Roth 15.83 0.42 0.06

Ecoli 22.38 3.71 0.66

Teaching 10.07 0.32 0.04

Thyroid 8.69 0.60 0.09

Car 336.95 45.28 15.79

Glass 44.81 3.03 0.26

Satimage 16277.32 7148.50 1247.40

PageBlock 4598.50 8990.50 1496.10

Contraceptive 568.55 23.12 6.61

Ecoli, Teaching, and Thyroid, Car, Glass, Satimage, PageBlock, and Contraceptive data
sets. The analysis of experimental results on 14 UCI data sets revealed that the performance
of LSK-SVCR was better than the original K-SVCR and Twin-KSVC. We should note that
for Balance, Brest Tissue, and Teaching, although the other methods are a bit more accurate
than LSK-SVCR, the LSK-SVCR is always faster. Therefore, according to the experimen-
tal results in Tables 2 and 3, LSK-SVCR not only yielded higher classification accuracy but
also had lower computational times.

4.3 USPS handwriting data set and discussion

The US Postal (USPS) data set, which is a handwritten digit recognition of 10 categories,
contains 16 × 16 gray-level images from 0 to 9. The USPS is derived from a project on
recognizing handwritten digits on envelopes [33]. Figure 5 shows some samples of this data
set about digits 0, 3, 9, 2 in each row, respectively.

We want to classify some digits and compute accuracy and running time, here for exam-
ple 0–vs–1–vs–2 illustrate classifying three classes 0 , 1, and 2. The bold values show the
best accuracy and running time of the algorithms.

Fig. 5 Examples of digits 0, 3, 9,
and 2 from the USPS data set
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Table 4 Accuracy comparison on USPS data set with linear classifier

Data Twin-KSVC K-SVCR LSK-SVCR

Acc ± std Acc ± std Acc ± std

0-vs-1-vs-2 51.02± 1.70 65.52±0.73 98.13 ± 0.38

4-vs-6-vs-8 48.90±0.46 62.86± 2.08 96.49 ± 0.68

5-vs-7-vs-9 49.46 ± 0.91 65.35±2.08 96.43 ± 0.83

1-vs-3-vs-5 68.38± 1.25 70.34± 2.77 96.79 ± 0.91

Table 4 shows that our proposed method achieves better classification accuracy than the
other two algorithms in all cases. Also from Table 5, we can see that LSK-SVCR costs the
shortest training time among all algorithms.

4.4 MC-NDC data sets

In this subsection, we deeper analyze the advantage of the LSK-SVCR in the aspect of
training time. Also, a reduced version of LSK-SVCR is proposed here.

The NDC data sets are generated by using David Musicants NDC Data Generator [34]
and are normally distributed. Recently, Moosaei et al. proposed an extended version of it
with an arbitrary number of samples, features, and classes; it was termed as MC-NDC [27].
Here we generated several 3 class data sets by using this code so that the size of samples
increased from 1000 to 100000 with a fixed 32 number of features.

In our experiments, the parameters of all algorithms were fixed in advance (c1 = c2 =
c3 = c4 = 1, γ = 0.1, ε = 0.1, and δ = 0.1). For the MC-NDC data sets which have more
than 50000 samples, we used rectangular kernel [26] with 0.1% present of total data points.
Table 6 shows the comparison of computing times for all three methods.

From Table 6, we see that when the number of samples is increasing, the Twin-KSVC
and K-SVCR cannot solve the problem due to occurring out-of-memory error or very high
computational time, while our proposed method works very well. So it is powerful to face
high-dimensional data sets.

4.5 Statistical analysis

To further analyze the performance of the Twin-KSVC, K-SVCR, and LSK-SVCR algo-
rithms on the UCI data set, this paper employs the Friedman test [35]. The Friedman test,

Table 5 Training time on USPS data set with linear classifier

Data Twin-KSVC K-SVCR LSK-SVCR

Time(s) Time(s) Time(s)

0-vs-1-vs-2 1799.54 261.04 2.69

4-vs-6-vs-8 5292.47 86.34 1.09

5-vs-7-vs-9 460.72 95.45 0.95

1-vs-3-vs-5 1135.12 124.50 1.45
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Table 6 Comparison training times of Twin-KSVC, K-SVCR, and LSK-SVCR on MC-NDC data sets with
Gaussian kernel

Data set Twin-KSVC K-SVCR LSK-SVCR

Time(s) Time(s) Time(s)

1000 × 32 2.52 23.89 .05

10000 × 32 138.39 b 1.99

50000 × 32a c c 143.92

70000 × 32a c c 410.59

100000 × 32a c c 1273.40

a The rectangular kernel with a reduction rate of 0.1% of data. b Experiment was stopped due to very high
computing time. c Experiments terminated as the system was out of memory

which is commonly used by researchers, ranks algorithms for each data set separately such
that the best performing algorithm gets rank 1, and the second-best performing algorithm
gets rank 2. In case two algorithms perform similarly, the average ranks are assigned to them
[13, 36, 37]. The Friedman test is calculated as:

χ2
F = 12N

k(k+1)

[ ∑k
j=1 R2

j − k(k+1)2

4

]
,

where Rj = 1
N

∑
i r

j
i , k is the total number of algorithms, N is the number of data sets used

in the study, and r
j
i denotes the rank of the j -th classifier of k algorithms on the i-th data set.

The Friedman’s χ2
F is undesirably conservative and in [38] it is proposed a better statistic

as follows:
Ff = (N−1)χ2

F

N(k−1)−χ2
F

,

which is distributed according to the F -distribution with (k − 1, (k − 1)(N − 1)) degrees of
freedom.

Table 7 Rank of accuracy for Twin-KSVC, K-SVCR, and LSK-SVCR with Gaussian kernel

Data set Twin-KSVC K-SVCR LSK-SVCR

Iris 3 2 1

Balance 1 3 2

Soybean 2 2 2

Wine 3 2 1

Breast Tissue 3 1 2

Hayes-Roth 2 3 1

Ecoli 3 3 1

Teaching 1 3 2

Thyroid 2 3 1

Car 3 2 1

Glass 3 2 1

Satimage 2 3 1

PageBlock 3 2 1

Contraceptive 3 2 1

Average rank 2.42 2.35 1.28
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Table 8 Rank of time for Twin-KSVC, K-SVCR, and LSK-SVCR with Gaussian kernel

Data set Twin-KSVC K-SVCR LSK-SVCR

Iris 3 2 1

Balance 3 2 1

Soybean 3 2 1

Wine 3 2 1

Breast Tissue 3 2 1

Hayes-Roth 3 2 1

Ecoli 3 2 1

Teaching 3 2 1

Thyroid 3 2 1

Car 3 2 1

Glass 3 2 1

Satimage 3 2 1

PageBlock 2 3 1

Contraceptive 3 2 1

Average rank 2.92 2.07 1

Table 7 shows the rank of each algorithm in terms of classification accuracy for each data
set. The bold value shows the best average rank of algorithms.

Now the χ2
F and Ff are calculated as follows:

χ2
F = 12×14

3(3+1)

[
(2.42)2 + (2.35)2 + (1.28)2 − 3(3+1)2

4

] = 14.24,

Ff = (14−1)×14.24
14(3−1)−14.24 = 13.45.

With our three algorithms and 14 UCI data sets for the nonlinear case, Ff is distributed
according to the F -distribution with ((k−1), (k−1)(N −1)) = (2, 36) degrees of freedom.
The critical values of F(2, 26) are F(2, 26) = 3.37 and F(2, 26) = 5.53 for α = 0.05
and α = 0.01, respectively. Table 7 and the critical value of F(2, 26) when α = 0.05 and
α = 0.01 show a significant difference between the performance of the algorithms in the
aspect of classification accuracy. Regarding this point that the LSK-SVCR algorithm has the
highest Friedman score (lowest average rank) among all the algorithms and the value of Ff

is much larger than the critical values, we can conclude that there is a significant difference
between these three algorithms and therefore the LSK-SVCR algorithm is more accurate.

For Table 8, χ2
F and Ff are calculated as follows:

χ2
F = 12×14

3(3+1)

[
(1)2 + (2.07)2 + (2.92)2 − 3(3+1)2

4

] = 25.35,

Ff = (14−1)×25.35
14(3−1)−25.35 = 124.35.

Given three algorithms and 14 UCI data sets for the non linear case, Ff is distributed
according to the F -distribution with ((k−1), (k−1)(N −1)) = (2, 26) degrees of freedom.
The critical values of F(2, 26) are F(2, 26) = 3.37 and F(2, 26) = 5.53 for α = 0.05
and α = 0.01, respectively. Table 8 and the critical value of F(2, 26) when α = 0.05 and
α = 0.01 show that there is a very high significant difference between the performance
of the algorithms in the aspect of training time. Regarding this point that the LSK-SVCR
algorithm has the highest Friedman score (lowest average rank) among all the algorithms
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and the values of Ff are too much larger than the critical values, we can conclude that
there is the significant difference between these three algorithms. Therefore the LSK-SVCR
algorithm is the fastest in terms of learning speed.

5 Conclusion

The support vector classification-regression machine for K-class classification (K-SVCR)
is a novel multi-class method. In this paper, we proposed a least squares version of K-SVCR
named LSK-SVCR for multi-class classification. Our proposed method leads to solving a
simple system of linear equations instead of solving a QPP in K-SVCR. The LSK-SVCR,
similar to K-SVCR and Twin-KSVC, evaluates all training data into the “1-versus-a-versus-
rest” structure with ternary outputs {−1, 0,+1}.

The computational results performed on several UCI data sets, the USPS handwriting
data set, and MC-NDC data sets demonstrate that, compared to K-SVCR and Twin-KSVC,
the proposed LSK-SVCR has better efficiency in terms of accuracy and training time.
Therefore the proposed method can be used for solving multi-class classification prob-
lems, involving disease detection, handwritten digits recognition and many other real-world
problems.

As future work, an adaptation of the proposed method can be considered to obtain sparse
solutions for multi-class classification problems.
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