
https://doi.org/10.1007/s10472-020-09698-z

Leveraging cluster backbones for improving
MAP inference in statistical relational models

Mohamed-Hamza Ibrahim1,2 ·Christopher Pal1 ·Gilles Pesant1

© Springer Nature Switzerland AG 2020

Abstract
A wide range of important problems in machine learning, expert system, social net-
work analysis, bioinformatics and information theory can be formulated as a maximum
a-posteriori (MAP) inference problem on statistical relational models. While off-the-shelf
inference algorithms that are based on local search and message-passing may provide ade-
quate solutions in some situations, they frequently give poor results when faced with models
that possess high-density networks. Unfortunately, these situations always occur in mod-
els of real-world applications. As such, accurate and scalable maximum a-posteriori (MAP)
inference on such models often remains a key challenge. In this paper, we first introduce
a novel family of extended factor graphs that are parameterized by a smoothing parameter
χ ∈ [0, 1]. Applying belief propagation (BP) message-passing to this family formulates a
new family of Weighted Survey Propagation algorithms (WSP-χ) applicable to relational
domains. Unlike off-the-shelf inference algorithms, WSP-χ detects the “backbone” ground
atoms in a solution cluster that involve potentially optimal MAP solutions: the cluster back-
bone atoms are not only portions of the optimal solutions, but they also can be exploited
for scaling MAP inference by iteratively fixing them to reduce the complex parts until the
network is simplified into one that can be solved accurately using any conventional MAP
inference method. We also propose a lazy variant of this WSP-χ family of algorithms. Our
experiments on several real-world problems show the efficiency of WSP-χ and its lazy vari-
ants over existing prominent MAP inference solvers such as MaxWalkSAT, RockIt, IPP,
SP-Y and WCSP.

Keywords Maximum-a-posteriori inference · Markov logic network · Survey propagation
Mathematics Subject Classification (2010) 68T01 “General topics in artificial intelligence”

� Mohamed-Hamza Ibrahim
mohamed.ibrahim@polymtl.ca

Christopher Pal
christopher.pal@polymtl.ca

Gilles Pesant
gilles.pesant@polymtl.ca

1 Department of Computer and Software Engineering, École Polytechnique de Montréal, Montréal,
Québec, Canada

2 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Published online: 7 May 2020

Annals of Mathematics and Artificial Intelligence (2020) 88:907–949

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-020-09698-z&domain=pdf

1 Introduction

Inspired by the ability of statistical relational learning (SRL) [17] to combine the power of
first-order logic with probabilistic graphical models [46], Markov logic networks (MLN)
[59] have recently emerged as a popular SRL framework and they have been actively
explored for a wide variety of real-world applications in AI, particularly those that involve
both relational and uncertain inference. Commonly in MLNs it has been convenient to con-
vert formulas to conjunctive normal form (CNF) and to propositionalize the theory to a
grounded network of clauses. Then, one often wishes to apply a probabilistic maximum a-
posteriori (MAP) inference procedure for reasoning about uncertain queries. In such cases,
the logical structure of the grounded network renders the MAP inference equivalent to solv-
ing a weightedMAX-SAT problem (i.e., where one finds the most probable truth assignment
or “MAP solution” that maximizes the total weight of satisfied clauses) [52]. A simple
approach to tackle MAP inference is to use off-the-shelf local search algorithms that are
designed to efficiently solve weighted MAX-SAT instances. For example MaxWalkSAT
[25, 66] was recently applied as a conventional MAP inference method in probabilistic
graphical models, including those models instantiated by underlying MLNs [59].

In relational domains, there are often millions of atoms, each involved in hundreds of
thousands of clauses, which are normally translated into grounded networks featuring high
densities.1 From the point of view of satisfiability, if the density of the grounded network
is close to a satisfiability threshold, then the (MAP) assignments in the solution space are
clustered.2 This is known as a “clustering phenomenon” in statistical physics [41]. It has
been shown that such clustering in the solution space exists not only for uniform random
satisfiability, but also for some structured satisfiability instances that follow realistic and
natural distributions [18, 20, 53, 76], similar to real-world problems that are modeled as
MLNs (e.g., social networks, as shown in Kambhampati & Liu, 2013).

In general, using local search algorithms for MAP inference frequently has the following
limitations due to the clustering of the solution space:

Limitation 1. Usually, the existence of many clusters is an indication of a rugged energy
landscape, which then also gives rise to many local optima. This often hinders the perfor-
mance of most local search algorithms because they can get stuck in a local optimum [45].
MaxWalkSAT (a stochastic local search algorithm) is one exception because it performs
a combination of random and greedy steps which prevent it from getting stuck in a local
optimum.

Limitation 2. Another possible consequence of the clustering of the solution space is
that the search space fractures dramatically with a proliferation of metastable’ clusters [9].
This acts as a dynamic trap for local search algorithms, including MaxWalkSAT, since they
can get stuck in one such ‘metastable’ cluster at a local optimum [9, 30]. On the flip side
of the issue, if the clauses capture complex structures (e.g., relational dependencies) then
the clusters tend to decompose into an exponentially small fraction of (MAP) assignments
[41]. So there is not even any guarantee of getting into a cluster that contains an optimal
solution. Clearly, this all greatly weakens the possibility that a local search can converge to
an optimal solution, particularly for SRL applications [60].

1The density is the ratio of ground clauses to ground atoms.
2A cluster of assignments is generally defined as a set of connected components of the solution space, where
the assignments belonging to the same cluster are close to each other (e.g., in terms of Hamming distance)
[41].

M.-H. Ibrahim et al.908

It is well known that techniques such as marginalization-decimation based on the max-
product BP algorithm [72, 74], can be used to help local search find an optimal MAP
solution, but it is also believed that BP does not converge due to strong attraction in many
directions [28, 35]. That is, max-product BP fails because its local computations may
obtain locally optimal assignments corresponding to different clusters, but these cannot be
combined to find a global MAP solution [35].

Fortunately, it is likely that in each cluster there is a certain fraction of ‘frozen’ ground
atoms [1] that are fixed in all (MAP) solutions within the cluster, while the others can be
varied subject to some ground clauses. These frozen ground atoms are known as ‘clus-
ter backbones’ [34]. In the world of satisfiability, survey propagation (SP) is a common
heuristic method that can be efficiently used in a decimation procedure [35] to obtain clus-
ter backbones when solving hard SAT instances [8]. For example, SP can obtain frozen
variables, which are 45 − 50% of all variables, without making any mistake [35].

The main objective of this paper is to bring SP’s success and SRL closer together for
the benefit of MAP inference. That is, to remedy the aforementioned limitations of local
search algorithms, which are due to search space clustering, we introduce Weighted Survey
Propagation-inspired Decimation (WSP-Dec), a family of message-passing algorithms for
applying MAP inference to SRL models and Markov logic in particular. In this paper we
focus on Markov logic. But, without difficulty, the WSP-Dec framework can be applied
to other representations that are special cases of SRL models, including standard graphical
models defined in terms of factor graphs. We achieve this as follows:

– First, we describe a novel family of extended factor graphs that are specified by the
parameter χ ∈ [0, 1]. These factor graphs are re-parameterized in such a way that they
define positive joint probabilities over generalized complete assignments called max-
cores. These max-cores are natural interpretations of core assignments [40] that satisfy
a set of clauses with maximal weights.

– We then show that applying BP message-passing to this family recovers a family
of Weighted SP algorithms (WSP-χ), ranging from pure Weighted SP (WSP-1) to
standard max-product BP (WSP-0).

– The marginals computed by any WSP-χ algorithm can be used to obtain backbones
(i.e., frozen ground atoms) of a cluster involving potentially optimal MAP solutions.

– The cluster backbones are not only a portion of the optimal solutions in the cluster,
but they also can be used to enlarge the evidence database and shrink the query set.
Therefore, iteratively fixing them results in a reduction of the complex parts of the
grounded network, which afterwards can be simplified to a scalable one that is then
solved accurately using any conventional MAP method. Hence, integrating WSP-χ as
pre-processing with a MaxWalkSAT algorithm in a decimation procedure produces a
family ofWeighted Survey Propagation-Inspired decimation (WSP-Dec) algorithms for
solving the task of full MAP inference on SRL models.

– We then explain lazy variants of WSP-χ family of algorithms.
– Our experiments on three real-world applications show the promise of WSP-Dec

algorithms and their lazy variants as opposed to using MaxWalkSAT alone.

We have organized the rest of the paper in the following manner. In Section 2, we exam-
ine further work related to the MAP inference problem as well as survey propagation. In
Section 3, we review the basic notations, Markov logic and SP technique. Then in Section 4,
we demonstrate the family of WSP-χ algorithms. In Section 5, we explain howWSP-χ can
be applied to improve MAP inference in Markov logic. In Section 6, we conduct a thorough

Leveraging Cluster Backbones for Improving MAP Inference 909

experimental study, which is followed by a discussion in Section 7. Finally, in Section 8, we
present our conclusions and discuss directions for future research.

2 Related work

Developing accurate and scalable MAP inference in probabilistic graphical models (PGMs)
is a key challenge that would affect a wide range of applications in machine learning, con-
straint satisfaction, information theory, computational biology, and other sub-disciplines of
artificial intelligence. The Viterbi algorithm [16] was first proposed to address MAP infer-
ence — in hidden Markov models — for decoding applications. A generalization was then
proposed to other types of PGMs in other applications [54], and extended by the appearance
of a clique tree algorithm [37]. Since then, several pioneering research directions in AI have
been explored for improving MAP inference.

The first research area uses the fact that MAP inference can be cast as the task of min-
imizing an energy function — in computer vision applications [71], the energy function
defined over terms enforces some kind of spatial coherence; another one penalizes solutions
that are inconsistent with the observed data. Under this line of analysis, hill-climbing meth-
ods such as iterated conditional modes (ICM) [6], or simulated annealing (SA) [19] become
directly applicable to solve the MAP inference problem. However, in practice these algo-
rithms were proven to be inefficient. For example, in computer vision applications [71], this
is due to the slowdown that comes from the considerable amount of computation in their
early adaptation.

Furthermore, when the PGM features logical structures like those instantiated as SRL
models, finding the MAP solution of the model can be obtained by solving its weighted
satisfiability problem using any satisfiability solver [21]. This in fact opens the way to the
use of local search algorithms for MAP inference. For instance, MaxWalkSAT [25, 66]
was proposed to tackle the MAP problem in MLNs [59]. However, local search algorithms
are non-systematic, and they often come with no performance guarantees. Additionally, it
was observed that if the density of the underlying graphical model was close to a certain
threshold then the search space of MAP assignments would become clustered [18, 20,
24, 53, 76]. However, none of those approaches took into consideration the clustering that
occurred in the search space when solving the MAP inference problem, and this makes them
vulnerable to getting stuck in a local maximum at one of the metastable clusters [9, 30].

Our WSP-χ approach can serve as a pre-processing step to handle the clustered search
space when solving the MAP problem. Thus it can be used in conjunction with all the above
search algorithms to increase the possibility of guaranteeing optimality.

In a complementary context, another fruitful area of research is how to relate Boolean
satisfiability and CSPmethods to local search for MAP inference, most notably survey prop-
agation [8]. The SP algorithm has shown a surprising ability to accurately solve extremely
large and hard SAT instances close to the satisfiability threshold [8, 35]. In an attempt
to more fully understand the success of SP, it was first shown that SP can be viewed as
belief propagation (BP) on a factor graph defined over solution clusters represented by cov-
ers having positive probability [7]. Subsequently, SP has been generalized [40] to work
on extended MRFs, where solution clusters can be elegantly represented as cores having
positive probability. It has also been extended to an algorithm called SP-y [5] to handle
the maximum satisfiability (Max-SAT) problem. Recently, relaxed SP [11] has been intro-
duced as an extension to SP and SP-y for weighted satisfiability. However, the applicability

M.-H. Ibrahim et al.910

of these approaches to complex relational problems is still limited. Our WSP-χ approach
can be seen as akin to these SP-based inference methods. But WSP-χ is different in being
built on different re-parameterized extended factor graphs that are used to address relational
MAP inference.

Another traditional research area involves the use of message-passing algorithms to
tackle MAP inference. Here the mainstream interest is in max-product loopy BP. From a
theoretical perspective, it was shown that the marginals obtained after the convergence of
max-product BP can be used to derive a MAP solution that is globally optimum for an
acyclic network, and locally optimum for a loopy network [74]. Accordingly, parameterized
message passing [72] has been proposed to obtain beliefs corresponding to max-marginals.
This work then empirically extended by developing a convexified message-passing algo-
rithm for MAP inference called Tree-reweighted max-product message-passing (TRW)
algorithm [73]. However, TRW does not monotonically increase its objective function and
therefore may not converge to accurate results. As a remedy, a variant of TRW, called
TRW-S [32] — which involved asynchronous message passing — has been proposed to
improve the objective monotonically. However, TRW-S still cannot guarantee convergence
to a global optimum since it can get stuck in local optima. From the optimization perspec-
tive, TRW and its variant TRW-S can be in fact considered the first connection between
LP relaxation and message-passing algorithms. This stimulates some other works to extend
TRW by using sophisticated LP relaxation methods. For instance, a general TRW-based
approach [58] has been proposed to iteratively improve the solution by searching the nearest
improvements using a proximal optimization method. However, it was subsequently proven
that the use of a simple LP relaxation [36] would produce a better (i.e., tighter) relaxation
than the complicated one that is based on a proximal optimization method [58]. Other work
has extended TRW to Tree-Reweighted Belief Propagation (TRBP) that uses the marginals
derived from a convex BP to obtain optimal MAP solutions [75].

At a high level, our WSP-χ approach shares with the previously mentioned approaches
the derivation of a parameterized BP message passing procedure such that the obtained
beliefs correspond to marginals. However, WSP-χ is different, since its marginals are
defined over max-cores, which are representations of clusters of candidate MAP solutions.
In addition, in WSP-χ , there is a cooling parameter y that plays a similar role to the temper-
ature parameter in simulated annealing [19]. This cooling parameter can be tuned to reduce
the strengths of factors. We show empirically how this greatly improves the convergence of
WSP-χ on the associated extended factor graph. This gives WSP-χ different characteristics
that enable it to avoid getting stuck in local optima and be more likely to convergence to a
global optimum.

Another promising research area that has been recently explored seeks to improve the
scalability of inference by using a restricted class of probabilistic graphical architectures
that compromise between expressiveness and tractability. For example, the sum-product net-
work (SPN) [56] was initially proposed for tractable marginal inference: In its basic form,
SPN is not a conditional dependency graph, but a graphical representation for computing the
partition function. Later on, [47] developed a relational formalization of SPNs (i.e., RSPNs)
that is applicable to SRL models. One limitation of RSPN is that the relational atoms can
not be modeled directly, but through aggregations. This often requires the user to know and
specify the fixed parts for decomposing the training and testing mega-examples [47], which
may be difficult in the problems with complicated decomposing structures (e.g., Hyper-
link analysis application) — This is in fact consistent with our experimental evaluations on
WebKB dataset in Section 6.3.4. Apart from marginal inference, [55] demonstrated that the

Leveraging Cluster Backbones for Improving MAP Inference 911

tractable MAP inference without hidden variables is a form of max probable explanation
(MPE) on selective SPNs. However, it is widely known that many SPN learning algorithms
can not guarantee selectivity [61] and without selectivity the MPE inference is still is NP-
hard [55]. Subsequently, [42] proposed an efficient MAX inference method in non-selective
SPNs — MAX is a simpler form of MAP inference problem under the assumption that
neither evidence nor hidden variables exist.

Our WSP-χ approach can not be directly applied on SPNs since its current form is
adapted to factor graph as well as MLN. While the ground RSPN can be converted into an
equivalent factor graph in linear time, the resulting graph model may blow up exponentially
and might have a high tree-width, which could yield a computationally intractable MAP
inference.

Another promising research area seeks to improve the scalability of MAP inference on
large probabilistic networks. Here, mainstream work attempts to take advantage of some
local structural properties in the network like determinism [22, 51], symmetry [2], sparse-
ness [57], and type hierarchy [29] to scale inference. For instance, Lifted Inference uses
the symmetry present in the network’s structure to shrink its size. The main idea is to deal
with groups of indistinguishable variables rather than individual variables. FOVE-P [15]
was the first to propose lifted variable elimination, which is a modification of FOVE [14]
that incorporates partial inversion for lifting MAP inference in SRL models. Recently, a
lifted MaxWalkSAT algorithm [62] has been proposed for MAP inference in Markov logic
networks (MLNs). Subsequently, a generalization of lifted MaxWalkSAT [63] was intro-
duced for lifting MAP inference in MLNs. However, we could repeal the merit of lifting
inference if symmetries break when the variables become correlated by the virtue of depend-
ing asymmetrically on evidence [27], since in this case lifted inference becomes close to
propositionalized inference. As such, other extensions to liftable first-order MLN mod-
els had been introduced. For instance, [26] proposed a top-down liftable algorithm with a
greatly computational complexity better than propositional algorithms. However, a recent
study [39] showed that the algorithm can not handle the symmetries break if the models are
highly connected and contain a massive amount of evidence axioms and variables (which is
often the case in real-world applications). Lazy Inference is another efficient way to scale
MAP inference. Lazy MaxWalkSAT [68] was proposed as the first lazy algorithm for MAP
inference in Markov logic networks, where the sparseness was used to ground the the-
ory lazily to reduce memory and time consumption. Other work proposed a Cutting Plane
Inference (CPI) [60] as an efficient and accurate algorithm for MAP inference. A concrete
example is RockIt [50], one of the most prominent bottom-up inference engines that shows
powerful results in several recent applications like ensemble matching [43] and cause anal-
ysis [65]. The Xeggora method [4] was recently proposed as an evolutionary extension of
RockIt to exploit further symmetries (that were ignored in RockIt) by performing higher
order aggregations. However, the virtue of higher order aggregations appears only in mod-
els with lengthy formulas, which rarely exist in real-life applications. In addition, although
CPI-based methods avoid grounding the whole MLN, they only work well for some types
of MLNs where the separation step returns a small set of constraints.

Our WSP-χ approach is different from the above scaling algorithms, since it is based on
the use of backbones (or frozen variables) to fix complex parts of the network by enlarging
the evidence database and reducing the set of queries, and thereby simplifying the network.
But it is also orthogonal to their benefits, and thus can be combined with them (as it will be
shown in Section 6, where we combine WSP-χ with lazy inference).

M.-H. Ibrahim et al.912

3 Background

To set the stage for our work, in this section we first express our notation and basic concepts
using an explanatory example presented in Table 1.

3.1 Notation and definitions

A first-order knowledge base (KB) is a set of formulas in first-order logic, typically in
conjunctive normal form (CNF). After propositional grounding, we get a formula F which
is a conjunction of m ground clauses. We use fi ∈ F to denote a ground clause which is a
disjunction of literals built from X = {X1, · · · , Xn}, a set of n Boolean random variables
representing ground atoms. For instance, and as represented in Table 1, the CNF F is the
conjunction of the grounded clauses {fa, fb, fc, fd} which are defined on ground atoms
{X1, X2, X3}. We call an assignment of truth values to the n variables in X a complete
assignment x ∈ {0, 1}n (e.g., x = {X1 = 0, X2 = 0, X3 = 1}). We also use πx(fi) to
denote the partial assignment of x for clause fi (e.g., πx={0,0,1}(fc) = {X2 = 0, X3 = 1}).

Definition 1 For a ground clause fi , we define si,j (resp. ui,j) as the value of a ground
atom Xj ∈ {1, 0} that satisfies (resp. violates) fi . Therefore, fi is satisfied if and only if at
least one of its ground atoms Xj is equal to si,j .

For example, fa is satisfied iff sc,2 = 0 or sc,3 = 1. Each fi is associated with the
pair (wi,Xfi

), where wi is its weight and Xfi
is the set of variables appearing in its scope

(e.g., fc is associated with the pair (3.2,Xfc = {X2, X3}). Both “+” and “−” will be used
to denote the positive and negative appearance of the ground atoms. Then from the above
definition, we have the following sets:

F+(j) = {fi ∈ F(j); si,j = 1}, (1a)

F−(j) = {fi ∈ F(j); si,j = 0}, (1b)

F s
fi

(j) = {fk ∈ F(j) \ {fi}; si,j = sk,j }, (1c)

Fu
fi

(j) = {fk ∈ F(j) \ {fi}; si,j �= sk,j } (1d)

whereF(j) = {F+(j)∪F−(j)} is the set of whole ground clauses involvingXj .F+(j)

(resp. F−(j)) is the set of ground clauses in F(j) that contain Xj positively (resp. nega-
tively). For instance, F+(X2) = ∅ and F−(X2) = fc, fd . We use F s

fi
(j) (resp. Fu

fi
(j))

to denote the subset of ground clauses that agree (resp. disagree) with fi about Xj . For

Table 1 An explanatory Markov logic

Rule First-order logic Clausal form Weight

fa ¬X1(a) ¬X1 1.2

fb ¬X3(a) ¬X3 0.7

fc X2(a) ⇒ X3(a) ¬X2 ∨ X3 3.2

fd X2(a) ⇒ X1(a) X1 ∨ ¬X2 ∞

It involves grounding clauses {fa, fb, fc, fd } defined on ground atoms {X1(a),X2(a),X3(a)}

Leveraging Cluster Backbones for Improving MAP Inference 913

instance, F s
fc

(X2) = {fd} and Fu
fc

(X1) = {fa}. We use �j =
[
θ+
j , θ−

j

]
to denote the

marginal of Xj , where θ+
j and θ−

j represent its positive and negative marginal probabilities,
respectively.

Definition 2 Maneva and Mosel [40] We say that a variable Xj is the unique satisfying
variable for a clause fi ∈ F if it is assigned si,j whereas all other variables in the clause
are assigned ui,j . A variable Xj is constrained by the clause fi if it is the unique satisfying
variable for fi . That is to say, it satisfies an indicator function as follows:

CONi,j (πx(fi)) = Ind(Xj is the unique variable satisfying fi) (2)

Where Ind(Predicate) returns 1 if the Predicate is true and 0 otherwise. For instance, if
we assign X2 = 1 and X3 = 1 then X3 is the unique satisfying variable for fc. That is,
CONc,3(πx(fc)) = 1. The variable Xj is said to be unconstrained if it has value 0 or 1 and
it violates CONi,j (πx(fi)) for each clause fi ∈ FXj

that involves it. For instance, without
assigning values to both X1 and X3, if X2 = 1, then it is said to be unconstrained for both
fc and fd . This in turns implies that only X1 and X3 could later on serve as the unique
satisfying variables for fc and fd . On contrary, the variable Xj is said to be joker for fi (and
has a joker value ∗) if fi is already satisfied by other variables and it does not care about
Xj , so the variable Xj is free to take either value 0 or 1. In other words, a variable with
the value ∗ can be interpreted as being undecided, while variables with values 0 or 1 can
be interpreted as being decided on what they want to be. That is to say, without assigning
values to X1 and X3, if X2 = 0 then both fc and fd will be satisfied. This renders both
X1 and X3 to be joker variables. Accordingly, we can redefine when a complete assignment
taking values in {0, 1, ∗} satisfies or violates clauses as follows:

Definition 3 Chieu and Lee [10] A complete assignment x ∈ {0, 1, ∗}n:
– Satisfies a clause fi if and only if (i) fi contains a constrained variable Xj that is set to

si,j , or (ii) fi contains at least two unconstrained joker variables.
– Violates a clause fi if and only if all its variables Xj ∈ Xfi

are set to ua,i .
– Is invalid for a clause fi if and only if exactly one variable Xj takes a joker value ∗ and

all its other variables Xk ∈ Xfi
\ Xj are set to ui,k .

The complete assignment x is valid for aF if it is valid for all of its clauses. For instance,
the complete assignment x = {X1 = 0, X2 = ∗, X3 = 0} is invalid because of its invalidity
for clauses fc and fd . Note that the above definition of the invalid complete assignment
reflects the interpretation that the joker value “∗” is a “don’t care” state for variable Xj :
clauses involving a variable Xj = ∗ should be already satisfied by other variables, and the
value of Xj does not matter. This in fact means that Xj = ∗ cannot be the last remaining
possibility of satisfying any clause. So, if the other variables violate the clause and the
remaining variable Xj is a joker, then the complete assignment is neither satisfying nor
violating the clause because in this case we have two possibilities for Xj = ∗: one makes
the complete assignment satisfying and the other makes it violating. Thus we say that the
complete assignment is invalid. In the case where a clause contains two variables set to
joker, the clause can be satisfied by either one of these two variables, so the other variable
can take the “don’t care” value.

Definition 4 Maneva and Mosel [40] A core is a valid complete assignment x ∈ {0, 1, ∗}n
that satisfies all the clauses, and contains no unconstrained variables equal 0 or 1.

M.-H. Ibrahim et al.914

Note that the core can be seen as a combinatorial representative of valid complete assign-
ments of a cluster. For example, the core x = {0, 1, ∗, 1, ∗} is the combinatorial assignment
that compresses the cluster of four complete assignments: {0, 1, 0, 1, 0}, {0, 1, 0, 1, 1},
{0, 1, 1, 1, 0}, and {0, 1, 1, 1, 1}. When a variable takes a fixed value 0 or 1 in the core x,
then it is said to be frozen with respect to the core x (i.e., fixed in all the valid assignments
of the cluster represented by core x) [1]. Otherwise it is unfrozen. A frozen variable is also
called a backbone variable [30], and it can be extended for optimization problems [70].

Definition 5 Achlioptas and Ricci-Tersenghi [1] Cluster backbones refer to the set of
frozen variables in a core x. In other words, it is the set of backbone variables in all valid
complete assignments (i.e., solutions) within the cluster represented by x [34].

Thus, one relatively crude but useful way to obtain a portion of a solution in the cluster
is by finding the cluster backbones of its core.

3.2 Markov logic

Markov logic [59] is a set of pairs (fi, wi), where fi is a first-order logic formula (or clause
in CNF) and wi is its associated weight. Together with finite sets of constants that are
domains to atoms, we can build a Markov logic network (MLN) that has the following:

– One binary node for each possible grounding of each atom appearing in each clause.
The value of the node is 1, if the ground atom is true, and 0 otherwise.

– One feature for each possible ground clause fi . The value of this feature is 1, if the
ground formula is true, and 0 otherwise. The weight of the feature is the weight wi

associated with fi , where the weight attached to each ground clause reflects its strength
dependency.

The power of MLNs appears in their ability to bridge the gap between logic and proba-
bility theory. Thus it has become one of the preferred probabilistic graphical models for
representing both probabilistic and deterministic knowledge, with deterministic dependen-
cies represented as hard clauses, and probabilistic ones represented as soft clauses. MLNs
compactly represent the joint distribution over non-evidence ground atoms X given the evi-
dence ones E as: P(X |E) = Z−1

E e
∑

i wi ·fi , where ZE is the normalizing constant. For any
complete assignment (or possible world) x ∈ {0, 1}n, to have a non-zero probability, all the
hard ground clauses have to be satisfied.

To understand the semantics of Markov logic, recall the explanatory example in Table 1.
In this example, Markov logic enables us to model the KB as shown in Fig. 1. It considers the
rules {fa, fb, fc} as soft (i.e., associated with soft weights) whether the rule fd is considered
as hard (i.e., assigned an infinite weight in a sense that it must be satisfied).

3.3 Relational MAP inference

Given the grounded network of the MLN, the objective of the MAP inference task [48] is
to find the most probable truth assignment (or MAP solution) of the non-evidence atoms X
that maximizes the sum of weights of satisfied clauses, given other atoms as evidence E:

xMAP = argmax
x

P (X = x|E) (3)

Leveraging Cluster Backbones for Improving MAP Inference 915

Fig. 1 The factor graph representation of the explanatory Markov logic presented in Table 1. The
dashed and solid lines represent “-” and “+” appearance of the atoms, respectively

Taking into account the logical structures of a MLN, MAP inference corresponds to an
instance of solving the weighted maximum satisfiability problem, and therefore it can be
carried out efficiently using a weighted satisfiability solver like MaxWalkSAT [25, 63, 66],
which is currently the state-of-the-art MAP inference in SRL systems like ALCHEMY [31],
TUFFY [49], LoMRF [69], ProbCog and Pracmln, etc.

Algorithm 1 MaxWalkSAT for solving MAP inference in MLN.

Input: Set of clauses and their weights (F ,W), set of query atoms X , maximum number of
tries It , maximum number of flips If , threshold ϑ , and probability p.
Output: MAP solution xMAP or no solution found (FAILURE)

1: for i ← 1 to It do
2: T empSol ← randomly generated assignment to all atoms in X
3: if the sum of weights (

∑
k wk) of satisfied clauses in F by T empSol > ϑ then

4: xMAP ← T empSol

5: Return xMAP

6: end if
7: for j ← 1 to If do
8: fUNSAT ← Selected unsatisfied clause of F
9: With probability p:
10: T empSol ← flip a random atom in fUnSAT
11: With probability 1 − p:
12: T empSol ← flip the best atom in fUnSAT that maximizes the sum of satisfied

clause weights
13: Go to line 3
14: end for
15: end for
16: Return FAILURE;

M.-H. Ibrahim et al.916

Algorithm 1 gives the pseudo-code for MaxWalkSAT algorithm. The algorithm takes as
input the set of clausesF and their weightsW , the set of ground atomsX on which we need
to compute its MAP assignment, and the probability of random step p. Up to a maximum
number of tries It , it iteratively starts by randomly generating a possible MAP assignment
to X (line 2). If the total sum of weights, for the clauses that are satisfied by the generated
MAP assignment, is larger than the prespecified threshold ϑ , then it returns the obtained
optimal MAP solution (lines 3-6). Otherwise, MaxWalkSAT is used to perform a stochastic
local search through two steps. In the first step, it picks an unsatisfied clause uniformly at
random (line 8). Here, a simple heuristic could be used to order the false ground clauses
based on their weights, and then uniformly selects the ones which have high weights. In
the second step, it iteratively flips the truth values of the atoms in the selected false ground
clauses. At each flip, the atom is chosen randomly with a certain probability p (lines 9-10);
otherwise, with probability (1 − p) it applies a greedy hill-climbing heuristic to select the
atom that maximizes the sum of satisfied clause weights when flipped (lines 11-12).

3.4 Decimation based on survey propagation

Survey Propagation (SP) [40] can be viewed as a BP message passing algorithm on a factor
graph that defines non-zero marginals over cores representing solution clusters. That is,
unlike standard BP, the variables’ marginals obtained from SP correspond to surveys over
the clusters in the solution space. These marginals in fact provide information about the
fraction of clusters in which each variable is free or frozen [5, 8, 11]. Thus one efficient way
to exploit the SP’s marginals (also called biases) is to apply a marginalization-decimation
algorithm based on SP [8, 35].

Algorithm 2 gives the pseudo-code for SP-guided decimation algorithm. It starts by ran-
domly initializing the survey messages (line 1). It then deploys its message-passing process
on the factor graph (line 2) as follows : (1) Each factor fi ∈ F passes a survey mes-
sage ηfi→Xj

containing a real number to each of its neighboring variables Xj in the factor
graph. This survey is the probability that the factor fi warns the variable Xj against vio-
lating it. That is, if the survey message is close to 1, then the factor fi is warning the
variable Xj against taking a value that will violate the factor; if the survey is close to 0,
then the factor fi does not care about the value taken by Xj since it is satisfied by other
variables in Xfi

\ {Xj }. (2) Each variable Xj sends to a neighboring factor fi , a message
[μs

Xj →fi
, μu

Xj →fi
, μ∗

Xj →fi
], where the three components of the message correspond to the

probability that Xj will be warned by other factors to take a value that will satisfy fi , violate
fi , or freely take any value (i.e., joker). SP alternatively exchanges its messages between
factors and atoms until converging to a fixed-point of survey messages {η∗

fi→Xj
}. If non-

trivial surveys are found (i.e., {η∗
fi→Xj

�= 0}), then it uses these surveys to compute the
marginals of the query atoms in X (lines 4-5). It consequently applies a decimation proce-
dure as follows: (1) extract the fraction of frozen atoms with the largest biased marginals
(e.g., |θ+

j − θ−
j | > 0.5) - (line 6); (2) fix the frozen atoms to their most likely values (i.e.,

assign a value 1 if (θ+
j > θ−

j) and a value 0 if (θ+
j < θ−

j)), and then reduce the factor graph
(i.e., simplify the problem’s formula)-(lines 7-8); (3) Add the fixed frozen atoms as a partial
assignment to xMAP (line 9). Note that fixing the frozen atoms potentially results in deter-
mining a partial assignment of optimum solution cluster. So the goal of the decimation is
to use SP to find a cluster that contains potential optimal/sub-optimal solutions. Once the
cluster is found, the problem is relatively easy to solve. As such, if all survey messages are

Leveraging Cluster Backbones for Improving MAP Inference 917

Algorithm 2 The SP-guided decimation algorithm for solving MAP inference in MLN.

Input: The MLN factor graph G representing the set of clauses and their weights (F ,W)
and the set of query atoms X .
Output: MAP solution xMAP

// I.Initial phase:
1: Randomly initialize SP survey messages
2: Run SP on factor graph G // Passing messages between clauses and

atoms
3: if (SP converges) then // reaching a fixed-point of survey messages

{η∗
fi→Xj

}
4: if non-trivial surveys ({η∗

fi→Xj
�= 0}) are found then

5: Use {η∗
fi→Xj

} to compute the atoms’ marginals (�j =
[
θ+
j , θ−

j

]
, ∀Xj ∈ X)

// II. Decimation phase: fix frozen variables with the
largest biased marginals

6: Frozen atoms ← Select ground atoms with the largest |θ+
j − θ−

j |
7: Fix each frozen atom to the value 1 if (θ+

j > θ−
j) and the value 0 if (θ+

j < θ−
j)

8: Use fixed frozen atoms to simplify the formula
9: xMAP .Append(fixed frozen atoms)
10: else // all surveys are trivial ({η∗

fi→Xj
= 0})

11: Output the simplified sub-formula and run MaxWalkSAT on it // call
Algorithm 1

12: end if
13: else
14: Return SP does not converge or Go to step 1
15: end if
16: If the problem is solved completely the return the obtained MAP solution xMAP ,

Otherwise, go to step 2 to repeat the decimation process on the simplified factor graph.

trivial (line 10), then an assignment to the rest of the atoms can be found using any conven-
tional algorithm (e.g., Walk-SAT algorithm) that works well within a given cluster. Hence,
to obtain the complete xMAP solution, we call MaxWalkSAT algorithm [25, 66] to solve the
simplified sun-formula (lines 11-14). From the satisfiability viewpoint, this mechanism has
shown to be one of the best incomplete solvers in solving hard K-SAT instances efficiently
[5, 8, 11, 35].

4 WSP-χ framework

At a conceptual level our overall WSP-χ approach consists of the following three key ele-
ments. First, we extend the factor graph used to represent a given problem using mega-node
random variables which behave identically to the parent set of variables participating in a
factor. Second, we perform WSP inference to update an approximation over the original
variables in the extended factor graph. Third, we use the marginals computed over original
variables to identify a subset of all non-evidence atoms that are backbone ground atoms.

M.-H. Ibrahim et al.918

4.1 Factor Graph Re-parameterization

To set up the framework of WSP-χ , the first thing we do is to generalize the natural inter-
pretation of core assignments (see Definition 4) to be applicable to MAP inference in SRL
models. That is, we introduce a new notion of max-core (denoted as “W-core”):

Definition 6 Amax-core (W-core) is a valid complete assignment x ∈ {0, 1, ∗}n such that:

– The total weight of its satisfying ground clauses equalsW
– It contains no unconstrained ground atoms equaling 0 or 1
– It satisfies all the hard ground clauses (if there are both hard and soft ground clauses

involved in the model).

Intuitively, the simple interpretation of a max-core is that it is a combinatorial object
providing a representative generalization of MAP solutions within a cluster. Additionally,
the core defined in Definition 4 is a particular case of theW-core whereinW is the sum of
all the ground clauses.

Now the second thing to be done in WSP-χ ’s framework is to modify the factor graph
such that it defines a joint probability over complete assignments that are max-cores. Specif-
ically, we need to re-parameterize the factor graph in such a way that carrying out a BP on
the new parameterization is equivalent to running a weighted variant of SP on the original
factor graph for MAP inference. In Fig. 2(left), we consider a simple example of a factor
graph G that involves four ground clauses F = {fa, fb, fc, fd}, and three ground atoms
{X1, X2, X3}. We re-parameterize this factor graph by transforming it into an extended
factor graph Ĝ, shown in Fig. 2(right), as follows:

First, we extend the domain of each ground atom Xj to take values in {0, 1, ∗}.
Second, we add an auxiliary mega-node Pj (dashed circle) corresponding to each ground

atom node Xj . Each of these mega-nodes Pj captures the parent set Pj (x) of Xj . Although
there could be several ways to define Pj (x), we use a definition similar to the one used by
Maneva et al. (2007)

Pj (x) = {f ∈ F |CONj,f (πx(f)) = 1} (4)

Fig. 2 (Left) Our explanatory factor graph G which involves the grounding clauses F =
{fa, fb, fc, fd } that are defined on the ground atoms {X1, X2, X3}. The dashed and solid lines
represent “-” and “+” appearance of the atoms, respectively. (Right) It corresponding extended
factor graph Ĝ, after adding auxiliary mega-node variables P = {P1, P2, P3} and auxiliary factor
nodes � = {ϕ1, ϕ2, ϕ3}, which yields a set of extended factors F̂ =

{
f̂a, f̂b, f̂c, f̂d

}

Leveraging Cluster Backbones for Improving MAP Inference 919

That is, Pj (x) is the set of ground clauses for which Xj is the unique satisfying variable in
x (i.e., the set of ground clauses constraining Xj to its value). P = {Pj }nj=1 is the set of
auxiliary mega-nodes in G, with n = 3 in the example factor graph of Figure 2(right).

Now, since we expand the arguments of each factor fi by including auxiliary mega-node
variables that correspond to their ground atoms Xfi

, we then have an extended factor f̂i .

F̂ = {f̂i}mi=1 is the set of extended factors in G, with m = 4 in the example factor graph.
Note that this extension implies that the complete assignments {x} in the original factor
graph G extended to corresponding configurations {ρ} in the extended factor graph. Each
configuration ρ takes the form ρ = {Xj , Pj (X)}Xj ∈X such that the projection πX (ρ) of
ρ onto variables X produces a complete assignment x to G, representing a candidate for a
max-core.

Each f̂i defines the following function for each configuration ρ

f̂i(ρ) = ξ(πXfi
(ρ)) ×

∏
Xk∈Xfi

δ([fi ∈ Pk(x)],CONk,fi
(πx(fi))) (5)

where ξ is a reward function that assigns different values to the projection πXfi
(ρ) of x onto

the original factor fi as follows:

ξ(πXfi
(ρ)) =

⎧⎪⎨
⎪⎩

eŵi ·y If πXfi
(ρ) satisfies fi .

ν̂i If πXfi
(ρ) violates fi

0 If πXfi
(ρ) is invalid for fi .

(6)

Where ŵi is the weight associated with original factor fi , and y is a cooling parameter that
plays a similar role to the y in the SP-y algorithm [5]: it allows the clauses to be violated
at a certain price. As the value of y increases, there is more possibility to violate clauses
with minimal weights but the survey messages (i.e., message-passing process) will prefer
configurations that violate a minimum number of clauses. ν̂i is a violation value that equals
e−ŵi ·y . For ease of representation, ν̂i can be adjusted to equal 1, if fj is a soft ground clause,
and 0, if it is a hard ground clause. Therefore the role of the ξ function is to provide a
reward eŵi ·y into the joint probability of a valid max-core x if it satisfies fi , and to penalize
it by 0 if x violates fj , which is a hard ground clause. The second term in (5) involves a
multiplication of Kronecker delta function δ:

δ(

κ1︷ ︸︸ ︷
[fi ∈ Pk(x)],

κ2︷ ︸︸ ︷
CONk,fi

(πx(fi))) =
{
1 κ1 = κ2

0 κ1 �= κ2
(7)

which represents a constraint that enforces the consistency between the parent set Pk(x) and
the set of ground clauses constraining the ground atom Xk to its value.

Third, we attach an auxiliary factor node ϕj (dashed square) that connects each ground
atom nodeXj with its corresponding auxiliary mega-node Pj . Each ϕj defines the following
function for any configuration ρ:

ϕj (ρ(Xj , Pj)) =

⎧⎪⎨
⎪⎩

γ If Pj (x) = ∅, and Xj �= ∗,
χ If Pj (x) = ∅, and Xj = ∗,
1 for other valid (Xj , Pj).

(8)

where χ and γ are smoothing parameters restricted with a condition γ + χ = 1. In the first
case, the function ϕj assigns a value γ to a complete assignment x that is an invalid max-
core (since the projection of ρ onto X has an unconstrained variable Xj set to 1 or 0, it
represents an invalid max-core). In the second case, if the complete assignment x represents

M.-H. Ibrahim et al.920

a valid max-core then it is assigned a positive value χ . In the third case the validity of
(Xj , Pj) means that if Xj = 1 (resp. Xj = 0), then Pj (x) ⊆ F+(j) (resp. Pj (x) ⊆
F−(j)). � = {

ϕj

}n
j=1 is the set of auxiliary factors in Ĝ, with n = 3 in the explanatory

factor graph of Fig. 2(right). Now it should be noted that since the values of a complete
assignment x ofX determine uniquely the values of {Pj (x)}Xj ∈X in ρ, then the distribution
over ρ is a distribution over x. Hence the extended factor graph defines the joint probability
over complete assignment x as follows:

p(x) = p(πX (ρ)) =
∏

f̂i∈F̂
f̂i (ρ)

∏
Xj ∈X

ϕj (ρ(Xj , Pj)) ∝ γ n0χn∗
∏

fi∈S(x)

eŵi .y (9)

where n0 is the number of unconstrained ground atoms in x having the value 1 or 0, and n∗
is the number of unconstrained ground atoms in x having joker value ∗. S(x) represents the
set of all ground clauses satisfied by x.

4.2 WSP-χ message-passing

The message passing process of WSP-χ proceeds by iteratively sending two types of
messages on the extended factor graph Ĝ until convergence. These messages are slightly dif-
ferent from simply running the standard BP algorithm, but their structures are categorized
based on the value of the set of auxiliary mega-nodes P in Ĝ as follows:

- Factor-to-variable message (ηf̂i→Xj
) each extended factor f̂i sends to each Xj of its

ground atoms X
f̂i
a message that can be parameterized as a vector of four components:

η
f̂i→Xj

=
[
ηs

f̂i→Xj
, ηu

f̂i→Xj
, η∗

f̂i→Xj
, 0

]
(10)

where

– ηs

f̂i→Xj
represents the probability of the warning that Xj is constrained to be uniquely

satisfying for f̂i (i.e., when Xj = si,j , Pj ⊆ F s

f̂i
(j) ∪ {f̂i}),

– ηu

f̂i→Xj
is the probability that Xj can violate f̂i (i.e., if Xj = ui,j , Pj ⊆ Fu

f̂i
(j)),

– η∗
f̂i→Xj

represents the probability that f̂i does not care about the value of Xj . That is,

Xj is either unconstrained by f̂i or at least one other variable Xk in Xf̂i
\ {Xj } satisfies

f̂i and Xj equals ∗ (i.e., when Xj = ∗, Pj = ∅ or Xj = si,j , Pj ⊆ F s

f̂i
(j)),

– Otherwise, we use 0 as a catch-all case if none of the three previous cases occur.

It should be noted that ηs

f̂i→Xj
, ηu

f̂i→Xj
and η∗

f̂i→Xj
are elements of [0, 1].

- Variable-to-factor message (μXj→f̂i
) Here each ground atom Xj sends to its extended

factors f̂i ∈ F(j) a message that consists of three components:

μ
Xj →f̂i

=
[
μs

Xj →f̂i
, μu

Xj →f̂i
, μ∗

Xj →f̂i

]
(11)

where

Leveraging Cluster Backbones for Improving MAP Inference 921

– μs

Xj →f̂i
represents the probability that Xj is warned by other extended factors F

f̂i
(j)

to satisfy f̂i (i.e., if Xj is constrained to satisfy f̂i),
– μu

Xj →f̂i
represents the probability that Xj is warned by other extended factors F

f̂i
(j)

to violate f̂i (i.e., if Xj is constrained to violate f̂i),
– μ∗

Xj →f̂i
is the probability that Xj is unconstrained to f̂i (i.e., if Xj is unconstrained to

f̂i or equals ∗).
Now in the following Section 4.3, we demonstrate the update equations that are used to
repeatedly compute the components of the messages in (10) and (11).

4.3 WSP-χ ’s update equations

In this subsection we settle for explaining the closed-form of the update equations for
WSP-χ ’s message passing that is expressed in (10) and (11). We refer the reader to
Appendix A wherein we provide a detailed derivation of these update equations.

4.3.1 Variable-to-factor Updates

We will begin with the update equations for the messages from variables to factors, given in
(12a), (12b) and (12c) as follows:

μs

Xj →f̂i
=
[∏

f̂k∈F s

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)] ∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj
(12a)

μu

Xj →f̂i
=
[∏

f̂k∈Fu

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)−
∏

f̂k∈F s

f̂i
(j)

η∗
f̂k→Xj

] ∏

f̂k∈F s

f̂i
(j)

ηu

f̂k→Xj
(12b)

μ∗
Xj →f̂i

=
[∏

f̂k∈F s

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)−
∏

f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

] ∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj

+
∏

f̂k∈F s

f̂i
(j)∪Fu

f̂i
(j)

η∗
f̂k→Xj

(12c)

As shown in (12a), we update μs

Xj →f̂i
by multiplying two parts: the first one represents

the probability that Xj satisfies all its constrained factors F s

f̂i
(j) and the second is the

probability that Xj violates all its violating factors Fu

f̂i
(j).

According to (12b), we updateμu

Xj →f̂i
by multiplying the probability thatXj violates all

its constrained factors F s

f̂i
(j) with the probability that Xj satisfies all its violating factors

Fu

f̂i
(j).

From (12c), we update μ∗
Xj →f̂i

by considering the probability that Xj is unconstrained

from either its satisfying factors F s

f̂i
(j) or its violating factors Fu

f̂i
(j).

M.-H. Ibrahim et al.922

4.3.2 Factor-to-variable updates

The update equations for the messages from factors to variables are given in (13a), (13b)
and (13c) as follows:

ηs

f̂i→Xj
=
[∏

Xk∈Xf̂i
\{Xj }

μu

Xk→f̂i

]
× eŵi ·y (13a)

ηu

f̂i→Xj
=
[∏

Xk∈Xf̂i
\{Xj }

(
μu

Xk→f̂i
+ μ∗

Xk→f̂i

)+
∏

Xi∈Xf̂i
\{Xj ,Xk}

μu

Xi→f̂i

∑
Xk∈Xf̂i

\{Xj }

(
μs

Xk→f̂i
−μ∗

Xk→f̂i

)]−
[penalty︷ ︸︸ ︷

(1 − e−ŵi ·y)
∏

Xk∈Xf̂i
\{Xj }

μu

Xk→f̂i

]
(13b)

η∗
f̂i→Xj

=
[∏

Xk∈Xf̂i
\{Xj }

(
μu

Xk→f̂i
+ μ∗

Xk→f̂i

)]−
∏

Xk∈Xf̂i
\{Xj }

μu

Xk→f̂i
(13c)

That is, from (13a), we update ηs

f̂i→Xj
by considering the product of the messages of

all other ground atoms of f̂i except Xj that are violating it. Then we reward the result by
multiplying it with the factor term eŵi ·y (refer to (6) for the definition of the reward term).

From (13b), updating ηu

f̂i→Xj
requires considering the difference between two parts.

The first includes the probability that two (or more) ground atoms in f̂i satisfies it plus the
probability that there is exactly one of f̂i’s ground atoms (except Xj) satisfying f̂i and all
other ground atoms are violating it. The second part involves the probability that all other
ground atoms are violating fi . This latter probability is penalized with the factor (1−e−wj ·y)
since the same part is rewarded in (13a) when satisfying f̂i .

In (13c), we simply update η∗
f̂i→Xj

by considering the messages on which the other

ground atoms in f̂i except Xj are either unconstrained or satisfying f̂i minus the probability
that they are violating f̂i .

4.3.3 Marginal updates

The marginals can be calculated from the factor to variable messages once the algorithm
converges, to obtain estimates of the marginals over max-covers. The calculation of the
marginals are given in (14a), (14b) and (14c) as follows:

θ+
j = Z−1

j

∏

f̂i∈F−(j)

ηu

f̂i→Xj
×
[∏

f̂i∈F+(j)

(
ηs

f̂i→Xj
+ η∗

f̂i→Xj

)−
∏

f̂i∈F+(j)

η∗
f̂i→Xj

]
(14a)

θ−
j = Z−1

j

∏

f̂i∈F+(j)

ηu

f̂i→Xj
×
[∏

f̂i∈F−(j)

(
ηs

f̂i→Xj
+ η∗

f̂i→Xj

)−
∏

f̂i∈F−(j)

η∗
f̂i→Xj

]
(14b)

θ∗
j = Z−1

j

∏

f̂i∈F(j)

η∗
f̂i→Xj

(14c)

where Zj is the normalizing constant, given the evidence E.

Leveraging Cluster Backbones for Improving MAP Inference 923

In (14a), we compute the unnormalized positive marginal of a ground atom Xj by mul-
tiplying the violating incoming messages from the ground clauses in which Xj appears
negatively by the result of subtracting all unconstrained incoming messages from the
satisfying incoming messages from the ground clauses in which Xj appears positively.

Similarly, as shown in (14b), we calculate the unnormalized negative marginal by multi-
plying the violating incoming messages from the factors in which Xi appears positively by
the result of subtracting all unconstrained incoming messages from the satisfying incoming
messages from the ground clauses in which Xj appears negatively.

Finally, as shown in (14c), we calculate the unnormalized joker marginal by multiplying
all the unconstrained incoming messages from all factors in which Xj appears.

The simple interpretation to the positive marginal θ+
j , in (14a), is that it estimates the

probability of randomly selecting a max-core (i.e., a cluster), and finding that Xj is frozen
to “+”. This max-core satisfies the ground clauses of total maximal weights on which Xj

appears positively and violate the ground clauses of total minimal weights on which Xj

appears negatively. In other words, θ+
j approximates the fraction of the max-cores that

contains potentially the optimal MAP solutions in which Xj =“+”.
Hence, when θ+

j is greater than θ−
j , it is an indication that the fraction of clusters contain-

ing Xj frozen to “+” have MAP solutions better optimized (i.e., having more total weights)
than the fraction of clusters in which Xj is frozen to “−”. This means that the probability of
getting inside a cluster that involves optimal solutions increases when Xj is frozen to “+”
compared to Xj frozen to “−”. This intuitively implies that fixing Xj =“+” is more likely
to be a part of the optimal MAP solution than Xj =“−”.

4.4 Family of extended factor graphs

In a promising attempt at understanding the success of SP, it was suggested that the solutions
of random formulas typically do not possess non-trivial cores [40] (the core assignment is
non-trivial if it has at least one frozen variable). This implies that the variants of SP(χ)
are most effective for values of χ close to and not necessarily equal to 1. That is, pure SP,
denoted as SP(1), is not always the most effective method that one usually wants to use,
and that other versions of BP could be preferable. This is because the near-core assignments
which are the ones of maximum weight in this case, may correspond to quasi-solutions of
the cavity equations [45]. However, this explanation has been shortly dismissed by experi-
ments that ensure that non-trivial cores simply do exist for large formulas [33]. This means
that the pure SP is surprisingly the most accurate at computing marginals over these cores
despite the existence of many cycles in the formulas [33]. Recently, it has been shown that
the cores can represent singleton clusters (with very small number of variables taking the ∗
value). These cores are called degenerate covers [11]. In addition, it has been proven that,
in many structured weighted Max-SAT problems, cores are often degenerate — see Lemma
(2) in [11].

All of the aforementioned observations motivate the studying of a full family of WSP-χ
extended factor graphs at various values of the smoothing parameter (i.e., 0 ≤ χ ≤ 1). This
can be helpful to investigate if theMAP solutions possess non-trivial max-cores or not. From
the satisfiability perspective, we believe that this can be beneficial for more understanding
about the combinatorial properties of solution space of the structured SAT problems in
relational domains. It can also be used to study the satisfiability threshold of these problems,
and classifying them according to connectivity of the solution space.

M.-H. Ibrahim et al.924

Based on that, if we now adjust the value of the smoothing parameter3, χ ∈ [0, 1], in the
auxiliary factor nodes (see (8)), we consequently have a family of extended factor graphs
that can be categorized into three cases:

1. Set χ �= 0 and γ �= 0: we have a subset of extended factor graphs parameterized by
0 < χ < 1. That is, for each value of χ ∈ (0, 1), we have an extended factor graph that
defines a positive joint distribution over max-cores as defined in (9). Hence, running
WSP-χ ’s message-passing (as explained in Section 4.2) recovers a family of Weighted
SP algorithms corresponding to the values of χ ∈ (0, 1).

2. Set χ = 0 and γ = 1: In this case the the max-cores with n∗ = 0 are the only ones
having a positive joint distribution as given in (9). This means that the ground atoms
are not allowed to take a joker value ∗, but take only values 1 or 0. This implies that the
extended factor graph Ĝ is equivalent to the original factor graph G in such a way that
renders running WSP-χ ’s message-passing on Ĝ equivalent to loopy max-product BP
on G.

3. Set χ = 1 and γ = 0:Here each auxiliary factor node (as defined in (8)) takes the form

ϕj (ρ(Xj , Pj)) =

⎧⎪⎨
⎪⎩

0 If Pj (X) = ∅, and Xj �= ∗,
1 If Pj (X) = ∅, and Xj = ∗,
1 for other valid (Xj , Pj)

(15)

where in the first case the function ϕj assigns a value 0 only if x is an invalid max-
core, i.e., n0 > 0 (from Definition 6, when the complete assignment has unconstrained
ground atom set to 1 or 0 then it can not be a max-core). Otherwise it assigns a positive
value 1 when x is a valid max-core. Therefore, the extended factor graph in this case
has a joint distribution over max-core x, as defined in the following theorem 1.

Theorem 1 The underlying joint distribution defined by the extended factor graph, Ĝ with
χ = 1, is positive only over valid max-cores.

Proof The complete assignment x in extended factor graph Ĝ that is not max-core will be
either invalid or will involve unconstrained ground atoms set to value 1 or 0. For invalid
complete assignments, the distribution is zero because of the definition of ξ in (6). Addi-
tionally, for complete assignments with unconstrained ground atoms set to value 1 or 0 the
distribution will be zero because of the definition of ϕj in (15). Thus, from (9), for each
valid max-core x we have a joint probability of the form:

p(x) ∝
∏

fi∈S(x)

eŵi .y (16)

where S(x) represents only the set of the ground clauses satisfied by x. This means that the
joint probability is always positive for valid max-core x.

It is worth noting that Theorem 1 also implicitly shows that any invalid must have a zero
joint probability. This is because its joint factorization will be multiplied by either the (γ =
0)n0 with n0 > 0, or 0 penalty term in the reward function. Let us support the comprehension
of Theorem 2 by using an illustrative example represented in Table 2, which depicts the

3Note that since γ + χ = 1 then γ = 1 − χ , so we can specify the setting of the auxiliary factor node using
only one parameter χ .

Leveraging Cluster Backbones for Improving MAP Inference 925

Table 2 (Top) The joint probabilities of complete assignments {1, 0, 1} and {1, 1, 1} in the original factor
graph

X1 X2 X3 p(X1, X2, X3)

1 0 1 e(ŵc+ŵd)·y

1 1 1 e(ŵc+ŵd)·y

· · · ·
X1 X2 X3 P1 P2 P3 p(X1, X2, X3, P1, P2, P3)

1 0 1 fd ∅ fc γ × e(ŵc+ŵd)·y

1 1 1 fd ∅ fc γ × e(ŵc+ŵd)·y

1 * 1 fd ∅ fc χ × e(ŵc+ŵd)·y

· · · · · · ·

(Bottom) The (solution cluster-based) joint probabilities of their corresponding configurations ρ in the
extended factor graph, where ŵc (resp. ŵd) are the weights associated with the factors fc (resp. fd) that are
satisfied by the underlying complete assignments

expansion of complete assignments {1, 0, 1} and {1, 1, 1} in our explanatory factor graph G
to their corresponding ρ configurations in the extended factor graph Ĝ in Fig. 2.

Let us consider the complete assignment {1, 0, 1} in G, this assignment has X1 = 1
constrained by fd , X3 = 1 constrained by fc, and X2 = 0 is not a unique satisfying
variable to {fc, fd}. The assignment {1, 1, 1} implies the same constrained ground clauses
for X1 and X3, but not for X2 which can not be constrained to 1 by any ground clause.
In the extended factor graph Ĝ, we can notice that flipping X2 value from 0 to 1 will not
violate or satisfy any additional ground clauses. Thus, we have additionally the complete
assignment {1, ∗, 1}. Now, each one of the three assignments {1, 0, 1}, {1, 1, 1} and {1, ∗, 1}
can be seen as a candidate for a max-core with a certain probability. However, since both
candidate assignments ρ = {1, 0, 1} and ρ = {1, 1, 1} have identical parent sets of the form
(P1 = {f̂d}, P2 = ∅, and P3 = {f̂c}) then they yield an invalid max-core because they
violate the second condition in the concept of max-core (see Definitions 3 and 6). That is,
the two factors {f̂c, f̂d} involve the unconstrained ground atom X2 set to value 1 or 0 (i.e.,
n0 = 2). According to the extended factor graph parameterization, this situation implies
computing the auxiliary factors (ϕj (ρ(Xj , Pj))

3
j=1) based on (15), and it is a commitment

to set χ = 1 and γ = 0. Now since n0 > 0 for these these two invalid max-core, then based
on (9), their joint probability equals to zero because the multiplication by γ . On the contrary,
x = {1, ∗, 1} is a valid max-core and its corresponding ρ configurations have positive joint
probability multiplied by χ and not γ since n0 = 0. When n0 > 0, we are obliged to assign
γ with a non-negative value. Note that, in this case, decreasing the value of γ , which is
equivalent to increasing χ ’s value, implies increasing the probability that both {1, 0, 1} and
{1, 1, 1} assignments can not be a max-core. It also increases the probability that {1, ∗, 1}
can be a max-core. (It will be shown in Section 4.4 that the best parameterization to Ĝ is to
choose χ = 1 and γ = 0.).

Consequently, performing WSP-χ ’s message-passing on Ĝ with χ = 1 produces a pure
version of Weighted SP algorithm (WSP-1).

M.-H. Ibrahim et al.926

Theorem 2 When y → ∞, then WSP-1 estimates marginals corresponding to the
stationary point of the Bethe free energy on a uniform distribution over max-cores.

Proof Assume that we have a max-core (i.e.,W-core) of total weightW , and a more opti-
mal one ((W + ε)-core) of larger weightW + ε. According to (16), the ratio probability of
the two max-cores is:

P(W + ε-core)

P (W-core)
= eε·y (17)

Note that from (17), the ratio probability is still positive only over max-cores. Now, as
y tends to ∞ in (17), the two max-cores has equal probabilities. This means that each
max-core will have the same joint probability which is e∞. This in turn implies that the
extended factor graph defines a uniform joint distribution over valid max-cores. Hence, run-
ning WSP-1’s message-passing over the extended factor graph representing (16) estimates
marginals over uniformly distributed max-cores.

From the above formulations, we have a parameterized family of Weighted Survey Prop-
agation algorithms (WSP-χ), ranging from a traditional max-product BP (WSP-0) to pure
weighted SP (WSP-1). In Section 6.3.3, our experimental evaluation shows the success of
pure WSP-1 on real-world problems for finding the most accurate MAP solutions. This is
consistent with experimental results in [11, 33], ensuring that non-trivial cores often do exist
for large formulas of structured problems.

5 UsingWSP-χ as a general procedure for solvingMAP inference

As demonstrated in the previous subsection, the marginals obtained from WSP-χ corre-
spond to surveys over max-cores representing clusters of MAP solutions. That is to say,
they provide information about the fraction of clusters in which ground atoms are frozen
or unfrozen in their MAP solutions. Thus, a direct use of that information is to apply a
marginalization-decimation algorithm [35] based onWSP-χ , recovering a family ofWSP-χ
inspired decimation (WSP-Dec) algorithms for solving the task of full MAP inference (i.e.,
finding an assignment to all non-evidence atoms) on SRL models.

5.1 WSP-χ inspired decimation

For convenience, and without loss of generality, we focus on MLN when explaining how
WSP-Dec finds a MAP solution.

As clarified in Algorithm 3, WSP-Dec is a two-stage strategy. In the first stage, the
goal is to use WSP-χ for scaling the MLN’s grounded network and obtaining a portion
of the optimal MAP solution, as follows: We first assign the smoothing parameter χ the
value χ̂ to specify the WSP-χ̂ algorithm from the family WSP-χ that will be used as pre-
processing. We then adjust its setting for both the cooling parameter ŷ and magnetization
threshold T̂ (line 1). The specified WSP-χ̂ starts by initializing its messages uniformly at
random, as in line 2. It then iteratively applies a set of decimation steps until reaching a
trivial fixed point of the messages. At each decimation step, lines 8-11, it iteratively updates
its messages, using (12a), (12b), (12c), (13a), (13b), and (13c), until either exceeding the
maximum number of iterations or converging to a non-trivial fixed point of the messages

Leveraging Cluster Backbones for Improving MAP Inference 927

Algorithm 3 WSP-Dec for MAP inference in MLN.

Input: Set of Clauses and their Weights (F ,W), set of query atoms X , Evidence database
DB, Maximum number of iterations Imax, cooling parameter ŷ, Magnetization threshold
T̂ , smoothing parameter χ̂ .
Output: MAP solution xMAP .

1: Set the parameters y = ŷ, T = T̂ and χ = χ̂ ;
// Using WSP-χ̂ as a pre-processing

2: η
f̂i←Xj

∈ U [0, 1] , ∀Xj ∈ X , ∀fi ∈ F ; // Messages initialization;
3: repeat // Updating the messages
4: Use η

f̂i→Xj
to update μ

Xj →f̂i
; // Using Eqs.(12a),(12b), and (12c)

5: Use μ
Xj →f̂i

to update η
f̂i→Xj

; // Using Eqs.(13a),(13b), and (13c)

6: until (Convergence or termination of Imax)
7: Return a fixed point of the messages η̂

f̂i→Xj
;

8: if (non-trivial η̂
f̂i→Xj

�= 0 are found) then
9: for each Xj ∈ X do
10: Compute: �j = [θ+

j , θ−
j]; // Using Eqs.(14a),(14b),(14c), (33a),

(33b), and (33c)
11: end for
12: β ← Select[ground atoms Xj s having (|θ+

j − θ−
j | > T)] // obtain frozen

ground atoms
13: X ∗ ← X \ {β} ; // remove β from queries
14: DB∗ ← DB ∪ {β} ; // add β to evidence database
15: β∗ ← β∗ ∪ β; // store all β as a portion of xMAP

16: Simplify the model clauses F into F∗; // Fix frozen ground atoms (β)
17: F ← F∗;X ← X ∗ and Go to (2);
18: else if (trivial η̂

f̂i→Xj
= 0 are found) then

19: Run MaxWalkSAT on the simplified grounded network constructed by (X ∗,F∗,DB∗);

20: end if
21: xMAP ← Combination of returns from steps 15 and 19;
22: Return xMAP ;

(lines 4-7). It then estimates the marginals of ground query atoms in X using (14a), (14b),
(14c), (33a), (33b), and (33c). Subsequently, as in line 12, it uses the computed marginals to
identify frozen ground atoms (i.e, cluster backbones): the fraction of ground atoms inX that
have a magnetization |θ+

j − θ−
j | ≥ T . Afterwards, it fixes the frozen ground atoms to their

more likely truth values (i.e., magnetized values). In addition, as in line 14, it adds them to
the evidence database DB: those whose (θ+

j < θ−
j) are added to DB as false evidence, and

those whose (θ+
j > θ−

j) are added as true evidence. At this point, it should be noted that the
advantage of fixing the frozen ground atoms is two-fold: shrinking the set of query atoms
(i.e., X \ {β}), and enlarging the evidence database (i.e., DB ∪ {β}). This in turn results
in reducing the set of ground clauses, and therefore simplifying the grounded network that
instantiates the MAP inference problem (line 16). Eventually, as in line 18, if it reaches a
trivial fixed point of the messages: those that often produce demagnetized marginals (i.e.,

M.-H. Ibrahim et al.928

marginals that are not biased to either positive or negative values) and yield paramagnetic
solutions (paramagnetic solution refers to a generalized complete assignment that is not
biased to any value for all variables). Then either the complex parts of the grounded network
have been decimated by fixing the frozen ground atoms and/or the remaining query ground
atoms define a simple MAP inference that can be efficiently solved using any off-the-shelf
local search algorithm (e.g., MaxWalkSAT).

In the second stage, we run the MaxWalkSAT algorithm (line 19) to solve the remaining
simplified MAP inference problem. The output returned fromMaxWalkSAT combined with
the total set of the frozen ground atoms obtained from the WSP will provide the overall
MAP solution (line 21).

5.2 CombiningWSP-χ with lazy MAP inference

One key advantage of WSP-χ algorithms is that they can be combined with other state-of-
the-art approaches which greatly improve the scalability of MAP inference such as Lazy
and Lifted inference. Algorithm 4 shows how to combine WSP-χ with a Lazy MAP infer-
ence, which yields Lazy-WSP-Dec. Lazy-WSP-Dec mainly differs from the WSP-Dec of
Algorithm 3 in both the initial set of underlying query atoms and clauses, and the local
search algorithm that will be used to solve the simplified MAP inference (line 19). That is,
Lazy-WSP-Dec starts by grounding the network lazily, and maintaining only active ground
clauses and their active ground atoms that are sufficient to answer the queries. Note that a
ground clause is active if it can be made unsatisfied by flipping none or at least one of its
active atoms. Thus, by default, an unsatisfied ground clause is always active. An atom is
active if it was flipped at some point in the search, or if it is in the initial set of active atoms.
Lazy-WSP-Dec then calls the specified WSP-χ̂ algorithm, steps 1-17 of algorithm 3, to
scale the lazy ground network, which was built using those active clauses and atoms, by fix-
ing the frozen active atoms. After reaching a trivial fixed point, it runs Lazy-MaxWalkSat, as
in line 6, on the simplified network instead of propositional MaxWalkSAT as in algorithm 3.

Algorithm 4 Combining WSP-Dec with lazy MAP inference.

1: X ← (atoms in clauses unsatisfied by DB); // Consider only active atoms
2: F ← (clauses activated by X); // Consider only active clauses
3: W ← Weights associated with F ;

// Call WSP-χ: steps 1-17 in algorithm 3.
4: [X ∗,F∗,DB∗] ← WSP-χ̂ (X ,F ,W); //Simplifying the lazy grounded

network
5: if (trivial η̂

f̂i→Xj
= 0 are found) then

6: Run Lazy-MaxWalkSAT on the lazy grounded network constructed by (X ∗,F∗,DB∗);

7: end if

Leveraging Cluster Backbones for Improving MAP Inference 929

6 Experimental evaluation

The goal of our experimental evaluation is to investigate the following key questions.

– (Q1) Is the WSP-Dec algorithm competitive with the state-of-the-art inference algo-
rithms for finding an optimal MAP solution?

– (Q2) Is WSP-χ powerful enough to significantly reduce the size of grounded networks
compared to the prominent state-of-the-art scalable methods such as Lazy Inference?

– (Q3) How is the behavior of WSP-Dec influenced by the choice of the cooling
parameter y and magnetization threshold T ?

– (Q4) How is the performance of WSP-Dec algorithm affected by tuning the value of
the smoothing parameter χ in WSP-χ?

– (Q5) Does the combination of WSP-χ with Lazy inference, i.e., Lazy-WSP-Dec,
improve the efficiency of WSP-χ based MAP inference?

– (Q6) Is the WSP-Dec algorithm efficient compared to state-of-the-art MAP inference
algorithms on other tractable graphical models such as relational sum-product networks
(RSPNs)?

We experiment on three tasks: a protein interaction, an hyperlink analysis, and an entity
resolution in a citation matching domain. We used both the MLNs and datasets available
from the Alchemy web page4

Protein Interaction We used the Yeast dataset that captures information about a protein’s
location, function, phenotype, etc. It contains four subsets, each of which contains the
information of about 450 proteins.

– MLN: We used the MLN model [13] that involves singleton rules for predicting the
interaction relationship, and rules describing how protein functions relate to interactions
between proteins (i.e. two interacting proteins tend to have similar functions). The final
knowledge base has 7 atoms and 8 first-order formulas.

– Query: The goal of MAP inference is to predict MAP solution of interaction relations
(i.e., Interaction, and Function). All other atoms (e.g., location, protein-class, enzyme,
etc.) are considered evidence atoms.

Hyperlink Analysis We used theWebKB dataset that consists of labeled web pages from the
computer science departments of four universities. It features 4165 web pages and 10,935
web links, along with the words on the webpages, anchors of the links, and neighborhoods
around each link. Each web page is marked with some subset of the categories: person,
student, faculty, professor, department, research project, and course.

– MLN: We used the MLN model [38] that involves only formulas linking words to
page classes, and page classes to the classes of linked pages. The final knowledge base
contains 3 atoms and 6 formulas.

– Query: The goal of MAP inference is to predict MAP solution of the web pages point
to each other predict and their categories from the web pages’ words and link structures,
given their topics.

4http://alchemy.cs.washington.edu/

M.-H. Ibrahim et al.930

http://alchemy.cs.washington.edu/

Entity Resolution We used the Cora dataset which consists of 1295 citations of 132 differ-
ent computer science papers. Recently, the dataset was cleaned and split into five subsets
for cross-validation [67].

– MLN:We used the MLNmodel [67] that involves formulas stating regularities such as:
if two citations are the same, their fields are the same; if two fields are the same, their
citations are the same. Also it has formulas representing transitivity, which are assigned
very high weight. The final knowledge base contains 10 atoms and 32 formulas.

– Query: The goal of MAP inference is to predict MAP solution to predict which pairs
of citations refer to the same citation (SameBib), and similarly for author, title and
venue fields (SameTitle, SameAuthor and SameVenue). The other atoms are considered
evidence atoms.

6.1 Methodology

To evaluate WSP-Dec, we compare its results with the following prominent inference
algorithms:

1. MaxWalkSAT (MWS) algorithm [25, 66] and its lazy version (Lazy-MWS) which is
the state-of-the-art MAP inference in SRL systems like TUFFY [49], LoMRF [69] and
ALCHEMY [31]. We here useMWS to serve here as a good baseline in our experiments

2. Weighted constraint satisfaction problem (WCSP) [3, 23], an exact solver that is
currently used as the state-of-the-art MAP inference in PRACMLN engine5

3. RockIt6 inference query engine [50]. It applies integer linear programming-based
meta algorithms such as cutting plane inference and cutting plane aggregation. It also
leverages parallelism and symmetry to scale up MAP inference in SRL models

4. IPP7 algorithm [64], which is an integer polynomial programming based solver. IPP
first converts the MAP problem to an Intger Linear Program and then it uses Gurobi8

solver to solve it exactly
5. SP-Y algorithm [5], which is a popular survey propagation algorithm for solving MAP

inference and MAX-SAT problems

In addition, to obtain robust answers to the proposed questions, we apply the following:

– Varying the number of objects in the domains, following the methodology previously
used for MLNs [57]

– Varying the cooling parameter, following the methodology used for relaxed SP [10]
– Varying the magnetization threshold T ∈ {0.2, 0.5}. Thus we mainly considered two

WSP-Dec algorithms, WSP-Dec-0.2 and WSP-Dec-0.5, on which we selected the
ground atom as a frozen if its magnetization is greater than 0.2 and 0.5, respectively.

We then conduct the experimental evaluations in the following manner. In the training
phase, we learned the weights using a preconditioned scaled conjugate gradient (PSCG)
algorithm [38] by performing a four-way cross-validation for protein interaction task,
and a five-way cross-validation for both the link prediction and entity resolution tasks.
In the testing phase, we carried out a MAP inference on the held-out dataset using six

5Publicly available at: http://www.pracmln.org/index.html
6Publicly available at: https://github.com/jnoessner/rockIt
7Publicly available at: http://www.utdallas.edu/∼somdeb.sarkhel/software.html
8Publicly available at: http://www.gurobi.com/

Leveraging Cluster Backbones for Improving MAP Inference 931

http://www.pracmln.org/index.html
https://github.com/jnoessner/rockIt
http://www.utdallas.edu/~somdeb.sarkhel/software.html
http://www.gurobi.com/

underlying inference algorithms (WSP-Dec-0.2, WSP-Dec-0.5, MWS, Lazy-WSP-Dec-0.2,
Lazy-WSP-Dec-0.5, Lazy-MWS) to produce the MAP solution.

All of the experiments were run on a cluster of nodes with 3.0 GHz Intel CPUs, 3 GB
of RAM, RED HAT Linux 5.5. We used the MWS algorithm and its lazy version as imple-
mented in the Alchemy software [31], and took advantage of the SP code9 to implement
our WSP-χ as an extension to the PRACMLN10 software [31]. That is, we implemented
WSP-χ as a separate program to find the frozen atoms, then output of this program was
passed as additional evidence to PRACMLN engine for the MAP inference.

6.2 Metrics

In order to compare the performance and scalability of the testbed algorithms we considered
three metrics:

– The quality of MAP solution as a function of the running time.
– The quality of MAP solution as a function of cooling parameter.
– The average percentage of fixed (frozen) ground atoms.

where the quality of MAP solution is measured by computing the average cost of unsatisfied
ground clauses by the obtained MAP solution. It is worth noting that solving the MAP
inference here is equivalent to solving a weight MAX-SAT problem where the goal is to
find the MAP solution that maximizes the total weight of the satisfying clauses (which is
identical to minimize the total weight of the unsatisfying clauses). Thus considering the
average cost of unsatisfied ground clauses serves as a quite good measurement to test the
quality of the obtained MAP solution.

6.3 Results

We conduct our empirical evaluations through three experiments.

6.3.1 Experiment I

Figures 3, 4 and 5 display the average cost of unsatisfied clauses (smaller is better) as a
function of time for the six underlying inference algorithms at three different numbers of
objects in the domains of Cora, WebKB, and Yeast datasets respectively. Notation used to
label each of these figures is as: MLN-number-of-objects (number of ground clauses in the
propositional MLN). The absence of some algorithms in some plots means that no results
have been obtained since they ran out of memory.

Overall WSP-Dec algorithm (at thresholds 0.2 and 0.5) is the most accurate of all
the algorithms the compared, achieving the best solution quality on the three underly-
ing datasets. It finishes at least 19% more accurately than IPP on both WebKB and Cora
datasets, and 28% more accurately on the Yeast dataset. RockIT came close behind WSP-
Dec algorithm only on both WebKB-50 and Cora-250. WSP-Dec dominates both WCSP
and MaxWalkSAT on the three datasets. IPP was also very competitive with RockIT and

9Available: http://users.ictp.it/∼zecchina/SP/
10Publicly available at: http://www.pracmln.org/index.html

M.-H. Ibrahim et al.932

http://users.ictp.it/~zecchina/SP/
http://www.pracmln.org/index.html

Fig. 3 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time for Cora at 50 objects
(top), 250 objects (middle) and 1000 objects (bottom)

Leveraging Cluster Backbones for Improving MAP Inference 933

Fig. 4 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time for WebKB at 50
objects (top), 250 objects (middle) and 500 objects (bottom)

M.-H. Ibrahim et al.934

Fig. 5 Cost vs. Time: average cost of unsatisfied clauses (smaller is better) against time for Yeast at 50
objects (top), 250 objects (middle) and 1000 objects (bottom)

Leveraging Cluster Backbones for Improving MAP Inference 935

Fig. 6 Cost vs. cooling parameter: average cost of unsatisfied clauses against different values of cooling
parameter y of WSP-Dec algorithm on Cora (top), WebKB (middle) and Yeast (bottom)

M.-H. Ibrahim et al.936

WSP-Dec-0.02 when grounding the Cora, WebKB and Yeast models with small number of
objects (i.e., 50 objects). In addition, lazy-WSP-Dec (at thresholds 0.2, 0.5) substantially
outperformed SP-Dec algorithm on all underlying tested datasets. Clearly, the WSP-Dec
algorithms at threshold 0.5 were marginally more accurate than the WSP-Dec algorithms at
threshold 0.2 on both Cora, WebKB and Yeast datasets.

In terms of scalability, Lazy-WSP-Dec at thresholds 0.2, 0.5 and WSP-Dec at threshold
0.5 were able to handle all full datasets, whereas all other tested inference algorithms ran
out of memory with 1000 objects in the Yeast dataset. Additionally, both Lazy-WSP-Dec at
thresholds 0.2, 0.5 dominated IPP, which ran out of memory with 1000 objects in both Cora
and 500 objects in the WebKB dataset. Apart from lazy variants of WSP-Dec, propositional
WSP-Dec at thresholds 0.2, 0.5 finishes at least four orders of magnitude faster than the
WCSP solver with objects 250 in Cora dataset, and at least two times faster than RockIT
solver with objects 250 in WebKB dataset.

6.3.2 Experiment II

Figure 6 displays the average cost of unsatisfied clauses as a function of different cooling
parameter’s values (y ∈ [0.25, 5.25]) of the WSP-Dec algorithm and the Lazy-WSP-Dec
algorithm at thresholds 0.2, 0.5 for 50 objects in the domains of the three underlying
datasets. The result shows that the WSP-Dec algorithm reaches a slope-and-plateau region
where its quality of solution increases and then starts to decease. In the three tested
datasets, this slope-and-plateau region occurred when the cooling y parameter’s value is
approximately between 1.5 and 3 (answering the part of Q3 relates to cooling parameter).

6.3.3 Experiment III

Table 3 records both the average cost of unsatisfied clauses and the percentage of the frozen
ground atoms that are fixed by the WSP-Dec family of algorithms at four pairs of set-
tings of (χ, γ) on Cora, Web-KB, and Yeast. Overall, the most successful pair of WSP-Dec
algorithm was (χ = 1, γ = 0) in all tested datasets. For this setting, the decimation step
fixed approximately 30%− 51% of the query ground atoms (i.e., it obtains a portion that is
30 − 51% of the optimal MAP solution). By contrast, the poorest pair setting was (χ = 0,
γ = 1), the decimation step of the WSP-Dec algorithm fixed at most 10% of the query
ground atoms, reaching to small portions of the MAP solutions. In addition, the algorithm
with the pair (χ = 0.5, γ = 0.5) was more accurate than the pair (χ = 0.25, γ = 0.75)
in terms of both quality of MAP solution, and it has a larger amount of fixed frozen atoms
(conclusive answer to Q4).

6.3.4 Experiment IV

This experiment was performed to answer Q6. That is, we are interested in comparing
our WSP-Dec to the prominent LeanRSPN-based MAP inference method on relational
sum-product networks (RSPNs) [47] —RSPN is a relational tractable representation of
sum-product network [56]. To guarantee a fair scalability comparison, we used 200 objects
to ground the models. In the training phase, we re-ran experiment I for WSP-Dec algo-
rithms while in LeanRSPN-based method we used the Nath et. al’s python implementation
of LearnRSPN algorithm [47] to train the RSPN model. In the testing phase, and using the
learned models, we repeatedly assigned all tested algorithms an identical running time (i.e.,
1000 secs) sufficient to judge the inference behavior. At the testing of LeanRSPN-based

Leveraging Cluster Backbones for Improving MAP Inference 937

Ta
bl
e
3

T
he

pe
rc
en
ta
ge

of
th
e
fr
oz
en

gr
ou
nd

at
om

s
(i
.e
.,
cl
us
te
r
ba
ck
bo
ne
s)
th
at
ar
e
fi
xe
d
(f
ix
ed
%
)
an
d
th
e
av
er
ag
e
co
st
of

un
sa
tis
fi
ed

cl
au
se
s
(C
os
t)
fo
r
a
fa
m
ily

of
W
SP

-D
ec

at
di
ff
er
en
tc
ho
ic
es

of
sm

oo
th
in
g
pa
ir
s
(χ

,
γ
)
on

C
or
a,
W
eb
-K

B
,a
nd

Y
ea
st

W
SP

-D
ec

al
go
ri
th
m
s

χ
=

1,
γ

=
0

χ
=

0.
5,

γ
=

0.
5

χ
=

0.
25
,γ

=
0.
75

χ
=

0,
γ

=
1

D
at
as
et
s

N
o.

O
bj
.

fi
xe
d%

C
os
t

fi
xe
d%

C
os
t

fi
xe
d%

C
os
t

fi
xe
d%

C
os
t

C
or
a

50
43
.1

3.
2

×
10

3
30
.8

4.
4

×
10

3
21
.1

5.
4

×
10

3
6.
4

6.
6

×
10

3

25
0

40
.5

5.
1

×
10

5
29
.7

8.
2

×
10

5
18
.8

1.
2

×
10

6
5.
6

1.
5

×
10

6

10
00

51
.7

3.
1

×
10

7
36
.5

6.
1

×
10

7
24
.3

7.
9

×
10

7
10

9.
7

×
10

7

W
eb
-K

B
50

35
.5

3.
9

×
10

3
26
.2

9.
1

×
10

3
16
.0

1.
4

×
10

4
7.
0

1.
6

×
10

4

25
0

41
.0

1.
9

×
10

7
30
.0

5.
2

×
10

7
17
.9

9.
5

×
10

7
8.
3

1.
2

×
10

8

50
0

48
.2

1.
2

×
10

10
35
.3

3.
4

×
10

10
22
.5

6.
8

×
10

10
9.
9

9.
3

×
10

10

Y
ea
st

50
47
.0

7.
5

×
10

4
34
.0

1.
3

×
10

5
21
.6

5.
8

×
10

5
9.
0

9.
6

×
10

5

25
0

38
.4

9.
0

×
10

7
28
.9

1.
2

×
10

8
16
.7

3.
6

×
10

8
7.
8

8.
1

×
10

8

10
00

30
.5

1.
0

×
10

11
22
.6

1.
6

×
10

11
13
.4

2.
7

×
10

11
4.
3

7.
1

×
10

11

T
he

co
ol
in
g
pa
ra
m
et
er

y
as
si
gn
ed

a
va
lu
e
2
an
d
th
e
th
re
sh
ol
d
ta
ke
s
a
va
lu
e
0.
5.

T
he

va
lu
es

ap
pe
ar

in
bo
ld

ar
e
th
e
ca
se
s
in

w
hi
ch

W
SP

-D
ec

al
go
ri
th
m

va
ri
an
ts
ar
e
ab
le

to
fi
x

m
or
e
th
an

on
e-
th
ir
d
of

th
e
to
ta
ln

um
be
r
of

gr
ou
nd

at
om

s
(i
.e
.,

>
33
%
)

M.-H. Ibrahim et al.938

Fig. 7 Log scale of the average
cost of unsatisfied clauses
(smaller is better) of WSP-Dec
variants and LeanRSPN-based
MAP inference algorithm for
Cora (top), WebKB (middle) and
Yeast (bottom) after grounding
the models with 200 objects

inference, we leveraged the MPE inference implemented in SPFlow library11 [44] to obtain
the MAP solution.

Figures 7 reports the log scale of the average cost of unsatisfied clauses obtained after
5 runs of tested MAP inference algorithms, on which at each run we used different ran-

11Publicly available at: https://github.com/SPFlow/SPFlow

Leveraging Cluster Backbones for Improving MAP Inference 939

https://github.com/SPFlow/SPFlow

dom initialization. In terms of performance, the results show that lazy variants of WSP-Dec
algorithm (at thresholds 0.2 and 0.5) are the most accurate of all the tested algorithms.
LeanRSPN-based MAP inference came close behind WSP-Dec 0.2 on Cora dataset while
it was considerably less accurate on Yeast and WebKB datasets since the sizes of networks
dramatically increase. From the model representation viewpoint, the preliminary results of
this experiment clearly show that our proposed relational parameterized factor graphs (i.e.,
WSP-χ) are potentially more tractable than RSPN in relational domain.

7 Discussion

Overall the results clearly show that WSP-χ based algorithms substantially improve the
accuracy and scalability of the propositional MaxWalkSAT algorithm for MAP inference.
This is due to, first, finding the frozen ground atoms, which provides a large portion of
the optimal MAP solution. Second, fixing the frozen atoms simplifies the MAP inference
task into another one that can be solved accurately using any conventional MAP inference
algorithm.

WSP-Dec algorithms were also very competitive with respect to Lazy MAP Inference
whenever a substantial amount of frozen atoms were obtained. This can be attributed to the
fact that fixing the frozen atoms enlarges the evidence database and shrinks the query set
which provides great implications for reducing the effective size of the grounded network.
Moreover, the WSP-Dec algorithm dominated both propositional MaxWalkSAT and Lazy-
MaxWalkSAT on all tested data sets when it combined with Lazy Inference. This is because
the result of such combination is the exploitation of both sparseness in Lazy and frozen
atoms from WSP to scale up the MAP inference.

The magnetization threshold T offers a trade-off for WSP-Dec algorithm in terms of the
amount of frozen atoms/the quality of obtained MAP solution: on one hand decreasing T ’s
value enables one to obtain a large amount of frozen ground atoms and therefore improve
the scalability, but on the other hand some of those frozen atoms could be inaccurate and
that can effect the quality of the final obtained MAP solution. Thus, in the presence of a
huge grounded network, one can choose to slightly scarify the quality of the solution by
decreasing T just to enable the WSP-Dec algorithm to find a MAP solution. For instance,
with 1000 objects in the domain of Yeast dataset - on which its MLN features diversity in
the weights) - WSP-Dec 0.5 has difficulties reaching a MAP solution, whereas WSP-Dec
0.2 algorithm can find one.

The results in Experiment II show that the behaviour of the WSP-Dec algorithm over
varying cooling parameter y is consistent with theorem 2, ensuring that as long as WSP-χ
converges, its performance improves as cooling parameter y increases. That is to say, the
marginals computed by the WSP-Dec algorithm will prefer MAP solutions that satisfy the
clauses with a maximum total weight. However, at a certain point of increasing y, WSP
can fail to converge to accurate results which may be attributed to overshooting the optimal
solution. Also, choosing a small value of y can slow the convergence. Experimentally, we
find that we need to take it to a sufficiently large value between 1.5 and 3 to obtain high
convergence to an accurate result. This range of y is very close to the work of Battaglia
et al. (2004), who found that y = 2.5 worked very well for the SP-y algorithm. Although
one can use a bisection method to numerically obtain the ideal cooling value y beforehand,
we believe that the value of y can be dynamically tuned to favor the convergence of the
WSP-Dec algorithm, which will be an interesting analysis for future research.

M.-H. Ibrahim et al.940

From efficiency perspective, the results in experiment IV hypothetically emphasize that
designing a tractable graphical model representation, based on certain characteristics (e.g.,
determinism, sparseness, independences, etc.), often has a key impact on the MAP solu-
tion’s quality. That is, RSPN compactly leverages context-specific independence (i.e., the
children of a sum node have different decomposition in their product nodes) for an efficient
marginal inference. While the foundation of context-specifig independence makes RSPNs
more expressiveness than low-treewidth tractable models (and therefore provide accurate
marginal probability and partition function), this foundation however hinders the principle
of exploiting relational dependencies. This in turn could frequently leads RSPN to provide
inaccurate MAP assignment in relational domains — cf. the theoretical analysis of SPNs
presented in [12, 42]. On contrary, our WSP-χ representation is designed for the specific
purpose of relational MAP inference. It basically exploits both relational dependencies and
local logical structures to heuristically guide traditional local search-based MAP inference
methods. This could explain whyWSP-χ model provide more accurate MAP solutions than
RSPNs.

Furthermore, the performance of WSP-χ algorithms on the extended factor graph sig-
nificantly effected by the choice of smoothing parameter χ , and this appears clearly in the
results of Table 3. That is to say, given the pool of WSP-χ algorithms, increasing the value
of χ (or equivalently decreasing the value of γ) allows the algorithm to obtain more frozen
ground atoms, which results in enlarging the evidence database and shrinking the query set,
and therefore improving the scalability besides finding a larger portion for the optimal MAP
solution. Thus, when setting χ to the most (i.e., χ = 1 and γ = 0), a call to MaxWalkSAT
might in fact not be needed or only needed to solve an easy MAP inference on a scalable
grounded network. On the contrary, decreasing χ to the most (i.e., χ = 0 and γ = 1)
reduces WSP-χ to traditional BP, and this makes the calling of MaxWalkSAT often faces an
hard MAP inference on a simplified grounded network that is very close to the propositional
one. In addition, the success of pure WSP-1 for finding the most accurate results, supports
the conjecture that MAP solutions of relational problems typically do possess non-trivial
max-cores for large structured formulas.

8 Conclusion

It is widely known that many real-world problems can be formulated using expressive SRL
models that feature logical structures with very high densities, and this renders them identi-
cal to hard satisfiability instances. We believe a clear gap in the present literature on MAP
inference in SRL exists with respect to taking into consideration the fact that the solution
space of such problems is frequently clustered when the density of the underlying model is
high or close to a critical threshold.

Ignoring the clustering that occurs in the solution space can engender intricacies of get-
ting stuck in a metastable cluster at local optimum when handling the inference using some
state-of-the-art techniques like local search, max-product message-passing or LP relaxation
based algorithms. The novelty in this paper lies in twofold: First, we present a new family
of extended factor graphs WSP-χ associated with a family of Weighted Survey Propagation
algorithms applicable to SRL models. The objective of WSP-χ is to identify the backbones
of a cluster containing potentially optimal MAP solutions. This introduces the WSP-χ fam-
ily as a set of pre-processing methods that can help in finding the optimal solution in the
presence of clustered solution spaces. Second, we propose lazy variants of the WSP-χ
family of algorithms to improve scalability for MAP inference. Using real-world domains

Leveraging Cluster Backbones for Improving MAP Inference 941

such as protein interaction, hyperlink analysis and entity resolution, we have experimentally
shown that WSP-χ and its lazy variants are able to greatly improve quality and scalability
of MAP inference when integrated with propositional MaxWalkSAT and its lazy version.

To conclude, the approach of WSP-χ represents an improvement in relational MAP
inference. By obtaining cluster backbones that determine which particular clusters contain
potentially optimal solutions, not only is a large portion of the optimal solution provided
in the cluster, but also fixing them helps getting inside the cluster by enlarging the evi-
dence database and shrinking the query set. This therefore reduces the graph network into a
scalable one that can be solved accurately using any conventional MAP inference method.

In the future we plan to apply WSP-χ to the Tuffy system to get an approximate and
exact solution. Also we plan to combine WSP-χ with other inference algorithms such as
Lifted Inference. We intend to derive an online MAP inference for WSP-χ that dynamically
tunes the smoothing and cooling parameters to favor a better convergence for the WSP-Dec
algorithm. We will also try to use WSP-Dec for solving CSPs, since a decimation combined
with WSP-χ based message-passing can be viewed as a depth-first search combined with a
“highest bias” heuristic. Finally, we will attempt to derive a new adaptation ofWSP-χ -based
decimation that can be directly applied to other tractable representations of probabilistic
graphical model like relational sum-product networks.

Appendix A: Derivation of WSP-χ ’s update equations

Here we derive the update equations for WSP-χ ’s message passing. For simplicity, and
without lose of generality, we consider the derivation of WSP-1— a pure version of WSP-χ
on Ĝ when setting χ = 1 and γ = 0 in (8).

A1. Variable-to-factor

Let us start here by computing the update of the component μs

Xj →f̂i
. This component

represents the probability that Xj is constrained by other extended factors to satisfy f̂i ,
and therefore, it is specified by the event that the variable Xj = si,j and its mega-node
Pj = Zj ∪ {f̂i}. If we use Pj = Zj ∪ {f̂i} as a notation representing the following event
for a ground atom Xj

f̂i ∈ Pj and Zj = Pj \ {f̂i} ⊆ F s

f̂i
(j) (18)

Then we can compute μs

Xj →f̂i
as follows:

μs

Xj →f̂i
=

∑

Zj ⊆F s

f̂i
(j)

{
η

f̂i→Xj

∣∣∣∣Xj = si,j , Pj = Zj ∪ {f̂i}
}

(19a)

μs

Xj →f̂i
=

∑

Zj ⊆F s

f̂i
(j)

∏

f̂k∈Zj

ηs

f̂k→Xj

∏

f̂k∈F s

f̂i
(j)\Zj

η∗
f̂k→Xj

∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj
(19b)

=

⎡
⎢⎢⎣

∏

f̂k∈F s

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)
⎤
⎥⎥⎦

∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj
(19c)

M.-H. Ibrahim et al.942

Similarly for μu

Xj →f̂i
. This component is specified by the event that Xj = ui,j and its

mega-node Pj ⊆ Fu

f̂i
(j). Thus, we have:

μu

Xj →f̂i
=

∑

Zj ⊆Fu

f̂i
(j)

{
η

f̂i→Xj

∣∣∣∣Xj = ui,j , Pj = Zj

}
(20a)

=
∑

Zj ⊆Fu

f̂i
(j),Zj �=∅

∏

f̂k∈Zj

ηs

f̂k→Xj

∏

f̂k∈Fu

f̂i
(j)\Zj

η∗
f̂k→Xj

∏

f̂k∈F s

f̂i
(j)

ηu

f̂k→Xj
(20b)

−
∏

f̂k∈F s

f̂i
(j)

η∗
f̂k→Xj

∏

f̂k∈F s

f̂i
(j)

ηu

f̂k→Xj

=

⎡
⎢⎢⎣

∏

f̂k∈Fu

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)
−

∏

f̂k∈F s

f̂i
(j)

η∗
f̂k→Xj

⎤
⎥⎥⎦

∏

f̂k∈F s

f̂i
(j)

ηu

f̂k→Xj
(20c)

Finally, computing μ∗
Xj →f̂i

is specified by the event that Xj = si,j with Pj = F s

f̂i
(j), and

Xj = ∗ with Pj = ∅. Thus we have the following:
μ∗

Xj →f̂i
=

∑

Zj ⊆F s

f̂i
(j)

{
η

f̂i→Xj

∣∣∣∣Xj = si,j , Pj = Zj

}
+
{
η

f̂i→Xj

∣∣∣∣Xj = ∗, Pj = ∅
}

(21a)

=
∑

Zj ⊆F s

f̂i
(j),Zj �=∅

∏

f̂k∈F s

f̂i
(j)

ηs

f̂k→Xj

∏

f̂k∈F s

f̂i
(j)

η∗
f̂k→Xj

∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj

−
∏

f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

∏

f̂k∈F s

f̂i
(j)

ηu

f̂k→Xj
+

∏

f̂k∈F s

f̂i
(j)

η∗
f̂k→Xj

∏

f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

(21b)

=

⎡
⎢⎢⎣

∏

f̂k∈F s

f̂i
(j)

(
ηs

f̂k→Xj
+ η∗

f̂k→Xj

)
−

∏

f̂k∈Fu

f̂i
(j)

η∗
f̂k→Xj

⎤
⎥⎥⎦

∏

f̂k∈Fu

f̂i
(j)

ηu

f̂k→Xj

+
∏

f̂k∈F s

f̂i
(j)∪Fu

f̂i
(j)

η∗
f̂k→Xj

(21c)

A2. Factor-to-Variables

Let us start here with the component ηs

f̂i→Xj
. This component implies that Xj = si,j and

f̂i ∈ Pj , and that the only possible assignment for the other ground atoms Xk ∈ X
f̂i

\ {Xj }
is ui,k and their mega-nodes are Pk ⊆ Fu

f̂i
(k). That is, it takes the form:

ηs

f̂i→Xj
=

∏
Xk∈Xf̂i

\{Xj }

⎛
⎜⎜⎜⎜⎜⎝

From Eq. (20a) this equals μu

Xk→f̂i︷ ︸︸ ︷∑
Pk⊆Fu

f̂i
(k)

{
μ

Xk→f̂i

∣∣∣∣Xk = ui,k, Pk ⊆ Fu

f̂i
(k)

}
⎞
⎟⎟⎟⎟⎟⎠

×
a reward term, see (6)︷︸︸︷

eŵi ·y

(22)

Leveraging Cluster Backbones for Improving MAP Inference 943

Note that since the component ηs

f̂i→Xj
is constrained to satisfy f̂i , we multiply right hand

side of (22) by the term eŵi ·y which is the reward term of satisfying f̂i . Now, using the
definition of μu

Xk→f̂i
from (20a) into (22), we obtain the following:

ηs

f̂i→Xj
=
⎡
⎢⎣

∏
Xk∈Xf̂i

\{Xj }
μu

Xk→f̂i

⎤
⎥⎦× eŵi ·y (23)

Now moving to the component ηu

f̂i→Xj
. This component represents the probability that

Xj can violate f̂i . That is to say, we have Xj = ui,j and Pj ⊆ Fu

f̂i
(j). This probability

implies a combination of three possibilities (having weights labeled as W1,W2 and W3) for
the other ground atoms Xk ∈ X

f̂i
\ {Xj } in a potential complete assignment:

1. There is one ground atom in X
f̂i

\ {Xj } satisfying f̂i , and all the other ground atoms
are violating it

W1 =
∑

Xk∈Xf̂i
\{Xj }

From Eq. (19a) this equals μs

Xk→f̂i︷ ︸︸ ︷∑

Zk⊆F s

f̂i
(k)

{
μ

Xk→f̂i

∣∣∣∣Xk = si,k, Pk = Zk ∪ {f̂i}
}

×
∏

Xi∈Xf̂i
\{Xk,Xj }

From Eq. (20a) this equals μu

Xi→f̂i︷ ︸︸ ︷∑

Zi⊆Fu

f̂i
(i)

{
μ

Xi→f̂i

∣∣∣∣Xi = ui,i , Pi = Zi}
}

(24a)

=
∑

Xk∈Xf̂i
\{Xj }

μs

Xk→f̂i
×

∏
Xi∈Xf̂i

\{Xk,Xj }
μu

Xi→f̂i
(24b)

2. There are two or more ground atoms in X
f̂i

\ {Xj } satisfying f̂i or equal joker ∗, and
all other ground atoms are violating it

W2 =
∑

Xk∈Xf̂i
\{Xj }

⎡
⎢⎢⎣

∑

Zk⊆F s

f̂i
(k)

{
μ

Xk→f̂i

∣∣∣∣Xk = si,k, Pk = Zk

}
+
{
μ

Xk→f̂i

∣∣∣∣Xk = ∗, Pk = ∅
}
⎤
⎥⎥⎦

×
∏

Xi∈Xf̂i
\{Xk,Xj }

∑

Zi⊆Fu

f̂i
(i)

{
μ

Xi→f̂i

∣∣∣∣Xi = ui,i , Pi = Zi

}
(25a)

=
∏

Xk∈Xf̂i
\{Xj }

[
μu

Xk→f̂i
+ μ∗

Xk→f̂i

]
−

∑
Xk∈Xf̂i

\{Xj }
μ∗

Xk→f̂i
×

∏
Xi∈Xf̂i

\{Xk,Xj }
μu

Xi→f̂i

−
∏

Xk∈Xf̂i
\{Xj }

μu

Xk→f̂i
(25b)

Note that the weight assigned to the event that each ground atom is either satisfying

or ∗ is
∏

Xk∈Xf̂i
\{Xj }

[
μu

Xk→f̂i
+ μ∗

Xk→f̂i

]
, and the weight W2 is given by subtract-

ing from this quantity the weight assigned to the event that there are not at least two
joker ground atoms ∗ or satisfying. This event is a combination of two disjoint events
that either all other ground atoms in Xk ∈ X

f̂i
\ {Xj } are violating (which weight

M.-H. Ibrahim et al.944

∏
Xk∈Xf̂i

\{Xj } μu

Xk→f̂i
) or that only one ground atom is ∗ or satisfying (with weight∑

Xk∈Xf̂i
\{Xj } μ∗

Xk→f̂i
×∏

Xi∈Xf̂i
\{Xk,Xj } μu

Xi→f̂i
).

3. All other ground atoms in X
f̂i

\ {Xj } are violating f̂i . So here, there is a penalty term

e−ŵi ·y of violating f̂i when updating the message:

W3 =

⎡
⎢⎢⎢⎢⎢⎣

∏
Xk∈Xf̂i

\{Xj }

From Eq. (6) this equals μu

Xk→f̂i︷ ︸︸ ︷∑

Zk⊆Fu

f̂i
(k)

{
μ

Xk→f̂i

∣∣∣∣Xk = si,k, Pk = Zk

}
⎤
⎥⎥⎥⎥⎥⎦

×
A penalty term, see (6)︷ ︸︸ ︷

e−ŵi ·y (26a)

=
⎡
⎢⎣

∏
Xk∈Xf̂i

\{Xj }
μu

Xk→f̂i

⎤
⎥⎦× e−ŵi ·y (26b)

Now, bringing together the weight forms of W1, W2, and W3 from (24b), (25b) and (26b)
results in:

ηu

f̂i→Xj
=
⎡
⎢⎣

∏
Xk∈Xf̂i

\{Xj }

(
μu

Xk→f̂i
+ μ∗

Xk→f̂i

)
+

∏
Xi∈Xf̂i

\{Xj ,Xk}
μu

Xi→f̂i

∑
Xk∈Xf̂i

\{Xj }

(
μs

Xk→f̂i
− μ∗

Xk→f̂i

)
⎤
⎥⎦−

⎡
⎢⎣

penalty︷ ︸︸ ︷
(1 − e−ŵi ·y)

∏
Xk∈Xf̂i

\{Xj }
μu

Xk→f̂i

⎤
⎥⎦ (27)

Finally, the component η∗
f̂i→Xj

represents the probability that Xj can be unconstrained by

f̂i . This probability is a combination of two possibilities: either Xj is satisfying f̂i and all
other ground atoms are unconstrained, or Xj is unconstrained (i.e., Xj = ∗ with Pi = ∅).
So we have:

η∗
f̂i→Xj

=
∑

Xk∈Xf̂i
\{Xj }

⎡
⎢⎢⎣

∑

Zk⊆F s

f̂i
(k)

{
μ

Xk→f̂i

∣∣∣∣Xk = si,k, Pk = Zk

}
+
{
μ

Xk→f̂i

∣∣∣∣Xk = ∗, Pk = ∅
}
⎤
⎥⎥⎦ x

(28)

Note that the first part of (25a) and (25b) is identical to (28). Thus, we substitute the
computation of this part from (25a) and (25b) into (28), and we have:

η∗
f̂i→Xj

=
⎡
⎢⎣

∏
Xk∈Xf̂i

\{Xj }

(
μu

Xk→f̂i
+ μ∗

Xk→f̂i

)
⎤
⎥⎦−

∏
Xk∈Xf̂i

\{Xj }
μu

Xk→f̂i
(29)

A3. Estimating theMarginals

Now let us explain the derivation of ground atoms’ marginals over max-cores in Ĝ. Com-
puting the unnormalized positive marginal of a ground atom Xj requires multiplying the

Leveraging Cluster Backbones for Improving MAP Inference 945

satisfying income messages from the ground clauses in which Xj appears positively by the
violating income messages from the ground clauses in which Xj appears negatively:

θ̃+
j =

∏

f̂i∈F s (j)

∑
F(i)

{
η

f̂i→Xj

∣∣∣∣Xj = si,j , Pj = F s (j)

}
×

∏

f̂i∈Fu(j)

∑
F(i)

{
η

f̂i→Xj

∣∣∣∣Xj = ui,j , Pj = Fu(j)

}
(30a)

=
∏

f̂i∈F+(j)

∑
F(i)

{
η

f̂i→Xj

∣∣∣∣Xj = +, Pj = F+(j)

}
×

∏

f̂i∈F−(j)

∑
F(i)

{
η

f̂i→Xj

∣∣∣∣Xj = −, Pj = F−(j)

}
(30b)

=
∏

f̂i∈F−(j)

ηu

f̂i→Xj
×
⎡
⎣ ∏

f̂i∈F+(j)

(
ηs

f̂i→Xj
+ η∗

f̂i→Xj

)
−

∏

f̂i∈F+(j)

η∗
f̂i→Xj

⎤
⎦ (30c)

Similarly, we can obtain the unnormalized negative marginal by multiplying the satisfying
income messages from the factors in which Xi appears negatively by the violating income
messages from the factors in which Xi appears positively:

θ̃−
j =

∏

f̂i∈F+(j)

ηu

f̂i→Xj
×
⎡
⎣ ∏

f̂i∈F−(j)

(
ηs

f̂i→Xj
+ η∗

f̂i→Xj

)
−

∏

f̂i∈F−(j)

η∗
f̂i→Xj

⎤
⎦ (31)

Finally, we can estimate the unnormalized joker marginal by multiplying all the
unconstrained incoming messages from all factors in which Xj appears:

θ̃∗
j =

∏

f̂i∈F(j)

{
η

f̂i→Xj

∣∣∣∣Xj = ∗, Pj = ∅
}

=
∏

f̂i∈F(j)

η∗
f̂i→Xj

(32a)

Now by normalizing the quantities in (30c), (31) and (32a), we obtain the marginal of
Xj as follows:

θ+
j = Z−1

j θ̃+
j (33a)

θ−
j = Z−1

j θ̃−
j (33b)

θ∗
j = Z−1

j θ̃∗
j (33c)

and
Zj = θ̃+

j + θ̃−
j + θ̃∗

j (34)

where Zi is the normalizing constant, given the evidence E.

References

1. Achlioptas, D., Ricci-Tersenghi, F.: Random formulas have frozen variables. SIAM J Comput 39(1),
260–280 (2009). SIAM

2. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief
propagation and relational training, vol. 92 (2013)

3. Allouche, D., de Givry, S., Schiex, T.: Toulbar2 an Open Source Exact Cost Function Network Solver.
Technical report, INRIA (2010)

4. Amirian, M.M., Ghidary, S.S.: Xeggora: Exploiting immune-to-evidence symmetries with full aggrega-
tion in statistical relational models. J. Artif. Intell. Res. 66, 33–56 (2019)

5. Battaglia, D., Kolár, M., Zecchina, R.: Minimizing energy below the glass thresholds. Phys. Rev. E 70,
36107–36118 (2004)

6. Besag, J.: On the statistical analysis of dirty pictures. J R Stat Soc Series B stat Methodol 48(3), 259–279
(1986)

M.-H. Ibrahim et al.946

7. Braunstein, A., Zecchina, R.: Survey and belief propagation on random k-sat. In: Proceedings of the 7th
International Conference on Theory and Applications of Satisfiability Testing, vol. 2919, pp. 519–528.
Springer, Vancouver (2004)

8. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random
Struct. Algorithm. 27(2), 201–226 (2005)

9. Chavas, J., Furtlehner, C., Mézard, M., Zecchina, R.: Survey-propagation decimation through distributed
local computations. J. Stat. Mech. Theory Exper. 2005(11), 11016–11027 (2005). IOP Publishing

10. Chieu, H.L., Lee, W.S.: Relaxed survey propagation for the weighted maximum satisfiability problem.
J. Artif. Intell. Res. (JAIR) 36, 229–266 (2009)

11. Chieu, H.L., Lee, W.S., Teh, Y.W.: Cooled and relaxed survey propagation for mrfs. In: Proceedings of
the 21st Annual Conference on Neural Information Processing Systems: Advances in Neural Information
Processing Systems, vol. 20, pp. 297–304, Vancouver. Curran Associates, Inc. (2007)

12. Conaty, D., Maua, D., de Campos, C.: Approximation complexity of maximum a posteriori inference in
sum-product networks. In: Proceedings of The 33rd Conference on Uncertainty in Artificial Intelligence,
AUAI (2017)

13. Davis, J., Domingos, P.: Deep Transfer via Second-Order Markov Logic. In: Proceedings of the 26Th
International Conference on Machine Learning (ICML-09), Montreal (2009)

14. De Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Proceedings of the
19th International joint conference in artificial intelligent, pp. 1319–1325. AAAI Press (2005)

15. De Salvo Braz, R., Amir, E., Roth, D.: Mpe and partial inversion in lifted probabilistic variable elimi-
nation. In: Proceedings Of The Twenty-first National Conference On Artificial Intelligence, vol. 6, pp.
1123–1130. AAAI press, Boston (2006)

16. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973). IEEE computer Society
17. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. Adaptive Computation and

Machine Learning. The MIT Press (2007)
18. Gomes, C., Hogg, T., Walsh, T., Zhang, W.: Tutorial - Phase Transitions and Structure in Combinatorial

Problems. In: Proceedings Of The Eighteenth National Conference On Artificial Intelligence. AAAI
Press, Edmonton (2002)

19. Granville, V., Krivánek, M., Rasson, J.P.: Simulated annealing: a proof of convergence. IEEE Trans.
Pattern Anal. Mach. Intell. 16(6), 652–656 (1994). IEEE computer society

20. Hartmann, A.K., Weigt, M.: Phase transitions in combinatorial optimization problems: basics, algorithms
and statistical mechanics. Wiley, New York (2006)

21. Huynh, T.N., Mooney, R.J.: Max-margin weight learning for markov logic networks. In: Machine
Learning and Knowledge Discovery in Databases, vol. 5781, pp. 564–579. Springer (2009)

22. Ibrahim, M.H., Pal, C., Pesant, G.: Exploiting determinism to scale relational inference. In: Proceedings
of the Twenty-Ninth National Conference on Artificial Intelligence (AAAI’15), pp. 1756–1762. AAAI
Press, Austin (2015)

23. Jain, D., Maier, P., Wylezich, G.: Markov Logic as a Modelling Language for Weighted Constraint
Satisfaction Problems. In: Eighth International Workshop on Constraint Modelling and Reformulation,
in conjunction with CP (2009)

24. Kambhampati, S.C., Liu, T.: Phase transition and network structure in realistic sat problems. In: Proceed-
ings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pp. 1619–1620. AAAI Press,
Washington (2013)

25. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems with hard and soft
constraints. Satisfiab Problem Theory Appl. 17, 573–586 (1997)

26. Kazemi, S.M., Kimmig, A., Van den Broeck, G., Poole, D.: New liftable classes for first-order
probabilistic inference. In: Advances in Neural Information Processing Systems, pp. 3117–3125 (2016)

27. Kersting, K.: Lifted probabilistic inference. In: Proceedings of 20th European Conference on Artificial
Intelligence (ECAI–2012), vol. 27-31, pp. 33–38. ECCAI, Montpellier (2012)

28. Khosla, M., Melhorn, K., Panagiotou, K.: Message Passing Algorithms, PhD thesis. Citeseer (2009)
29. Kiddon, C., Domingos, P.: Coarse-to-fine inference and learning for first-order probabilistic models. In:

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp. 1049–1056. AAAI
Press, San Francisco (2011)

30. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Proceedings
of the The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, vol. 5, pp. 1368–1373. AAAI Press, Pittsburgh (2005)

31. Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., Lowd, D.: The Alchemy Sys-
tem for Statistical Relational AI. In: Technical Report Department of Computer Science and Engineering,
University of Washington, Seattle. http://alchemy.cs.washington.edu (2007)

32. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans.
Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

Leveraging Cluster Backbones for Improving MAP Inference 947

http://alchemy.cs.washington.edu

33. Kroc, L., Sabharwal, A., Selman, B.: Survey propagation revisited. In: Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence, pp. 217–226. AUAI Press, Vancouver (2007)

34. Kroc, L., Sabharwal, A., Selman, B.: Counting solution clusters in graph coloring problems using belief
propagation. In: Proceedings of 22nd Conference on Neural Information Processing Systems: Advances
in Neural Information Processing Systems, vol. 21, pp. 873–880. Curran Associates Inc., Vancouver
(2008)

35. Kroc, L., Sabharwal, A., Selman, B.: Message-passing and local heuristics as decimation strategies for
satisfiability. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1408–1414.
ACM (2009)

36. Kumar, M.P., Torr, P.H.: Efficiently solving convex relaxations for map estimation. In: Proceedings of
the 25th international conference on Machine learning, pp. 680–687. ACM, Helsinki (2008)

37. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and
their application to expert systems. J. R. Stat. Soc. Ser. B (Methodol.) 50, 157–224 (1988)

38. Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks. In: Proceedings of 11th
European Conference on Principles and Practice of Knowledge Discovery in Databases PKDD 2007,
pp. 200–211. Springer, Warsaw (2007)

39. Lüdtke, S., Schröder, M., Krüger, F., Bader, S., Kirste, T.: State-space abstractions for probabilistic
inference: a systematic review. J. Artif. Intell. Res. 63, 789–848 (2018)

40. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations. J.
ACM (JACM) 54(4), 17–21 (2007). ACM

41. Mann, A., Hartmann, A.: Numerical solution-space analysis of satisfiability problems. Phys. Rev. E
82(5), 056702–56707. APS (2010)

42. Mei, J., Jiang, Y., Tu, K.: Maximum a posteriori inference in sum-product networks. In: Thirty-Second
AAAI Conference on Artificial Intelligence, pp. 1923–1930 (2018)

43. Meilicke, C., Leopold, H., Kuss, E., Stuckenschmidt, H., Reijers, H.A.: Overcoming individual process
model matcher weaknesses using ensemble matching. Decis. Support. Syst. 100, 15–26 (2017)

44. Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani, P., Mauro, N.D., Poupart, P., Kersting,
K.: Spflow: An easy and extensible library for deep probabilistic learning using sum-product networks.
arXiv:1901.03704 (2019)

45. Montanari, A., Parisi, G., Ricci-Tersenghi, F.: Instability of one-step replica-symmetry-broken phase in
satisfiability problems. J. Phys. A: Math. Gen. 37(6), 2073–2079 (2004). IOP Publishing

46. Natarajan, S., Tadepalli, P., Dietterich, T.G., Fern, A.: Learning first-order probabilistic models with
combining rules. Ann. Math. Artif. Intell. 54(1-3), 223–256 (2008)

47. Nath, A., Domingos, P.M.: Learning relational sum-product networks. In: Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, pp 2878–2886 (2015)

48. Ng, K.S., Lloyd, J.W., Uther, W.T.: Probabilistic modelling, inference and learning using logical theories.
Ann. Math. Artif. Intell. 54(1-3), 159–205 (2008)

49. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: Scaling up statistical inference in markov logic networks
using an rdbms. Proc. VLDB Endow. 4(6), 373–384 (2011)

50. Noessner, J., Niepert, M., Stuckenschmidt, H.: Rockit: Exploiting Parallelism and Symmetry for
Map Inference in Statistical Relational Models. In: Twenty-Seventh AAAI Conference on Artificial
Intelligence (2013)

51. Papai, T., Singla, P., Kautz, H.: Constraint propagation for efficient inference in markov logic. In: Pro-
ceedings of 17th International Conference on Principles and Practice of Constraint Programming (CP
2011), no. 6876 in Lecture Notes in Computer Science (LNCS), pp 691–705 (2011)

52. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proceedings of the Eighteenth National
Conference on Artificial Intelligence, pp. 682–687. AAAI Press, Menlo Park (2002)

53. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the 14th National Conference on
Artificial Intelligence, pp. 340–345. AAAI Press. at the convention center in Providence (1997)

54. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco (1988)

55. Peharz, R., Gens, R., Pernkopf, F., Domingos, P.: On the latent variable interpretation in sum-product
networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2030–2044 (2016)

56. Poon, H., Domingos, P.: Sum-Product Networks: a New Deep Architecture. In: 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE (2011)

57. Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complexity of relational infer-
ence and its application to mcmc. In: Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, pp 1075–1080. AAAI Press, Chicago (2008)

M.-H. Ibrahim et al.948

http://arxiv.org/abs/1901.03704

58. Ravikumar, P., Lafferty, J.: Quadratic programming relaxations for metric labeling and markov ran-
dom field map estimation. In: Proceedings of the 23rd international conference on Machine learning,
pp. 737–744. ACM (2006)

59. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–136 (2006). Kluwer
Academic Publishers

60. Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic. In: UAI, pp 468–
475. AUAI Press (2008)

61. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect variable interactions.
In: International Conference on Machine Learning, pp 710–718 (2014)

62. Sarkhel, S., Gogate, V.: Lifting walksat-based local search algorithms for map inference. In: Proceedings
of Statistical Relational Artificial Intelligence Workshop at the Twenty-Seventh AAAI Conference on
Artificial Intelligence, pp. 64–67. AAAI Press, Bellevue (2013)

63. Sarkhel, S., Venugopal, D., Singla, P., Gogate, V.: Lifted MAP inference for markov logic networks. In:
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, vol.
33, pp. 859–867. JMLR: W & CP, Reykjavik (2014a)

64. Sarkhel, S., Venugopal, D., Singla, P., Gogate, V.G.: An integer polynomial programming based frame-
work for lifted map inference. In: Advances in Neural Information Processing Systems, pp 3302–3310
(2014b)

65. Schoenfisch, J., Meilicke, C., von Stülpnagel, J., Ortmann, J., Stuckenschmidt, H.: Root cause analysis
in it infrastructures using ontologies and abduction in markov logic networks. Inf. Syst. 74, 103–116
(2018)

66. Selman, B., Kautz, H., Cohen, B., et al.: Local search strategies for satisfiability testing. Cliques,
coloring, and satisfiability: Second DIMACS implementation challenge 26, 521–532 (1993)

67. Singla, P., Domingos, P.: Entity resolution with markov logic. In: ICDM, pp 572–582. IEEE Computer
Society (2006a)

68. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In: Proceedings of the
Twenty-first National Conference on Artificial Intelligence (AAAI-06), vol. 6, pp 488–493. AAAI Press,
Boston (2006b)

69. Skarlatidis, A.: Logical markov random fields (lomrf): an open-source implementation of markov logic
networks. https://github.com/anskarl/LoMRF (2012)

70. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence, vol. 1, pp. 254–259. Morgan Kaufmann Publishers
Inc., Seattle (2001)

71. Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends® Comput. Graph. Vis. 2(1), 1–104
(2006). Now Publishers Inc.

72. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the performance of the max-
product algorithm and its generalizations. Stat. Comput. 14(2), 143–166 (2004). Springer

73. Wainwright, M., Jaakkola, T., Willsky, A.: MAP estimation via agreement on (hyper)trees: Message-
passing and linear programming approaches. IEEE Transactions on Information Theory, vol. 51,
pp. 3697–3717. IEEE computer society (2005)

74. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-propagation
algorithm in arbitrary graphs. IEEE Trans. Inf. Theory 47(2), 736–744 (2001). IEEE computer Society

75. Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation–an empirical
study. J. Mach. Learn. Res. 7, 1887–1907 (2006). JMLR. org

76. Zhang, W.: Phase transitions and backbones of the asymmetric traveling salesman problem. J. Artif.
Intell. Res. (JAIR) 21, 471–497 (2004). AAAI Press

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Leveraging Cluster Backbones for Improving MAP Inference 949

https://github.com/anskarl/LoMRF

	Leveraging Cluster Backbones for Improving MAP Inference
	Abstract
	Introduction
	Related work
	Background
	Notation and definitions
	Markov logic
	Relational MAP inference
	Decimation based on survey propagation

	WSP- framework
	Factor Graph Re-parameterization
	WSP- message-passing
	- Factor-to-variable message (Xj)
	- Variable-to-factor message (Xj)

	WSP-'s update equations
	Variable-to-factor Updates
	Factor-to-variable updates
	Marginal updates

	Family of extended factor graphs

	Using WSP- as a general procedure for solving MAP inference
	WSP- inspired decimation
	Combining WSP- with lazy MAP inference

	Experimental evaluation
	Protein Interaction
	Hyperlink Analysis
	Entity Resolution

	Methodology
	Metrics
	Results
	Experiment I
	Experiment II
	Experiment III
	Experiment IV

	Discussion
	Conclusion
	Appendix A
	A1. Variable-to-factor
	A2. Factor-to-Variables
	A3. Estimating the Marginals
	References

