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Accepted: 7 February 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract
Coordinate-wise minimization is a simple popular method for large-scale optimization.
Unfortunately, for general (non-differentiable and/or constrained) convex problems, its
fixed points may not be global minima. We present two classes of linear programs (LPs)
that coordinate-wise minimization solves exactly. We show that these classes subsume the
dual LP relaxations of several well-known combinatorial optimization problems and the
method finds a global minimum with sufficient accuracy in reasonable runtimes. Moreover,
we experimentally show that the method frequently yields good suboptima or even optima
for sparse LPs where optimality is not guaranteed in theory. Though the presented problems
can be solved by more efficient methods, our results are theoretically non-trivial and can
lead to new large-scale optimization algorithms in the future.
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1 Introduction

Coordinate-wise minimization, or coordinate descent, is an iterative optimization method,
which in every iteration optimizes only over a single chosen variable while keeping the
remaining variables fixed. Due to its simplicity, this method is popular among practition-
ers in large-scale optimization in areas such as machine learning or computer vision, see
e.g. [55]. A natural extension of the method is block-coordinate minimization, where every
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iteration minimizes the objective over a block of variables. In this paper, we focus on coor-
dinate minimization with exact updates, where in each iteration a global minimum over the
chosen variable is found, applied to convex optimization problems.

For general convex optimization problems, the method need not converge and/or its fixed
points need not be global minima. A simple example is the unconstrained minimization
of the function f (x, y) = max{x − 2y, y − 2x}, which is unbounded but any point with
x = y is a coordinate-wise local minimum. Despite this drawback, (block-)coordinate min-
imization can be very successful for some large-scale convex non-differentiable problems.
The prominent example is the class of convergent message passing methods for solving
dual linear programming relaxation of maximum a posteriori (MAP) inference in graphi-
cal models, which can be seen as various forms of (block-)coordinate descent applied to
various forms of the dual. In the typical case, the dual LP relaxation boils down to the
unconstrained minimization of a convex piece-wise affine (hence non-differentiable) func-
tion. These methods include, e.g., max-sum diffusion [36, 46, 52], TRW-S [33], MPLP [25],
SRMP [34], MPLP++ [48], and SPAM [49]. They do not guarantee global optimality but
for large sparse instances from computer vision the achieved coordinate-wise local optima
are very good and the methods are significantly faster than competing approaches [31, 47],
including popular first-order primal-dual methods such as ADMM [5] or [10].

This is a motivation to look for other classes of convex optimization problems for which
(block-)coordinate descent would work well or, alternatively, to extend convergent message
passing methods to a wider class of convex problems than the dual LP relaxation of MAP
inference. A step in this direction is the work [54], where it was observed that if the min-
imizer of the problem over the current variable block is not unique, one should choose a
minimizer that lies in the relative interior of the set of block-optimizers. It is shown that
any update satisfying this rule is, in a precise sense, not worse than any other exact update.
Message-passing methods such as max-sum diffusion and TRW-S satisfy this rule [53].

To be precise, suppose we minimize a convex function f : X → R on a closed
convex set X ⊆ R

n. We assume that f is bounded from below on X. For brevity
of formulation, we rephrase this as the minimization of the extended-valued function
f̄ : Rn → R ∪ {∞} such that f̄ (x) = f (x) for x ∈ X and f̄ (x) = ∞ for x /∈ X. One itera-
tion of coordinate minimization with the relative interior rule [54] chooses a variable index
i ∈ [n] = {1, . . . , n} and replaces an estimate xk = (xk

1 , . . . , xk
n) ∈ X with a new estimate

xk+1 = (xk+1
1 , . . . , xk+1

n ) ∈ X such that1

xk+1
i ∈ ri arg min

y∈R f̄
(
xk

1 , . . . , xk
i−1, y, xk

i+1, . . . , x
k
n

)
,

xk+1
j = xk

j ∀j �= i,

where ri Y denotes the relative interior of a convex set Y . As this is a univariate convex
problem, the set Y = arg miny∈R f̄ (xk

1 , . . . , xk
i−1, y, xk

i+1, . . . , x
k
n) is either a singleton or

an interval. In the latter case, the relative interior rule requires that we choose xk+1
i from the

interior of this interval. A point x = (x1, . . . , xn) ∈ X that satisfies

xi ∈ ri arg min
y∈R f̄ (x1, . . . , xi−1, y, xi+1, . . . , xn)

for all i ∈ [n] is called a (coordinate-wise) interior local minimum (ILM) of function f on
set X.

1In [54], the iteration is formulated in a more abstract (coordinate-free) notation. Since we focus only on
coordinate-wise minimization here, we use a more concrete notation.
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Some classes of convex problems are solved by coordinate-wise minimization exactly.
E.g., for unconstrained minimization of a differentiable convex function, it is easy to see
that any fixed point of the method is a global minimum; moreover, it has been proved that
if the function has unique univariate minima, then any limit point is a global minimum
[4, §2.7]. The same properties hold for convex functions whose non-differentiable part is
separable [50]. These classical results need not assume the relative interior rule [54]. There-
fore, it is natural to ask if the relative interior rule can widen the class of convex optimization
problems that are exactly solved by coordinate-wise minimization. Leaving convergence
aside2, more precisely we can ask for which problems interior local minima are global min-
ima. A succinct characterization of this class is currently out of reach. Two subclasses of
this class are known [33, 46, 52]: the dual LP relaxation of MAP inference with pairwise
potential functions and two labels, or with submodular potential functions. In case of LPs,
we recently showed that every interior local minimum is a global optimum if and only if
a certain propagation rule is able to decide feasibility of an associated system of linear
inequalities [17].

1.1 Contribution and organization

In this paper, we are going to restrict ourselves to linear programs (where f is linear and X is
a convex polyhedron) and extend our previous results from [16] where a class of LPs with
this property was presented. Also, we showed that this class subsumes the dual LP relax-
ations of a number of combinatorial optimization problems and experimentally observed
coordinate-wise minimization to converge in reasonable time for large instances.

Next, we extend [16] by the following material. Using our recent result [17], we signifi-
cantly simplify the proof of the main theorem from [16] and additionally identify a second
class of optimally solvable problems, namely, problems with acyclic structure. Addition-
ally, utilizing a completely different proof technique allowed us to use clearer notation of
the considered problem. We also present a new formulation of the maximum flow prob-
lem where every interior local optimum is a global optimum and coordinate-wise updates
have a natural interpretation. We also include additional insights in multiple places, such as
applicability of coordinate-wise minimization to a certain formulation of roof dual in pseu-
doboolean optimization. Newly, we experiment with linear programs with two non-zeros
per column (assignment problem, shortest paths, and the LP relaxation of maximum weight
matching).

This article is organized as follows: in Section 2, we point the attention of the reader
to the fact that seemingly ‘equivalent’ reformulations of problems affect the quality of the
fixed points of coordinate-wise minimization which explains why only certain favourable
forms of LPs are considered. Section 3 formally states and proves our theoretical results
which are then practically verified in Section 4. Finally, Section 5 reports our experimental
results on problems where optimality of coordinate-wise minimization is not guaranteed in
theory, but is frequently attained in practice.

Concerning the limitations of our approach, we note that there exist more efficient algo-
rithms for solving the LPs from Section 4 to which our optimality theorem applies, such
as reduction to max-flow. These parts thus only serve to verify our theoretical results and
show the performance of coordinate-wise optimization when compared to an off-the-shelf

2We do not discuss convergence in this paper and assume that the method converges to an interior local
minimum. This is supported by experiments, e.g., max-sum diffusion and TRW-S have this property. More
on convergence can be found in [54].
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LP solver. Regarding Section 5, we are aware of the fact that coordinate-wise optimization
is not likely to replace the well-established polynomial-time algorithms for shortest paths,
maximum weight matching, or assignment problem, however, we may draw an important
conclusion from our results: even though a class of LPs may not in theory be solvable to
optimality by coordinate-wise optimization, fixed points of this method may be close to
global optima of the LP or even attain them in practice. Such approach may be useful for
problems where no efficient method exists. As an example, coordinate-wise minimization
applied on the dual LP relaxation of Max-SAT with clauses of length 3 or more, which is
as hard to solve as any LP [44], frequently attained points not far from global optima even
though this is not guaranteed in theory.

2 Reformulations of problems

Before presenting our main result, we make an important remark: while a convex opti-
mization problem can be reformulated in many ways to an ‘equivalent’ problem which has
the same global minima, not all of these transformations are equivalent with respect to
coordinate-wise minimization, in particular, not all preserve interior local minima.

Example 1 One example is dualization. If coordinate-wise minimization achieves good
local (or even global) minima on a convex problem, it can get stuck in very poor local
minima if applied to its dual. Indeed, trying to apply (block-) coordinate minimization to
the primal LP relaxation of MAP inference (linear optimization over the local marginal
polytope) has been futile so far.

Example 2 Consider the linear program min{x1 + x2 | x1, x2 ≥ 0}, which has one interior
local minimum with respect to individual coordinates that coincides with the unique global
optimum. But if one adds a redundant constraint, namely x1 = x2, then any feasible point
will become an interior local minimum w.r.t. individual coordinates because the redundant
constraint blocks changing the variable xi without changing x3−i for both i ∈ {1, 2}.

Example 3 Let m, n, p ∈ N. Let aij ∈ R
p and bij ∈ R be given for all i ∈ [m], j ∈ [n].

The linear program3

min

⎧
⎨
⎩

n∑
j=1

zj

∣∣∣ z ∈ R
n, x ∈ R

p, zj ≥ aT
ij x + bij ∀i ∈ [m], j ∈ [n]

⎫
⎬
⎭ (1)

can be equivalently written as

min
x∈Rp

n∑
j=1

m
max
i=1

(aT
ij x + bij ). (2)

Optimizing over the individual variables by coordinate-wise minimization in (1) does not
yield the same interior local optima as in (2). For instance, assume that m = 2, n = 3,
p = 1, and the problem (2) is given as

min (max{x, 0} + max{−x,−1} + max{−x,−2}) , (3)

3The expression xT y stands for the scalar product of two vectors x, y.

780



Classes of linear programs solvable...

where x ∈ R. Then, when optimizing directly in form (3), one can see that all the interior
local optima are global optimizers.

However, when one introduces the variables z ∈ R
3 and applies coordinate-wise mini-

mization on the corresponding problem (1), then there are interior local optima that are not
global optimizers, for example x = z1 = z2 = z3 = 0, which is an interior local optimum,
but not a global optimum.

On the other hand, optimizing over blocks of variables {z1, . . . , zn, xi} for each i ∈ [p]
in case (1) is equivalent to optimization over individual xi in formulation (2).

We remark that the underlying principle which explains how seemingly ‘equivalent’
reformulations of a problem influence the applicability of coordinate-wise optimization was
in detail explained in [17] by relating block-coordinate minimization in linear programs to
constraint propagation in linear (in)equalities.

3 Main result

We consider the pair of mutually dual linear programs

min bT ϕ + 1T α max ϕT z + ϕT y + cT x (4a)

αj + AT:j ϕ ≥ cj xj ≥ 0 ∀j ∈ [n] (4b)

αj ≥ 0 xj ≤ 1 ∀j ∈ [n] (4c)

ϕi ≥ ϕ
i

yi ≥ 0 ∀i ∈ [m] (4d)

ϕi ≤ ϕi zi ≤ 0 ∀i ∈ [m] (4e)

ϕi ∈ R AT
i:x + yi + zi = bi ∀i ∈ [m] (4f)

where the primal is on the left and the dual on the right, and A ∈ R
m×n, b ∈ R

m, c ∈ R
n,

ϕ ∈ (R ∪ {−∞})m, and ϕ ∈ (R ∪ {∞})m (assuming ϕ < ϕ) are given constants. We
optimize over variables (ϕ, α) in the primal and (x, y, z) in the dual. To fix notation, A:j
and Ai: denotes the j -th column and i-th row of A, respectively. Aij stands for the entry of
A in row i and column j .

Clearly, at primal optimum we have

αj = max{cj − AT:j ϕ, 0} ∀j ∈ [n] (5)

which allows us to simplify the primal as a box-constrained minimization of a convex
piecewise-affine function, i.e.,

min bT ϕ + ∑
j∈[n]

max{cj − AT:j ϕ, 0} (6a)

ϕ
i
≤ ϕi ≤ ϕi ∀i ∈ [m]. (6b)

Analogously to Example 3, optimizing (6) along single coordinates is in one-to-one cor-
respondence with optimizing the primal (4) along m blocks of variables where each block
contains all α variables and a single variable ϕi .

Definition 1 Let A ∈ R
m×n define a bipartite graph4 ([m], [n], E) with m + n vertices

where {i, j} ∈ E if aij �= 0. We say that A is bipartite-acyclic if ([m], [n], E) is acyclic.

4In [8, §1.1], this is called the bipartite graph associated with A.
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Recall that a square matrix A ∈ {0, 1}n×n is a permutation matrix if each row and
each column of A contains exactly one 1 and all other entries are zero [8, §1.1]. A matrix
A ∈ R

m×n is a (possibly rectangular) diagonal matrix if ∀i ∈ [m], j ∈ [n] : i �= j =⇒
Aij = 0, i.e., only elements Aii , i ∈ [min{m, n}] can be non-zero.

Definition 2 Matrix A ∈ R
m×n is called 2-in-row if there exist

– a matrix B ∈ R
m×n′

, 0 ≤ n′ ≤ n with at most 2 non-zero elements per row,
– a (possibly rectangular) diagonal matrix D ∈ R

m×(n−n′),
– and permutation matrices P ∈ R

m×m and P ′ ∈ R
n×n

such that A = P [B|D] P ′ where [B|D] ∈ R
m×n is the block matrix created by placing B

and D next to each other.

Informally, matrix A is 2-in-row if it can be constructed by permuting the rows and
columns of a matrix [B|D] where B contains at most 2 non-zero elements per row and D

is a (possibly rectangular) diagonal matrix. From this point of view, one can characterize
2-in-row matrices as matrices whose each row either contains at most 2 non-zero elements
or, if some row contains 3 non-zero elements, then one of the elements needs to be the only
non-zero element in its column.

Notice that the definition of a 2-in-row matrix does not forbid the case when n′ = n or
n′ = 0. In such case, we are left with only one of the matrices B or D and the condition on
matrix A thus reads A = PBP ′ or A = PDP ′, respectively.

Theorem 1 Let A ∈ {−1, 0, 1}m×n, b ∈ Z
m, and c ∈ R

n. If A is 2-in-row or bipartite-
acyclic, then any ILM of (6) w.r.t. individual coordinates is a global optimum.

Theorem 1 for bipartite-acyclic matrices can be seen as a generalization of the result
for acyclic instances of Max-SAT in [15]. We are going to prove Theorem 1 using the
result in [17] which says that every ILM of a polyhedral problem is a global optimum if
certain constraint propagation method is able to detect feasibility of a system defined by
complementary slackness conditions.

Even though the proof for 2-in-row matrices was already given in [16], we present its
simplified version here, which does not require automated checking.

3.1 Coordinate-wise optimization of (6)

In every update of coordinate-wise minimization, we need to minimize problem (6) over a
single variable ϕi , i ∈ [m] and update it to a value from the relative interior of the set of
optimizers. Objective function (6a) restricted to ϕi reads (up to a constant)

biϕi +
∑
j∈[n]
Aij �=0

max{kj − Aijϕi, 0} (7)

where

kj = cj −
∑

i′∈[m]
i′ �=i

Ai′j ϕi′ (8)
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are constants. This is the minimization of a univariate convex piecewise-affine function
whose breakpoints5 are kj /Aij for each j ∈ [n], Aij �= 0. To find its minimum subject to
ϕ

i
≤ ϕi ≤ ϕi , it is sufficient to consider the cases listed below.
If function (7) is strictly decreasing (resp. increasing) and ϕi (resp. ϕ

i
) is finite, then

update ϕi := ϕi (resp. ϕi := ϕ
i
) which is the unique minimum.

If function (7) has an (possibly unbounded) interval [l, u] as its set of minimizers, then
the set of minimizers subject to ϕ

i
≤ ϕi ≤ ϕi is the projection of [l, u] onto [ϕ

i
, ϕi], i.e.,

an interval [l′, u′] where l′ = h[ϕ
i
,ϕi ](l), u′ = h[ϕ

i
,ϕi ](u) and h[p,q] denotes projection onto

the set [p, q], i.e., h[p,q](x) = max{min{x, q}, p}. If the projection is a bounded interval
[l′, u′], the variable is assigned the middle point from this interval, i.e., ϕi := (l′ + u′)/2. If
the projection is unbounded, i.e., [l′,∞), then we set ϕi := l′ + Δ, where Δ > 0 is a fixed
constant. In case of (−∞, u′], the variable is updated as ϕi := u′ − Δ.

To identify which case occurred, one should analyse the slopes of the function between
its breakpoints and the region of optima corresponds to the interval where the function (7)
is constant. If there is no such interval, then its (unrestricted) minimum is at a breakpoint
where the function changes from decreasing to increasing. In other cases, (7) is unbounded
and therefore also the original problem (6) is unbounded.

3.2 Proof of themain theorem

To prove Theorem 1, we will proceed by presenting individual propositions which are then
going to be utilized for its proof. In detail, the two parts of the theorem, depending on
whether the matrix is 2-in-row or bipartite-acyclic, will be proven separately.

Proposition 1 Feasible solution ϕ ∈ R
m is optimal for (6) if there exist x ∈ R

n, y, z ∈ R
m

such that

xj ∈ [0, 1] ∀j ∈ XU(ϕ) (9a)

xj = 0 ∀j ∈ X0(ϕ) (9b)

xj = 1 ∀j ∈ X1(ϕ) (9c)

yi = 0 ∀i ∈ Y 0(ϕ) (9d)

yi ≥ 0 ∀i ∈ Y+(ϕ) (9e)

zi = 0 ∀i ∈ Z0(ϕ) (9f)

zi ≤ 0 ∀i ∈ Z−(ϕ) (9g)

AT
i:x + yi + zi = bi ∀i ∈ [m] (9h)

where XU(ϕ),X0(ϕ),X1(ϕ) (resp. Y 0(ϕ), Y+(ϕ) and Z0(ϕ), Z−(ϕ)) is a partition of [n]
(resp. [m] and [m]) given as

XU(ϕ) = {j ∈ [n] | AT:j ϕ = cj } Y 0(ϕ) = {i ∈ [m] | ϕi > ϕ
i
} (10a)

X0(ϕ) = {j ∈ [n] | AT:j ϕ > cj } Y+(ϕ) = {i ∈ [m] | ϕi = ϕ
i
} (10b)

X1(ϕ) = {j ∈ [n] | AT:j ϕ < cj } Z0(ϕ) = {i ∈ [m] | ϕi < ϕi} (10c)

Z−(ϕ) = {i ∈ [m] | ϕi = ϕi} (10d)

5By a breakpoint, we mean a point of non-differentiability.
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Proof Follows from the complementary slackness theorem applied to the primal-dual
pair (4) and noting the substitution (5).

Before we proceed further, we need to recall the precise connection between constraint
propagation and block-coordinate minimization which we discovered in [17]. In [17], this
was shown for LPs in standard form, but generalization for LPs with inequalities was also
discussed. We will now apply the results of [17] to the considered primal-dual pair (4) when
updating along m blocks of variables, each containing all α variables and a single ϕi, i ∈ [m]
variable.

In general, the proposed propagation rule sets variables in the complementary slackness
system (9) to their bounds (or makes an inequality constraint hold with equality) if such
equality constraint is implied by a subset of (in)equalities which correspond to the blocks
of variables over which we update the primal. We will now explain to which subsets of the
dual constraints the corresponding primal variables in the updated blocks correspond in this
case. Since we always update over all α variables in the primal which correspond to the
dual constraint xj ≤ 1 (or xj = 1 if it is active), these constraints will be a part of the
subset. Next, primal variable ϕi corresponds to the dual constraint AT

i:x +yi + zi = bi , thus
this constraint will also belong to the subset. Finally, all the dual variables (along with the
information whether they are non-negative, non-positive or already set to zero) belong to
the subset, too.

As there are m blocks of variables, each can be naturally identified with a single i ∈ [m].
Let us now choose a block corresponding to a fixed i ∈ [m] and let ϕ be a dual-feasible
solution. The subset of (in)equalities consists of constraints (9a)–(9g) and the constraint
AT

i:x +yi +zi = bi . The propagation algorithm queries whether this subset of (in)equalities
implies6 yi = 0 (resp. zi = 0, xj = 0 or xj = 1 for some j ∈ XU(ϕ)).

By [17, Theorem 2], if ϕ is an interior local minimum, the previously discussed subset
of (in)equalities is feasible for each i ∈ [m] and does not imply that any inequality in (9)
should hold strictly. We state this result in the following proposition.

Proposition 2 Let ϕ be an ILM of (6) and i ∈ [m] be arbitrary. The system of inequalities
and equalities given by (9a)–(9g) and AT

i:x + yi + zi = bi is feasible and does not imply
xj = 0 (resp. xj = 1) for any j ∈ XU(ϕ).

Proof Since (9) is the system given by complementary slackness and updating (6) along
individual ϕi variables is in correspondence to updating (4) by blocks consisting of ϕi and
all α variables, it follows from [17, Theorem 2] that no further propagation can be performed
and no contradiction is detected since ϕ is an interior local minimum.

Recall [42, §2.3] that a point v ∈ P is a vertex of a polyhedron P if for any v′, v′′ ∈ P ,
0 < λ < 1, v = λv′ + (1 − λ)v′′ implies v = v′ = v′′. In other words, a vertex can not
be a strict convex combination of two different points of the polyhedron. Furthermore, a
polyhedron is said to be integral if each of its vertices has integer coordinates.

6In general, we say that a set of linear inequalities and equalities (in variables x ∈ R
n) Ax ≤ b,A′x = b′

implies cT x = d if cT x = d holds for all x satisfying Ax ≤ b,A′x = b′. Symbols A, b,A′, b′, x are
different than above.
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Proposition 3 Let c ∈ {−1, 0, 1}n and d ∈ Z. The polyhedron7

{ x ∈ [0, 1]n | cT x ≤ d } (11)

is integral and its projection onto each xj , j ∈ [n] is either {0}, {1}, [0, 1], or ∅.

Proof As the hypercube [0, 1]n is integral, non-integral vertices can only appear by adding
the constraint cT x ≤ d , i.e., any non-integral vertex v would satisfy cT v = d . Thus, there
would exist i ∈ [n] such that vi /∈ Z and ci �= 0 (otherwise we could both increase or
decrease coordinate vi and the point would still belong to (11), which would mean that v is
not a vertex). Since cT v = d , c ∈ {−1, 0, 1}n, and d ∈ Z, there must exist i′ ∈ [n], i′ �= i

such that vi′ /∈ Z and ci′ �= 0. Assume that ci = 1, ci′ = −1 (the other cases are analogous).
Point w ∈ R

n defined as

wk =
{

vk if k �= i, i′

vk + ε if k ∈ {i, i′} (12)

also belongs to (11) for some suitable ε �= 0 which is sufficiently small in absolute value
and may be both positive and negative to satisfy x ∈ [0, 1]n due to 0 < vi, vi′ < 1. Point v

is therefore not a vertex.
The property of projection is directly implied by integrality.8

Proposition 4 Let n = 2, c ∈ {−1, 0, 1}n and d ∈ Z. If the projection of polyhedron (11)
onto x1 is the interval [0, 1] and the projection onto x2 is also [0, 1], then x = ( 1

2 , 1
2 ) is

feasible for (11).

Proof Since polyhedron (11) is bounded, it equals to the convex hull of its vertices [42,
§2.3]. By Proposition 3, (11) is integral and due to n = 2, its vertices are always a subset
of {(0, 0), (1, 0), (0, 1), (1, 1)}. This leaves 16 options for the choice of vertices based on
exhaustive enumeration, from which only 7 options satisfy the assumptions on projections.
For each of these 7 options, x = ( 1

2 , 1
2 ) is feasible.

Proposition 5 Let b′
i = bi − ∑

j∈X1(ϕ) Aij for i ∈ [m] and let A′ ∈ R
m×XU (ϕ) be a matrix

created from A by removing columns j ∈ X0(ϕ) ∪ X1(ϕ). Projection of the polyhedron
defined by (9) onto variables xj , j ∈ XU(ϕ) (i.e., eliminating all y and z variables and all
decided x variables) is

xj ∈ [0, 1] ∀ j ∈ XU(ϕ) (13a)

A′T
i: x = b′

i ∀ i ∈ Y 0(ϕ) ∩ Z0(ϕ) (13b)

A′T
i: x ≤ b′

i ∀ i ∈ Y+(ϕ) ∩ Z0(ϕ) (13c)

A′T
i: x ≥ b′

i ∀ i ∈ Y 0(ϕ) ∩ Z−(ϕ). (13d)

Proof By directly substituting known values of xj by (9b) and (9c) and similarly eliminat-
ing variables y, z, we obtain (13). The case with i ∈ Y+(ϕ)∩Z−(ϕ) can be omitted because
it corresponds to A′T

i: x ∈ R, which is always satisfied.

7The proposition holds even if the constraint cT x ≤ d is replaced by cT x = d or cT x ≥ d.
8Proof of integrality could also be done analogously to Theorem 45 in [30].
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Proposition 6 Let A be a 2-in-row matrix andA′ be the matrix considered in Proposition 5.
Let us denote the set of columns of A′ that correspond to the columns of the diagonal matrix
D in Definition 2 by C, C ⊆ XU(ϕ). The projection of (13) onto all xk , k ∈ XU(ϕ) − C

(i.e., eliminating all xk, k ∈ C) reads

xj ∈ [0, 1] ∀j ∈ XU(ϕ) − C (14a)

A′′T
i: x ≥ b′′

i − 1 ∀i ∈ Y 0(ϕ) ∩ Z0(ϕ) (14b)

A′′T
i: x ≤ b′′

i ∀i ∈ Y 0(ϕ) ∩ Z0(ϕ) (14c)

A′′T
i: x ≤ b′′

i ∀i ∈ Y+(ϕ) ∩ Z0(ϕ) (14d)

A′′T
i: x ≥ b′′

i − 1 ∀i ∈ Y 0(ϕ) ∩ Z−(ϕ) (14e)

where A′′ is matrix A′ from (13) without columns in C, b′′ ∈ Z
m is a vector, and each

constraint (14b)-(14e) contains at most 2 variables.

Proof We can apply Fourier-Motzkin elimination [41] to eliminate all variables xl, l ∈ C.
By Definition 2, diagonality of D assures that xl occurs in 3 constraints, namely: xl ≥
0, xl ≤ 1, and one of constraints

A′′T
i: x + s · xl = b′

i (15a)

A′′T
i: x + s · xl ≤ b′

i (15b)

A′′T
i: x + s · xl ≥ b′

i (15c)

where s = Ail ∈ {−1, 1} and x ∈ [0, 1]XU (ϕ)−C .
Suppose that the constraint is (15a) and s = 1. Then the elimination step creates inequal-

ities (14b) and (14c) with b′′
i = b′

i . If s = −1, then it creates the same inequalities except
that b′′

i = b′
i + 1.

If the constraint is (15b) (resp. (15c)), the elimination creates inequality (14d) (resp.
(14e)) with b′′

i = b′
i + �s = −1�.9

The fact that each of the constraints (14) contains at most 2 variables follows from
Definition 2.

Proof (Theorem 1 for 2-in-row property) Let ϕ be an ILM of (6). If A is 2-in-row then it
follows from Proposition 2, Proposition 3, and Proposition 5 that the projection of polyhe-
dron defined by constraints (13a) and a single constraint from (13b)-(13d) onto any xk, k ∈
XU(ϕ) is [0, 1]. The same holds for the projection of polyhedron defined by constraints
(14a) and a single constraint from (14b)-(14e) onto any xk, k ∈ XU(ϕ)−C by Proposition 6.
By Proposition 4 applied on system (14), setting xj = 1

2 for all j ∈ XU(ϕ) − C satisfies
all constraints in (14). Therefore, (14) is feasible, hence (13) and (9) are also feasible by
Proposition 6 and Proposition 5. Since (9) is feasible, ϕ is optimal by Proposition 1.

For the second part of Theorem 1, we need to recall the notion of a constraint satisfaction
problem (CSP) with constraints of higher arity and also the fact that if the factor graph
(a.k.a. dual graph) of a CSP is a tree and the CSP is generalized arc consistent (GAC,
a.k.a. hyper-arc consistent) without any domain-wipeout, then this CSP has a solution. The
simpler case of CSPs with binary constraints is treated in [22]. For a formal introduction to

9The symbol �·� denotes the Iverson bracket.
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CSPs with higher order and GAC, we refer the interested reader to, e.g. [12]. We are going
to review the necessary concepts only informally for our specific case here.

Seeing (13b)-(13d) as constraints over discrete variables xj ∈ {0, 1}, j ∈ XU(ϕ) corre-
sponds to a Boolean CSP. We say that this CSP is GAC if for any variable xj , j ∈ XU(ϕ),
any value v ∈ {0, 1}, and any single constraint from (13b)-(13d) where xj occurs, there
exists an assignment for all variables involved in this constraint such that the chosen
constraint is satisfied by this assignment and xj = v.

Proposition 7 Let ϕ be an ILM of (6) where A ∈ {−1, 0, 1}m×n and b ∈ Z
m. Let us

consider a CSP with discrete variables xj ∈ {0, 1}, j ∈ XU(ϕ) and constraints (13b)-(13d).
This CSP is GAC.

Proof Proof by contradiction. Let us assume that there exists i ∈ Y+(ϕ) ∩ Z0(ϕ) and
k ∈ XU(ϕ) such that for xk = 0, there do not exist values for the remaining variables that
would satisfy the constraint A′T

i: x ≤ b′
i .

10 In other words,

A′T
i: x ≤ b′

i (16a)

xj ∈ {0, 1} ∀j ∈ XU(ϕ) (16b)

implies xk �= 0. Since A′
ij ∈ {−1, 0, 1} and b′

i ∈ Z, by Proposition 3,

A′T
i: x ≤ b′

i (17a)

xj ∈ [0, 1] ∀j ∈ XU(ϕ) (17b)

is not satisfiable with xj = 0 (otherwise, it would have an integral solution). By
Proposition 3, (17) is satisfiable only with xk = 1 or not satisfiable at all.

Taking Proposition 5 into account, if the only possible value for xj is 1, then (17) implies
xj = 1, which is contradictory with Proposition 2. If (17) is not satisfiable, then this is
contradictory again with Proposition 2.

Let us informally recall that a factor graph of a CSP is a bipartite graph with nodes
corresponding to variables and constraints. The graph contains an edge between a variable
node and a constraint node if the constraint involves the variable (in other words, if the
variable is in the scope of the constraint).

We will now focus on the special structure of constraints (13b)-(13d) in case when A is
bipartite-acyclic. Since A′ is a submatrix of A, it follows that A′ is bipartite-acyclic because
A′ defines a bipartite node-induced subgraph of the bipartite graph defined by A in the sense
of Definition 1. In terms of constraint programming, this subgraph corresponds to the factor
graph of the CSP considered in Proposition 7. Therefore, the factor graph is a forest, i.e., a
disjoint collection of trees.

To explain the underlying idea behind the fact that GAC is a sufficient condition for
satisfiability of a CSP if its factor graph is a tree11, we can arbitrarily choose a single
variable xj , declare it to be the root of the tree, and set it an arbitrary allowed value, e.g.,
xj = 0. By the property of GAC and acyclicity of the factor graph, there exists a joint
assignment for all variables which occur in any constraint together with xj . We can fix these
variables to such assignment and remove the variable xj along with all constraints where it

10The reasoning for the other cases, i.e., i ∈ Y 0(ϕ) ∩ Z0(ϕ) or i ∈ Y 0(ϕ) ∩ Z−(ϕ) or xk = 1 is analogous.
11If the factor graph is a forest, then each tree subproblem in the forest can be solved independently.
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is involved from the CSP. This decomposes the factor graph into a forest where each of the
trees has only a single variable with assigned value due to acyclicity. Seeing that this is the
same situation as before, i.e., a tree with a single decided root variable, we can repeat the
previously outlined iteration recursively on each newly created tree separately. Eventually,
each variable is assigned some value so that all the constraints in the CSP are satisfied.

Proof (Theorem 1 for bipartite-acyclic property) Let ϕ be an ILM of (6). If A is bipartite-
acyclic, by Proposition 7, the CSP xj ∈ {0, 1} with constraints (13b)–(13d) is GAC. By
the assumption on A to be bipartite-acyclic, the factor graph of this CSP is acyclic, hence
generalized arc consistency is a sufficient condition for existence of a solution [12]. This
implies feasibility of (13) and by Proposition 5 implies feasibility of (9), thus ϕ is optimal
by Proposition 1.

Let us remark that the theorem in [16] allowed elements of vector b to be slightly more
general in case of 2-in-row matrices, allowing also certain real values which are large in
absolute value, e.g. b1 = 9

2 . Such value causes the objective (6a) restricted to ϕ1 to be
strictly increasing, as discussed in the proof in [16], hence ϕ1 = ϕ

1
holds12 in any ILM (and

also in any global minimum) and its value does not change by coordinate-wise updates. For
this particular case, since ϕ1 = ϕ

1
in any ILM, the corresponding dual variable y1 is always

allowed to be non-negative in (9). Thus, if we consider an inequality (4f) in the form, e.g.,

x1 − x2 + y1 + z1 = 9
2 , (18)

then it can be satisfied by setting y1 = 9
2 − x1 + x2 − z1, which is always non-negative due

to x1 ≤ 1, x2 ≥ 0, and z1 ≤ 0. Thus, such dual constraint is always satisfiable. Performing a
simple analysis of cases on the number and sign of x variables in a single dual constraint (4f)
would allow to additionally extend the range of possible values for b to certain real numbers,
as it was done in [16].

4 Linear programs with 2-in-row constraint matrix

Here we show that several LP relaxations of combinatorial problems correspond to the pri-
mal or dual (4) and discuss which additional constraints correspond to the assumptions of
Theorem 1.

4.1 Weighted partial Max-SAT

In weighted partial Max-SAT [40], one is given two sets of clauses, soft and hard. Each soft
clause is assigned a positive weight. The task is to find values of binary variables xi ∈ {0, 1},
i ∈ [p] such that all the hard clauses are satisfied and the sum of weights of the satisfied
soft clauses is maximized.

We organize the m soft clauses into a matrix S ∈ {−1, 0, 1}m×p defined as

Sci =

⎧⎪⎨
⎪⎩

1 if literal xi is present in soft clause c

−1 if literal ¬xi is present in soft clause c

0 otherwise

.

12If ϕ
1

= −∞ and b1 = 9
2 , then the primal (4) is unbounded, dual (4) is infeasible, and (6) has no interior

local minima.
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In addition, we denote nS
c = ∑

i�Sci < 0� to be the number of negated variables in clause c.
These numbers are stacked in a vector nS ∈ Z

m. The h hard clauses are organized in a
matrix H ∈ {−1, 0, 1}h×p and a vector nH ∈ Z

h in the same manner.
The LP relaxation of this problem [40] reads

max wT s (19a)

sc ≤ ST
c:x + nS

c ∀c ∈ [m] (19b)

HT
c: x + nH

c ≥ 1 ∀c ∈ [h] (19c)

xi ∈ [0, 1] ∀i ∈ [p] (19d)

sc ∈ [0, 1] ∀c ∈ [m] (19e)

where w ∈ R
m+ are the weights of the soft clauses. This is a sub-class of the dual (4)

because the variables are box-constrained between 0 and 1 and inequality constraints ≤ can
be created by setting ϕ

i
= 0 and ϕi = ∞, i.e., y ≥ 0 become slack variables for the dual

constraint (4f) that correspond to (19b) and zi is forced to 0. The situation for inequality
constraints ≥ in (19c) is analogous.

Formulation (19) satisfies the conditions of Theorem 1 for 2-in-row matrix if each of the
clauses has length at most 2. In other words, optimality is guaranteed for weighted partial
Max-2SAT. Also notice that if we omitted the soft clauses (19b) and instead set v = −1, we
would obtain an instance of Min-Ones SAT, which could be generalized to weighted Min-
Ones SAT. This relaxation still satisfies the requirements of Theorem 1 if all the present
clauses have length at most 2. The part of Theorem 1 concerning bipartite-acyclic matrices
applies to instances where the clause-variable incidence graph is acyclic and which are
therefore tractable.

Let us remark that due to the result in [17], the fixed points of the constraint-propagation
based algorithm in [15, §4] have the same quality as fixed points of coordinate-wise opti-
mization with relative interior rule on formulation (6). Therefore, all interior local minima
for weighted Max-SAT are global minima for instances with tractable language types and
acyclic structure [15, §4.4]. Additionally, the LP relaxation is tight in these cases, hence the
objective in these minima even coincides with the optimal value of the original non-relaxed
problem.

4.1.1 Results

We tested the method on 800 smallest13 instances that appeared in Max-SAT Evaluations
[2] in years 2017 [1] and 2018 [3]. The results on the instances are divided into groups in
Table 1 based on the minimal and maximal length of present clauses. We also evaluated this
approach on 60 instances of weighted Max-2SAT from Ke Xu [56]. The highest number
of logical variables in an instance was 19034 and the highest overall number of clauses
in an instance was 31450. It was important to separate the instances without unit clauses
(i.e. clauses of length 1) because in such cases the LP relaxation (19) has a trivial optimal
solution given by xi = 1

2 for all i ∈ V .
Coordinate-wise minimization was stopped when the objective did not improve by at

least ε = 10−7 after a whole cycle of updates for all variables. We report the quality of

13Smallest in the sense of the file size. All instances could not have been evaluated due to their size and
lengthy evaluation.
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Table 1 Experimental comparison of coordinate-wise minimization and exact solutions for LP relaxation on
instances from [2] (first 4 rows) and [56] (last row)

Instance group specification Results

Min CL Max CL #inst. Mean RD Median RD

≥ 2 any 91 0 0

1 2 123 1.44 · 10−9 1.09 · 10−11

1 3 99 6.98 · 10−3 1.90 · 10−7

1 ≥ 4 487 1.26 · 10−2 2.97 · 10−3

1 2 60 1.59 · 10−9 5.34 · 10−10

the solution as the median and mean relative difference between the optimal value and the
objective reached by coordinate-wise minimization before termination.

Table 1 reports not only instances of weighted partial Max-2SAT but also instances with
longer clauses, where optimality is no longer guaranteed. Nevertheless, the relative differ-
ences on instances with longer clauses still seem not too large and could be usable as bounds
in a branch-and-bound scheme.

We remark that the dual formulation (6) for the specific case of weighted partial Max-
SAT together with the form of the coordinate-wise updates was given in [14].

4.2 Weighted vertex cover

Dual (4) also subsumes14 the LP relaxation of weighted vertex cover [51, §14.3], which
reads

min vT x (20a)

xi + xj ≥ 1 ∀{i, j} ∈ E (20b)

xi ∈ [0, 1] ∀i ∈ V (20c)

where V is the set of nodes and E is the set of edges of an undirected graph and vi ∈ R+,
i ∈ V are vertex weights. This problem also satisfies the conditions of Theorem 1 for 2-in-
row matrices and therefore the corresponding primal (6) will have no non-optimal interior
local minima.

On the other hand, notice that formulation (20), which corresponds to dual (4) can have
non-optimal interior local minima even with respect to all subsets of variables of size |V |−1.

Example 4 Consider the graph K1,n, i.e., a complete bipartite graph with one node x1 on
one side with weight equal to n − 1

2 and n nodes x2, ..., xn+1 on the other side, which have
weights equal to 1. Then, x = (0, 1, 1, 1, ..., 1) is an interior local minimum of (20) with
respect to all blocks of variables of size n. Let us now consider such block B ⊂ V .

– If 1 /∈ B (i.e., the variable x1 is not in block), no update is possible due to
constraints (20b).

14It is only necessary to transform minimization to maximization of negated objective in (20).
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– If 1 ∈ B, then we could update all xi for i ∈ B, i �= 1 to xi − ε and x1 to x1 + ε for
ε ∈ [0, 1] and the values of variables will remain feasible.15 This update would change
the objective by ε(n − 1

2 ) − ε(n − 1) = 1
2ε ≥ 0 and since we are minimizing, the

optimal update is for ε = 0, i.e., keep the current x unchanged.

Thus, x is an interior local minimum w.r.t. all blocks of variables of size n = |V | − 1, but
has worse objective than the global optimizer x∗ = (1, 0, 0, ..., 0).

Formulation (6) for this case was given already in [53] where optimality was not proven
yet, but was only experimentally observed. It reads

max
∑

{i,j}∈E

ϕij +
∑
i∈V

min

⎧
⎨
⎩vi −

∑
j∈Ni

ϕij , 0

⎫
⎬
⎭ (21a)

ϕij ≥ 0 ∀{i, j} ∈ E (21b)

where Ni denotes the set of neighbors of vertex i in graph (V ,E). It is easy to see that The-
orem 1 guarantees optimality of all interior local maxima16 of (21). A closed-form solution
of coordinate-wise updates for (21) satisfying relative interior rule was given in [53] as

ϕij := 1
2 max

{
vi − ∑

k∈Ni−{j}ϕik, 0
}

+ 1
2 max

{
vj − ∑

k∈Nj −{i}ϕjk, 0
}

. (22)

4.3 Minimum st-cut, maximum flow

Recall from [23] the usual formulation of max-flow problem between nodes s ∈ V and
t ∈ V on a directed graph with vertex set V , edge set E and positive edge weights cij ∈ R+
for each (i, j) ∈ E, which reads

max
∑

(s,i)∈E

fsi (23a)

0 ≤ fij ≤ cij ∀(i, j) ∈ E (23b)∑
(u,i)∈E

fui =
∑

(j,u)∈E

fju ∀u ∈ V − {s, t}. (23c)

Assume that there is no edge (s, t), there are no ingoing edges to s and no outgoing edges
from t , then any value of f feasible for (23) is an interior local optimum w.r.t. individual
coordinates by the same reasoning as in Example 2 due to the flow conservation con-
straint (23c), which limits each individual variable to a single value. In [16], we proposed a
formulation which has no non-globally optimal interior local optima, namely

min
f ≥0

∑
(i,j)∈E

max{cij − fij , 0} +
∑

(i,j)∈E
i �=s

fij +
∑

i∈V −{s,t}
max

⎧
⎨
⎩

∑
(j,i)∈E

fji −
∑

(i,j)∈E

fij , 0

⎫
⎬
⎭ . (24)

15We could also increase x1 to x1 + ε + δ for δ ∈ [0, ε − 1], but such update would never be optimal for any
δ > 0.
16The relation between interior local maxima and minima can be trivially obtained by changing maximization
to minimization while inverting the sign of the objective.
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The formulation (24) however required recalculation of the optimum in the sense that if
the optimal value of (24) equals O, then the optimal value of the original maximum flow
problem equals

∑
(i,j)∈E cij − O.

We tested applying coordinate-wise optimization on formulation (24) on max-flow
instances17 from computer vision. The instances correspond to stereo problems, multiview
reconstruction instances and shape fitting problems. We report the same statistics as with
Max-SAT in Table 2.

For multiview reconstruction and shape fitting, we were able to run our algorithm only on
small instances, which have approximately between 8 · 105 and 1.2 · 106 nodes and between
5 · 106 and 6 · 106 edges. On these instances, the algorithm terminated with the reported
precision in 13 to 34 minutes on a laptop.

4.3.1 Simplified formulation

As an improvement to formulation (24), we propose a simpler formulation and present a
closed-form solution for coordinate-wise updates satisfying the relative interior rule which
has a natural interpretation. In particular, the maximum flow problem can be formulated as

max
∑

(s,j)∈E

fsj + ∑
i∈V −{s,t}

min{Ri, 0} (25a)

0 ≤ fij ≤ cij ∀(i, j) ∈ E (25b)

where Ri = ∑
(i,j)∈E fij −∑

(j,i)∈E fji for i ∈ V −{s, t}. This formulation does not switch
maximization to minimization so that no re-calculation of the optimal value is necessary.
Optimization problem (25) was obtained by adding bounds to the node variables in the
corresponding dual which reads

min
∑

(i,j)∈E

cij yij (26a)

yij ≥ xi − xj ∀(i, j) ∈ E, i �= s, j �= t (26b)

ysj ≥ 1 − xj ∀(s, j) ∈ E (26c)

yit ≥ xi ∀(i, t) ∈ E (26d)

yij ≥ 0 ∀(i, j) ∈ E, (26e)

xi ∈ [0, 1] ∀i ∈ V − {s, t}, (26f)

and corresponds to minimum st-cut problem. In detail, if yij = 1, then edge (i, j) is in the
cut and if yij = 0, then edge (i, j) is not in the cut. The cut should separate s and t , so the
set of nodes connected to s after the cut will be denoted by S, and T = V − S is the set of
nodes connected to t . Using this notation, xi = �i ∈ S�. Formulation (26) is different from
the classical formulation by bounding the x variables (which are usually unbounded, i.e.,
xi ∈ R).

Clearly, each constraint (26) contains at most two x variables and each yij variable occurs
in only one constraint. Thus, Theorem 1 applies to (25) since the constraint matrix is 2-in-
row.

Let us now focus on the details of coordinate-wise optimization of (25). The form of the
update for a particular variable depends on whether the corresponding edge is incident18 to

17Available at https://vision.cs.uwaterloo.ca/data/maxflow.
18Without loss of generality, we assume that (s, t) /∈ E and that there are no outgoing edges from t and no
ingoing edges to s.
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Table 2 Experimental comparison of coordinate-wise minimization on max-flow instances, the references
are the original sources of the data and/or to the authors that reformulated these problems as maximum flow.
The first 6 rows correspond to stereo problems, the 2 following rows are multiview reconstruction instances,
the last row is a shape fitting problem

Instance group or instance Results

Name #inst. Mean RD Median RD

BVZ-tsukuba [7] 16 6.03 · 10−10 1.17 · 10−11

BVZ-sawtooth [45] [7] 20 9.83 · 10−11 6.11 · 10−12

BVZ-venus [45] [7] 22 3.40 · 10−11 2.11 · 10−12

KZ2-tsukuba [35] 16 2.69 · 10−10 1.77 · 10−10

KZ2-sawtooth [45] [35] 20 4.08 · 10−9 1.56 · 10−10

KZ2-venus [45] [35] 22 5.21 · 10−9 1.74 · 10−10

BL06-camel-sml [39] 1 1.21 · 10−11 1.21 · 10−11

BL06-gargoyle-sml [6] 1 6.29 · 10−12 6.29 · 10−12

LB07-bunny-sml [38] 1 1.33 · 10−10 1.33 · 10−10

s, t , or none of these special nodes. The update for variable fij , (i, j) ∈ E reads

fsj := 1
2

(
csj + h[0,csj ](Rj + fsj )

)
if i = s (27a)

fit := 1
2

(
cit + h[0,cit ](fit − Ri)

)
if j = t (27b)

fij := 1
2

(
h[0,cij ](fij − Ri) + h[0,cij ](Rj + fij )

)
if i �= s, j �= t (27c)

where h[0,cij ] denotes projection onto [0, cij ], as defined in Section 3.1. The derivation of
the updates is based on applying the procedure described in Section 3.1 on problem (25).

There exists an informal natural interpretation for these updates. If the constraints
Ri = 0 for all i ∈ V − {s, t} are added to (25), we will obtain the classical flow con-
servation constraints and the usual LP formulation (23) where coordinate-wise updates are
impossible.

For now, consider an edge (i, j) ∈ E, i �= s, j �= t . If fij = Rj + fij , then Rj = 0
and node j satisfies flow conservation. The same holds for node i if fij = fij − Ri . Now,
given some value fij , we may want to change it so that |Rj | is minimal (i.e., the flow is
conserved in j as much as possible) while satisfying 0 ≤ fij ≤ cij . This is achieved by
setting fij := h[0,cij ](Rj + fij ). On the other hand, if we wanted to minimize |Ri | by
changing fij while satisfying the lower and upper bounds on flow (25b), we would set
fij := h[0,cij ](fij −Ri). Observe that update (27c) takes the average between the mentioned
values, hence it can be informally said that fij is updated so that it ‘balances’ the flow
in both nodes i and j . For instance, if there is ‘overpressure’ in node i (Ri < 0) and
‘underpressure’ in node j (Rj > 0), the value of fij increases (if allowed by constraint
fij ≤ cij ) in order to increase Ri and decrease Rj . The case of Ri > 0 and Rj < 0 is
symmetric and results in decreasing the value of fij if possible.

Updates (27a) also have an informal interpretation in this model, consider an edge that
leads out of source, i.e., (s, j) ∈ E. Similarly as before, if we want to minimize |Rj |, we
should update fsj := h[0,csj ](Rj + fsj ), but we also want to maximize the flow coming
out of s, i.e., set fsj as large as possible, ideally fsj := csj . Again, update (27a) takes the
average between these values. Updates for edges that are connected to the terminal node
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t are clearly analogous since the terminal node would also like to obtain as much flow as
possible.

All in all, performing updates (27a) for edges coming from source s can be interpreted
as trying to push as much flow into the network as possible while the updates (27c) for the
intermediate nodes try to propagate the flow throughout the network so that the flow could
be consumed by edges connected to the terminal node t by updates (27b).

4.4 MAP inference with Potts potentials

Coordinate-wise minimization for the dual LP relaxation of MAP inference was intensively
studied, see e.g. the review [52]. One of the formulations is

min
∑
i∈V

max
k∈K

θδ
i (k) +

∑
{i,j}∈E

max
k,l∈K

θδ
ij (k, l) (28a)

δij (k) ∈ R ∀{i, j} ∈ E, k ∈ K, (28b)

where K is the set of labels, V is the set of nodes and E is the set of unoriented edges and

θδ
i (k) = θi(k) −

∑
j∈Ni

δij (k) (29a)

θδ
ij (k, l) = θij (k, l) + δij (k) + δji(l) (29b)

are equivalent transformations of the potentials θ . Notice that there are 2 · |E| · |K| vari-
ables, i.e., two for each direction of an edge. In [43], it is mentioned that in case of Potts
interactions, which are given as θij (k, l) = −�k �= l�, one can add constraints

δij (k) + δji(k) = 0 ∀ {i, j} ∈ E, k ∈ K (30a)

− 1
2 ≤ δij (k) ≤ 1

2 ∀ {i, j} ∈ E, k ∈ K (30b)

to (28) without changing the optimal objective. One can therefore use constraint (30a) to
reduce the overall number of variables by defining

λij (k) = −δij (k) = δji(k) (31)

subject to − 1
2 ≤ λij (k) ≤ 1

2 . The decision of whether δij (k) or δji(k) should have inverted
sign depends on the chosen orientation E′ of the originally undirected edges E and is arbi-
trary. Also, given values δ satisfying (30), it holds for any edge {i, j} ∈ E and pair of
labels k, l ∈ K that max

k,l∈K
θδ
ij (k, l) = 0, which can be seen from the properties of the Potts

interactions.
Therefore, one can reformulate (28) into

min
∑
i∈V

max
k∈K

θλ
i (k) (32a)

− 1
2 ≤ λij (k) ≤ 1

2 ∀(i, j) ∈ E′, k ∈ K, (32b)

where the equivalent transformation in variables λ is given by

θλ
i (k) = θi(k) +

∑
(i,j)∈E′

λij (k) −
∑

(j,i)∈E′
λji(k) (33)

and we optimize over |E′| · |K| variables λ, the graph (V ,E′) is the same as (V ,E) except
that each edge becomes oriented (in arbitrary direction). The way of obtaining an optimal
solution to (28) from an optimal solution of (32) is given by (31) and depends on the chosen
orientation of the edges in E′. Also observe that θδ

i (k) = θλ
i (k) for any node i ∈ V and

794



Classes of linear programs solvable...

label k ∈ K and therefore the optimal values will be equal. This reformulation therefore
maps global optima of (32) to global optima of (28). However, it does not map interior local
minima of (32) to interior local minima of (28) when |K| ≥ 3.

Example 5 Consider the case with |K| = 3 labels and a chain graph with 4 nodes. We
can see the numerical example in Fig. 1 where the active (maximal) labels in nodes are
shown as black, inactive as white, and their transformed values are shown under them (the
first number in the formula is their original value). The values of variables λ are on the
corresponding edges and the orientation of the edges is from left to right. One can clearly
see that each of the λ variables is in the relative interior of optimizers.

If the variables λ are transformed into the general form of MAP inference (28) with δ

variables using (31), we obtain the result in Fig. 2. Clearly, the unary potentials θδ
i (k) did

not change by the transformation. The binary potentials θδ
ij (k, l) have values −3,−2,−1, 0,

depending on the corresponding δij (k) and δji(l). One can observe that this setting of vari-
ables is not an interior local minimum because by reasoning from [53], the arc consistency
closure of the maximal nodes and maximal edges in Fig. 2 is empty and therefore we
can decrease the objective by max-sum diffusion (i.e. by coordinate-wise updates into the
relative interior).

At the initial stage, δ12(1) is not in the relative interior of optimizers, but on its bound-
ary, we will update it. For the same reason, we will then sequentially update δ21(1), δ23(1),
δ32(1) and δ34(1). Then, δ43(1) would not be the optimal choice and its change would
decrease the objective.

In problems with two labels (K = {1, 2}), problem (32) is subsumed by (6) and satisfies
the conditions imposed by Theorem 1 because one can rewrite the objective by observing
that

max
k∈{1,2}

θλ
i (k) = max{θλ

i (1) − θλ
i (2), 0} + θλ

i (2) (34)

Fig. 1 An example of an interior local minimum of the Potts problem, non-zero λ variables are denoted by
solid lines and zero λ variables are denoted by dashed lines. All values should be halved, which was omitted
for clarity and better reading
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Fig. 2 Corresponding problem in variables of max-sum diffusion, maximal values of θδ
ij (k, l) are shown by

solid lines in each edge, non-maximal values θδ
ij (k, l) are not drawn. All values should be halved, which was

omitted for clarity and better reading

and each λij (k) is present only in θλ
i (k) and θλ

j (k). Thus, λij (k) has non-zero coefficient in
the matrix A only in columns i and j . The coefficients of the variables in the objective are
only {−1, 0, 1} and the other conditions are straightforward.

We reported the experiments on the Potts problem in [53] where the optimality was not
proven yet. A closed-form solution for coordinate-wise update of (32) satisfying relative
interior rule was given as follows

λij (k) := 1
2h′

(
max

k′∈K−{k}
θλ
i (k′) − θλ

i (k) + λij (k)

)
−

1
2h′

(
max

k′∈K−{k}
θλ
j (k′) − θλ

j (k) − λij (k)

) (35)

where h′(·) stands for h[
− 1

2 ,
1
2

](·), i.e., projection onto
[
− 1

2 , 1
2

]
.

4.5 Binarizedmonotone linear programs

In [27], integer linear programs with at most two variables per constraint were discussed.
It was also allowed to have 3 variables in some constraints if one of the variables occurred
only in this constraint and in the objective function. Although the objective function in [27]
was allowed to be more general, we will restrict ourselves to linear objective. It was also
shown that such problems can be transformed into binarized monotone constraints over
binary variables by introducing additional variables whose number is defined by the bounds
of the original variables, such optimization problem reads

min wT x + eT z (36a)

Ax − Iz ≤ 0 (36b)

Cx ≤ 0 (36c)

x ∈ {0, 1}n1 (36d)

z ∈ {0, 1}n2 (36e)
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where A,C contain exactly one −1 per row and exactly one 1 per row and all other entries
are zero, I is the identity matrix. We refer the reader to [27] for details, where it is also
explained that the LP relaxation of (36) can be solved by min-st-cut on an associated graph.
We can notice that the LP relaxation of (36) is subsumed by the dual (4) because one
can change the minimization into maximization by changing the signs in w, e. Also, the
relaxation satisfies the conditions given by Theorem 1.

In the paper [27], there are listed many problems which can be transformed to (36)
and are also directly (without any complicated transformation) subsumed by the dual (4)
and satisfy Theorem 1, for example, minimizing the sum of weighted completion times of
precedence-constrained jobs (ISLO formulation in [11]), generalized independent set (forest
harvesting problem in [28]), generalized vertex cover [29], clique problem [29], Min-SAT
(introduced in [32], LP formulation in [27]).

For each of these problems, it is easy to verify the conditions of Theorem 1 as they
contain at most two variables per constraint and if a constraint contains a third variable,
then it is the only occurrence of this variable and the coefficients of the variables in the
constraints are from the set {−1, 0, 1}.

The transformation presented in [27] can be applied to partial Max-SAT and vertex cover
to obtain a problem in the form (36) and solve its LP relaxation. But this step is unnecessary
when applying the presented coordinate-wise minimization approach.

Except for the previously mentioned problems, there also exists a suitable formulation of
the roof-dual optimization problem [30, §7.2] which is subsumed by (6) and to which The-
orem 1 applies. In detail, the LP relaxation of the pseudoboolean optimization problem is
given as [30, equation (7.10)] whose dual is the roof-dual. Adding redundant bounds w ≤ 1
into [30, equation (7.10)] results in a different form of the roof-dual which is amenable
to coordinate-wise optimization in the sense of Theorem 1. This is easy to see since each
constraint in [30, equation (7.10)] contains at most 2 variables and their coefficients are
only {−1, 0, 1}. However, for practical purposes, there exist specialized algorithms for
optimizing this LP relaxation as it can be seen as a bidirected flow problem [30, §7.2].

5 Linear programs with 2-in-column constraint matrix

It follows from our constructive proof of Theorem 1, respectively already from the proof
in [16] that if A satisfies the conditions of the theorem, then dual (4) is (half-)integral.
Aside from the cases captured by Theorem 1, a question may arise whether it is possible to
generalize the result for other matrices A which would yield a (half-)integral dual (4). For
this purpose, we consider the notion of a 2-in-column matrix.

Definition 3 Matrix A ∈ R
m×n is called 2-in-column if it contains at most 2 non-zero

elements in each column.

Obviously, the transpose of a 2-in-column matrix is 2-in-row. Also, if A contains at
most 1 non-zero entry in each column, then it is bipartite-acyclic by Definition 1. Thus,
2-in-column matrices are in a certain informal sense ‘close’ to the classes of matrices con-
sidered in Theorem 1. Despite the fact that Theorem 1 does not generalize in this manner,
coordinate-wise optimization is capable of providing reasonable results for such problems.

In particular, we consider the assignment problem, shortest paths problem, and LP relax-
ation of maximum weight matching. We argue that even though the interior local optima
of these problems may not be globally optimal in general, we experimentally show that
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coordinate-wise optimization frequently attains fixed points not far from global optima. For
each of the considered problems, we provide a counter-example showing a non-optimal
fixed point, a closed-form solution for updates satisfying the relative interior rule, and an
overview of experimental results.

5.1 Assignment problem

The assignment problem is defined by a number n ∈ N and costs cij ∈ R for each i, j ∈ [n]
and the task is to find a bijection f : [n] → [n] such that

∑
i∈[n] ci,f (i) is minimized. This

problem can be formulated as a linear program

min
∑

i,j∈[n]
cij xij (37a)

∑
i∈[n]

xij = 1 ∀j ∈ [n] (37b)

∑
j∈[n]

xij = 1 ∀i ∈ [n] (37c)

xij ∈ [0, 1] ∀i, j ∈ [n] (37d)

where the constraint matrix is totally unimodular [13] and thus, the optimal value of
(37) equals to the optimal value of the original problem. Clearly, (37) corresponds to the
dual19 (4) with a 2-in-column matrix A as one can observe that each variable xij occurs
only in a single constraint (37b) and a single constraint (37c). The dual LP to (37) reads

max 1T y + 1T q +
∑

i,j∈[n]
min{cij − yj − qi, 0} (38a)

yj ∈ R ∀j ∈ [n] (38b)

qi ∈ R ∀i ∈ [n] (38c)

and may have interior local optima which are not globally optimal.

Example 6 Let n = 5 and cij = �i ≤ 3 ∧ j ≤ 3�. Then, y1 = ... = y5 = q1 = ... = q5 = 0
is an interior local maximum of (38) with objective 0, but the optimal value is 1.

An update for a single yj , j ∈[n] satisfying the relative interior rule reads yj :=(b1+b2)/2
where b1 and b2 are the two smallest20 values among cij − qi for i ∈ [n]. The update is
the same for qi, i ∈ [n] except that we consider the two smallest values among cij − yj for
j ∈ [n].

Even though the results are not guaranteed to be optimal, we applied coordinate-wise
optimization with relative interior rule on the formulation (38). We considered the following
types of randomly generated instances, based on [9, 13, 26]:

– Uniform: cij are chosen randomly uniformly from the set [k] where k ∈ {10, 102, 103,
106}.

19It is also necessary to switch between minimization and maximization, which can be achieved by using a
cost vector with opposite sign of its components. The dual variables (y, z) in (4) are eliminated by setting all
lower and upper bounds ϕ, ϕ to −∞ and ∞, respectively, hence the variables in (38) are unbounded.
20We allow b1 = b2 if there were two coinciding minima.
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– Geometric: cij = �‖ri − r ′
j‖� where (ri)

n
i=1, (r

′
i )

n
i=1 are randomly generated points in

[k]2, k ∈ {10, 102, 103, 106} and ‖·‖ denotes the Euclidean norm.
– Two cost: cij = 1 with probability p, otherwise cij = 106, p ∈ {0.25, 0.5, 0.75}.
– Randomized Machol Wien: each cij is chosen randomly uniformly from the set [i · j ].

For each type and each parameter setting, we compared the objective attained by
coordinate-wise optimization21 with the optimal value of the problem. We list the results in
Table 3 and mention that among the 720 evaluated instances, coordinate-wise optimization
was able to solve 570 of them to optimality (up to numerical precision), which includes all
two cost instances, all randomized Machol Wien instances, majority of uniform instances,
and less than half of geometric instances.

An unoptimized implementation of coordinate-wise optimization had on average 150
times shorter runtime when compared to a general purpose LP solver. However, there
also exist specialized algorithms for solving assignment problem, such as the well-known
Hungarian algorithm [20, 37].

5.2 Shortest paths

Let (V ,E) be a directed graph with edge weights cij ∈ R+ for each (i, j) ∈ E, and let
s, t ∈ V be two distinguished nodes. Following [42], finding the length of the shortest path
from s to t in this graph can be formulated as a linear program

min
∑

(i,j)∈E

cij fij (39a)

∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji =

⎧
⎪⎨
⎪⎩

1 if i = s

−1 if i = t

0 otherwise

∀i ∈ V (39b)

fij ∈ [0, 1] ∀(i, j) ∈ E (39c)

which is subsumed by the minimum-cost flow problem. Additionally, LP (39) is a subclass
of the dual (4) with 2-in-column matrix A because each variable fij is present only in
two constraints (39b), namely, for i ∈ V and j ∈ V . The other properties are analogous
to Section 5.1. The dual LP to (39) reads

max ys − yt +
∑

(i,j)∈E

min{cij − yi + yj , 0} (40a)

yi ∈ R ∀i ∈ V (40b)

which is different from the dual in [42] as we are also upper bounding the flows by 1
in (39c).

An update satisfying relative interior rule for a single variable yi , i ∈ V is given by the
following procedure:

1. Sort values yk −cki for k ∈ N−
i and cij −yj for j ∈ N+

i into a non-decreasing sequence
b1, ..., b|Ni | where N−

i (and N+
i ) is the set of predecessors (and successors) of node i

in (V ,E), respectively. Thus, one can write Ni = N+
i ∪ N−

i .
2. Calculate r = |N−

i | + �i = s� − �i = t�.

21Coordinate-wise updates were stopped when the objective did not improve at least by ε = 10−6 after a
whole round of updates.
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3. Update yi :=

⎧⎪⎨
⎪⎩

(br + br+1)/2 if 1 ≤ r ≤ |Ni | − 1

b1 − Δ if r = 0

b|Ni | + Δ if r = |Ni |
where Δ > 0 is a fixed constant,

e.g., Δ = 1.

The procedure can be derived using the general approach described in Section 3.1. We
remark that if N+

s = ∅ or N−
t = ∅, then (40) is unbounded and (39) infeasible. If Ni = ∅

for i ∈ V − {s, t}, then i is an isolated node and we can set yi arbitrarily.
The formulation (40) may have non-optimal interior local maxima, example of such case

is shown in Fig. 3.
Nevertheless, we tested applicability of coordinate-wise optimization on (40) for ran-

domly generated graphs. To construct the graph, we set V = [n], randomly uniformly
generated points ri , i ∈ V in hypercube [0, 1]q , chose density d ∈ [0, 1], and randomly
added �d · |V | · (|V | − 1)� edges to the graph with costs cij = ‖ri − rj‖. We set s = 1
and t = n. If such graph did not contain an s − t path, we added a random path from
s to t with analogously created costs. We performed experiments with parameter settings
q ∈ {3, 5, 10}, |V | ∈ {5, 10, 30, 100, 1000}, d ∈ {0.1, 0.5, 0.75} and for each setting,
20 random graphs were generated. In all of the 900 generated instances, the relative dif-
ference was lower than 8.91 · 10−9 and absolute difference lower than 5.50 · 10−8. In 897
instances, the relative difference was below 3.36 · 10−15 and absolute difference below
6.66 · 10−15. Coordinate-wise optimization therefore solved these instances to optimality
(up to numerical precision).

We also tested instances where the edge weights are generated randomly uniformly from
the set [k] for k ∈ {10, 103, 106} and the random generation otherwise followed the pro-
cess described above with 60 repetitions for each parameter setting. This resulted in 2700
instances, all of which were solved up to relative difference 4.73 · 10−8 and absolute differ-
ence 4.56 · 10−7. In particular, 2518 of these instances were solved up to relative difference
1.99 · 10−16 and absolute difference 4.66 · 10−10. Observe that the optimal value is always
integral because the edge weights are integral. We remark that the rounded objective deter-
mined by coordinate-wise optimization exactly coincided with the global optimum in each
case.

To obtain exact results, we used Dijkstra’s algorithm whose unoptimized version was
8.3 times faster when compared with similarly unoptimized version of coordinate-wise
optimization.

Fig. 3 Directed graph with 6 nodes, 10 edges, s = 1, t = 6, and edge weights from the set {0, 1} (indicated
next to the edges). Dual feasible solution y = (4, 3, 3, 1, 1, 0) is an interior local maximum of (40) with
objective 2 but not a global optimum, which has value 3. The vertex indices are indicated by the numbers
within the corresponding circles

801



T. Dlask, T. Werner

5.3 LP relaxation of maximumweight matching

Recall (from e.g. [18]) the maximum weight matching in an undirected graph (V ,E) with
edge weights wij ∈ R+, {i, j} ∈ E which seeks to find a subset of edges S ⊆ E such that
no two adjacent edges are in S and

∑
{i,j}∈S wij is maximized. There exist fast polynomial

algorithms for solving this problem, such as [24]. The linear programming relaxation of this
problem reads

max
∑

{i,j}∈E

wij xij (41a)

∑
j∈Ni

xij ≤ 1 ∀i ∈ V (41b)

xij ∈ [0, 1] ∀{i, j} ∈ E (41c)

where Ni is the set of neighbors of i ∈ V in the graph. Notice that this is just a relaxation
as it does not incorporate the odd-set constraints, as opposed to the matching polytope [19]
which is integral. However, in bipartite graphs, (41) is well-known to be integral and it is
therefore not a relaxation [18].

Linear program (41) also corresponds to the dual (4) with 2-in-column matrix A by
similar reasoning as in the previous cases discussed in Section 5.1 and Section 5.2 except
that the bounds ϕ in the corresponding formulation of (4) are set to 0.

The dual of the LP relaxation (41) reads

min 1T y +
∑

{i,j}∈E

max{wij − yi − yj , 0} (42a)

yi ≥ 0 ∀i ∈ V (42b)

and may have interior local optima which are not global optima even if (V ,E) is bipartite
and unweighted. We provide an example in Fig. 4.

An update for a single variable yi, i ∈ V for (42) satisfying the relative interior rule can
be stated as

yi :=

⎧
⎪⎨
⎪⎩

(h[0,∞)(b|Ni |) + h[0,∞)(b|Ni |−1))/2 if |Ni | ≥ 2

h[0,∞)(b1)/2 if |Ni | = 1

0 if Ni = ∅
(43)

where b1 ≤ ... ≤ b|Ni | is a non-decreasing sequence of values wij −yj , j ∈ Ni and h[0,∞)(·)
denotes the projection onto R+ as defined in Section 3.1.

Fig. 4 Complete bipartite graph
K2,3 with all edge weights equal
to 1. For this instance of
maximum weight matching, dual
feasible point y = (0, 0, 1, 1, 1)

is an interior local minimum of
(42) with objective 3 but the
optimal value is 2
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We experimentally evaluated coordinate-wise optimization on the dual (42) with the
previously stated update and compared its results with the optimal values. We gen-
erated random undirected graphs with |V | ∈ {5, 10, 30, 100} vertices, edge density
d ∈ {0.1, 0.5, 0.75}, and edge weights randomly uniformly chosen from [k] for k ∈
{1, 10, 103, 106}. For each setting of parameters, 20 random graphs were evaluated, hence
there were 960 instances in total. We report the experimental results in Table 4. In most
cases, coordinate-wise optimization attained the global optimum up to numerical precision,
but there occur non-optimal fixed points, especially for small values of k and/or larger
density d .

We believe that similar results would also be possible for closely related LP relaxation of
minimum weight edge cover [21] where one minimizes in (41) and (41b) has sign ≥ instead
of ≤. The dual LP relaxation is the same as (42) except for replacing max by min and vice
versa.

6 Concluding remarks

We presented two classes of linear programs that are exactly solved by coordinate-wise
minimization. It was shown that dual LP relaxations of several well-known combinatorial
optimization problems (partial Max-2SAT, vertex cover, minimum st-cut, MAP inference
with Potts potentials and two labels, and other problems) belong, possibly after a refor-
mulation, to this class. We have shown experimentally (in this paper and in [53]) that the
resulting methods are reasonably efficient for large-scale instances of these problems.

The direct practical impact of Theorem 1 is limited because the presented dual LP relax-
ations satisfying its assumptions can be efficiently solved also by other approaches. Thus,
max-flow/min-st-cut can be solved (besides well-known combinatorial algorithms such as
Ford-Fulkerson) by message-passing methods such as TRW-S. Similarly, the Potts problem
with two labels is tractable and can be reduced to max-flow. In general, the LP relaxations
can be reduced to max-flow, as noted in Section 4.5. Note, however, that this does not make
our result trivial because (as noted in Section 2) equivalent reformulations of problems may
not preserve interior local minima and thus message-passing methods are not equivalent in
any obvious way to our method.

It is open whether there are practically interesting classes of linear programs that are
solved exactly (or at least with constant approximation ratio) by (block-) coordinate min-
imization and are not solvable by known combinatorial algorithms. Another interesting
question is which reformulations in general preserve interior local minima and which do
not.

We notice that when the assumptions of Theorem 1 are relaxed (e.g., general Max-SAT
instead of Max-2SAT, or the Potts problem with any number of labels, matrix with two
non-zeros per column instead of one), the method experimentally still provides good local
(though not global in general) optima. All of the previously mentioned classes of LPs where
coordinate-wise optimization was observed to work well are sparse in a certain sense. For
example in Max-3SAT, each constraint in (19) contains up to 4 variables, whereas in the
problems discussed in Section 5, each variable occurs in at most 2 (resp. 4 if box constraints
are counted) constraints. We believe that this observation may have a practical impact on
applying coordinate-wise optimization on large sparse LPs to provide relatively tight esti-
mation on optimal value. In other words, one may not need to theoretically guarantee global
optimality to obtain a good bound on optimum or even attain the optimum in practice.
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Our approach can pave the way to new efficient large-scale optimization methods in the
future. Certain features of our results give us hope here. For instance, our approach has an
important novel feature over message-passing methods: it applies to a constrained convex
problem (the box constraints (6b)). This can open the way to a new class of applications.
Furthermore, updates along large variable blocks (which we have not explored) can speed
algorithms considerably, e.g., TRW-S uses updates along subtrees of a graphical model,
while max-sum diffusion uses updates along single variables.
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