
https://doi.org/10.1007/s10472-021-09744-4

Neighborhood density information in clustering

Mujahid N. Syed1

Accepted: 6 April 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Density Based Clustering (DBC) methods are capable of identifying arbitrary shaped data
clusters in the presence of noise. DBC methods are based on the notion of local neighbor-
hood density estimation. A major drawback of DBC methods is their poor performance in
high-dimensions. In this work, a novel DBC method that performs well in high-dimensions
is presented. The novelty of the proposed method can be summed up as follows: a hybrid
first-second order optimization algorithm for identifying high-density data points; an adap-
tive scan radius for identifying reachable points. Theoretical results on the validity of the
proposed method are presented in this work. The effectiveness and efficiency of the pro-
posed approach are illustrated via rigorous experimental evaluations. The proposed method
is compared with the well known DBC methods on synthetic and real data from the lit-
erature. Both internal and external cluster validation measures are used to evaluate the
performance of the proposed method.
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1 Introduction

Arguably, the most popular and oldest data clustering algorithm is the K-means [1–3]. K-
means algorithm partitions the given data points into exactlyK spherical clusters. Although,
K-means algorithm is predominantly known in the data clustering community, it has the
following inherent disadvantages: The value of K must be supplied as an input to the algo-
rithm. The algorithm’s cluster definition is limited to the spherical shapes. The algorithm
cannot differentiate actual data points from the noise (unrelated/erroneous data points) in
the data. Nevertheless, there has been many enhancements proposed in the literature ([3, 4])
of clustering that tries to overcome the above disadvantages.
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Specifically, Density Based Clustering (DBC) methods overcome the above disadvan-
tages [5, 6]. One of the seminal DBC methods is Density Based Spatial Clustering of
Applications with Noise (DBSCAN) [7]. DBSCAN groups a set of contiguous points with
sufficient neighborhood density, termed as reachable points, into one cluster (see [7] for
the detailed description). Points that lie in low neighborhood density regions are marked
as noise. The definition of reachable points depends upon two critical parameters, namely:
scan radius (ε) and minimum number of points to form a cluster point (MinP ts).

A discussion on the performance of DBSCAN and its sensitivity w.r.t the two parameters
is presented in [8]. To the best of our knowledge, there exists no automated mechanism
to estimate the scan radius in higher dimensions. Although the radius estimation in two or
three dimensions is manageable via manual, graphical and empirical approaches like nearest
neighbor approach [9]; its estimation in the higher dimensions is still an open question for
DBSCAN. In addition to that, the non-adaptable nature of the scan radius in the presence
of low dimensional clusters embedded in higher dimensions and varying densities results in
the poor performance of DBSCAN.

In this paper, an optimization based DBC method is proposed. The method can iden-
tify arbitrarily shaped separable clusters in the higher dimensions. By separable clusters, it
is assumed that the clusters are disconnected or non-overlapping. The key novelty of the
method is that it provides a scan radius estimation mechanism in any dimension. The rest
of the paper is organized as follows. Section 2 reviews the related work related to DBC.
Section 3 introduces the concept of neighborhood density based information for convex
clusters. In Section 4 the concept is extended for the case of arbitrarily shaped separable
clusters, and an algorithm that implements the enhancement is presented. Numerical exper-
iments that illustrate the performance of the proposed algorithm on 2 & 3 dimensional data
sets are presented in Section 5. Section 6 depicts the performance of the proposed algo-
rithm in the higher dimensions (≥ 3). Finally, Section 7 concludes the paper by highlighting
advantages and disadvantages of the proposed algorithm.

2 Related work on DBC

At Knowledge Discovery and Data Mining (KDD) conference in 2014, DBSCAN received
“the test of time” award. Since its inception, numerous DBC methods were inspired on the
rationale of DBSCAN. Some of the well know extensions or related works of DBSCAN
are presented as follows. Generalized DBSCAN (GDBSCAN) method is one of the earliest
extension of DBSCAN that generalizes the definition of neighborhood and distance mea-
sure [10]. The generalization proposed in GDBSCAN facilitates clustering of data points
and spatial objects according to their (spatial and non-spatial) attributes. Ordering Points
To Identify the Clustering Structure (OPTICS) method is based on the ideas similar to
DBSCAN [11]. However, OPTICS is capable of discovering clusters of varying density.

A comprehensive list of works on DBC is out of scope for this paper. However, few
density based well known methods that highlights the usage of density criterion in clus-
ter identification is surveyed. A generalized projection based clustering method known as
arbitrarily ORiented projected CLUSter generation (ORCLUS) was proposed in [12]. For
a given high dimensional data, ORCLUS finds clusters in lower dimensional subspace via
projection mechanism. Mixture model based approaches presented in [13, 14] illustrate the
usage of Gaussian density approach. In [15] a density based clustering was proposed that
can handle multiple levels of cluster densities. The approach was based on nearest neighbor
and shared nearest neighbor density information of data points. A nonparametric estimation
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of density in identifying clusters was implemented in [16, 17]. Moreover, the idea of assign-
ing high density points that have large distances among them as cluster centers was depicted
in [18]. A hybrid approach involving K-means and expectation maximization concepts can
be seen in [19]. In addition to that, see [20, 21] and the references there in for an overview
of the density based approaches in clustering. In the next section, a density function whose
maxima corresponds to density peaks is proposed.

3 Neighborhood density information & convex clusters

Without loss of generality, assume that there are N data points in n dimensions. Let yp =
[yp,1, . . . , yp,n]T be a column vector representing the pth data point, ∀ p = 1, . . . , N .
Let Y = [y1, . . . , yN ] be the matrix representing the data. Assume that the N data points
belong to some K unknown but separable clusters. In order to build the concept, it is
assumed that the clusters are convex, and can be represented by cluster centers. Let x be one
of the cluster center, and p be any data point. The density information provided by the ith

coordinate of the cluster center, about the ith coordinate of the data point w.r.t some window
(σ > 0) can be measured by the Parzen window estimate kσ () : R �→ R, where kσ () is a
profile function. The cumulative density information between the cluster center and the data
point can be defined as the product of individual coordinate information. The neighborhood
density information of the data provided by the cluster center can be defined as:

I(x,Y, σ ) = 1

N

N∑

p=1

(
n∏

i=1

kσ (ypi, xi)

)
, (1)

where I(x,Y, σ ) is the average information of data Y at the cluster center estimate x based
on the profile function kσ (). The information function given in Equation (1) is a generic
function that appears very often in the density based analysis.

A profile function with appropriate properties should be selected to quantify the mea-
sure. One of the criteria to select the profile function depends upon the cluster structure
(spherical, hyperplane, etc.). Properties like symmetry, smoothness, robustness and con-
cavity, which provides mathematical advantage, should also be considered in selecting the
profile function. In this work, it is assumed that the profile function satisfies the following
properties: (1) 0 ≤ kσ (ypi, xi) ≤ 1 ∀ σ, i, p , and (2) If |ypi − xi | ≤ |yqi − xi |, then
kσ (ypi, xi) ≤ kσ (yqi, xi) ∀ σ, i, p, q; where i = 1, . . . , n and p, q = 1, . . . , N .

The former is a normalization property that results in I(x,Y, σ ) ∈ [0, 1]. A value of
0 implies no density information, and a value of 1 implies the maximum information. The
latter inequality states that the cluster center will have higher information about a point
closer to it, than compared to a farther point. In this work, a Gaussian kernel function is
used as the profile function, i.e.

I(x,Y, σ ) = 1

N

N∑

p=1

(
n∏

i=1

e
−(ypi−xi )

2

2σ2

)
. (2)

The above function not only satisfies the above two properties, but also simultaneously
covers the three desirable properties: smoothness, robustness and concavity. That is, the
resulting I(x,Y, σ ) function with the Gaussian kernel is infinitely differentiable, hence it
is smooth. The shape of the kernel function provides robustness. Concavity is not achieved
in the absolute sense. Nevertheless, it can be achieved under certain localization restric-
tions. Following theorems state and prove the robustness and concavity of the neighborhood
information function.
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Theorem 3.1 Let � = max{|ypi −yqi | | i = 1, . . . , n; p, q = 1, . . . , N; and p <

q}. Let conv(Y ) be the convex hull of Y . If σ >
√

n�, then I(x,Y, σ ) is concave over
x ∈ conv(Y ).

Proof for Theorem 3.1: WLOG, let Fσ,Y(x) = −I(x,Y, σ ). It is equivalent to show that
Fσ,Y(x) is convex when σ ≥ √

n�. The elements of gradient of Fσ,Y(x) are:

∇Fσ,Y(x)j = − 1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2
(ypj −xj )

σ 2

∀ j = 1, . . . , n. (3)

The elements of Hessian of Fσ,Y(x) are:

∇2Fσ,Y(x)jr = −1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2
(ypj −xj )

σ 2
(ypr−xr )

σ 2

∀ j 	= r = 1, . . . , n. (4a)

∇2Fσ,Y(x)jj = 1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2

(
σ 2−(ypj −xj )2

σ 4

)

∀ j = 1, . . . , n. (4b)

Consider the following:

|∇2Fσ,Y(x)jr | = 1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2
|ypj −xj |

σ 2
|ypr−xr |

σ 2

∀ j 	= r = 1, . . . , n. (5)

Since x ∈ conv(Y ) and from the definition of �, the following inequalities hold:

|∇2Fσ,Y(x)jr | ≤ 1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2 �

σ 2
�

σ 2

∀ j 	= r = 1, . . . , n. (6)

and

∇2Fσ,Y(x)jj ≥ 1
N

∑N
p=1

∏n
i=1 e

−(ypi−xi )
2

2σ2
(

1
σ 2 − �2

σ 4

)

∀ j = 1, . . . , n. (7)

Since σ ≥ √
n� for j = 1, . . . , n, it implies that :

∇2Fσ,Y(x)jj > 0. (8)

Now consider the following:

∇2Fσ,Y(x)jj − ∑n
r=1,r 	=j |∇2Fσ,Y(x)jr |

≥ 1
N

∑N
p=1

∏n
i=1 e

−(ypj −xi )
2

2σ2 1
σ 2

(
1 − n �2

σ 2

)
(9)

Using σ ≥ √
n� for j = 1, . . . , n in the above equation, we get:

∇2Fσ,Y(x)jj −
n∑

r=1,r 	=j

|∇2Fσ,Y(x)jr | ≥ 0. (10)

Thus, using result from Equations (8) and (10), and from the Gershgorin disc theorem it
can be stated that the Hessian is PSD, which implies that Fσ,Y(x) is convex.
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Theorem 3.2 Let σ > 0 be the kernel width. A cluster center x with kernel width σ provides
β level information about a point p if and only if the Euclidean distance between the point

and the cluster center is equal to σ
√
2 ln( 1β ), where β ∈ (0, 1] is the information level.

Proof for Theorem 3.2: The proof follows immediately from the following observation:

I(x, yp, σ ) =
n∏

i=1

e
−(ypi−xi )

2

2σ2 = e
−||yp−x||2

2σ2 . (11)

Thus, I(x, yp, σ ) = β if and only if ||yp − x|| = σ
√
2 ln( 1β ).

Remark 3.3 Let σ > 0 be the kernel width, and α −→ 0 be a resolution parameter. A cluster
center x at kernel width σ does not provide any information about a point x if and only if

the Euclidean distance between the point and the cluster center is greater than σ

√
2 ln( 1

α
).

Proof for Remark 3.3: The proof follows immediately from Theorem 3.2. That is:

I(x, yp, σ ) ≤ α if and only if ||yp − x|| ≥ σ

√
2 ln( 1

α
).

Remark 3.4 LetC be a set of points that belong to one cluster, and�C = max{|ypi−yqi | |
i = 1, . . . , n; p, q ∈ C}. Let α −→ 0 be a resolution parameter. If all the points that

do not belong to C are σ

√
2 ln( 1

α
) far away from C’s cluster center and σ >

√
n�C , then

I(x,Y, σ ) is concave over x ∈ conv(C).

Proof for Remark 3.4: W.L.O.G, let r be an arbitrary cluster. Let Cr ⊆ Y be the set
of points that belongs to the cluster. The proof follows immediately from the following
representation:

I(x1,Y, σ ) = 1
N

∑
p∈Cr

(
∏n

i=1 e
−(ypi−xi )

2

2σ2

)

+ 1
N

∑
p/∈Cr

(
∏n

i=1 e
−(ypi−xi )

2

2σ2

)
. (12)

From Remark 3.3 the second term in the above representation can be discarded. Now,
any point in the cluster belongs to the convex hull of the cluster points. Thus, from Theorem
3.1 the result follows.

Remark 3.3 depicts the robustness of the neighborhood function. In the presence of noise,
the robustness property assists in obtaining better clustering results by ignoring the noisy
data points. Furthermore, in any clustering method, the points from one cluster will typically
have no effect on the other clusters. Thus, robustness property is very suitable not only for
the noisy data, but also for the typical clustering problems. Remark 3.4 highlights that if
the search for a cluster center is started from a point closer to the cluster center, then the
information function behaves as a concave function. This in turn implies that the second
order optimization methods can be used to speed up the search process. Next, the extension
of the above results to non-convex cluster shapes will be presented.
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4 Proposed algorithm for non-convex clusters

If a contiguous group of points is considered as a single cluster, then the results from
Section 3 can be extended to handle the non-convex clusters. The following parts of
this section describes the proposed Neighborhood Information Cluster Estimation (NICE)
algorithm:

4.1 NICEmain phases

Zoom-in phase The key task in this phase is to identify a point with high local density. It is
assumed that a neighborhood of data points with high local density will have high probabil-
ity to be in a cluster. A spherical neighborhood is assumed here, and its size is proportional
to the kernel width σ . At the beginning of this phase, neighborhood size is very large (∝ �).
As the algorithm proceeds, the neighborhood size is reduced until it reaches a threshold
(τ1). The idea is to search for the neighborhood starting from global level, and terminating
at local level (zooming in). This phase exploits the properties presented in Remarks 3.3 and
3.4 to identify a densest neighborhood. The center of such neighborhood is considered as
attractor (a densest point).

Zoom-out phase The key tasks of this phase is to identify prime neighborhood W around
the attractor, and the corresponding prime kernel width δ∗. The neighborhood is searched
from the attractor by increasing the kernel width from τ1 up to τ2 (zooming out). The prime
neighborhood is the smallest spherical neighborhood around the attractor containing at least
η2 data points at ξ1 information level. The non-existence of the prime neighborhood ter-
minates the algorithm. On the contrary, if the prime neighborhood exists, then the explore
phase is executed.

Explore phase The key task of this phase is to identify all the points that belong to a
cluster. The idea is to identify all the reachable points from the prime neighborhood using
DBSCAN. Identifying reachable points from any point require the information of scan
radius (rk) and minimum points (η3). The scan radius is estimated using ξ2 and δ∗ based on
Remark 3.3. Once the scan radius is estimated, data points that are reachable from all the
points inside the prime neighborhood are collected into contiguous set Zk .

Update phase If the contiguous set has enough cardinality (η1), then the set is archived
as a cluster. The data points belonging to the contiguous set are removed from the input
data, and the algorithm is repeated on the updated input data. If the contiguous set does not
have enough cardinality, then the algorithm terminates. This termination criterion eliminates
search over low density points, which are potentially noise.

4.2 NICE implementation

The proposed implementation of the NICE algorithm identifies the clusters sequentially.
Algorithm 1 presents the details of the proposed idea. In the algorithm, l represents the
iteration counter for each cluster and it is re-initialized to zero before the search of a new
cluster. Similarly, any previous notation with index (l) implies that its usage is related to
the current cluster only. For example: x(l) is the estimated densest point at iteration l for the
current cluster.
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Algorithm 1: The proposed algorithm.

input : Y ∈ R
n×N

output: k∗, Y∗
t ∀t = 1, . . . , k∗

Initialize: S = Y, k = 1;
while S 	= ∅ do

Zoom In Phase:
Set: l = 0, � = max{|ypi − yqi | | ∀i = 1, . . . , n; yp, yq ∈ S};
Set: x(l) = mean(S), σ (l) = √

n�;
repeat

σ (l+1) = μ1 σ (l);
g(l+1) = −∇I(x(l), S, σ (l+1)) ;
H(l+1) = −∇2I(x(l), S, σ (l+1)) ;

if (gT
(l+1)[H(l+1)]−1g(l+1) ≤ 0) or (|[H(l+1)]−1g(l+1)| > ξ3

√
2σ(l+1)) then

x(l+1) = first-order(x(l));
else

x(l+1) = second-order(x(l));
end
l = l + 1;

until (σ (l) ≥ τ1);
Zoom Out Phase:
Set: z = x(l−1), dp = ||yp − z|| ∀yp ∈ S ;
Set: v = 0, δ(v) = τ1, W = ∅;
while (|W | ≤ η2) and (δ(v) ≤ τ2) do

W = {yp ∈ S : dp ≤ δ(v)
√−2 ln(ξ1)};

δ(v+1) = μ2δ
(v);

v = v + 1;
end
Explore Phase:
Set: rk = 0, Zk = ∅, δ∗ = δ(v−1);
if |W | ≥ η2 then

rk = δ∗√−2 ln(ξ2);
Zk = all-reachable(z, rk, η3);

end
Update Phase:
if (|Zk| ≥ η1) and ((|S| ≥ η1) or (k = 1)) then

Yk = Zk;
S = S\Zk ;
k = k + 1;

else
Return: k∗ = k, Yt ∀t = 1, . . . , k∗;
Stop;

end
end

861



M.N. Syed

In Algorithm 1, when the neighborhood information function is locally concave at x(l),
a second order search method will be executed. On the other hand, if the function is not
locally concave, then a first order search method is executed. The sign of (gT [H]−1g) is
a quick test for the local concavity of the proposed function. Further more, the condition
(|[H]−1g| <

√
2σ) ensures that the newton step does not go beyond the current kernel

width. Based on the configuration of the given data points (specifically due to symmetry),
the Hessian matrix H can become indefinite at x(l). For example: in Fig. 1, the data points
are shown on the x-axis, and the profile of the neighborhood information function is drawn
for various values of the kernel width along the y-axis. For σi , i = 1, 2, 3 the neighborhood
information function is locally concave at x(i), for all i = 1, 2, 3. However, when the kernel
width is reduced from σ3 to σ4, the function becomes locally indefinite at x(4). Furthermore,
for lower values of the kernel width (σ5 and σ6), the function becomes locally convex (at
x(5) and x(6) respectively).

Functions ‘second-order(x(l))’ executes one step of newton search starting from initial
solution x(l). The purpose of using only one step is to keep x(l) in locally concave region
of the information function. Therefore, the improvement from first newton step is enough
for the above purpose, and speeds up the search process. On the other hand, function ‘first-
order(x(l))’ will execute the gradient search starting from initial solution x(l). The gradient
search algorithm will terminate when the Hessian matrix becomes locally negative definite.
The purpose of the gradient search algorithm is to drive away the current solution to a
nearby locally concave region. Finally, function ‘all-reachable(z, rk, η3)’ executes a search
for reachable points from the densest point z with search radius rk , and minimum number
of points η3. This function is similar to DBSCAN’s reachable point search function. In the
next sections, numerical performance of the proposed algorithm is presented.

5 Low-dimensional performance analysis

There are myriad of clustering algorithms in the literature, and our objective is not to
conduct a comprehensive comparison. Few popular algorithms that withstood the test of

Fig. 1 Neighborhood Function Profiles

862



Neighborhood density information in clustering

time are considered here. Specifically, the aim of these experiments is to compare the
proposed approach with DBSCAN. Through the experiments, we are experimentally evalu-
ating the significance of the proposed enhancement mechanism to DBSCAN. Synthetic data
sets from the literature are used for assessing the performance of the proposed approach.
In Experiment-1, the model selection is done using internal cluster validation measures.
Specifically, 5 high values of ξ1 w.r.t Silhouette measure are first selected. Then the value
of ξ1 among the top 5 values that corresponds to highest value of Calinski-Harabasz mea-
sure is selected. If all there is a tie, then SDbw measure is used for breaking ties. The cluster
quality is depicted and evaluated graphically.

5.1 Experiment-1

Objective The goal of this experiment is to test the performance of the proposed algorithm
on data sets defined over two or three dimensions.

Data Demographics Fig. 2 represents the data demographics. The data is taken from the
following sources [22] [23].

Experimental Setup Following parameter values are set for the proposed algorithm: μ1 =
0.95, μ2 = 1.01, τ1 = 0.1, τ2 = �, η1 = 10, η2 = 10, η3 = 3 and ξ2 = 10−6. The value of
parameter ξ1 is iteratively searched over the interval (0, 1), and using the proposed multiple
internal indices the best value for ξ1 is selected. For K-means and K-medoids algorithm, the
value of K is searched iteratively over the interval [1, 20] with increment of 1. The value of
K that minimizes the internal index SDbw is selected as the best value for K . Similarly, for
DBSCAN, the value of MinP ts is set to 3 (similar to η3 = 3). However, the value of ε is
searched iteratively over the interval [0.1, 2] with increment of 0.1.

Results & Discussion The results of the proposed algorithm is compared with K-means,
K-medoids, and DBSCAN algorithm (see Table 1). The cluster assignments by the pro-
posed algorithm are illustrated using different colors in Fig. 2. As expected, K-means
and K-medoids algorithm performed poorly in the presence of non-convex clusters. They
also perform poorly in the data sets containing different inter and intra cluster densities.
DBSCAN algorithm performs well in 4 out of 9 cases. The reason for its poor performance
is the selected range of parameter ε. Although, there are empirical studies that estimates the
value of ε, the studies cannot be used in the higher dimensions. Similar to parameters K

and ε, parameter ξ1 can be considered as the key parameter of the proposed algorithm. The
range of ξ1 is always in the interval (0, 1) for any data set in any dimension. This is per-
haps, the strength of the proposed approach over the other clustering approaches. From the
experimentation, it has been observed that the other parameters are easy to set based on data
and abstract subjective knowledge. Parameters like μ1, μ2, τ1, and ξ2 are related to the pre-
cision and speed of the algorithm. Value of τ2 is always fixed to �. Parameters η1, η2, and
η3 need subjective knowledge. Similar to the estimation of MinP ts, parallel studies can be
developed for estimation of the three parameters. The choice of the internal indices selected
for the experiment is due to the following reason: It is well known that different internal
indices capture different cluster properties. Thus, the choice of internal indices does effect
the solution. Based on our trial experiments, the proposed mechanism of using multiple
internal indices works well for all the experiments.
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Fig. 2 Data Demographics & Results of the Proposed Approach
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6 High-dimensional performance analysis

One of the bottlenecks in many clustering algorithms is their extendability to the higher
dimensions. The goal in the following experiments is to test the performance of the proposed
algorithm in clustering high-dimensional data. The experiments in this section focus on the
ability of the algorithm to handle high dimensional data, low dimensional embedded clusters
and symmetry. In these experiments, the model selection is done using multiple internal
cluster validation measures (similar to Experiment-1). Specifically, 5 high values of ξ1 w.r.t
Silhouette measure are first selected. Then the value of ξ1 among the top 5 values that
corresponds to highest value of Calinski-Harabasz measure is selected. The cluster quality is
depicted and evaluated via external cluster validation measures like: precision, recall, Rand,
Jaccard and Folkes Mallows indices.

6.1 Experiment-2

Objective The objective of this experiment is to study the performance of the proposed
algorithm in identifying low-dimensional clusters embedded in the high dimensional data.

Data Demographics In this experiment, synthetic data sets from dimensions 9 to 23 are
considered. The data consists of several low-dimensional separable convex clusters in higher
dimensions. Specifically, a data set of dimension n (n ≥ 3) will have n clusters, where the
cluster dimension ranges from 1 to n. That is, in a data set of dimension n there will be
exactly one cluster of dimension i, where i = 1, . . . , n. Cluster i will have its center at
[1 + 4(i − 1)]e, where e ∈ R

n is the vector of all ones. The data points in a cluster are
normally distributed around its cluster center with a variance of 1 unit. Figure 3 illustrate
the orientation of the cluster for n = 3 data set. The demographics of the data sets are given
in Table 2.

Experimental Setup For the proposed algorithm and DBSCAN, the experimental setup is
similar to Experiment-1. For K-means and K-medoids algorithm, the value of K is searched
iteratively over the interval [3, 25] with increment of 1. The value of the key parameter (or
the model selection) is done via combination of Silhouette measure and Calinski-Harabasz
measure as described earlier.

Results & Discussion Although the clusters are convex and separable, the main difficulty
in the above datasets is presence of lower dimensional clusters. A visual illustration of the
clusters provide information related to the goodness of cluster assignment. However, illus-
tration beyond 2 or 3 dimensions is impractical. Thus, cluster assignment in this experiment
is measured using internal and external cluster measures. Table 2 presents the summary of
the results on internal cluster measures obtained from the three algorithms. The best values
of Calinski-Harabasz cluster measure for each data set is highlighted in bold fonts. In addi-
tion to that, the number of clusters closest to the actual number of cluster are highlighted in
bold fonts. K-means algorithm was not able to detect the right number of clusters 5 out of
6 times. K-medoids on the other hand, was not able to detect the right number of clusters 6
out of 6 times. DBSCAN performs poorly in higher dimensions. Nevertheless, the proposed
algorithm worked well in the presence of low-dimensional clusters in the high-dimensional
data sets. For D8, although DBSCAN reports the right number of clusters, it has low value
in Calinski-Harabasz measure compared to NICE. This shows that the number of clusters
may not necessarily imply goodness of cluster separation. In addition to that, the good-
ness of clusters obtained from NICE method, were evaluated w.r.t external indices. Table 3
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Fig. 3 Experiment-2 Orthogonal Views for n = 3

depicts the values of various well known external cluster measures. For all the indices except
Hubert, a value closer to 1 implies good cluster separation. For Hubert index, a value closer
to zero implies good cluster separation. For all the datasets, in Table 3, there is at least one
value equal to 1 indicating that cluster assignment is perfect w.r.t one of the measures.

6.2 Experiment-3

Objective The objective of this experiment is to analyze the effect of symmetry and high
dimensions on the performance of the proposed algorithm.

Data Demographics In this experiment, 6 high dimensional data sets available from the
literature is considered [24]. Each data set contains 16 symmetric separable convex clusters
and 1024 points. The demographics of the data sets are given in Table 4.

Experimental Setup The experimental setup is similar to that of Experiment-2 for all the
algorithms.

Results & Discussion Table 4 presents the summary of the results obtained from the three
algorithms. Values in Table 4 are highlighted in bold fonts, similar to Table 2. Although the
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Table 5 Experiment-3 NICE results with external indices

Data sets S1 S2 S3 S4 S5 S6

NICE Precision 0.9874 0.9992 0.9999 0.9994 0.9905 1

NICE Recall 0.9442 0.9845 0.9906 0.9865 0.9508 1

NICE Rand 0.9958 0.9990 0.9994 0.9991 0.9964 1

NICE Hubert 0.1335 −0.0998 −0.0934 −0.0978 −0.136 −0.0836

NICE Jaccard 0.9329 0.9837 0.9905 0.9859 0.9422 1

NICE Folkes Mallows 0.9655 0.9918 0.9952 0.9929 0.9704 1

NICE Avg time (sec.) 3.43 4.33 6.48 15.67 43.99 174.82

clusters were convex without any noise, K-means and K-medoids were not able to detect
the right number of clusters. This is due to the high dimensions. In addition to that, for
DBSCAN the range of ε did not work for all the data sets. Although one can argue that the
range can be altered manually, no automated estimation for the range is available in the lit-
erature. The proposed algorithm was able to identify right number of clusters, and in couple
of cases it overestimated the number. For S1, although k-means reports the right number of
clusters, it has low value in Calinski-Harabasz measure compared to NICE. This shows that
the number of clusters may not necessarily imply goodness of cluster separation. In addition
to that, the goodness of clusters obtained from NICE method, were evaluated w.r.t external
indices. Table 5 depicts the values of various well known external cluster measures. For all
the indices except Hubert, a value closer to 1 implies good cluster separation. For Hubert
index, a value closer to zero implies good cluster separation. For all the datasets, in Table 5,
there is at least one value above 0.99 indicating that cluster separation is almost perfect w.r.t
one of the measures.

7 Conclusions

An optimization based enhancement to DBSCAN is proposed in this paper. The primary
parameter of the proposed algorithm, ξ1, is always in the interval (0, 1). The interval range
is absolute, and will not change w.r.t data characteristics or data dimensions. Thus, esti-
mating scan radius from ξ1 is the key novelty of the proposed algorithm. Furthermore, the
usage of second-order mechanism in the zoom-in phase speeds up the densest point search.
Termination criterion (|Zk| ≥ η1) of the proposed algorithm eliminates the search over the
noisy data. Based on the illustrated experiments, it can be seen that the other parameters
are easy to estimate based on the abstract knowledge of the given data. From the numerical
experimentation, it can be concluded that the algorithm performs well in separable (convex
or non-convex) clusters, with or without noise scenarios. To sum, it will be a good competi-
tor for the existing clustering algorithms, and may provide alternative insights in the cluster
analysis.
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