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Abstract
The purpose of this work is to study a generalisation of Dung’s abstract argumentation
frameworks that allows representing recursive attacks, that is, a class of attacks whose tar-
gets are other attacks. We do this by developing a theory of argumentation where the classic
role of attacks in defeating arguments is replaced by a subset of them, which is “extension-
dependent” and which, intuitively, represents a set of “valid attacks” with respect to the
extension. The studied theory displays a conservative generalisation of Dung’s semantics
(complete, preferred, stable and grounded) and also of its principles (conflict-freeness,
acceptability and admissibility). Furthermore, despite its conceptual differences, we are also
able to show that our theory agrees with the AFRA interpretation of recursive attacks for the
complete, preferred, stable and grounded semantics and with a recent flattening method.
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1 Introduction

Argumentation has become an essential paradigm for Knowledge Representation and,
especially, for reasoning from contradictory information [1, 15] and for formalizing the
exchange of arguments between agents in, e.g., negotiation [2]. Formal abstract frameworks
have greatly eased the modelling and study of argumentation. For instance, a Dung’s argu-
mentation framework (AF) [15] consists of a collection of arguments interacting with each
other through an attack relation, enabling to determine “acceptable” sets of arguments called
extensions.

A natural generalisation of Dung’s argumentation frameworks consists in allowing
higher-order attacks (also called recursive attacks in the relevant literature) that target other
attacks. Here is an example from the legal domain, borrowed from [3].

Example 1 The lawyer says that the defendant did not have intention to kill the victim
(Argument b). The prosecutor says that the defendant threw a sharp knife towards the victim
(Argument a). So, there is an attack denoted by α from a to b. And the intention to kill
should be inferred. Then the lawyer says that the defendant was in a habit of throwing the
knife at his wife’s foot once drunk. This latter argument (Argument c) is better considered
attacking the attack from a to b, than argument a itself (so there is now another attack
denoted by β from c to α). Now the prosecutor’s argumentation seems no longer sufficient
for proving the intention to kill. This example is represented as a recursive framework in
Fig. 1.

Another example, borrowed from [4, 13], will be taken as a running example.

Example 2 Suppose Bob is making decisions about his Christmas holidays, and is willing to
buy cheap last minute offers. He knows there are deals for travelling to Gstaad (g) or Cuba
(c). Suppose that Bob has a preference for skiing (p) and knows that Gstaad is a renowned
ski resort. However, the weather service reports that it has not snowed in Gstaad (n). So it
might not be possible to ski there. Suppose finally that Bob is informed that the ski resort in
Gstaad has a good amount of artificial snow, that makes it anyway possible to ski there (a).
The different attacks are represented on Fig. 2.

The idea of encompassing attacks to attacks in abstract argumentation frameworks was
first considered in [5] in the context of an extended framework handling argument strengths
and their propagation. Then, a semantics for recursive frameworks was introduced in [21],
motivated by the fact that attacks to attacks come from preferences between conflicting
arguments. More recently, recursive frameworks have been studied in [4] under the name of
AFRA (Argumentation Framework with Recursive Attacks). This version describes abstract
argumentation frameworks in which the interactions can be either attacks between argu-
ments or attacks from an argument to another attack. A translation of an AFRA into an

Fig. 1 An acyclic recursive
framework: arguments are
vertices in circle, attacks are
directed edges labelled by their
name in square
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Fig. 2 Bob’s dilemma

AF is defined by the addition of some new arguments and the attacks they produce or they
receive. Note that AFRA have been extended in order to handle recursive support interac-
tions together with recursive attacks [13, 14]. However, when supports are removed, these
approaches go back to AFRA.

Similar works have proposed to handle recursive frameworks through the definition of a
Meta-Argumentation Framework (MAF). The idea goes back to [19]. Recent work [8] uses
the addition of meta-arguments that enable to encode the notions of “grounded attack” and
“valid attack” (the notion of grounded attack is about the source of the attack and the notion
of valid attack is about the link between the source and the target of the attack, i.e. the role
of the interaction itself).

A common point of these approaches (AFRA, MAF) for taking into account higher-order
attacks is the fact that they somehow change the role that attacks play in Dung’s frameworks.

Example 3 Consider the argumentation framework corresponding to Fig. 3. According to
Dung’s theory, the framework depicted in Fig. 3 has three conflict-free sets: ∅, {a} and {b}.
The set {a, b} is not conflict-free. However, {a, b} may become conflict-free if we consider
that the attack α is not “valid”, and so has no impact.

This is the case, for instance, in AFRA which translates this argumentation framework
into a new AF by converting α into a new argument as in Fig. 4. In this new framework, it
is easy to observe that {a, b} is considered conflict-free in AFRA because there is no attack
between a and b. In some sense, the connection between an attack and its source has been
lost. As another example of this behaviour, the set {α, b} is not AFRA-conflict-free despite
the fact that the source of α, the argument a, is not in the set.

In this paper, we study an alternative semantics for argumentation frameworks with
recursive attacks based on the following intuitive principles:

P1 The role played in Dung’s argumentation frameworks by attacks in defeating argu-
ments is now played by a subset of these attacks, which is “extension-dependent” and
represents the “valid attacks” with respect to that extension.

P2 It is a conservative generalisation of Dung’s framework for the definitions of
conflict-free, admissible, complete, preferred, stable and grounded extensions.

For instance, in the proposed semantics, the conflict-free extensions of the framework
of Fig. 3 are precisely Dung’s conflict-free extensions: ∅, {a} and {b}. Besides, as we will
see later, the attack α is valid with respect to all three extensions because it is not the

Fig. 3 A simple Dung’s
framework
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Fig. 4 AF framework for AFRA of Fig. 3 (here α becomes an argument, so it is in circle; moreover, in an
AF, it is useless to name the attack from α to b since it cannot be the target of another attack)

target of any attack. It is worth noting that, despite its conceptual difference with respect to
AFRA, we are able to prove a one-to-one correspondence between our complete, preferred,
stable and grounded extensions and the corresponding AFRA extensions, in which the set
of “acceptable” arguments are the same. This offers an alternative view for the semantics of
recursive attacks that we believe to be closer to Dung’s intuitive understanding.

The paper is organized as follows: the necessary background is recalled in Section 2;
semantics for recursive frameworks are defined in Section 3; then Sections 4, 5 and 6 present
the comparison with existing works (AFRA in Section 4, MAF in Section 5 and Dung’s
frameworks in Section 6); the notion of inhibited attacks is discussed in Section 7; finally,
we conclude in Section 8. Proofs of some additional results can be found in the Appendix.1

2 Background

In this section we review the necessary background on Dung’s argumentation frameworks.

Definition 1 (D-framework) A Dung’s abstract argumentation framework (D-framework
for short) is a pair AF = 〈A,R〉 where A is a set of arguments and R ⊆ A×A is a relation
representing attacks over arguments.

For instance, Fig. 3 represents the D-framework AF3 =〈A3,R3〉 with the set of arguments
A3 ={a, b} and the attack relation R3 ={(a, b)}.

Definition 2 (Defeat, acceptability) Given some D-framework AF = 〈A,R〉 and some set
of arguments S ⊆ A, an argument a ∈ A is said to be2

i) defeated w.r.t. S in AF iff ∃b ∈ S such that (b, a) ∈ R, and
ii) acceptable w.r.t. S in AF iff for every argument b ∈ A with (b, a) ∈ R, there is c ∈ S

such that (c, b) ∈ R.

To obtain shorter definitions we will also use the following notations:

Def (S)
def= {

a ∈ A
∣∣ ∃b ∈ S s.t. (b, a) ∈ R

}

Acc(S)
def= {

a ∈ A
∣∣ ∀b ∈ A, (b, a)∈R implies b∈Def (S)

}

to denote, respectively, the set of all defeated and acceptable arguments w.r.t. S.

Definition 3 (Semantics) Given a D-framework AF = 〈A,R〉, a set of arguments S ⊆ A is
said to be

i) conflict-free iff S ∩ Def (S) = ∅,

1This paper is an extended version of [9] with additional results and proofs.
2“iff” (resp “w.r.t.”) stands for “if and only if” (resp. “with respect to”).
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Fig. 5 A recursive framework
representing attacks in different
contexts

ii) naive iff it is ⊆-maximal3 conflict-free,
iii) admissible iff it is conflict-free and S ⊆ Acc(S),
iv) complete iff it is conflict-free and S = Acc(S),
v) preferred iff it is ⊆-maximal admissible,

vi) grounded iff it is ⊆-minimal complete,
vii) stable iff it is conflict-free and S ∪ Def (S) = A.

Theorem 1 ([15]) Given a D-framework AF = 〈A,R〉, the following assertions hold:

(i) every complete set is also admissible,
(ii) every preferred set is also complete, and

(iii) every stable set is also preferred.

For instance, in Example 3, the argument a is acceptable w.r.t. any set S because there
is no argument x ∈ A such that (x, a) ∈ R. Furthermore, b is defeated and non-acceptable
w.r.t. the set {a}. Then, it is easy to check that {a} is stable (and, thus, conflict-free, admis-
sible, complete and preferred). The empty set ∅ is admissible, but not complete; and the set
{b} is conflict-free, but not admissible.

3 Semantics for recursive attacks

Definition 4 (Recursive Argumentation Framework (RAF)) A recursive argumentation
framework RAF = 〈A,K, s, t〉 is a quadruple where A and K are (possibly infinite) disjoint
sets respectively representing arguments and attack names, and where s : K −→ A and
t : K −→ A ∪K are functions respectively mapping each attack to its source and its target.

For instance, the argumentation framework of Example 3 corresponds to RAF3 =
〈A3,K3, s3, t3〉 where A3 = {a, b}, K3 = {α}, s3(α) = a and t3(α) = b. In general, given
any D-framework AF = 〈A,R〉, we may obtain its corresponding recursive argumentation
framework RAF = 〈A,K, s, t〉 by defining a set of attack names K={α(a,b)

∣∣(a, b) ∈ R}.
Functions s and t are straightforwardly defined by mapping each attack (a, b) ∈ R as
follows: s(α(a,b)) = a and t(α(a,b)) = b.

It is worth noting that our definition allows the existence of several attacks between the
same arguments. Though this does not make any difference for frameworks without recur-
sive attacks, for recursive ones, it allows representing attacks between the same arguments
that are valid in different contexts. For instance, in the example of Fig. 5, there are two
attacks

3With ⊆ denoting the standard set inclusion relation.
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between a and b, namely α and β, which represent different contexts as they are attacked
by different arguments.

Definition 5 (Structure) A pair A = 〈S, Γ 〉 is said to be a structure of some RAF =
〈A,K, s, t〉 iff it satisfies: S ⊆ A and Γ ⊆ K.

Intuitively, the set S represents the set of “acceptable” arguments w.r.t. the structure A,
while Γ represents the set of “valid attacks” w.r.t. A. Any attack4 α ∈ Γ is understood as
non-valid and, in this sense, it cannot defeat the argument or attack that it is targeting.

For the rest of this section we assume that all definitions and results are relative to some
given framework RAF = 〈A,K, s, t〉. We extend now the definition of defeated arguments
(Definition 2) using the set Γ instead of the attack relation R: given a structure of the
form A = 〈S, Γ 〉, we define:

Def (A)
def= {

a∈A
∣∣ ∃α ∈ Γ, s(α)∈S and t(α)=a

}
(1)

In other words, an argument a ∈ A is defeated w.r.t. A iff there is a “valid attack” w.r.t. A
that targets a and whose source is “acceptable” w.r.t. A. It is we may define the attack
relation associated with some structure A = 〈S, Γ 〉 as follows:

RA
def= { (s(α), t(α))

∣∣ α ∈ Γ }s (2)

and that, using this relation, we can rewrite (1) as:

Def (A)
def= { a ∈ A

∣∣ ∃b ∈ S s.t. (b, a) ∈ RA } (3)

Now, it is easy to see that our definition can be obtained from Dung’s definition of defeat
(Definition 2) just by replacing the attack relation Ry the attack relation RA associated with
the structure A, or in other words, by replacing the set of all attacks in the argumentation
framework by the set of the “valid attacks” w.r.t. the structure A, as stated in 1. Analogously,
by

Inh(A)
def= {

α ∈ K
∣∣ ∃b ∈ S s.t. (b, α) ∈ RA

}
(4)

we denote a set of attacks that, intuitively, represents the “inhibited attacks”5 w.r.t. A.
We are now ready to extend the definition of acceptable argument w.r.t. a set (Defini-

tion 2):

Definition 6 (Acceptability in a RAF) An element x ∈ (A ∪ K) is said to be acceptable
w.r.t. some structure A iff every attack α ∈ K with t(α) = x satisfies either (i) s(α) ∈
Def (A) or (ii) α ∈ Inh(A).

By Acc(A), we denote the set containing all acceptable arguments and attacks w.r.t. A.
We also define the following order relations that will help us defining preferred structures:
for any pair of structures A = 〈S, Γ 〉 and A′ = 〈S′, Γ ′〉, we write A � A′ iff (S ∪ Γ ) ⊆
(S′ ∪ Γ ′) and we write A �ar A′ iff S ⊆ S′. As usual, we say that a structure A is �-
maximal (resp. �ar -maximal) iff every A′ that satisfies A � A′ (resp. A �ar A′) also
satisfies A′ � A (resp. A′ �ar A).

4By Γ
def= K \ Γ we denote the set complement of Γ .

5We will deepen about the intuition of inhibited attacks in Section 7.
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Fig. 6 A RAF in which preferred
and arg-preferred structures do
not coincide

Definition 7 (Semantics in a RAF) A structure A = 〈S, Γ 〉 is said to be:

i) conflict-free iff S∩Def (A)=∅ and Γ ∩Inh(A)=∅,
ii) naive iff it is a �-maximal conflict-free structure,

iii) admissible iff it is conflict-free and (S ∪ Γ ) ⊆ Acc(A),
iv) complete iff it is conflict-free and Acc(A) = (S ∪ Γ ),
v) preferred iff it is a �-maximal admissible structure,

vi) grounded iff it is a �-minimal complete structure,
vii) arg-preferred iff it is a �ar-maximal preferred structure,

viii) stable6 iff S = Def (A) and Γ = Inh(A).

Example 1 (cont’d) Let RAF be the recursive argumentation framework corresponding
to Fig. 1.

It is easy to check that this framework has a unique complete, preferred and stable struc-
ture A = 〈{a, b, c}, {β}〉. Furthermore, there are nine admissible structures that are not
complete: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉, 〈{a}, {β}〉, 〈{c}, {β}〉, 〈∅, {β}〉, 〈{a, c},∅〉, 〈{a},∅〉,
〈{c},∅〉 and 〈∅,∅〉. There are also other conflict-free structures that are not admissible:

– 〈∅, {α, β}〉, 〈∅, {α}〉,
– 〈{a}, {α, β}〉, 〈{a}, {α}〉,
– 〈{b}, {α, β}〉, 〈{b}, {β}〉, 〈{b}, {α}〉, 〈{b},∅〉.
– 〈{c}, {α}〉,
– 〈{a, b}, {β}〉, 〈{a, b},∅〉,
– 〈{a, c}, {α}〉,
– 〈{b, c}, {α}〉, 〈{b, c},∅〉 and
– 〈{a, b, c},∅〉.

It is worth to mention that preferred and arg-preferred structures do not necessarily coin-
cide, since there exist preferred structures that do not contain a maximal set of arguments
as shown by the following example:

Example 4 Let RAF be the recursive argumentation framework corresponding to the graph
depicted in Fig. 6.

Both A = 〈{a, b}, {β}〉 and A′ = 〈{a}, {α, β}〉 are preferred structures of RAF, but
only the former contains a maximal set of arguments and thus A is the unique arg-preferred
structure.

Note also that functions mapping structures to sets of defeated arguments, inhibited
attacks and acceptable elements (arguments and attacks) are monotonic in the following
sense:

6By Def (A)
def= A \ Def (A) we denote the non-defeated arguments. Similarly, by Inh(A)

def= K \ Inh(A)

we denote the non-inhibited attacks. Note also that S = Def (A) and Γ = Inh(A) already implies conflict-
freeness.
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Observation 1 Let RAF = 〈A,K, s, t〉 be some recursive framework and A,A′ be two
structures such that A � A′. Then, it follows that Def (A) ⊆ Def (A′) and Inh(A) ⊆
Inh(A′).

Observation 2 Let RAF = 〈A,K, s, t〉 be some recursive framework and A,A′ be two
structures such that A � A′. Then, it follows that Acc(A) ⊆ Acc(A′).

Proof Let x ∈ Acc(A). Pick any α ∈ K with t(α) = x. Since x ∈ Acc(A), it follows
that either s(α) ∈ Def (A) or α ∈ Inh(A) holds. Furthermore, from Observation 1, we have
Def (A) ⊆ Def (A′) and Inh(A) ⊆ Inh(A′). In its turn, this implies that x ∈ Acc(A′).

Using Observation 2, we are able to show now that, as in Dung’s argumentation theory,
there is also a kind of Fundamental Lemma for argumentation frameworks with recur-
sive attacks. For the sake of compactness, we will adopt the following notations: Given
a structure A = 〈S, Γ 〉 and a set T ⊆ (A ∪ K) containing arguments and attacks, by
A∪T

def= 〈S ∪ (T ∩A), Γ ∪ (T ∩K)〉 we denote the result of extending A with the elements
in T .

Lemma 1 (Fundamental Lemma) Let A = 〈S, Γ 〉 be an admissible structure and x, y ∈
Acc(A) be any pair of acceptable elements w.r.t. A. Then, the following assertions hold:

i) A′ = A ∪ {x} is an admissible structure, and
ii) y ∈ Acc(A′).

Proof First, note that it can be checked that A′ = 〈S′, Γ ′〉 is conflict-free (see Lemma 7
in the Appendix for more details). Furthermore, since A is admissible and x ∈ Acc(A),
we have that (S ∪ Γ ∪ {x}) ⊆ Acc(A). Moreover, since A � A′, we also have that
Acc(A) ⊆ Acc(A′) (Observation 2) and, thus, we obtain

(S′ ∪ Γ ′) = (S ∪ Γ ∪ {x}) ⊆ Acc(A) ⊆ Acc(A′)
Consequently, A′ is admissible and y ∈ Acc(A′).

Moreover, admissible structures form a complete partial order with preferred structures
as maximal elements:

Proposition 1 The set of all admissible structures forms a complete partial order with
respect to �. Furthermore, for every admissible structure A,

there exists an (arg-)preferred structure A′ such that A � A′.

Proof First note that 〈∅,∅〉 is always admissible and that 〈∅,∅〉 � A for any structure A.
Furthermore, for every chain7 A0 � A1 � . . . with Ai = 〈Si, Γi〉 being an admissible
structure, it follows that Ai � A where A = 〈S, Γ 〉 with S = ⋃

0≤i Si and Γ = ⋃
0≤i Γi .

It can be checked that A is conflict-free (Lemma 9). Let us show now that A is admissible,
that is, that every element in A is acceptable w.r.t. A. Pick x ∈ (Γ ∪S) and any attack β ∈ K
with t(β) = x. Then, x ∈ (Γi ∪ Si) for some 0 ≤ i. Since Ai is admissible, this implies that
x ∈ Acc(Ai ) and, thus, there is γ ∈ Γi ⊆ Γ such that s(γ ) ∈ Si ⊆ S and t(γ ) = β. Hence,
x ∈ Acc(A) and, thus, A is admissible.

7We assume standard Zermelo-Fraenkel set theory with the axiom of choice.
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To show that, for every admissible structure A, there is some preferred structure A′ such
that A � A′, suppose, for the sake of contradiction, that there is some admissible structure A
such that no preferred structure A′ with A � A′ exists. Then, there must be some infinite
chain A � A1 � A2 � . . . . However, as shown above, it follows that there is some A′ such
that Ai � A′ for all Ai and, thus, A′ is a preferred structure.

Let us now introduce the definition of the characteristic function:

Definition 8 (Characteristic Function) The characteristic function FRAF of a
recursive argumentation framework RAF is a function over structures satisfying:
FRAF(A) = 〈Acc(A) ∩ A, Acc(A) ∩ K〉.

Proposition 2 The characteristic function is �-monotonic. Therefore,

i) the set of fixpoints of FRAF is a complete lattice,
ii) there exists a least fixpoint of FRAF,

iii) if A is an admissible structure, then there is a unique �-minimal complete structure
A′ such that A � A′.

Proof Let A � A′ be two structures. Then, from Observation 2, it follows that
Acc(A) ⊆ Acc(A′) and, thus, that FRAF(A) � FRAF(A′). In other words FRAF is �-
monotonic.

Then, since the set of structures forms a complete lattice, for Knaster-Tarski theorem, it
follows that the set of fixpoints of FRAF is also a complete lattice. Conditions ii) and iii) are
direct consequences of this fact.

Proposition 3 There is always a unique grounded structure which coincides with the least
fixpoint of the characteristic function.

Proof Note that complete structures coincide with the conflict-free fixpoints of the char-
acteristic function. Then, from Proposition 2, it follows that any grounded structure A is a
�-minimal conflict-free fixpoint. Hence, it is enough to show that the unique �-minimal
fixpoint is conflict-free. In case the framework is finitary, the characteristic function is con-
tinuous and the result follows in the same way as in Dung frameworks. More generally, for
possibly non-finitary frameworks, let A0 � A1 � . . . � Aω � . . . be an infinite sequence
of structures with Ai = 〈Si, Γi〉 and that satisfies:

1. A0 = 〈∅,∅〉,
2. Aλ = FRAF(Aλ−1) for every successor ordinal λ, and
3. Aλ = 〈Sλ, Γλ〉 with Sλ = ⋃

i<λ Si , Γλ = ⋃
i<λ Γi and λ a limit ordinal.

Then, it is easy to see, by transfinite induction using the Fundamental Lemma, that Aλ

is admissible for every ordinal λ and that Aλ � Aκ for every pair of ordinals λ < κ .
Furthermore, since there are more ordinals than elements in K, it follows that there is a
smallest λ such that Aλ = Aλ+1 and this is the �-minimal fixpoint. Hence, the �-minimal
fixpoint is conflict-free.

The following result shows that the usual relation between extensions also holds for
structures.
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Theorem 2 The following assertions hold:

i) every complete structure is also admissible,
ii) the grounded structure is complete,

iii) every preferred structure is also complete,
iv) every stable structure is also preferred, and
v) every stable structure is also naive.

Proof Note that i) and ii) follow directly by definition.

iii) By definition, every preferred structure A = 〈S, Γ 〉 is also admissible. Hence, to show
that A is complete, it is enough to prove that Acc(A) ⊆ (S ∪Γ ). Pick any x ∈ Acc(A).
Then, from the Fundamental Lemma, it follows that A′ = (A∪ {x}) is also admissible
and that A � A′. Furthermore, since A is preferred, it follows that A is a �-maximal
admissible structure and, thus, A � A′ implies that A = A′. Hence, x ∈ (S ∪Γ ) holds
and, thus, it follows that Acc(A) ⊆ (S ∪ Γ ) and that A is complete.

iv) Assume that A is a stable structure. We have to prove that A is also a �-maximal
admissible structure.

We first prove that A is admissible. By definition, A is conflict-free and satisfies
S = Def (A) and Γ = Inh(A). Pick x ∈ (Γ ∪ S) and any attack β ∈ K with t(β) = x.
As A is conflict-free, either β /∈ Γ or s(β) /∈ S. Hence, either β ∈ Inh(A) or s(β) ∈
Def (A). Thus, it follows that x ∈ Acc(A) and that A is admissible.

Now assume A′ = 〈S′, Γ ′〉 to be some admissible structure such that A � A′. Since
A′ is admissible and thus, conflict-free, it follows from Lemma 8 that (S′ ∪ Γ ′) ⊆
Acc(A′) ⊆ Def (A′) ∪ Inh(A′). Furthermore, from Observation 1, and A � A′, it
follows that

(Def (A) ∪ Inh(A)) ⊆ (Def (A′) ∪ Inh(A′))

and thus, Def (A′)∪Inh(A′) ⊆ Def (A)∪Inh(A). Hence we have (S′∪Γ ′) ⊆ Def (A)∪
Inh(A). Furthermore, since A is stable, it holds that Def (A) ∪ Inh(A) ⊆ (S ∪ Γ ) and
thus, that (S′ ∪ Γ ′) ⊆ (S ∪ Γ ) Recall that A � A′ implies (S ∪ Γ ) ⊆ (S′ ∪ Γ ′) and
thus, A = A′. That is, A is a �-maximal admissible structure and, consequently, A is
a preferred one.

v) Since A is a stable structure, by definition, it follows that A is conflict-free. Further-
more, since every argument a /∈ S belongs to Def (A) (resp. every attack α /∈ Γ

belongs to Inh(A)), it is easy to see that A is also a �-maximal conflict-free structure.

Example 5 As a further example, consider the framework RAF corresponding to Fig. 7.
This framework has a unique complete and (arg-)preferred structure A = 〈{a, c}, {γ }〉, but

Fig. 7 A cyclic recursive
framework
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no stable one. Note that α and β are neither acceptable nor inhibited w.r.t. A: β is not
inhibited because b is not in the structure, so α is not acceptable. α is not inhibited because
β is not in the structure. And β is not acceptable because b is not defeated (as α is not in the
structure).

Example 2 (cont’d) Consider the framework RAF represented in Fig. 2. This frame-
work has a unique complete, preferred, grounded and stable structure: A0 = 〈{a, g, p},
{α, ε, γ, δ}〉. Among the 63 admissible structures, we also find A1 = 〈{a}, {ε}〉, A2 =
〈{a}, {ε, δ}〉, and A3 = 〈{a}, {α, ε, γ, δ}〉.

4 Relation with AFRA

In this section, we establish correspondences between our semantics for recursive frame-
works and the semantics for AFRA.

Definition 9 (AFRA from [4]) An argumentation framework with recursive attacks
(AFRA) is a pair 〈A,R〉 where A is a set of arguments and R is a set of attacks, namely
pairs (x, y) s.t. x ∈ A and y ∈ A ∪ R.

Although Definitions 4 and 9 are different, the objects that are defined exactly corre-
spond. Given an AFRA 〈A,R〉, the corresponding RAF is obtained by naming the attacks,
as follows. Given (x, y) ∈ R named with α, s(α) = x and t (α) = y. Conversely, a RAF
〈A,K, s, t〉 can be considered as an AFRA where each attack is of the form (s(α), t (α))

with α ∈ K. In [4], a recursive framework is turned into a Dung’s framework by consid-
ering a notion of defeat carried by attacks. In the following, we restate AFRA-defeat and
AFRA-semantics in the case of RAF.

Definition 10 (AFRA-defeat) Let RAF = 〈A,K, s, t〉. An attack α ∈ K is said to directly
defeat x ∈ A ∪ K iff t(α) = x. It is said to indirectly defeat β ∈ K iff α directly defeats
s(β). Then, α is said to defeat x ∈ A ∪ K iff α directly defeats x or α indirectly defeats x.

For instance, in Example 5, it is easy to see that α directly defeats b and indirectly
defeats γ . Hence, α defeats both b and γ . Attacks β and γ directly defeat α and β, respec-
tively. It has been shown in [4] that AFRA extensions can be characterized as the extensions
of a Dung’s framework whose new set of arguments contains both arguments and attacks
and whose new attack relation is the defeat relation of Definition 10. In this sense, under
AFRA, the argumentation framework of Example 5 is turned into the one in Fig. 8 and it
can be checked that it has a unique complete and preferred extension {a, c} and no stable
one. We recall next the formal definitions of AFRA from [4]:

Fig. 8 AF framework for AFRA
framework of Ex. 5
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Definition 11 (AFRA-acceptability) Let RAF = 〈A,K, s, t〉 and E ⊆ (A ∪ K). Then, an
element x ∈ (A∪K) is said to be AFRA-acceptable w.r.t. E iff for every α ∈ K that defeats
x, there is β ∈ E that defeats α.

Definition 12 (AFRA-extensions) Let RAF = 〈A,K, s, t〉 and a set E ⊆ (A∪K), E is said
to be:

i) AFRA-conflict-free iff � ∃α, x ∈ E s.t. α defeats x,
ii) AFRA-admissible iff E is AFRA-conflict-free and each element of E is

AFRA-acceptable w.r.t. E ,
iii) AFRA-complete iff it is AFRA-admissible and every x ∈ (A ∪ K) which is AFRA-

acceptable w.r.t. E belongs to E ,
iv) AFRA-preferred iff it is a ⊆-maximal AFRA-admissible extension,
v) AFRA-grounded iff it is a ⊆-minimal AFRA-complete extension,

vi) AFRA-stable iff it is AFRA-conflict-free and, for every x ∈ (A ∪ K), x /∈ E implies
that x is defeated by some α ∈ E .

As illustrated by Example 3, AFRA does not preserve Dung’s notion of conflict-freeness.

Observation 3 AFRA is not a conservative generalisation of Dung’s approach.

In order to characterize the relation between our approach and AFRA, we will need the
following notation. Given some structure A = 〈S, Γ 〉, by

Afra(A)
def= S ∪ { α ∈ Γ

∣∣ s(α) ∈ S }
we denote its corresponding AFRA-extension.

Note that the AFRA-extension corresponding to a given structure only contains the
attacks of the structure whose source belongs to the structure. The other attacks of the struc-
ture do not appear in the AFRA-extension. Intuitively, this selection is motivated by the fact
that, in an AFRA-extension, any attack directly carries a conflict against its target, even if
its source is not accepted, something which we avoid in our framework.

Proposition 4 Let RAF = 〈A,K, s, t〉 be a recursive framework and A = 〈S, Γ 〉 be some
conflict-free structure. Then, Afra(A) is AFRA-conflict-free.

Proof Consider a conflict-free structure A = 〈S, Γ 〉. Suppose that Afra(A) is is not an
AFRA-conflict-free extension. Then, there are α, x ∈ Afra(A) s.t. α defeats x and, thus,
α ∈ Γ ′ with Γ ′ = { α ∈ Γ

∣∣ s(α) ∈ S }. That is, α ∈ Γ and s(α) ∈ S.
If x ∈ S, then we have that t(α) = x ∈ Def (A) which is a contradiction with the fact

that S ∩ (Def (A)) �= ∅ holds because A is conflict-free.
Otherwise, x /∈ S implies x ∈ K. Then, x ∈ Afra(A) implies that x ∈ Γ ′ and, thus, that

x ∈ Γ and s(x) ∈ S. Furthermore, α defeats x implies that either t(α) = x or t(α) = s(x)

holds. The former, t(α) = x, implies that x ∈ Inh(A) which is a contradiction with the fact
that (Γ ∩ Inh(A)) �= ∅ follows from A being conflict-free. The latter, t(α) = s(x), is a
contradiction with the fact that s(x) ∈ S and the fact that (S ∩ Def (A)) �= ∅ follows from
A being conflict-free.
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For the converse of Proposition 4, we need to introduce some extra notation: Given some
set E ⊆ (A ∪ K), by SE

def= (E ∩ A) and �̃E
def= (E ∩ K), we respectively denote the set of

arguments and attacks of E . Then, we define ÃE = 〈SE , �̃E 〉 and we denote by

ΓE
def= �̃E ∪ { α∈(Acc(ÃE ) ∩ K)

∣∣ s(α) /∈E } (5)

the set of “non-inhibited attacks” w.r.t. E .
Finally, we can define the structure corresponding to some AFRA-extension E as

AE
def= 〈SE , ΓE 〉. Intuitively, this is due to the fact that, in AFRA, an attack is inhibited when-

ever its source is defeated. Hence, we need to add to the structure all those attacks whose
only reason for being defeated according to AFRA is because of the attacks towards their
source.

Proposition 5 Given some recursive framework RAF = 〈A,K, s, t〉 and an
AFRA-conflict-free set E ⊆ A ∪ K, it follows that AE is a conflict-free structure.

Proof Let E ⊆ (A ∪ K) be an AFRA-conflict-free set and pick a ∈ Def (AE ). Then,
there is some α ∈ Afra(AE ) such that α defeats a (Lemma 10). Furthermore, since E is
AFRA-conflict-free, α ∈ (E ∩ K) (α ∈ Afra(AE ) means that α ∈ ΓE and s(α) ∈ SE ;
so by definition of ΓE it follows that α ∈ �̃E ) implies that a /∈ E and, by definition, this
implies that a /∈ SE . Then, since a is an arbitrary argument of Def (AE ) it follows that
(SE ∩ Def (AE )) = ∅ (and also that (SE ∩ Def (ÃE )) = ∅).

Similarly, pick any α ∈ Inh(ÃE ). Then, there exists some attack β ∈ �̃E such that s(β) ∈ SE
and t(β) = α. As above, this implies that β (directly) defeats α and, since β ∈ ΓE and
s(β) ∈ SE ⊆ E , it follows that β ∈ (E ∩ K). Moreover, since E is an AFRA-conflict-free
extension, this implies that α /∈ E , so α /∈ �̃E . Hence, we obtain (�̃E∩Inh(ÃE )) = ∅, which
together with (SE∩Def (ÃE )) = ∅, implies that ÃE is conflict-free. Moreover, α ∈ Inh(ÃE )

implies that α /∈ ΓE . Hence, we also obtain (ΓE ∩ Inh(ÃE )) = ∅.
Finally, to see that AE is also conflict-free, it remains to be proven that (ΓE ∩Inh(AE )) =

∅ holds. First suppose, for the sake of contradiction, that (�̃E ∩ Inh(AE )) �= ∅. Since (�̃E ∩
Inh(ÃE )) �= ∅, there is α ∈ ΓE \ �̃E such that s(α) ∈ SE and t(α) ∈ �̃E . However,
α ∈ ΓE \ �̃E implies s(α) /∈ SE which is a contradiction. Hence, (SE ∩ Def (AE )) = ∅

holds. Suppose now that (ΓE ∩ Inh(AE )) �= ∅. Then, there is α ∈ ΓE \ �̃E and β ∈ ΓE
such that t(β) = α and s(β) ∈ ΓE . Note that α ∈ ΓE \ �̃E implies that α ∈ Acc(ÃE )

and, thus, there is γ ∈ �̃E such that t(γ ) ∈ {β, s(β)} and s(β) ∈ SE . If t(γ ) = β, then
β ∈ Inh(ÃE ) and, from (ΓE∩Inh(ÃE )) = ∅, it follows that β /∈ �̃E and, thus, β ∈ Acc(ÃE ).
Then, then there must be δ ∈ ΓE such that t(δ) = γ and s(δ) ∈ SE . This implies that
β ∈ (ΓE ∩ Inh(ÃE )) = ∅ which is a contradiction. Hence, it must be that t(γ ) = s(β). But
this implies that s(β) ∈ (SE ∩Def (ÃE )) which is also a contradiction. Consequently, AE is
also conflict-free.

We can also extend the result of Proposition 4 to the admissible semantics as follows:

Proposition 6 Let RAF be some recursive framework and let A = 〈S, Γ 〉 be an admissible
structure. Then, Afra(A) is AFRA-admissible.

Proof By definition, A being admissible implies that it is conflict-free and, from Proposi-
tion 4, that Afra(A) is AFRA-conflict-free. In addition, since A is admissible, then (S ∪
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Fig. 9 A Dung’s framework with
two attacks

Γ ) ⊆ Acc(A) and it follows that every argument a ∈ (Afra(A) ∩ A) is AFRA-acceptable
w.r.t. Afra(A) (Lemma 11). Furthermore, by construction, every attack α ∈ (Afra(A)∩K)

satisfies that s(α) ∈ S. Hence, both α and s(α) are acceptable w.r.t. A and, thus, it follows
that α is AFRA-acceptable w.r.t. Afra(A) (Lemma 12). Consequently, if A is admissible,
it implies that Afra(A) is AFRA-admissible.

On the other hand, the result of Proposition 5 does not hold for the admissible semantics.
For instance, considering the argumentation framework of Fig. 9, the set E = {α, c} is

AFRA-admissible, but the corresponding structure AE = 〈{c}, {α, β}〉 is not an admissible
structure (because a is not in the structure). This discrepancy follows from the fact that, in
AFRA, α defeats β despite of the absence of a while in our approach attacks whose source
is not accepted cannot defeat other arguments or attacks. This difference disappears if we
consider what we call closed sets. We say that E ⊆ (A ∪ K) is closed iff every attack
α ∈ (E ∩ K) satisfies s(α) ∈ E . Then, we have the following result:

Lemma 2 Let RAF = 〈A,K, s, t〉 be some recursive framework and E ⊆ (A ∪ K) be
some closed AFRA-conflict-free extension. Then, every AFRA-acceptable element x w.r.t. E
satisfies x ∈ Acc(AE ).

Proof Let x ∈ (A ∪ K) be an AFRA-acceptable element w.r.t. E and pick any attack α ∈
K such that t(α) = x. Since x is AFRA-acceptable w.r.t. E , there is β ∈ E such that
β defeats α. Note that β ∈ E implies that β ∈ ΓE and that β defeats α implies that either
t(β) = α or t(β) = s(α) holds.

Furthermore, as E is assumed to be closed, β ∈ E implies that s(β) ∈ E . Then, this
implies s(β) ∈ SE and, thus, that t(β) ∈ (Inh(AE ) ∪ Def (AE )) holds.

Hence, the fact that either t(β) = α or t(β) = s(α) holds implies that either α ∈ Inh(AE )

or s(α) ∈ Def (AE ) must also hold and thus, x ∈ Acc(AE ).

Lemma 3 Given a recursive framework RAF and an AFRA-admissible closed set E ⊆
A ∪ K, it follows that ÃE is admissible.

Proof First note that, since E is an AFRA-admissible extension, it is also
AFRA-conflict-free and, from Proposition 5, it follows that AE is a conflict-free structure.
Furthermore, it is easy to see that ÃE � AE and, thus, ÃE is also conflict-free. In addi-
tion, since E is AFRA-admissible, then every element belonging to E is AFRA-acceptable
w.r.t. E . Then, from Lemma 2 this implies (SE ∪ �̃E ) = E ⊆ Acc(AE ). Thus, ÃE is
admissible.

Proposition 7 Given a recursive framework RAF and an AFRA-admissible closed set E ⊆
A ∪ K, it follows that AE is admissible.

Proof From Lemma 3, it follows that ÃE is admissible. Then, from the Fundamental
Lemma, it directly follows that AE is also admissible.
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An interesting observation is that all AFRA-complete extensions are closed sets.8 Then,
building on this observation plus Propositions 4, 5, 6 and 7, we can prove the following
results:9

Proposition 8 LetRAF = 〈A,K, s, t〉 and a structureA = 〈S, Γ 〉, the following assertions
hold:

i) if A is complete, then Afra(A) is AFRA-complete,
ii) if A is grounded, then Afra(A) is AFRA-grounded,

iii) if A is preferred, then Afra(A) is AFRA-preferred,
iv) if A is stable, then Afra(A) is AFRA-stable.

Example 2 (cont’d) For the framework represented in Fig. 2, there is a unique
AFRA-complete (preferred, stable) extension: E = {a, g, p, α, ε, γ }. Recall that A0 =
〈{a, g, p}, {α, ε, γ, δ}〉 and, thus, we have E = Afra(A0), but δ �∈ E . Indeed, no
AFRA-admissible extension contains δ. Analogously, we have Afra(A1) = Afra(A2) =
Afra(A3) = {a, ε}. Moreover, among the AFRA-admissible extensions, we find {a, g, ε, γ }
which is not closed. The associated structure A4 = 〈{a, g}, {ε, γ }〉 is not an admissible
structure.

The converse of Proposition 8 also holds:

Proposition 9 Given a RAF = 〈A,K, s, t〉 and a set E ⊆ (A∪K), the following assertions
hold:

i) if E is AFRA-complete, then AE is a complete structure,
ii) if E is AFRA-grounded, then AE is a grounded structure,

iii) if E is AFRA-preferred, then AE is a preferred structure,
iv) if E is AFRA-stable, then AE is a stable structure.

Interestingly, for the complete semantics, the following property holds:

Proposition 10 The following assertions hold:

i) if E is AFRA-complete (or just a closed AFRA-conflict-free extension), then it follows
that Afra(AE ) = E , and

ii) if A is a complete structure, then AAfra(A) = A.

Proof First, note that by definition SE = (E ∩A) and, therefore, it holds that (Afra(AE )∩
A) = (E ∩ A). Furthermore, α ∈ (Afra(AE ) ∩ K) satisfies that α ∈ ΓE and s(α) ∈ SE .
Moreover, note that α ∈ ΓE implies that either α ∈ (E ∩ K) ⊆ E or s(α) /∈ E . However,
the latter is a contradiction with the facts that s(α) ∈ SE and SE = (E ∩ A) ⊆ E . Hence,
it follows that (Afra(AE ) ∩ K) ⊆ (E ∩ K) holds. This plus (Afra(AE ) ∩ A) = (E ∩ A)

imply (Afra(AE ) ⊆ E). Assume now that E is closed (it is the case if E is complete, due to
Lemma 19) and pick α ∈ (E ∩K). By definition, it follows that α ∈ ΓE . Furthermore, since
α ∈ E and E is closed, it follows that s(α) ∈ E and, thus, that s(α) ∈ SE . Consequently, it
follows that α ∈ Afra(AE ) and that Afra(AE ) = E holds.

8See Lemma 19 in the Appendix.
9The proofs can be found in the Appendix.
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For ii), let A be of the form A = 〈S, Γ 〉 and note that SAfra(A) = S is easy to check.
Then to show that Γ ⊆ ΓAfra(A), pick any attack α ∈ Γ . If s(α) ∈ S, then α ∈ (Afra(A)∩
K) and thus, α ∈ ΓAfra(A). Otherwise, s(α) /∈ S and α ∈ (Acc(A)∩K) because A = 〈S, Γ 〉
is admissible. Hence, α ∈ ΓAfra(A) (Lemma 13) and Γ ⊆ ΓAfra(A) follows. The other way
around. Let Γ ′ denote Afra(A) ∩ K, and A′ denote the structure 〈S, Γ ′〉. α ∈ ΓAfra(A)

implies that either α ∈ Γ ′ ⊆ Γ or both s(α) /∈ Afra(A) and α ∈ Acc(A′). Furthermore,
the latter plus SAfra(A) = S imply that α ∈ Acc(A′). Note that this plus A′ � A imply
α ∈ Acc(A) (Observation 2) and, since A is complete, this implies that α ∈ Γ . Therefore,
ΓAfra(A) = Γ and AAfra(A) = A holds.

Taking together Propositions 8, 9 and 10, we can prove the following one-to-one
correspondence:

Theorem 3 For each semantics σ ∈ {complete, stable, preferred, grounded}: The function
Afra(·) is a one-to-one correspondence between the sets of all σ -structures and the set of
all AFRA-σ -extensions.

Proof First, note that for every complete (resp. preferred, stable, grounded) structure A,
we have that Afra(A) is an AFRA-complete (resp. preferred, stable, grounded) extension
(Proposition 8). To see that Afra(·) is injective take two complete structures A and A′
such that Afra(A) = Afra(A′). Then, it is obvious that AAfra(A) = A

Afra(A
′
)

and,

from Proposition 10, we obtain that A = A′. That is, that Afra(·) is injective. Finally,
note that for any AFRA-complete (resp. preferred, stable, grounded) extension E , we have
that AE is a complete (resp. preferred, stable, grounded) structure (Proposition 9), and that
Afra(AE ) = E , so Afra(·) is surjective.

Note that given the one-to-one correspondence between preferred structures and AFRA-
preferred extensions, there are AFRA-preferred extensions that do not correspond to
arg-preferred ones and thus, they do not contain a maximal set of arguments. For instance,
{a, b, β} and {a, α} are both AFRA-preferred extensions in Example 4, but only the former
contains a maximal set of arguments. Note also that for conflict-freeness and admissibil-
ity, the correspondence is not necessarily one-to-one. For instance, both A = 〈{a, c}, {α}〉
and A′ = 〈{a, c}, {α, β}〉 are admissible structures of the framework of Fig. 9 and both
of them correspond to the same AFRA-admissible set Afra(A) = Afra(A′) = {a, c, α}.
Recall that β is acceptable w.r.t. A′ because it is not attacked. However, it is not AFRA-
acceptable w.r.t. {a, c, α, β} because, in AFRA, α defeats β and α is not itself defeated (in
fact, {a, c, α, β} is not even AFRA-conflict-free).

An interesting consequence of Theorem 3 and Proposition 12 in [4] is that complexity
for RAFs’ semantics does not increase w.r.t. Dung’s frameworks. From the results in [16]
we obtain the following corollary:

Proposition 11 The problem of credulous acceptance in a RAF w.r.t. the complete, the
preferred or the stable semantics (whether there exists some preferred or stable structure
containing some argument) is NP-complete. The problem of sceptical acceptance in a RAF
w.r.t. the preferred (resp. stable) semantics is P

2-complete (resp. coNP-complete).
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Fig. 10 A RAF with two
higher-order attacks

5 Relation withMAF

In this section, we establish correspondences between our semantics for recursive frame-
works and the semantics obtained with MAF. Formally, a MAF is a Dung’s framework,
including meta-arguments and attacks involving them, built for encoding a recursive frame-
work. We first present the guiding principles for that encoding, leading to Definition 13.

The idea of turning recursive frameworks into Dung’s frameworks by adding meta-
arguments goes back to [19], in the general case where an attack can be attacked, and
an attack itself can also attack an argument. The translation approach proposed in [19]
adopts the view that the target of an attack from a to b is “jointly attacked” by the attack
itself and the source a. Then, a joint attack is implemented through the addition of three
meta-arguments. Another approach has been proposed in [8], where an interaction can be
attacked by an argument, but is not allowed to attack an argument or another interaction.
In [8] a recursive framework is turned into a Dung’s framework using the addition of meta-
arguments that enable to encode the notions of “grounded” attack and “valid” attack. The
idea is that there are two ways for weakening a higher-order attack: either by attacking it,
or by weakening its source (as in a D-framework). The first way impacts the “validity” of
the attack, whereas the second way impacts the “groundness” of the attack. Groundness is
taken into account through a kind of supporting link between an attack and its source, which
is encoded by adding a meta-argument. The following example illustrates these notions.

Example 6 Consider the RAF depicted in Fig. 10.
According to [8], Fig. 11 depicts the MAF associated with this RAF, with attacks becom-

ing new arguments in the MAF: For instance, the attack from a to b becomes a new argument
α in the MAF.

In addition the meta-argument Naα encodes the link between α and its source a, ensuring
that α can be accepted only if its source a is accepted.

Fig. 11 MAF for RAF of Fig. 10
(following [8])
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In the case when the source of an attack is restricted to be an argument (as in a RAF),
there is a correspondence between the encodings proposed by [8] and [19]. So, in this
section, we have chosen to focus on the approach of [8], since it is more suited for establish-
ing correspondences with RAF semantics; indeed, an attack is turned into an attack name,
as in a RAF, and attack names may appear in MAF extensions as arguments.

As a MAF is a D-framework, Definition 3 can be applied for defining semantics of the
MAF. For instance, the preferred extension of the MAF pictured in Fig. 11 is {a, c, d, α, δ}.

Given a RAF and its associated MAF, correspondences can be established between RAF-
structures and MAF-extensions, for various semantics. Formally, the MAF associated with
a given RAF is defined as follows:

Definition 13 (From [8]) Let RAF = 〈A,K, s, t〉 be a recursive framework. The associated
MAF of this RAF is MAF = 〈A′,R′〉 with:

– A′ = A ∪ K ∪ {Ns(α)α|α ∈ K} (this last subset will be denoted by N),
– R′ = {(s(α),Ns(α)α)|α ∈ K}∪{(Ns(α)α, α)|α ∈ K}∪{(α, t(α))|α ∈ K}.

The following results directly follow from Definition 13:

Observation 4 Let RAF = 〈A,K, s, t〉 and its associatedMAF = 〈A′,R′〉.
i) There are only three types of attacks in R′: either from A to N, or from N toK, or from

K to A ∪ K.
ii) For all Naα ∈ N, Naα is involved in only two attacks belonging to R′: (a, Naα) and

(Naα, α).
iii) For all α ∈ K, s(α) is the only attacker of Ns(α)α and so the only defender of α against

Ns(α)α .
iv) For all a ∈ A, a is unattacked in RAF iff a is unattacked in MAF.
v) For all α ∈ K, α is always attacked in MAF.

A MAF-extension can be associated with a given structure, and conversely a RAF-
structure can be associated with a given MAF-extension.

Notation 1 (From RAF-structures to MAF-extensions) Given aRAF structureA = 〈S, �〉:
– E ′

A
denotes the set S ∪ {α ∈ � s.t. s(α) ∈ S}.

– Maf(A) denotes the set E ′
A

∪ {Ns(α)α s.t. s(α) �∈ S and s(α) ∈ Def (A)}.

In other words, E ′
A

is made of the arguments of S, and the attacks of � whose source
belongs to S. Maf(A) is obtained from E ′

A
by adding the elements Ns(α)α of N such that

α �∈ E ′
A

and Ns(α)α is defended by E ′
A

.10 The following properties directly result from
Observation 4:

Observation 5 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let a ∈ A,
α ∈ K and A be a structure of RAF,

i) If α is acceptable w.r.t. Maf(A) in MAF, then s(α) ∈ (Maf(A) ∩ A) = S.
ii) a ∈ Def (A) iff Maf(A) defeats a in MAF.

10This last condition is mandatory for proving the formal links between RAF and MAF.
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Fig. 12 MAF for RAF of Fig. 9

iii) α ∈ Inh(A) iff Maf(A) ∩ K defeats α in MAF.

Notation 2 (From MAF-extensions to RAF-structures) Let 〈A,K, s, t〉 be a RAF and its
associatedMAF = 〈A′,R′〉. Given some set E ⊆ A′:

– Ea (resp. Ek , En) denotes the set E ∩ A (resp. E ∩ K, E ∩ N).
– �E denotes the set Ek ∪ {α ∈ (K \ Ek) s.t. α ∈ Acc(A′

E ) and s(α) �∈ Ea}, where A′
E

denotes the structure 〈Ea, Ek〉.
– AE denotes the structure 〈SE , �E 〉 where SE = Ea .

In other words, �E contains the attacks that belong to E , and also the attacks that do not
belong to E but are acceptable w.r.t. A′

E , even if they are not acceptable w.r.t. E , because of
their source. Intuitively, this is due to the fact that an attack α cannot be acceptable w.r.t. E
if s(α) �∈ E , whereas this is not a problem for structure-based semantics.

Example 6 (cont’d) There is only one complete (resp. preferred, grounded, stable) struc-
ture in this RAF: A = 〈{a, c, d}, {α, δ}〉. We have E ′

A
= Maf(A) = {a, c, d, α, δ}.

Conversely, consider the set E = {a, c, d, α, δ} in the MAF. Then, A′
E = AE =

〈{a, c, d}, {α, δ}〉.

Example 7 Consider the RAF depicted in Fig. 9. The associated MAF is represented in
Fig. 12.

Then, for RAF-structure A = 〈{a, c}, {α, β}〉, we have that β belongs to �, but its
source b does not belong to S. So, E ′

A
= {a, c, α} and Maf(A) = {a, c, α,Nbβ}. For the set

E = {a, α,Nbβ} in the MAF, we have A′
E = 〈{a}, {α}〉 and that β is acceptable w.r.t. A′

E ;
so �E = {α, β} and AE = 〈{a}, {α, β}〉.

As illustrated by the above example, there is a correspondence between the com-
plete (stable, preferred, grounded) RAF-structures and the corresponding MAF-extensions,
according to the following result:

Proposition 12 Given RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. For each
semantics σ ∈ {complete, stable, preferred, grounded}:
i) For each σ -structure A of RAF, Maf(A) is a σ -extension ofMAF.

ii) For each σ -extension E ofMAF, AE is a σ -structure of RAF.

The above result can be proved11 in a similar way as for Propositions 8 and 9, but using
the following results about conflict-freeness and acceptability requirements for MAF.

Proposition 13 Let RAF = 〈A,K, s, t〉 and its associatedMAF = 〈A′,R′〉.
i) Let A be a conflict-free structure in RAF. Then, both E ′

A
and Maf(A) are conflict-free

in 〈A′,R′〉.

11The formal proof can be found in the Appendix.
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ii) Let E be a conflict-free subset in 〈A′,R′〉. Then, both A′
E and AE are conflict-free

structures in RAF.

Proof For i), let A = 〈S, �〉 be a conflict-free structure in RAF.

i) Assume that E ′
A

= S ∪ {α ∈ � s.t. s(α) ∈ S} is not conflict-free in 〈A′,R′〉. Due to
Observation 3, the only possible conflict comes from an attack of the form (α, t(α))

with α ∈ (E ′
A

∩ �) and t(α) ∈ E ′
A

(i.e. t(α) ∈ S ⊆ A or t(α) ∈ (E ′
A

∩ �) ⊆ K).
Moreover, for α ∈ (E ′

A
∩ �) we have s(α) ∈ S; so, t(α) is either defeated (if

t(α) ∈ A) or inhibited (if t(α) ∈ K) w.r.t. A. And so there is a contradiction with A

being conflict-free.
ii) Assume that Maf(A) = E ′

A
∪ {Ns(α)α s.t. s(α) �∈ S and s(α) ∈ Def (A)} is not

conflict-free. From the first part of the proof, the only possible conflict comes from
an attack from S to (Maf(A) ∩ N) or from (Maf(A) ∩ N) to (Maf(A) ∩ �).
In the first case, there is an attack of the form (s(α),Ns(α)α) with s(α) ∈ S and
Ns(α)α ∈ (Maf(A) ∩ N). However, for Ns(α)α ∈ (Maf(A) ∩ N), we have s(α) �∈ S.
So there is a contradiction about s(α).
In the second case, there is an attack of the form (Ns(α)α, α) with Ns(α)α ∈
(Maf(A) ∩ N) and α ∈ (Maf(A) ∩ �). However, for α ∈ (Maf(A) ∩ �), we have
s(α) ∈ S so there is a contradiction with Ns(α)α ∈ (Maf(A) ∩ N).

For ii), let E be a conflict-free subset in 〈A′,R′〉.
i) Assume that A′

E = 〈Ea, Ek〉 is not a conflict-free structure in RAF. So either Ea ∩
Def (A′

E ) �= ∅ (Case 1) or Ek ∩ Inh(A′
E ) �= ∅ (Case 2).

In Case 1, there are a ∈ Ea, β ∈ Ek s.t. s(β) ∈ Ea and t(β) = a. So, due to
Definition 13, we have (β, a) ∈ R′. That is in contradiction with E being conflict-
free in the MAF.
In Case 2, there are α ∈ Ek, β ∈ Ek s.t. s(β) ∈ Ea and t(β) = α. So, due to
Definition 13, we have (β, α) ∈ R′. That is in contradiction with E being conflict-
free in the MAF.

ii) Assume that AE = 〈Ea, �E 〉 is not a conflict-free structure in RAF. So either Ea ∩
Def (AE ) �= ∅ (Case 1) or �E ∩ Inh(AE ) �= ∅ (Case 2).
Let us recall that �E = Ek ∪ {α �∈ Ek s.t. s(α) �∈ Ea and α ∈ Acc(A′

E )}.
In Case 1, there are a ∈ Ea, β ∈ �E s.t. s(β) ∈ Ea and t(β) = a. Due to the
definition of �E , as s(β) ∈ Ea , we have β ∈ Ek . So we are back to the first part of
the proof (Case 1) and we get a contradiction with E being conflict-free in the MAF.
In Case 2, there are α ∈ �E , β ∈ �E s.t. s(β) ∈ Ea and t(β) = α. Due to the
definition of �E , as s(β) ∈ Ea , we have β ∈ Ek . Due to the first part of the proof
(Case 2), we cannot have α ∈ Ek . So we have s(α) �∈ Ea and α ∈ Acc(A′

E ). From
the second condition, it follows that β ∈ Inh(A′

E ) or s(β) ∈ Def (A′
E ). However,

s(β) ∈ Ea , and β ∈ Ek . Moreover A′
E = 〈Ea, Ek〉 is a conflict-free structure, due to

the first part of the proof. So we obtain a contradiction.

Proposition 14 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let A =
〈S, �〉 be a conflict-free structure in RAF. Let a ∈ A and α ∈ K.

i) If a is acceptable w.r.t. A in RAF, then a is acceptable w.r.t. Maf(A) in 〈A′,R′〉.
ii) If α is acceptable w.r.t. A in RAF, and s(α) ∈ S, then α is acceptable w.r.t. Maf(A) in

〈A′,R′〉.
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Proof For i), let a be acceptable w.r.t. A in RAF. We have to prove that a is acceptable
w.r.t. Maf(A) in 〈A′,R′〉.
If a is not attacked in MAF, it is trivially acceptable w.r.t. Maf(A). So, let us assume that
a ∈ A is attacked in MAF. Due to Observation 3, there is α ∈ K with (α, a) ∈ R′, or in
other words α ∈ K with t(α) = a. So there are also in R′ the attacks (s(α),Ns(α)α) and
(Ns(α)α, α).
As a is acceptable w.r.t. A in RAF, either α ∈ Inh(A), or s(α) ∈ Def (A). It means that
there is β ∈ � s.t. s(β) ∈ S and t(β) ∈ {α, s(α)}. So β ∈ (Maf(A) ∩ �).

If t(β) = α then (β, α) ∈ R′ and we have that Maf(A) attacks α.
If t(β) = s(α) then s(α) ∈ Def (A) and, since A is assumed to be conflict-free, we

have s(α) �∈ S; so we can prove that Ns(α)α ∈ (Maf(A)∩N). And then Maf(A) attacks α.
For ii), let α be acceptable w.r.t. A in RAF, with s(α) ∈ S. We have to prove that α is

acceptable w.r.t. Maf(A) in 〈A′,R′〉.
α ∈ K is always attacked in 〈A′,R′〉. Due to Observation 3, we have to consider two
kinds of attack, namely an attack of the form (Ns(α)α, α) and an attack of the form (γ, α)

with γ ∈ K.
In the first case, as it is assumed that s(α) ∈ S, we have s(α) ∈ Maf(A). As we also

have the attack (s(α),Ns(α)α) in R′, we conclude that Maf(A) attacks Ns(α)α .
In the second case, as α is acceptable w.r.t. A in RAF, γ ∈ Inh(A), or s(γ ) ∈ Def (A).

It means that there is β ∈ � s.t. s(β) ∈ S and t(β) ∈ {γ, s(γ )}. So β ∈ (Maf(A) ∩ �).
As done in the first part of the proof, we prove that Maf(A) attacks γ .

Note that the second result of the above proposition does not hold if we drop the condition
s(α) ∈ S, as shown on the following example:

Example 7 (cont’d) Consider the conflict-free structure A = 〈{a, c}, {α}〉. We have
Maf(A) = {a, c, α,Nbβ}. β is acceptable w.r.t. A since it is not attacked in the RAF. How-
ever, β is not acceptable w.r.t. Maf(A) in the associated MAF, since b does not belong to
Maf(A).

Note also that Proposition 14 does not hold if we replace Maf(A) by E ′
A

.
Example 7 (cont’d) Let A = 〈{a, c}, {α}〉. We have E ′

A
= {a, c, α}. c is acceptable w.r.t.

A. However, c is not acceptable w.r.t. E ′
A

in the associated MAF.
Moreover, Example 7 illustrates one difference about acceptability between MAF and

RAF:
Example 7 (cont’d) Consider the set E = {a, α,Nbβ} in the MAF. A′

E = 〈{a}, {α}〉. β is
acceptable w.r.t. A′

E , whereas it is not acceptable w.r.t. E since b �∈ E .
As in the case of AFRA, we also have a one-to-one correspondence for complete,

grounded, preferred and stable semantics:

Theorem 4 For each semantics σ ∈ {complete, stable, preferred, grounded}: The function
Maf(·) is a one-to-one correspondence between the sets of all σ -structures and the set of
all σ -extensions.

The proof of Theorem 4 is also similar to the proof of Theorem 3 for AFRA, but using
the following result:

Proposition 15 Let RAF = 〈A,K, s, t〉 and its associatedMAF = 〈A′,R′〉. The following
assertions hold:

i) If A is a complete structure of RAF, then AMaf(A) = A.

73



C. Cayrol et al.

ii) If E is a complete extension ofMAF, then Maf(AE ) = E .

6 Conservative generalisation

As mentioned in the introduction, our theory aims to be a conservative generalisation
of Dung’s theory (P2). Indeed, given the one-to-one correspondence between complete,
preferred, grounded and stable structures and their corresponding AFRA-extensions and
between the latter and Dung’s extensions [4] in the case of non-recursive frameworks,
it immediately follows that there exists a one-to-one correspondence between complete,
preferred, grounded and stable structures and their corresponding Dung’s extensions.

On the other hand, this is not the case when we consider only conflict-freeness or
admissibility. As mentioned in the introduction, {a, b} is an AFRA-conflict-free exten-
sion of the non-recursive argumentation framework of Example 3. From Proposition 5, this
implies that the corresponding structure 〈{a, b},∅〉, is a conflict-free structure.

It is worth to note that, in Dung’s argumentation frameworks, every attack is considered
as “valid” in the sense that it may affect its target. The following definition strengthens the
notion of structure by adding a kind of reinstatement principle on attacks, that forces every
attack that cannot be defeated to be “valid”.

Definition 14 (D-structure) A d-structureA = 〈S, Γ 〉 is a structure that satisfies (Acc(A)∩
K) ⊆ Γ .

Definition 15 (Semantics with D-structures) A conflict-free (resp. naive, admissible, com-
plete, preferred, grounded, stable) d-structure is a conflict-free (resp. naive, admissible,
complete, preferred, grounded, stable) structure which is also a d-structure.

As a direct consequence of Definition 7, we have:

Observation 6 Every complete structure is also a d-structure.

Observation 6 plus Theorem 3 immediately imply the existence of a one-to-one corre-
spondence between complete (resp. grounded, preferred or stable) d-structures and their
corresponding AFRA and Dung’s extensions. In order to establish a correspondence
between conflict-free (resp. admissible) d-structures and their corresponding Dung’s exten-
sions, we need to define what it means for a set of arguments to be an extension of some
recursive framework.

Definition 16 (Argument extensions) Given RAF = 〈A,K, s, t〉. Let S ⊆ A be a set of
arguments. S is conflict-free (resp. naive, admissible, complete, preferred, grounded, stable)
w.r.t. RAF iff there is some Γ ⊆ K such that A = 〈S, Γ 〉 is a conflict-free (resp. naive,
admissible, complete, preferred, grounded, stable) d-structure of RAF.

Definition 16 allows us to talk about sets of arguments instead of structures. Before for-
malising the fact that Definition 16 characterizes a conservative generalisation of Dung’s
argumentation framework, we define the attack relation associated with some frame-
work in a similar way to the attack relation associated with some structure: RRAF

def=
{ (s(α), t(α))

∣∣ α ∈ K }. Note that, since every structure A = 〈S, Γ 〉 satisfies Γ ⊆ K,
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it clearly follows that RA ⊆ RRAF. We also precise what we mean by non-recursive
framework:

Definition 17 (Non-recursive framework) A framework RAF = 〈A,K, s, t〉 is said to be
non-recursive iff RRAF ⊆ A×A.

That is, non-recursive frameworks are those in which no attack targets another attack.
Given a non-recursive framework RAF, it is easy to observe that AF = 〈A,RRAF〉 is
a D-framework (Definition 1). In this sense, by RAFD def= 〈A,RRAF〉, we denote the
D-framework associated with some RAF.

Observation 7 Every d-structure A = 〈S, Γ 〉 of any non-recursive framework satisfies
Γ =K.

Proof Pick any α ∈ K. Since RAF is non-recursive, there is no β ∈ K s.t. t(β) = α and
thus α ∈ Acc(A). As A is a d-structure, α ∈ Γ .

Proposition 16 Let RAF = 〈A,K, s, t〉 be some non-recursive framework and A = 〈S, Γ 〉
be some d-structure. Then, any argument a ∈ A satisfies: a ∈ Def (A) iff it is defeated
w.r.t. S in RAFD (Definition 2).

Proof Recall that, by definition, it follows that RAFD = 〈A,RRAF〉. Then, from Obser-
vation 7, it follows that RA = RRAF for every d-structure A. Then, the result follows
by observing that the definition of Def (A) (1) is obtained from the defeated definition
(Definition 2) by just replacing relation RRAF by RA.

Proposition 17 Let RAF = 〈A,K, s, t〉 be some non-recursive framework and A = 〈S, Γ 〉
be some conflict-free d-structure. Then, any argument a ∈ A satisfies: a ∈ Acc(A) iff a is
acceptable w.r.t. S in RAFD (Definition 2).

Proof First note that, since RAF is non-recursive, it follows that Inh(A) = ∅ and, thus, that
Inh(A) = K holds. Furthermore, from Observation 7, it also follows that Γ = K. Hence,
we may rewrite the definition of acceptability as follows:
a ∈ A is acceptable with respect to some d-structure A in RAF
iff every α ∈ K with t(α) = a satisfies s(α) ∈ Def (A)

iff for every b ∈ A, (b, a) ∈ RA implies b ∈ Def (A)

iff for every b ∈ A, (b, a) ∈ RRAF implies b ∈ Def (A)

iff a is acceptable w.r.t. S in RAFD (Definition 2).

Theorem 5 For each semantics σ ∈ {conflict-free, naive, admissible, complete, preferred,
grounded, stable}: A set of arguments S ⊆ A is a σ -extension w.r.t. some non-recursive
RAF (Definition 16) iff it is a σ -extension w.r.t. RAFD (Definition 3).

Proof First note that due to Observation 7, a set S is a σ -extension of some non-recursive
RAF iff A = 〈S,K〉 is a σ -structure. Then,

1. Conflict-free: A = 〈S,K〉 is a conflict-free structure in RAF
iff S ∩ Def (A) = ∅ and K ∩ Inh(A) = ∅

iff S ∩ Def (A) = ∅ (note that Inh(A) = ∅)
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iff S ∩ Def (S) = ∅ (Proposition 16)
iff S is a conflict-free extension of RAFD .

2. Naive: A = 〈S,K〉 is a naive structure in RAF
iff A is a �-maximal conflict-free structure
iff A is conflict-free and there is not conflict-free A′ = 〈S′, Γ ′〉 s.t. S′ ⊃ S

iff S is a conflict-free and there is not conflict-free S′ s.t. S′ ⊃ S

iff S is a ⊆-maximal conflict-free extension
iff S is a naive extension of RAFD .

3. Admissible: A = 〈S,K〉 is an admissible structure in RAF
iff A is conflict-free and (S ∪ K) ⊆ Acc(A)

iff S is conflict-free and (S ∪ K) ⊆ Acc(A)

iff S is conflict-free and S ⊆ Acc(A) (since no attack is attacked)
iff S is conflict-free and S ⊆ Acc(S) (Proposition 17)
iff S is an admissible extension of RAFD .

4. Complete: A = 〈S,K〉 is a complete structure in RAF
iff A is admissible and Acc(A) ⊆ (S ∪ K)

iff S is admissible and Acc(A) ⊆ (S ∪ K)

iff S is admissible and (Acc(A) ∩ A) ⊆ S

iff S is admissible and Acc(S) ⊆ S (Proposition 17)
iff S is a complete extension of RAFD .

5. Preferred: A = 〈S,K〉 is a preferred structure in RAF
iff A is admissible and � ∃A′ = 〈S′, Γ ′〉 s.t. admissible and (S ∪ K) ⊂ (S′ ∪ Γ ′)
iff A is admissible and � ∃A′ = 〈S′,K〉 s.t. admissible and S ⊂ S′
iff S is admissible and � ∃A′ = 〈S′,K〉 s.t. admissible and S ⊂ S′
iff S is admissible and � ∃S′ admissible s.t. S ⊂ S′
iff S is a preferred extension of RAFD .

6. Grounded: A = 〈S,K〉 is a grounded structure in RAF
iff A is a �-minimal complete structure
iff A is complete and there is not complete structure A′ = 〈S′, Γ ′〉 s.t. S′ ⊂ S

iff S is complete and there is not complete extension S′ s.t. S′ ⊂ S

iff S is a ⊆-minimal complete extension
iff S is a grounded extension of RAFD .

7. Stable: A = 〈S,K〉 is a stable structure in RAF
iff A is conflict-free, S = Def (A) and K = Inh(A)

iff S is conflict-free, S = Def (A) and K = Inh(A)

iff S is conflict-free and S = Def (A) (no attack is attacked)
iff S is conflict-free and S = Def (S) (Proposition 16)
iff S is a stable extension of RAFD .

Due to Observation 6, it follows directly that:

Corollary 1 For each semantics σ ∈ {complete, pref erred, grounded, stable}: A =
〈S,K〉 is a σ -structure w.r.t. a non-recursive RAF (Definition 7) iff S is σ -extension w.r.t.
RAFD (Definition 3).

For the naive semantics, note that we cannot take simply naive structures. For instance,
the simple Dung’s framework of Fig. 3 has two naive extensions, {a} and {b} and
five naive structures, A1 = 〈{a},∅〉, A2 = 〈{a}, {α}〉, A3 = 〈{b},∅〉, A4 = 〈{b}, {α}〉 and
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A5 = 〈{a, b},∅〉. It is easy to see that structures A1 and A2 correspond to the naive exten-
sion {a} while structures A3 and A4 correspond to the naive extension {b}. However,
structure A5 corresponds to the set {a, b} which is not conflict-free. Note also that A5 (and
also A1 and A3) are not d-structures because α is acceptable (it is not attacked) and does
not belong to the structures. Hence, the notion of naive d-structure provides an alternative
semantics for the naive semantics, which is a conservative extension of the naive semantics
for Dung’s frameworks. Similarly, the notion of d-structure provides alternative semantics
for the principles of conflict-freeness and admissibility.

Example 1 (cont’d) Among the conflict-free structures that are not admissible, only
five are conflict-free d-structures: 〈∅, {α, β}〉, 〈{a}, {α, β}〉, 〈{b}, {α, β}〉, 〈{a, b}, {β}〉,
〈{b}, {β}〉. Similarly, among the admissible structures that are not complete, only five are
admissible d-structures: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉, 〈{a}, {β}〉, 〈{c}, {β}〉 and 〈∅, {β}〉. Fur-
thermore, among these we have only three naive d-structures: 〈{a, b}, {β}〉, 〈{a, c}, {β}〉 and
〈{b, c}, {β}〉.

Example 2 (cont’d) There are admissible structures w.r.t. the framework represented in
Fig. 2 that are not d-structures: for instance A1 = 〈{a}, {ε}〉 and A2 = 〈{a}, {ε, δ}〉. Indeed,
each d-structure must contain the attacks that are not targeted by any other attack, that is,
{ε, α, δ}. Moreover each d-structure containing a must also contain γ .

As mentioned above, RAF naive d-structures provide a generalisation for the naive
semantics for recursive frameworks, while taking ⊆-maximal AFRA-conflict-free sets does
not provide a conservative generalisation of the naive semantics, as illustrated by the
following example:

Example 8 The framework corresponding to Fig. 9 has two naive extensions: {a, c}
and {b}. Accordingly, in RAF, we have two naive d-structures: A0 = 〈{a, c}, {α, β}〉 and
A1 = 〈{b}, {α, β}〉. However, there is no ⊆-maximal AFRA-conflict-free set whose
only acceptable argument is b: the sets {b, α} and {b, α, β} are not AFRA-conflict-free
because α defeats b while the sets {b} and {b, β} are not ⊆-maximal because {a, b, β} is
AFRA-conflict-free.

7 Inhibited attacks

In this section, the intuition behind the concept of inhibited attacks is deepened and precisely
defined. Indeed, we may expect that attacks that are inhibited do not have any effect on their
targets, that is, we may remove them without modifying the condition of the structure.

Example 9 Let RAF be the recursive argumentation framework of Fig. 1 and A =
〈{a, b, c}, {β}〉 its unique complete structure. It is easy to check that α is inhibited w.r.t. A
because c and β belong to the structure and α is the target of β. According to the above
intuition, we may expect that this would imply that there is a “somehow” corresponding
structure A′ which is complete w.r.t. some RAF′ obtained by removing α. Note that, in this
case, removing α also implies removing β because there cannot be attacks without target.
In fact, the resulting RAF′ is a recursive framework with arguments {a, b, c} and no attack.
It is easy to check that A′ = 〈{a, b, c},∅〉 is complete (also preferred and stable) w.r.t RAF′
and that it shares with A the set of “acceptable” arguments.

Let us now formalise this intuition:

77



C. Cayrol et al.

Definition 18 Given some recursive framework RAF and two different attacks β, α, we
define: β ≺ α iff there is some chain of attacks δ1, δ2, . . . δn such that δ1 = β, δn = α and
t(δi) = δi+1 for 1 ≤ i < n.

For instance, in the argumentation framework of Fig. 1, we have that β ≺ α. On the
other hand, neither α ≺ β, nor β ≺ α hold for the argumentation framework of Fig. 9. Note
that ≺ is the empty relation for any non-recursive framework. As usual, by � we denote the
reflexive closure of ≺. Given an attack α and a set of attacks Γ , by Γ −α def= Γ \{ β ∈ K

∣∣ β �
α } we denote the set of attacks obtained by removing the attack α from Γ . Furthermore,
by RAF−α = 〈A,K−α, s−α, t−α〉, with s−α and t−α the restrictions of s and t to K−α ,
we denote the framework obtained by removing the attack α from RAF = 〈A,K, s, t〉.
Similarly, by A−α = 〈S, Γ −α〉 we denote the structure obtained by removing the attack α

from the structure A = 〈S, Γ 〉.
Example 9 (cont’d) Let RAF be the recursive argumentation framework of Fig. 1. Then

RAF−α = 〈A,∅, s−α, t−α〉 with A = {a, b, c} because β ≺ α implies that β /∈ K−α .
Furthermore, if A = 〈{a, b, c}, {β}〉, then A−α = 〈{a, b, c},∅〉 which is a stable structure
of RAF−α .

Proposition 19 below formalises the intuitions presented in the previous example.

Proposition 18 Let RAF be some recursive framework, A be some conflict-free (resp.
admissible) structure and α ∈ Inh(A) be some inhibited attack w.r.t. A. Then, A−α is a
conflict-free (resp. admissible) structure of RAF−α .

Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉; and pick some argument a ∈ S. Then, if A is
conflict-free, it follows that12 a /∈ Def (RAF,A). Suppose, for the sake of contradiction, that
a ∈ Def (RAF−α,A). Then, there is some attack β ∈ Γ −α such that t(β) = a and s(β) ∈
S. Furthermore, β ∈ Γ −α plus Γ −α ⊆ Γ imply β ∈ Γ which, in its turn, implies that
a ∈ Def (RAF,A), which is a contradiction. Hence, a /∈ Def (RAF−α,A). Similarly, for
any β ∈ Γ −α ⊆ Γ we have that β /∈ Inh(RAF,A) and, thus, β /∈ Inh(RAF−α,A−α) (see
Lemma 44 in the Appendix for more details). As a result, we have that A−α is conflict-free
w.r.t. RAF−α .

Assume now that A is admissible w.r.t. RAF. Then, it is conflict-free and we have just
seen that this implies that A−α is conflict-free w.r.t. RAF−α . Furthermore, since A is admis-
sible, it follows that (S ∪ Γ ) ⊆ Acc(RAF,A). Suppose, for the sake of contradiction,
that there is some x ∈ Acc(RAF,A) such that x /∈ Acc(RAF−α,A−α). Hence, there is
β ∈ Γ −α ⊆ Γ such that t(β) = x and s(β) /∈ Def (RAF,A) \ Def (RAF−α,A−α). Then,
there is γ ∈ Γ \ Γ −α such that t(γ ) = s(β). However, this implies that γ = α and, since α

is inhibited, we have that α /∈ Γ , which is a contradiction. Hence, x ∈ Acc(RAF−α,A−α)

follows and thus, we get that A−α is admissible w.r.t. RAF−α .

In a similar way, this result can be extended to all other semantics (see the Appendix for
a detailed proof).

Proposition 19 Let RAF be some recursive framework and let σ ∈ {naive,

complete, pref erred, grounded, stable} be a semantics. If A is a σ -structure of RAF
and α ∈ Inh(A) is some inhibited attack w.r.t. A, then, A−α is a σ -structure of RAF−α .

12Def (RAF,A) denotes the defeated arguments with respect to structure A and argumentation framework
RAF.
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8 Conclusion and future works

In this work we have extended Dung’s abstract argumentation framework with recursive
attacks. One of the essential characteristics of this extension is its conservative nature with
respect to Dung’s approach (when d-structures are considered). The other one is that seman-
tics are given with respect to the notion of “valid attacks” which play a role analogous to
attacks in Dung’s frameworks.

In contrast with meta-argumentation approaches, we propose a theory where valid attacks
remain explicit, and distinct from arguments, within the notion of structure. Despite these
differences, we proved a one-to-one correspondence with AFRA and MAF extensions in the
case of the complete, preferred , grounded and stable semantics, while retaining a one-to-one
correspondence with Dung’s frameworks in the case of naive, conflict-free and admissible
extensions.

Related work can be found in [20] which relates different approaches to the semantics
of an Extended AF, a special case of RAF. [20] considers Extended Argumentation Frame-
works (EAF) defined in [19], in which several levels of attacks are allowed. The proposed
semantics for EAFs are defined in an inductive way from the levels of attacks.

It is worth noting that inductive semantics define extensions as sets of arguments. In
contrast, RAF semantics produce structures that gather arguments and attacks which are
acceptable (resp. valid) w.r.t. the structure. [20] compares the inductive semantics with
other proposals giving semantics to EAFs, among which AFRA complete semantics and a
slightly modified presentation of the complete semantics introduced in [19]. In this work,
we consider the more general RAF framework which allows cycles of attacks. We relate
RAF semantics to other proposals in the more general setting of structure-based semantics,
where attacks and arguments are handled in a similar way. In particular, we obtain one-to-
one correspondences with AFRA extensions in the case of the complete, grounded and also
preferred and stable semantics.

For a better understanding of the RAF framework, future work should include the study
of other semantics (stage, semi-stable, and ideal). Moreover, we are interested in enriching
the translation proposed by [6, 7, 18, 22] from Dung’s framework into propositional logic
and ASP, in order to capture RAF. A first work in this research line presented in [12] opens
a way for computational issues by using logical tools (for instance, the more efficient SAT-
solvers).

Another line of further research will be to extend our approach by taking into account
bipolar interactions [13, 23] (case when arguments and attacks may be attacked or sup-
ported). First works have been done in that direction (see [10] for a particular case of support
– the evidential one – and [11] for another case of support – the necessary one).

Appendix

A Proofs

A.1 Proofs of Section 3

Lemma 4 Let RAF = 〈A,K, s, t〉 be some framework and A be a conflict-free structure.
Then, it follows that Acc(A) ∩ Def (A) = ∅ and Acc(A) ∩ Inh(A) = ∅
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Proof Assume that a ∈ (Acc(A) ∩ Def (A)). Then, there is α ∈ Γ with s(α) ∈ S and
t (α) = a. Since a ∈ Acc(A), it follows that either s(α) ∈ Def (A) or α ∈ Inh(A) holds.
Both situations are impossible since A is conflict-free, meaning that S ∩ Def (A) = ∅ and
Γ ∩ Inh(A) = ∅.

The same reasoning holds for β ∈ (Acc(A)∩Inh(A)) replacing a by β.

Lemma 5 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be some an
admissible structure. Then, any acceptable argument a ∈ (Acc(A) ∩ A) satisfies that
A′ = 〈S ∪ {a}, Γ 〉 is conflict-free.

Proof Let S′ = (S ∪ {a}) and suppose, for the sake of contradiction, that A′ is not conflict-
free, that is, that either (S′ ∩ Def (A′)) �= ∅ or (Γ ∩ Inh(A′)) �= ∅ holds.

a) In the first case, there is a′ ∈ (S′ ∩ Def (A′)). So there is α ∈ Γ such that t(α) = a′
and s(α) ∈ S′. Either a′ = a or a′ ∈ S.

Assume first that a′ = a. Since a ∈ Acc(A), it follows that either α ∈ Inh(A) or
s(α) ∈ Def (A) holds. However, we know that A is conflict-free, so it is impossible
that α ∈ (Γ ∩ Inh(A)). So, it must be the case that s(α) ∈ Def (A) holds and, thus,
that s(α) �∈ S (also because A is conflict-free). Hence, s(α) = a. Due to Lemma 4, it is
impossible to have a ∈ (Acc(A) ∩ Def (A)) and, thus, s(α) ∈ Def (A) plus s(α) = a

imply that a /∈ Acc(A). This is a contradiction with the fact a ∈ Acc(A).
Assume now that a′ �= a and, thus, that a′ ∈ S. Since (S ∩ Def (A)) = ∅, we have

that a′ �∈ Def (A). Hence, s(α) �∈ S and s(α) = a hold. Since A is admissible and
a′ ∈ S, it follows that a′ ∈ Acc(A). Furthermore, since t(α) = a′, it also follows that
either α ∈ Inh(A) or s(α) ∈ Def (A). The former is in contradiction with the fact that
A is admissible (and thus conflict-free). Furthermore, from Lemma 4 and the fact that
s(α) = a, the latter implies that a /∈ Acc(A) which is a contradiction, too.

b) If (Γ ∩ Inh(A′)) �= ∅, then there is some attack β ∈ Γ with β ∈ Inh(A′) and thus,
there is also some α ∈ Γ such that t(α) = β and s(α) ∈ S′. Since A is conflict-
free, β �∈ Inh(A) which implies that s(α) �∈ S and thus, s(α) = a holds. Since A is
admissible and β ∈ Γ , it follows that β ∈ Acc(A). Furthermore, since t(α) = β, it
must be that either α ∈ Inh(A) or s(α) ∈ Def (A) holds. The former is in contradiction
with the fact that α ∈ Γ and the latter implies that a /∈ Acc(A) which is in contradiction
with the hypothesis.

Consequently, A′ is conflict-free.

Lemma 6 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be some admissible
structure. Then, any attack α ∈ (Acc(A)∩K) satisfies thatA′ = 〈S, Γ ∪{α}〉 is conflict-free.

Proof Let Γ ′ = (Γ ∪ {α}) and suppose, for the sake of contradiction, that A′ is not conflict
free, that is, either (S ∩ Def (A′)) �= ∅ or (Γ ′ ∩ Inh(A′)) �= ∅.

1. In the first case, there is a ∈ S with a ∈ Def (A′). So there is β ∈ Γ ′ such that
t(β) = a and s(β) ∈ S. Since A is conflict-free, a �∈ Def (A) and thus, β �∈ Γ and
β = α follow. Then, β ∈ Acc(A). Furthermore, since A is admissible and a ∈ S, we
have that a ∈ Acc(A) and thus, that either β ∈ Inh(A) or s(β) ∈ Def (A) holds. From
Lemma 4, the former is in contradiction with the fact that β ∈ Acc(A) and, since A is
conflict-free, the latter is in contradiction with the fact that s(β) ∈ S.
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2. If (Γ ′ ∩ Inh(A′)) �= ∅, there is some attack α′ ∈ Γ ′ with α′ ∈ Inh(A′). So there is
β ∈ Γ ′ such that t(β) = α′ and s(β) ∈ S. Furthermore, either α′ = α or α′ ∈ Γ .

Assume first that α′ = α. Since α ∈ Acc(A), it follows that either β ∈ Inh(A)

or s(β) ∈ Def (A). However, we know that A is conflict-free, so it is impossible that
s(β) ∈ (S ∩ Def (A)). So we must have β ∈ Inh(A) and thus, that β /∈ Γ (also
because A is conflict-free). Hence β = α. Due to Lemma 4, it is impossible to have
β ∈ (Acc(A) ∩ Inh(A)) and thus, α �∈ Acc(A). This is in contradiction with the
hypothesis on α.

Assume now that α′ �= α and thus that α′ ∈ Γ . Since A is conflict-free, it follows that
(Γ ∩Inh(A)) = ∅ and thus, that α′ /∈ Inh(A). So β /∈ Γ , that is, β = α and, thus, that
β ∈ Acc(A). Furthermore, since A is admissible and α′ ∈ Γ , we have that α′ ∈ Acc(A).
As t(β) = α′, either β ∈ Inh(A) or s(β) ∈ Def (A). From Lemma 4, the former is in
contradiction with the fact that β ∈ Acc(A) and, since A is conflict-free, the latter is in
contradiction with the fact that s(β) ∈ S.

Consequently, A′ is conflict-free.

Lemma 7 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be some an
admissible structure. Then, any element x ∈ Acc(A) satisfies that A′ = A ∪ {x} is
conflict-free.

Proof If x ∈ A, the result follows directly from Lemma 5. Otherwise, x ∈ K, and the result
follows from Lemma 6.

Lemma 8 Any conflict-free structureA = 〈S, Γ 〉 satisfies:Acc(A) ⊆ (Def (A)∪Inh(A)).

Proof It follows directly from Lemma 4 and the definitions of Def (A) and Inh(A).

Lemma 9 Let RAF = 〈A,K, s, t〉 be some non-recursive framework and A0 � A1 � . . .

be some sequence of conflict-free structures such that Ai = 〈Si, Γi〉. Let us also define
A = 〈⋃0≤i Si ,

⋃
0≤i Γi〉. Then, A is conflict-free.

Proof Suppose, for the sake of contradiction, that A is not conflict-free. Then, either (S ∩
Def (A)) �= ∅ or (Γ ∩ Inh(A)) �= ∅ (with S = ⋃

0≤i Si and Γ = ⋃
0≤i Γi). Pick any

argument x ∈ (S ∩ Def (A)) (resp. attack x ∈ Γ ∩ Inh(A))). Then, x ∈ Def (A) (resp.
x ∈ Inh(A)) implies that there is α ∈ Γ such that t(α) = x and s(α) ∈ S. Hence, there is
0 ≤ i such that α ∈ Γi and 0 ≤ j such that s(α) ∈ Sj . Let k = max{i, j}. Then, α ∈ Γk and
s(α) ∈ Sk which means that x ∈ Def (Ak) (resp. x ∈ Inh(Ak)). Moreover, there is 0 ≤ l

such that x ∈ Sl (resp. x ∈ Γl). Let m = max{k, l}. Then, x ∈ Sm (resp. x ∈ Γm), and from
Observation 1, we have that Def (Ak) ⊆ Def (Am) (resp. Inh(Ak) ⊆ Inh(Am)). That is in
contradiction with the fact that Am is conflict-free.

Hence, A must be conflict-free.

A.2 Proofs of Section 4

Lemma 10 Let RAF = 〈A,K, s, t〉 be a framework and A be a structure. Then, x ∈
(Def (A) ∪ Inh(A)) implies that there is some α ∈ Afra(A) such that α defeats x.
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Proof Since x ∈ (Def (A) ∪ Inh(A)), there is α ∈ Γ s.t. t(α) = x and s(α) ∈ S. Note
that α ∈ Γ and s(α) ∈ Γ imply that α ∈ Afra(A) and that t(α) = x implies that
α defeats x.

Lemma 11 Let RAF = 〈A,K, s, t〉 be some framework and A be some structure. Then,
every a ∈ (Acc(A) ∩ A) is AFRA-acceptable w.r.t. Afra(A).

Proof Pick any attack α ∈ K such that α defeats a. Then, t(α) = a and, since a ∈ Acc(A)

it follows that either α ∈ Inh(A) or s(α) ∈ Def (A).
If α ∈ Inh(A), then there is β ∈ Γ such that s(β) ∈ S and t(β) = α. Note that β ∈ Γ

plus s(β) ∈ S imply β ∈ Afra(A) and that t(β) = α implies that β defeats α. Hence, the
fact that a is AFRA-acceptable w.r.t. E follows.

Otherwise, s(α) ∈ Def (A), and, there is β ∈ Γ such that s(β) ∈ S and t(β) = s(α). As
above, β ∈ Γ plus s(β) ∈ S imply β ∈ Afra(A), and t(β) = s(α) implies that β defeats α.
Hence, the fact that a is AFRA-acceptable w.r.t. E follows.

In consequence, it holds that a is AFRA-acceptable w.r.t. E .

Lemma 12 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be some structure.
Then, every α ∈ (Acc(A) ∩ K) that satisfies s(α) ∈ Acc(A), is also AFRA-acceptable
w.r.t. Afra(A).

Proof Pick any attack β ∈ K such that β defeats α. Then, either t(β) = α or t(β) = s(α).
If the latter, then Lemma 11 plus s(α) ∈ Acc(A) imply that s(α) is AFRA-acceptable

w.r.t. Afra(A) and, thus, that there is some γ ∈ Afra(A) that defeats β.
If the former, α ∈ Acc(A) implies that either β ∈ Inh(A) or s(β) ∈ Def (A). Assume

β ∈ Inh(A). Then, there is γ ∈ Γ such that s(γ ) ∈ S and t(γ ) = β. Note that γ ∈ Γ plus
s(γ ) ∈ S imply γ ∈ Afra(A) and that t(γ ) = β implies that γ defeats β.

Otherwise, s(β) ∈ Def (A) and there is γ ∈ Γ such that s(γ ) ∈ S and t(γ ) = s(β). As
above, γ ∈ Γ plus s(γ ) ∈ S imply γ ∈ Afra(A) and t(γ ) = s(β) implies that γ defeats β.

Hence, for any attack β ∈ K that defeats α, there is some attack γ ∈ Afra(A) that
defeats β. That is, the fact that α is AFRA-acceptable w.r.t. Afra(A) follows.

Lemma 13 Let RAF = 〈A,K, s, t〉 be some framework and A be some structure. Then,
α ∈ (Acc(A) ∩ K) and s(α) /∈ S imply α ∈ ΓAfra(A).

Proof Let A′ = 〈S, ΓAfra(A)〉 and let us show that α ∈ Acc(A′). Pick any β ∈ K such that
t(β) = α. Since α ∈ Acc(A), it follows that either β ∈ Inh(A) or s(β) ∈ Def (A). If the
former, there is γ ∈ Γ such that t(γ ) = β and s(γ ) ∈ S. Note that γ ∈ Γ plus s(γ ) ∈ S

imply that γ ∈ Afra(A) and, thus, that γ ∈ ΓAfra(A) and that β ∈ Inh(A′). Similarly,
s(β) ∈ Def (A) implies that there is γ ∈ Γ such that t(γ ) = s(β) and s(γ ) ∈ S and,
thus, s(β) ∈ Def (A′). Hence, any β ∈ K with t(β) = α satisfies either β ∈ Inh(A′) or
s(β) ∈ Def (A′). That is, α ∈ Acc(A′). Hence, to show that α ∈ ΓAfra(A) it is enough to
prove that s(α) /∈ Afra(A) which directly follows from the fact that s(α) /∈ S.

Lemma 14 Let RAF = 〈A,K, s, t〉 be an framework and A = 〈S, Γ 〉 be some admissible
structure. Then, S = SAfra(A) and Γ ⊆ ΓAfra(A) hold.

Proof Note that, by definition, it follows that SAfra(A) = (Afra(A) ∩ A) = S.
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Then, to show that Γ ⊆ ΓAfra(A) holds, pick any attack α ∈ Γ . If s(α) ∈ S, then
α ∈ (Afra(A) ∩ K) and thus, α ∈ ΓAfra(A). Otherwise, s(α) /∈ S and α ∈ (Acc(A) ∩ K)

as A = 〈S, Γ 〉 is admissible. So, from Lemma 13, it follows that α ∈ ΓAfra(A).

Lemma 15 Let RAF = 〈A,K, s, t〉 be some framework and A be a complete structure.
Then, it follows that Acc(A) ⊆ (SAfra(A) ∪ ΓAfra(A)).

Proof Let A = 〈S, Γ 〉. Note that, since A is complete, it follows that Acc(A) ⊆ (S ∪ Γ )

and, thus, the result follows directly from Lemma 14.

Lemma 16 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be a complete
structure and x be some AFRA-acceptable element w.r.t. Afra(A). Then, x ∈ (S∪Γ ) holds.

Proof From Lemma 2, the hypothesis implies that x ∈ Acc(AAfra(A)). Note that, since A

is complete, Proposition 10 implies that AAfra(A) = A and, thus, that x ∈ Acc(A) and that
x ∈ (S ∪ Γ ) (recall that A is complete).

Lemma 17 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be a complete
structure. Then, Afra(A) is AFRA-complete.

Proof Since A is a complete structure, it is admissible and, in addition, it satisfies (S ∪
Γ ) = Acc(A). From Proposition 6 the former implies that Afra(A) is AFRA-admissible.
Hence, to show that Afra(A) is AFRA-complete, it is enough to prove that every acceptable
element x w.r.t. Afra(A) belongs to Afra(A).

Pick any AFRA-acceptable element x ∈ (A ∪ K) w.r.t. Afra(A). From Lemma 16,
this implies that x ∈ (S ∪ Γ ). Note that, by construction, we have that S ⊆ Afra(A).
Furthermore, if x ∈ Γ , then Lemma 1 in [4] plus the fact that x is AFRA-acceptable w.r.t.
Afra(A), imply that s(x) is AFRA-acceptable w.r.t. Afra(A) and, from Lemma 16 again,
this implies that s(x) ∈ S. By definition, x ∈ Γ plus s(x) ∈ S imply x ∈ Afra(A) and,
thus, that Γ ⊆ Afra(A). Therefore, we have that every AFRA-acceptable element x w.r.t.
Afra(A) belongs to Afra(A) and, thus, that Afra(A) is an AFRA-complete extension.

Lemma 18 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a closed set.
Then, it follows that Afra(AE ) = E .

Proof Note that, by definition, it follows that

(Afra(AE ) ∩ A) = SE = (E ∩ A)

It remains to be shown that (Afra(AE ) ∩ K) = (E ∩ K). By definition, it follows that
ΓE ⊇ (E ∩ K). Therefore, α ∈ E implies that α ∈ ΓE and, since E is closed, this implies
that s(α) ∈ (E ∩ A) = SE and, thus, that α ∈ (Afra(AE ) ∩ K). In its turn, this implies
(Afra(AE ) ∩ K) ⊇ (E ∩ K).

On the other hand, every α ∈ (Afra(AE ) ∩ K) satisfies α ∈ ΓE and s(α) ∈ SE ⊆ E .
Together, these two facts imply α ∈ (E ∩ K). Hence, (Afra(AE ) ∩ K) = (E ∩ K) holds
and, thus, Afra(AE ) = E follows.

Lemma 19 Let RAF = 〈A,K, s, t〉 be some framework and E be some AFRA-complete
extension. Then, E is closed.
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Proof Pick any attack α ∈ (E ∩ K). Then, since E is AFRA-complete, this implies that
α is AFRA-acceptable w.r.t. E and, from Lemma 1 in [4], this implies that s(α) is also
AFRA-acceptable w.r.t. E . This plus the fact that E is AFRA-complete imply that s(α) ∈
E .

Lemma 20 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a AFRA-
complete extension. Then, AE is a complete structure.

Proof By definition, every AFRA-complete extension is also AFRA-admissible. Further-
more, from Lemma 19, every AFRA-complete extension is also closed, thus, Proposition 7
implies that AE is an admissible structure. Then, to show that AE is a complete structure, it
is enough to prove the following inclusion: Acc(AE ) ⊆ (SE ∪ ΓE ). Let us recall that, from
Lemma 15, it follows that

Acc(AE ) ⊆ (SAfra(AE ) ∪ ΓAfra(AE ))

and that, from Lemma 18, it follows Afra(AE ) = E . As a result, Acc(AE ) ⊆ (SE ∪ ΓE )

holds and, thus, AE is complete.

Lemma 21 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ E ′ ⊆ (A ∪ K) be two
AFRA-complete extensions. Then, AE � AE ′ .

Proof First, note that
SE = (E ∩ A) ⊆ (E ′ ∩ A) = SE ′

Let S = SE , S′ = SE ′ , Γ = (E ∩ K) and Γ ′ = (E ′ ∩ K). Let also A = 〈S, Γ 〉 and
A′ = 〈S′, Γ ′〉. Then,

ΓE = (E ∩ K) ∪ {
α ∈ Acc(A)

∣∣ s(α) /∈ S
}

ΓE ′ = (E ′ ∩ K) ∪ {
α ∈ Acc(A′)

∣∣ s(α) /∈ S′}

Hence, to show ΓE ⊆ ΓE ′ , it is enough to prove

{ α∈Acc(A)
∣∣ s(α) /∈S } ⊆ E ′ ∪ { α∈Acc(A′)

∣∣ s(α) /∈S′ }
Furthermore, from Observation 2 and the fact that A � A′, it follows that Acc(A) ⊆
Acc(A′) and, thus, it is enough to show that every α ∈ Acc(A) satisfies that: s(α) /∈ S

implies that either s(α) /∈ S′ or α ∈ E ′.
Suppose, for the sake of contradiction, that there is some α ∈ (Acc(A)\E ′) that satisfies

s(α) /∈ S and s(α) ∈ S′. Since by hypothesis E ′ is AFRA-complete, α /∈ E ′ implies that
α is not AFRA-acceptable w.r.t. E ′ and, thus, there is some β ∈ K that defeats α and is
not defeated by any γ ∈ E ′. That is, either t(β) = α or t(β) = s(α). If the latter, then
β also defeats s(α). But, then s(α) ∈ S′ implies s(α) ∈ E ′ which, in its turn, implies that
s(α) is AFRA-acceptable w.r.t. E ′ and, thus, that β is defeated by some γ ∈ E ′ which is a
contradiction with the above. Hence, it must be that s(β) = α and, thus, that α /∈ Acc(A)

which is a contradiction with the assumption. Hence, Γ ⊆ Γ ′ holds.

Lemma 22 Let RAF = 〈A,K, s, t〉 be some framework and E ⊂ E ′ ⊆ (A ∪ K) be two
AFRA-complete extensions. Then, AE � AE ′ .

Proof First note that from Lemma 22, we have AE � AE ′ . Suppose, for the sake of con-
tradiciton that AE = AE ′ . Then, S ⊂ S′ implies A � AE ′ , which is a contradiction with
the assumption. Hence, it must be that S = S′ holds. Furthermore, since E ⊂ E ′, there is
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some element x ∈ (E ′ \ E) and, since S = S′, it follows that x ∈ K. From Lemma 19 and
the fact that E ′ is AFRA-complete, it follows that E ′ is closed and, thus, x ∈ E ′ implies that
s(x) ∈ E ′. This implies s(x) ∈ S and, since S = S′, that s(x) ∈ S and s(x) ∈ E . This plus
x /∈ E imply that x /∈ Γ and, thus, that Γ ⊂ Γ ′ and A � A′ hold.

Lemma 23 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be a preferred
structure. Then, Afra(A) is AFRA-preferred.

Proof Since A is a preferred structure, it is admissible and, in addition, there is no admissi-
ble structure A such that A � A′. From Proposition 6, the former implies that Afra(A) is
AFRA-admissible. Hence, to show that Afra(A) is AFRA-preferred, it is enough to prove
that there does not exist any AFRA-admissible extension E such that Afra(A) ⊂ E .

Suppose, for the sake of contradiction, that there exists any AFRA-admissible extension
E such that Afra(A) ⊂ E . Since E is AFRA-admissible, from Theorem 2 in [4], there
is some AFRA-preferred extension E ′ such that Afra(A) ⊂ E ⊆ E ′. Furthermore, from
Lemma 4 in [4], it follows that E ′ is also AFRA-complete and, thus, from Lemma 20, that
AE ′ is a complete structure. Furthermore, since A is a preferred structure, from Theorem 2, it
follows that A is also complete and thus, from Lemma 17, that Afra(A) is AFRA-complete.
From Lemma 22 and the fact that both Afra(A) and E ′ are complete, Afra(A) ⊂ E
implies that AAfra(A) � AE ′ Moreover, since A is complete, from Proposition 10, it follows
that AAfra(A) = A and, thus, that A � AE ′ . This is a contradiction with the assumption
that A is a preferred structure. Hence, Afra(A) is an AFRA-preferred set.

Lemma 24 Let RAF = 〈A,K, s, t〉 be some framework and A = 〈S, Γ 〉 be a stable
structure. Then, Afra(A) is AFRA-stable.

Proof Since A is a stable structure, it is conflict-free and, in addition, it satisfies S =
Def (A) and Γ = Inh(A). From Proposition 4, the former implies that Afra(A) is AFRA-
conflict-free. Hence, to show that Afra(A) is AFRA-stable, it is enough to prove that, for
every x ∈ ((A ∪ K) \ Afra(A)), there is α ∈ Afra(A) such that α defeats x.

First, note that x ∈ ((A ∪ K) \ Afra(A)) implies that either x /∈ (S ∪ Γ ) or x ∈ Γ

but s(x) /∈ S. Since A is stable, the former implies that x ∈ (Def (A) ∪ Inh(A)) and, from
Lemma 10, this implies that there is some α ∈ Afra(A) such that α defeats x. On the other
hand, the latter implies that s(x) /∈ S and, thus, that s(x) ∈ Def (A). From Lemma 10, this
implies that there is some α ∈ Afra(A) such that α defeats s(x) and, thus, that defeats x.

Proof of Proposition 8 Conditions i), iii), and iv) follow directly from Lemmas 17, 23
and 24, respectively. For ii), note that A being grounded implies that it is also complete
and, thus, that Afra(A) is AFRA-complete. Suppose, for the sake of contradiction, that
Afra(A) is not AFRA-grounded and, thus, that there is some set E which is AFRA-
complete and satisfies E ⊂ Afra(A). Then, from Lemmas 20 and 22, it respectively
follows that AE is a complete structure and that AE � AAfra(A). Note that, from Propo-
sition 10, we have that AAfra(A) = A and, thus, we get AE � A which is a contradiction
with the fact that A is a grounded structure. Hence, Afra(A) is AFRA-grounded.

Lemma 25 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a closed set.
Then, it follows that x ∈ (Def (AE ) ∪ Inh(AE )) implies that there is no α ∈ E such that
α directly defeats x.
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Proof Suppose, for the sake of contradiction, that there is α ∈ E such that α directly
defeats x. If α directly defeats x, then t(α) = x. Furthermore, since E is closed, α ∈ E
implies that s(α) ∈ E and, thus, that α ∈ ΓE and that s(α) ∈ SE . This implies that
x ∈ (Def (AE ) ∪ Inh(AE )) which is a contradiction with the assumption.

Lemma 26 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a closed set.
Then, a ∈ Def (AE ) implies that there is no α ∈ E such that α defeats a.

Proof a ∈ Def (AE ) implies that a ∈ A and, thus, α defeats a only if α directly defeats a.
Then, the result follows directly from Lemma 25.

Lemma 27 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a closed set.
Then, α ∈ Inh(AE ) and s(α) ∈ Def (AE ) imply that there is no β ∈ E such that β defeats α.

Proof From Lemma 25, it follows that there is is no β ∈ E such that β directly defeats α.
Suppose, for the sake of contradiction, that there is β ∈ E such that β indirectly defeats α.
This implies that t(β) = s(α). Furthermore, since E is closed, it follows that β ∈ E implies
that s(β) ∈ E and, thus, that β ∈ ΓE and that s(β) ∈ SE . This implies that s(α) ∈ Def (AE )

which is a contradiction with the assumption.

Lemma 28 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a closed
AFRA-conflict-free set. Then, x ∈ (Def (AE ) ∪ Inh(AE )) implies that there is no α ∈ E
such that α defeats x.

Proof Pick any x ∈ (Def (A) ∪ Inh(AE )). If x ∈ A, from Lemma 26, it follows that
there is no α ∈ E such that α defeats x. Otherwise, x ∈ K and x ∈ Inh(AE ). Since E
is closed, it follows that s(x) ∈ E and s(x) ∈ SE . Furthermore, since E is conflict-free,
Proposition 5 implies that AE is conflict-free. Then, s(x) ∈ SE implies s(x) ∈ Def (AE ).
From Lemma 27, this plus x ∈ Inh(AE ) imply that there is no α ∈ E such that α defeats x.

Lemma 29 Let RAF = 〈A,K, s, t〉 be some framework. Then, every AFRA-stable
extension is closed.

Proof Note that every AFRA-stable extension is also AFRA-complete (Lemmas 4 and 5
in [4]) and, thus, Lemma 19 implies that every AFRA-stable extension is also closed.

Lemma 30 LetRAF = 〈A,K, s, t〉 be some framework and E ⊆ (A∪K) be a AFRA-stable
extension. Then, it follows that (Def (AE ) ∪ Inh(AE )) ⊆ E .

Proof By definition every AFRA-stable extension is AFRA-conflict-free. Furthermore,
from Lemma 29, every AFRA-stable extension is closed. Then, Lemma 28 implies that, for
every x ∈ (Def (A) ∪ Inh(AE )), there is no α ∈ E such that α defeats x. Then, since E is
AFRA-stable, this implies that x ∈ E and, consequently, that (Def (A) ∪ Inh(AE )) ⊆ E
holds.

Lemma 31 LetRAF = 〈A,K, s, t〉 be some framework and E ⊆ (A∪K) be a AFRA-stable
extension. Then, AE is a stable structure.
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Proof Since by definition every AFRA-stable extension is AFRA-conflict-free, it follows
that AE is a conflict-free structure (Proposition 5). Then, to show that AE is stable, it is
enough to prove SE = Def (AE ) and ΓE = Inh(AE ). Note that, since AE is conflict-free,
it follows that S ⊆ Def (AE ) and Γ ⊆ Inh(AE ) hold. Furthermore, from Lemma 30, it
follows that

(Def (AE ) ∪ Inh(AE )) ⊆ E ⊆ (SE ∪ ΓE )

and, thus, that S = Def (AE ) and Γ = Inh(AE ) hold. Consequently, AE is a stable
structure.

Lemma 32 Let RAF = 〈A,K, s, t〉 be some framework. Every AFRA-preferred extension
is closed.

Proof Note that every AFRA-preferred extension is also AFRA-complete (Lemma 4 in [4])
and, thus, Lemma 19 implies that every AFRA-preferred extension is also closed.

Lemma 33 Let RAF = 〈A,K, s, t〉 be some framework and A � A′ be two structures.
Then, Afra(A) ⊆ Afra(A′).

Proof Let A = 〈S, Γ 〉 and A′ = 〈S′, Γ ′〉. Then,

(Afra(A) ∩ A) = S ⊆ S′ = (Afra(A′) ∩ A)

Furthermore,

(Afra(A) ∩ K) = {
α ∈ Γ

∣∣ s(α) ∈ S
}

(Afra(A) ∩ K) = {
α ∈ Γ ′ ∣∣ s(α) ∈ S′}

and, thus, (Afra(A) ∩K) ⊆ (Afra(A) ∩K). These two facts together imply Afra(A) ⊆
Afra(A′).

Lemma 34 Let RAF = 〈A,K, s, t〉 be some framework and A � A′ be two complete
structures. Then, Afra(A) ⊂ Afra(A′).

Proof First note that, from Lemma 34, we have that Afra(A) ⊂ Afra(A′). Suppose, for
the sake of contradiction that Afra(A) = Afra(A′). Then, it is obvious that AAfra(A) =
A
Afra(A

′
)
. However, from Proposition 10, this implies that A = A′ which is a contradiction

with the assumption. Hence, Afra(A) ⊂ Afra(A′) holds.

Lemma 35 Let RAF = 〈A,K, s, t〉 be some framework and E ⊆ (A ∪ K) be a AFRA-
preferred extension. Then, AE is a preferred structure.

Proof By definition every AFRA-preferred extension is AFRA-admissible. Furthermore,
from Lemma 32, it follows that AFRA-preferred extensions are closed. Then, from Propo-
sition 7, it follows that AE is an admissible structure. Suppose, for the sake of contradiction,
that AE is not preferred and, thus, that there is some admissible structure A′ such that
AE � A′. Then, from Proposition 1, there is some preferred structure A′′ such that
AE � A′ � A′′ and, from Theorem 2, we have that A′′ is complete. Then, from Propo-
sition 7, it follows that Afra(A′′) is admissible and, from Lemma 34 and Proposition 10,
that E = Afra(AE ) ⊂ Afra(A′′). This is a contradiction with the fact that E is
AFRA-preferred. Hence, AE must be a preferred structure.
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Proof of Proposition 9 Conditions i), iii), and iv) directly follow from Lemmas 20, 31
and 35, respectively. For ii) note that E being AFRA-grounded implies that it is also AFRA-
complete and, thus, that AE is a complete structure. Suppose, for the sake of contradiction,
that AE is not AFRA-grounded and, thus, that there is some complete structure A which
satisfies A � AE . Then, from Proposition 8 and Lemma 34, it respectively follows that
Afra(A) is a AFRA-complete and that Afra(A) ⊂ Afra(AE ). Note that, from Propo-
sition 10, we have that Afra(AE ) = E and, thus, we get Afra(A) ⊂ E which is a
contradiction with the fact that E is a AFRA-grounded. Hence, AE must be a grounded
structure.

Proof of Proposition 11 Let a ∈ A be some argument. Then, from Theorem 3 and Propo-
sition 12 in [4], it follows that some structure A = 〈S, Γ 〉 is preferred (resp. stable) w.r.t.
RAF

iff Afra(A) is a preferred (resp. stable) extension w.r.t. RAF
iff Afra(A) is a preferred (resp. stable) extension w.r.t. RAFAF with RAFAF is the
corresponding Dung framework of RAF as given by Def. 19 in [4].

Hence, a is credulous accepted w.r.t. RAF and the preferred (resp. stable) semantics

iff there is some preferred (resp. stable) structure A = 〈S, Γ 〉 of RAF such that a ∈ S

iff there is some preferred (resp. stable) extension E ⊆ (A ∪ K) of RAF such that
a ∈ E
iff there is some preferred (resp. stable) extension E ⊆ (A ∪ K) of RAFAF such that
a ∈ E .
iff a is credulous accepted w.r.t. RAFAF and the preferred (resp. stable) semantics.

Then, since credulous acceptance for Dung’s frameworks w.r.t. the preferred and the sta-
ble semantics is NP-complete [17] and RAFAF can be computed in polynomial time, it
follows that credulous acceptance for RAFs is in NP. Hardness, follows from the fact that
every Dung’s framework is also a RAF and that, from Theorem 5, the preferred (resp. sta-
ble) semantics for RAFs are conservative generalisations.

Analogously, since sceptical acceptance for Dung’s frameworks w.r.t. the preferred (resp.
stable) semantics is coNP-complete (resp. P

2-complete) [17], it follows that sceptical
acceptance for RAFs w.r.t. the preferred (resp. stable) semantics is coNP-complete (resp.
P

2-complete).

Finally, for the complete semantics, note that from Theorem 2, every preferred structure is
also a complete structure and, thus, if an argument is credulous accepted w.r.t. the preferred
semantics, it is also credulous accepted w.r.t. the complete semantics. Furthermore, every
complete A structure is admissible and, from Proposition 1, this implies that there is a pre-
ferred structure A′ such that A � A′. This implies that, if an argument is credulous accepted
w.r.t. the complete semantics, it is also credulous accepted w.r.t. the preferred semantics.

A.3 Proofs of Section 5

Lemma 36 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let E be an
admissible extension of 〈A′,R′〉.
1. If E ∩ K contains α, then E contains s(α).
2. If E contains Ns(α)α then E ∩ K attacks s(α).
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3. Moreover, if E is complete the equivalence holds: E contains Ns(α)α if and only if E ∩K
attacks s(α).

Proof Let Ns(α)α ∈ N. Due to the definition of R′ (see Definition 13), the only attack to
Ns(α)α is the attack (s(α),Ns(α)α).

1. As E is admissible, α is acceptable w.r.t. E . As s(α) is the only defender of α against
Ns(α)α , s(α) must belong to E .

2. If E is admissible and contains Ns(α)α , Ns(α)α is acceptable w.r.t. E so E must attack
s(α). Due to the definition of R′ again (see Definition 13), this attack comes from E∩K.

3. If E is complete and E ∩ K attacks s(α) then Ns(α)α is acceptable w.r.t. E . So Ns(α)α

must belong to E .

Lemma 37 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let A = 〈S, �〉
be a structure. Let A′ be the structure 〈S,Maf(A) ∩ K〉. It holds that Acc(A) = Acc(A′).

Proof By definition Maf(A) ∩ K = {α ∈ � s.t. s(α) ∈ S}). Let x ∈ A ∪ K. By definition,
x ∈ Acc(A) if and only if for each attack β ∈ K such that t(β) = x, there exists γ ∈ �

with s(γ ) ∈ S and t(γ ) ∈ {β, s(β)}. Obviously, γ ∈ � with s(γ ) ∈ S is equivalent to
γ ∈ Maf(A) ∩ K with s(γ ) ∈ S. So x ∈ Acc(A) if and only if x ∈ Acc(A′).

Lemma 38 Let RAF = 〈A,K, s, t〉 and its associatedMAF = 〈A′,R′〉. Let A = 〈S, �〉 be
a structure, Maf(A) be the associated MAF-extension, and AMaf(A) = 〈SMaf(A), �Maf(A)〉
be the structure associated with the extension Maf(A). The following assertions hold:

1. SMaf(A) = S

2. If A is an admissible structure, then � ⊆ �Maf(A)

3. If (Acc(A) ∩ K) ⊆ �, then �Maf(A) ⊆ �

4. If A is a complete structure, then � = �Maf(A)

Proof

1. By definition of AMaf(A) we have SMaf(A) = Maf(A) ∩ A. By definition of Maf(A),
we have Maf(A) ∩ A = S.

2. By definition, �Maf(A) = (Maf(A)∩K)∪{α �∈ (Maf(A)∩K) s.t. α ∈ Acc((Maf(A)∩
A), (Maf(A)∩K)) and s(α) �∈ (Maf(A)∩A)}. Note that by definition, (Maf(A)∩A) =
S and (Maf(A) ∩ K) = {γ ∈ � with s(γ ) ∈ S}. And from Lemma 37, we have
Acc((Maf(A) ∩ A), (Maf(A) ∩ K)) = Acc(A).
Let α ∈ �. If s(α) ∈ S, α ∈ (Maf(A) ∩ K) so α ∈ �Maf(A). If s(α) �∈ S, as A is
admissible, we have α ∈ Acc(A), so α belongs to the second part of �Maf(A).

3. Assume that (Acc(A)∩K) ⊆ �. Let α ∈ �Maf(A). If α ∈ (Maf(A)∩K) ⊆ �, we have
α ∈ �. If α �∈ (Maf(A) ∩ K), by definition of �Maf(A), we have α ∈ Acc(A). Due to
the assumption, it follows that α ∈ �.

4. The proof follows directly from the above items of this lemma.

Lemma 39 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let E be an
extension of MAF. Let AE be its associated structure and Maf(AE ) be the MAF-extension
associated with AE . The following assertions hold:

1. Maf(AE ) ∩ A = E ∩ A
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2. Maf(AE ) ∩ K ⊆ E ∩ K
3. If E is admissible, then Maf(AE ) ∩ K = E ∩ K
4. If E is admissible, then E ∩ N ⊆ Maf(AE ) ∩ N
5. If E is complete then Maf(AE ) ∩ N = E ∩ N

Proof By definition, AE = 〈SE , �E 〉 with SE = Ea = E ∩ A, Ek = E ∩ K, and �E =
Ek ∪ {α �∈ Ek s.t. α ∈ Acc(Ea, Ek) and s(α) �∈ Ea}.
Then, Maf(AE ) is such that Maf(AE ) ∩ A = SE , Maf(AE ) ∩ K = {α ∈ �E such that
s(α) ∈ SE }, and Maf(AE ) ∩ N = {Ns(α)α s.t. s(α) �∈ SE and s(α) ∈ Def (AE )}.
1. Obviously, Maf(AE ) ∩ A = E ∩ A.
2. By definition of �E , if α ∈ �E with s(α) ∈ SE = Ea then α ∈ Ek . So, Maf(AE ) ∩ K ⊆

Ek .
3. Assume that E is admissible. Let α ∈ Ek . From Lemma 36, we have s(α) ∈ Ea . As

Ek ⊆ �E it follows that α ∈ �E and s(α) ∈ Ea . So α ∈ Maf(AE ) ∩ K. From the above
item we conclude that Maf(AE ) ∩ K = Ek .

4. Assume that E is admissible. Let Ns(α)α ∈ E ∩ N. From Lemma 36, we know that Ek

attacks s(α). So there exists β ∈ Ek that attacks s(α). From Lemma 36 again, we have
s(β) ∈ E . So, s(α) is attacked by β ∈ Ek ⊆ �E with s(β) ∈ Ea . That means that
s(α) ∈ Def (AE ). Moreover, as E is conflict-free, s(α) �∈ Ea . It follows that Ns(α)α ∈
Maf(AE ) ∩ N.

5. Assume that E is complete. Let Ns(α)α ∈ Maf(AE )∩N. By definition, s(α) �∈ SE = Ea

and s(α) ∈ Def (SE , �E ). So there exists β ∈ �E with s(β) ∈ Ea such that β attacks
s(α). By definition of �E it follows that β ∈ Ek . Then from Lemma 36, we conclude
that E contains Ns(α)α . Then from the above item of this lemma, as E is also admissible,
we conclude that Maf(AE ) ∩ N = E ∩ N.

Lemma 40 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let E and E ′ be
two complete extensions ofMAF such that E ⊆ E ′ then AE ⊆ AE ′ .

Proof By definition, AE = 〈SE , �E 〉 with SE = Ea = E ∩ A, Ek = E ∩ K, and �E =
Ek ∪ {α �∈ Ek s.t. α ∈ Acc(Ea, Ek) and s(α) �∈ Ea}.
First, we have Ea ⊆ E ′

a and Ek ⊆ E ′
k . Then, due to Lemma 36, as E (resp. E ′) is admissible,

s(α) �∈ Ea (resp. s(α) �∈ E ′
a) implies that α �∈ Ek (resp. α �∈ E ′

k). So it is enough to prove
that: {α ∈ Acc(Ea, Ek) such that s(α) �∈ Ea} ⊆ E ′

k ∪ {α ∈ Acc(E ′
a, E ′

k) such that s(α) �∈ E ′
a}.

Furthermore, we have Acc(Ea, Ek) ⊆ Acc(E ′
a, E ′

k) so it is enough to show that: For each
α ∈ Acc(Ea, Ek) such that s(α) �∈ Ea , either α ∈ E ′

k or s(α) �∈ E ′
a .

Assume that the contrary holds. So there is α ∈ Acc(Ea, Ek) such that α �∈ E ′
k , s(α) �∈

Ea and s(α) ∈ E ′
a . As E ′ is a complete extension of MAF, α is not acceptable w.r.t. E ′.

Moreover, as s(α) ∈ E ′
a , α is defended by E ′ against its attacker Ns(α)α . So there must exist

another attacker of α, say β, such that E ′ does not attack β. That implies that Ns(β)β �∈ E ′,
and from Lemma 36 that E ′ does not attack s(β). So E ′ attacks neither β, nor s(β); this fact
will be denoted by (*).
Moreover, as α ∈ Acc(Ea, Ek), either β ∈ Inh(Ea, Ek) (Case 1), or s(β) ∈ Def (Ea, Ek)

(Case 2). It follows that there is γ ∈ Ek ⊆ E ′
k with s(γ ) ∈ Ea such that t(γ ) = β in Case 1

(resp. t(γ ) = s(β) in Case 2). So E ′
k attacks β in Case 1 (resp. s(β) in Case 2), which is in

contradiction with the fact (*).

Lemma 41 Let RAF = 〈A,K, s, t〉 and its associated MAF = 〈A′,R′〉. Let A and A′ be
two conflict-free structures of RAF such that A ⊆ A′ then Maf(A) ⊆ Maf(A′).
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Proof By definition, A being the structure 〈S, �〉, Maf(A) = S ∪ {α ∈ � s.t. s(α) ∈
S} ∪ {Ns(α)α s.t. s(α) �∈ S and s(α) ∈ Def (A)}.
First, we have S ⊆ S′ and {α ∈ � s.t. s(α) ∈ S} ⊆ {α ∈ �′ s.t. s(α) ∈ S′}. So it is enough
to prove that (Maf(A) ∩ N) ⊆ (Maf(A′) ∩ N).
Let x = Ns(α)α ∈ Maf(A) ∩ N. As A ⊆ A′, we have Def (A) ⊆ Def (A′). So s(α) ∈
Def (A′). Hence, as A′ is a conflict-free structure, it is impossible to have s(α) ∈ S′. So
x = Ns(α)α ∈ Maf(A′) ∩ N.

Proposition 20 Let RAF = 〈A,K, s, t〉 and its associatedMAF = 〈A′,R′〉.
1. Let A be an admissible structure of RAF. Then, Maf(A) is an admissible extension of

〈A′,R′〉.
2. Let E be an admissible extension of 〈A′,R′〉. A′

E and AE are admissible structures of
RAF.

Proof

1. Let A = 〈S, �〉 be an admissible structure of RAF.
From Proposition 13, Maf(A) is conflict-free in MAF. It remains to prove that ∀x ∈
Maf(A), x is acceptable w.r.t. Maf(A). Three cases must be considered for x:

(a) Let x ∈ Maf(A) ∩ A. So x ∈ S. As A is admissible, x is acceptable w.r.t. A. From
Proposition 14, it follows that x is acceptable w.r.t. Maf(A) in MAF.

(b) Let x ∈ Maf(A) ∩ K. As A is admissible, and x ∈ �, x is acceptable w.r.t. A.
Moreover from the definition of Maf(A) we have s(x) ∈ S. So Proposition 14
applies and we conclude that x is acceptable w.r.t. Maf(A) in MAF.

(c) Let x ∈ Maf(A)∩N. So x has the form Ns(α)α with s(α) �∈ S and s(α) ∈ Def (A).
The only possible attack to x is from s(α). As s(α) ∈ Def (A), ∃β ∈ � s.t. s(β) ∈ S

and t(β) = s(α). From the definition of Maf(A), it follows that β ∈ Maf(A) and
then that Maf(A) attacks s(α). So Ns(α)α is acceptable w.r.t. Maf(A) in MAF.

Hence we have proved that Maf(A) is an admissible extension of 〈A′,R′〉.
2. Let E be an admissible extension of 〈A′,R′〉.

(a) From Proposition 13, A′
E is a conflict-free structure in RAF.

It remains to prove that ∀x ∈ (Ea ∪Ek), x is acceptable w.r.t. A′
E . If x is unattacked

in RAF, then it is obviously acceptable w.r.t. A′
E . Otherwise two cases must be

considered for x:

(i) Let x ∈ Ea . Assume that x is attacked by α ∈ K. We have to prove that
either α ∈ Inh(A′

E ) or s(α) ∈ Def (A′
E ).

The attack α is encoded in the MAF with the three following attacks in
R′: (s(α),Ns(α)α), (Ns(α)α, α) and (α, x).
As E is assumed to be admissible, E attacks α. So either Ns(α)α ∈ E
(Case 1), or Ek attacks α (Case 2). Moreover, due to Lemma 36, Case 1
also implies that Ek attacks s(α).
So there exists β ∈ Ek s.t. β attacks s(α) in Case 1 (resp. β attacks α in
Case 2). As E is admissible, E defends β against Ns(β)β (Observation 4).
So s(β) ∈ Ea . That fact with β ∈ Ek prove that s(α) ∈ Def (A′

E ) (resp.
α ∈ Inh(A′

E )).
(ii) Let x ∈ Ek . Assume that x is attacked by α ∈ K. We have to prove that

either α ∈ Inh(A′
E ) or s(α) ∈ Def (A′

E ). We can do exactly the same
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reasoning as for the first case (x ∈ Ea).
So we have proved that the structure A′

E is admissible.

(b) From Proposition 13, AE is a conflict-free structure in RAF.
It remains to prove that ∀x ∈ (Ea ∪ �E ), x is acceptable w.r.t. AE . We recall that
�E = Ek ∪ {α �∈ Ek s.t. α ∈ Acc(A′

E )}.
From the first part of the proof, A′

E is admissible. So ∀x ∈ (Ea∪Ek), x is acceptable
w.r.t. A′

E and then w.r.t. AE . It remains to consider x ∈ �E \ Ek . In that case, due
to the definition of �E , x ∈ Acc(A′

E ) so x is acceptable w.r.t. AE .

So we have proved that the structure AE is admissible.

Proof of Proposition 12

1. Let A be a structure of RAF.

(a) (σ = complete) Let A = 〈S, �〉 be a complete structure of RAF. Let us recall that
Maf(A) = S ∪ {α ∈ � s.t. s(α) ∈ S} ∪ {Ns(α)α s.t. s(α) �∈ S and s(α) ∈ Def (A)}.
By definition, A is an admissible structure and satisfies Acc(A) ⊆ S ∪ �. From
Proposition 20, we have that Maf(A) is an admissible extension of 〈A′,R′〉. So it
remains to prove that ∀x ∈ A′, if x is acceptable w.r.t. Maf(A), then x ∈ Maf(A).
Three cases must be considered for x:

(i) Let x ∈ A being acceptable w.r.t. Maf(A). Assume that x �∈ Maf(A).
Then x �∈ S and so x �∈ Acc(A), due to the assumption on A. x �∈ Acc(A)

means that there is β ∈ K with t(β) = x and such that β �∈ Inh(A) and
s(β) �∈ Def (A); this fact will be denoted by (*). So we have the attack
(β, x) in MAF.
As x is acceptable w.r.t. Maf(A), we know that Maf(A) attacks β in
MAF. So, either Ns(β)β ∈ Maf(A) (Case 1), or there exists γ ∈
(Maf(A) ∩ K) that attacks β (Case 2).
In Case 1, by definition of Maf(A), s(β) ∈ Def (A), which is in con-
tradiction with the fact (*). In Case 2, by definition of Maf(A), we have
γ ∈ � and s(γ ) ∈ S. So β ∈ Inh(A), which is in contradiction with the
fact (*).
So we have proved that x must belong to Maf(A).

(ii) Let α ∈ K being acceptable w.r.t. Maf(A). From Observation 5, it fol-
lows that s(α) ∈ S. Now, assume that α �∈ Maf(A). By definition of
Maf(A), it follows that α �∈ � and so α �∈ Acc(A), due to the assump-
tion on A.
The rest of the proof is analogous to the proof of the first item. α �∈
Acc(A) means that there is β ∈ K with t(β) = α and such that
β �∈ Inh(A) and s(β) �∈ Def (A); this fact will be denoted by (*). So we
have the attack (β, α) in MAF.
As α is acceptable w.r.t. Maf(A), we know that Maf(A) attacks β

in MAF. So, either Ns(β)β ∈ Maf(A) (Case 1), or there exists γ ∈
(Maf(A) ∩ K) that attacks β (Case 2).
In Case 1, by definition of Maf(A), s(β) ∈ Def (A), which is in con-
tradiction with the fact (*). In Case 2, by definition of Maf(A), we have
γ ∈ � and s(γ ) ∈ S. So β ∈ Inh(A), which is in contradiction with the
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fact (*).
So we have proved that α must belong to Maf(A).

(iii) Let x ∈ N being acceptable w.r.t. Maf(A). x has the form Ns(α)α . As s(α)

is the only attacker of x, we know that Maf(A) attacks s(α) in MAF.
So there exists β ∈ Maf(A) ∩ K with (β, s(α)) ∈ R′. By definition of
Maf(A), we have β ∈ � and s(β) ∈ S. Hence s(α) ∈ Def (A). As A is
conflict-free, it implies that s(α) �∈ S. So we have Ns(α)α ∈ Maf(A)∩N.

(b) (σ = stable) Let A = 〈S, �〉 be a stable structure of RAF. By definition, A is a
conflict-free structure that satisfies: A \ S ⊆ Def (A) and K \ � ⊆ Inh(A). First,
from Proposition 13, we have that Maf(A) is conflict-free in 〈A′,R′〉. Then, we
have to prove that ∀x ∈ A′ \ Maf(A), x is attacked by Maf(A).
Three cases must be considered for x:

(i) Let x ∈ A\Maf(A). Then x ∈ A\S. By assumption on A, it follows that
x ∈ Def (A) and from Observation 5it follows that Maf(A) attacks x.

(ii) Let α ∈ K\Maf(A). Then either α �∈ � (Case 1), or α ∈ � and s(α) �∈ S

(Case 2).
In Case 1, as A is a stable structure, α ∈ Inh(A) and from Observation 5
it follows that Maf(A) attacks α. In Case 2, as A is a stable structure,
s(α) ∈ Def (A). Moreover, s(α) �∈ S, so Ns(α)α ∈ Maf(A) ∩ N. As
(Ns(α)α, α) ∈ R′, we conclude that Maf(A) attacks α.

(iii) Let x ∈ N \ Maf(A). x has the form Ns(α)α with s(α) ∈ S or s(α) �∈
Def (A). Note that, as A is stable, if s(α) �∈ Def (A) then s(α) ∈ S.
Then, if s(α) ∈ S, as (s(α),Ns(α)α) ∈ R′ and S ⊆ Maf(A), we conclude
that Maf(A) attacks x.

So we have proved that Maf(A) is a stable extension of MAF.
(c) (σ = preferred) Let A be a preferred structure. By definition, A is a ⊆-maximal

admissible structure. Moreover A is a complete structure.
So, from Proposition 12 (item 1 (a)), Maf(A) is a complete extension of MAF.

Assume that Maf(A) is not a preferred extension of MAF. Then there exists E ′ an
admissible extension of MAF that strictly contains Maf(A). It can be assumed that
E ′ is a ⊆-maximal admissible extension of MAF. So E ′ is preferred and thus com-
plete.
From Lemma 40, it follows that AMaf(A) ⊆ AE ′ . From Proposition 15, we have
AMaf(A) = A. So, A ⊆ AE ′ . As A is preferred, it follows that A = AE ′ .
From Proposition 15 again, Maf(AE ′) = E ′ so Maf(A) = E ′. That is in contradic-
tion with the assumption that E ′ strictly contains EA. Hence, we have proved that
Maf(A) is a preferred extension of MAF.

(d) (σ = grounded) Let A = 〈S, �〉 be the grounded structure of RAF. By definition,
A is the ⊆-minimal complete structure. From Proposition 12 (item 1 (a)) Maf(A)

is a complete extension of MAF. Assume that there is E ′ a complete extension
that is strictly included in Maf(A). From Lemma 40, we have AE ′ ⊆ AMaf(A). As
AMaf(A) = A, due to Proposition 15, we have AE ′ ⊆ A. Proposition 12 (item 2
(a)), AE ′ is a complete structure, so by assumption on A it follows that AE ′ = A.
Hence, Maf(AE ′) = Maf(A), and from Proposition 15 again, E ′ = Maf(A). That
is in contradiction with the fact that E ′ is strictly included in Maf(A). So we have
proved that Maf(A) is a ⊆-minimal complete extension of MAF, or in other words
the grounded extension of MAF.
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2. Let E be a set of A′.

(a) (σ = complete) Let E be a complete extension of 〈A′,R′〉. Let us recall that AE =
〈Ea, �E 〉, where �E = Ek ∪ {α �∈ Ek s.t. α ∈ Acc(A′

E ) and s(α) �∈ Ea}, and
A′
E = 〈Ea, Ek〉.
By definition, E is an admissible extension of MAF and ∀x ∈ A′, if x is

acceptable w.r.t. E , then x ∈ E .
From Proposition 20, we have that AE is an admissible structure. So it remains

to prove that Acc(AE ) ⊆ Ea ∪ �E . Two cases must be considered:

(i) Let a ∈ A∩Acc(AE ). Assume that a �∈ Ea . As E is a complete extension
of MAF, a is not acceptable w.r.t. E . So there exists an attack (β, a) in
R′ such that E does not attack β. That implies that Ns(β)β �∈ E , and from
Lemma 36 that E does not attack s(β). So E attacks neither β, nor s(β);
this fact will be denoted by (*).
Moreover, as a ∈ Acc(AE ), either β ∈ Inh(AE ) (Case 1), or s(β) ∈
Def (AE ) (Case 2). It follows that there is γ ∈ �E with s(γ ) ∈ Ea such
that t(γ ) = β in Case 1 (resp. t(γ ) = s(β) in Case 2). These conditions
on γ and the definition of �E imply that γ must belong to Ek . So we
have that E attacks β in Case 1 (resp. s(β) in Case 2). Hence we obtain
a contradiction with the fact (*) and consequently we have proved that
a ∈ Ea .

(ii) Let α ∈ K ∩ Acc(AE ). Assume that α �∈ �E . It follows that α �∈ Ek and
either s(α) ∈ Ea or α �∈ Acc(A′

E ). Let us successively consider the two
cases.

(A) Assume that α �∈ Ek and s(α) ∈ Ea . As E is a complete exten-
sion of MAF, α is not acceptable w.r.t. E . As s(α) ∈ Ea , α is
defended by E against its attacker Ns(α)α . So there must exist
another attacker of α, say β, such that E does not attack β. That
implies that Ns(β)β �∈ E , and from Lemma 36 that E does not
attack s(β). So E attacks neither β, nor s(β); this fact will be
denoted by (*).
Moreover, as α ∈ Acc(AE ), either β ∈ Inh(AE ) (Case 1), or
s(β) ∈ Def (AE ) (Case 2). It follows that there is γ ∈ �E with
s(γ ) ∈ Ea such that t(γ ) = β in Case 1 (resp. t(γ ) = s(β) in
Case 2). These conditions on γ and the definition of �E imply
that γ must belong to Ek . So we have that E attacks β in Case
1 (resp. s(β) in Case 2). Hence we obtain a contradiction with
the fact (*).

(B) It remains to consider the case when α �∈ Ek , s(α) �∈ Ea and
α �∈ Acc(A′

E ). Let us recall that A′
E is the structure 〈Ea, Ek〉.

α �∈ Acc(A′
E ) implies that α is attacked in RAF by β ∈ K

such that β �∈ Inh(A′
E ) and s(β) �∈ Def (A′

E ); this fact will be
denoted by (**).
Moreover, as α ∈ Acc(AE ), either β ∈ Inh(AE ) (Case 1), or
s(β) ∈ Def (AE ) (Case 2). It follows that there is γ ∈ �E with
s(γ ) ∈ Ea such that t(γ ) = β in Case 1 (resp. t(γ ) = s(β) in
Case 2). These conditions on γ and the definition of �E imply
that γ must belong to Ek . So we have that β ∈ Inh(A′

E ) in
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Case 1 (resp. s(β) ∈ Def (A′
E ) in Case 2). Hence we obtain a

contradiction with with the fact (**).

So we have proved that α must belong to �E .

(b) (σ = stable) Let E be a stable extension of 〈A′,R′〉. First, from Proposition 13,
we have that AE is a conflict-free structure in RAF. Then, we have to prove that
A \ Ea ⊆ Def (AE ) and K \ �E ⊆ Inh(AE ).

(i) Let x ∈ A \ Ea . As E is stable, E attacks x. As x ∈ A all the attackers
of x belong to K. So there is α ∈ Ek that attacks x. Note that α ∈ �E by
definition of �E .
Moreover, as E is a stable extension of MAF, E is admissible. As α is
attacked by Ns(α)α , E contains the only attacker of Ns(α)α , that is s(α). So
s(α) ∈ Ea . By definition, α ∈ Er and s(α) ∈ Ea imply that x ∈ Def (A′

E ).
As �E contains Ek it follows that we also have x ∈ Def (AE ).

(ii) Let α ∈ K \ �E . It follows that α �∈ Ek and either s(α) ∈ Ea or α �∈
Acc(A′

E ). Let us successively consider the two cases.

(A) Assume that α �∈ Ek and s(α) ∈ Ea . As E is stable, E attacks α.
As E is conflict-free and contains s(α), it follows that Ns(α)α �∈
E . So there exists β ∈ Ek that attacks α.
Moreover, as E is a stable extension of MAF, E is admissible.
As β is attacked by Ns(β)β , E contains the only attacker of
Ns(β)β , that is s(β). So s(β) ∈ Ea . By definition, β ∈ Ek and
s(β) ∈ Ea imply that α ∈ Inh(A′

E ). As �E contains Ek it
follows that we also have α ∈ Inh(AE ).

(B) It remains to consider the case when α �∈ Ek , s(α) �∈ Ea and
α �∈ Acc(A′

E ). Let us recall that A′
E is the structure 〈Ea, Ek〉.

α �∈ Acc(A′
E ) implies that α is attacked in RAF by β ∈ K

such that β �∈ Inh(A′
E ) and s(β) �∈ Def (A′

E ); this fact will be
denoted by (*).
If s(β) �∈ Ea , from the first part of this proof, it follows that
s(β) ∈ Def (A′

E ). That is in contradiction with the fact (*). So
we have s(β) ∈ Ea .

If β �∈ �E , as s(β) ∈ Ea , from the first item of the second
part of this proof, it follows that β ∈ Inh(A′

E ). That is in con-
tradiction with the fact (*). So we have β ∈ �E .
By definition, s(β) ∈ Ea , β ∈ �E and β attacks α imply that
α ∈ Inh(AE ).

In both cases, we have proved that α ∈ Inh(AE ).

(c) (σ = preferred) Let E be a preferred extension of MAF. By definition, E is a
⊆-maximal admissible extension. Moreover E is a complete extension. So, from
Proposition 12 (item 2 (a)), AE is a complete structure of RAF.
Assume that AE is not a preferred structure of RAF. Then there exists A′ an admis-
sible structure that strictly contains AE . It can be assumed that A′ is a ⊆-maximal
admissible structure of RAF. So A′ is preferred and thus complete.
From Lemma 41, it follows that Maf(AE ) ⊆ Maf(A′). From Proposition 15,
we have Maf(AE ) = E . So, E ⊆ Maf(A′). As E is preferred, it follows that
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E = Maf(A′).
From Proposition 15 again, A

Maf(A
′
)
= A′ so AE = A′.

That is in contradiction with the assumption that A′ strictly contains AE . Hence,
we have proved that AE is a preferred structure.

(d) (σ = grounded) Let E be the grounded extension of MAF. By definition, E is
the ⊆-minimal complete extension. From Proposition 12 (item 2 (a)), AE is a
complete structure of RAF. Assume that there is A′ a complete structure that
is strictly included in AE . From Lemma 41, we have Maf(A′) ⊆ Maf(AE ) As
Maf(AE ) = E , due to Proposition 15, we have Maf(A′) ⊆ E .

From Proposition 12 (item 1 (a)), Maf(A′) is a complete extension, so by
assumption on E it follows that Maf(A′) = E . Hence, A

Maf(A
′
)

= AE , and from

Proposition 15 again, A′ = AE . That is in contradiction with the fact that A′
is strictly included in AE . So we have proved that AE is a ⊆-minimal complete
structure of RAF, or in other words is the grounded extension of RAF.

Proof of Proposition 15

1. The proof follows directly from Lemma 38.
2. The proof follows directly from Lemma 39.

A.4 Proofs of Section 7

Note By ↓α = { β ∈ K | β � α } we denote the down set generated by α. Furthermore,
for some argumentation framework RAF and structure A, by DefRAFA and InhRAFA
we respectively denote the defeated arguments and inhibited attacks w.r.t. RAF and A. This
allows us to relate defeated arguments (resp. inhibited attacks) w.r.t. different argumentation
frameworks.

Lemma 42 Let RAF = 〈A,K, s, t〉 be some framework and α, β ∈ K be be two attacks
and x ∈ (A ∪ K) be some argument or attack. Then, α �= β, t(β) = x and x /∈↓α imply
β /∈↓α.

Proof Suppose, for the sake of contradiction, that β ∈↓α. Then, since α �= β, it follows
that there is some chain δ0, δ1, δ2, δn such that t(δi) = δi+1 and δ0 = β and δn = α. But
δ0 = β plus t(β) = x imply that δ1 = x and, thus, that x ∈↓α. This is a contradiction with
the assumption. Consequently, it must be that β /∈↓α.

Lemma 43 Let RAF = 〈A,K, s, t〉 be some framework, A be some structure and α ∈ K
be some attack. Then, Def (RAF,A) ⊇ Def (RAF−α,A−α).

Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick any a ∈ Def (RAF−α,A−α). Then,
there is some β ∈ Γ −α such that t(β) = a and s(β) ∈ S. Furthermore, β ∈ Γ −α plus
Γ −α ⊆ Γ imply β ∈ Γ which, in its turn, implies that a ∈ Def (RAF,A).

Lemma 44 Let RAF = 〈A,K, s, t〉 be some framework, A be some structure and α ∈ K
be some attack. Then, Inh(RAF,A)−α ⊇ Inh(RAF−α,A−α).
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Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick any β ∈ Inh(RAF−α,A−α). Then,
there is some γ ∈ Γ −α such that t(γ ) = β and s(γ ) ∈ S. Furthermore, γ ∈ Γ −α plus
Γ −α ⊆ Γ imply γ ∈ Γ which, in its turn, implies that β ∈ Inh(RAF,A). Furthermore,
β ∈ Inh(RAF−α,A−α) implies β �� α. Hence, β ∈ Inh(RAF,A)−α .

Lemma 45 Let RAF = 〈A,K, s, t〉 be some framework, A be some conflict-free structure
w.r.t. RAF and α ∈ K be some attack. Then, A−α is conflict-free w.r.t. RAF−α .

Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick a ∈ S. Then, since A is conflict-free,
it follows that a /∈ Def (RAF,A) and, from Lemma 43, that a /∈ Def (RAF−α,A−α).
Similarly, β ∈ Γ −α implies β /∈ Inh(RAF,A). From Lemma 44, this implies β /∈
Inh(RAF−α,A−α). Hence, A−α is conflict-free w.r.t. RAF−α .

Lemma 46 Let RAF = 〈A,K, s, t〉 be some framework, A be some structure and α ∈
Inh(RAF,A) be some inhibited attack.
Then, it follows that AccRAFA−α ⊇ Acc(RAF−α,A−α).

Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick any x ∈ Acc(RAF−α,A−α) and γ ∈ K
such that t(γ ) = x. Then, x ∈ Acc(RAF−α,A−α) implies x ∈ (A ∪ K−α) and, thus,
that x /∈↓α. From Lemma 42, this plus t(γ ) = x imply that either γ = α or γ /∈↓α.
On the one hand, by hypothesis we have that α ∈ Inh(RAF,A) and, thus, the former
implies γ ∈ Inh(RAF,A). On the other hand, the latter implies γ ∈ K−α and, thus, x ∈
Acc(RAF−α,A−α) implies that γ ∈ Inh(RAF−α,A−α) or s(γ ) ∈ Def (RAF−α,A−α).
From Lemmas 43 and 44, this implies that γ ∈ Inh(RAF,A) or s(γ ) ∈ Def (RAF,A).
Hence, x ∈ Acc(RAF,A). Finally, we have that x /∈↓α implies x ∈ Acc(RAF,A)−α .

Lemma 47 Let RAF = 〈A,K, s, t〉 be some framework, A be some structure and α ∈
(Inh(RAF,A)\Γ ) be some inhibited attack w.r.t. A. Then, it follows that Def (RAF,A) =
Def (RAF−α,A−α).

Proof Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. From Lemma 43, it follows that
Def (RAF,A) ⊇ Def (RAF−α,A−α). Pick now any argument a ∈ Def (RAF,A). Then,
there is some β ∈ Γ such that t(β) = a and s(β) ∈ S. Furthermore, since α /∈ Γ , it fol-
lows that β �= α. Moreover, every γ ∈↓α satisfies either γ = α or t(γ ) ∈ K and, thus, that
β /∈↓α. This implies that β ∈ Γ −α and, thus, that a ∈ Def (RAF−α,A−α)

Lemma 48 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some struc-
ture and α ∈ (Inh(RAF,A) \ Γ ) be some inhibited attack w.r.t. A. Then, it follows that
Inh(RAF,A)−α = Inh(RAF−α,A−α).

Proof First note that, from Lemma 44, it follows that

Inh(RAF,A)−α ⊇ Inh(RAF−α,A−α)

Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick now any β ∈ Inh(RAF,A)−α .
Then, there is some γ ∈ Γ such that t(γ ) = β and s(γ ) ∈ S. Furthermore, since α /∈ Γ ,

it follows that γ �= α. Moreover, β ∈ Inh(RAF,A)−α implies that β �� α. Then, since
γ ≺ β, that γ �� α. Hence, it follows that γ ∈ Γ −α and β ∈ Inh(RAF−α,A−α).
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Lemma 49 Let RAF = 〈A,K, s, t〉 be some framework, A be some structure and α ∈
(Inh(RAF,A) \ Γ ) be some inhibited attack w.r.t. A.
Then, it follows that (Acc(RAF,A)−α) = Acc(RAF−α,A−α).

Proof First note that, from Lemma 46, it follows that

Acc(RAF,A)−α ⊇ Acc(RAF−α,A−α)

Let A = 〈S, Γ 〉 and A−α = 〈S, Γ −α〉. Pick any β ∈ Acc(RAF,A)−α and γ ∈ K−α ⊆ K
such that t(γ ) = β. Since β ∈ Acc(RAF,A), it follows that either γ ∈ Inh(RAF,A)

or s(γ ) ∈ Def (RAF,A). Furthermore, γ ∈ K−α implies γ �� α and, from Lemmas 47
and 48, this implies that either γ ∈ Inh(RAF−α,A′) or s(γ ) ∈ Def (RAF−α,A′). Hence,
β ∈ Acc(RAF−α,A′) and, thus, Acc(RAF,A)−α) = Acc(RAF−α,A−α).

Lemma 50 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some admissible
structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, it follows that
A−α is admissible w.r.t. RAF−α .

Proof Since A is an admissible structure w.r.t. RAF, it is conflict-free and, from Lemma 45,
this implies that A−α is conflict-free w.r.t. RAF−α . Furthermore, since A is admissible,
it follows that (S ∪ Γ ) ⊆ Acc(RAF,A). From Lemma 49, this implies (S ∪ Γ −α) ⊆
Acc(RAF−α,A−α) and, thus, that A−α is admissible w.r.t. RAF−α .

Lemma 51 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some complete
structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, it follows that
A−α is complete w.r.t. RAF−α .

Proof Since A is a complete structure w.r.t. RAF, it follows that it is admissible and,
from Lemma 50, this implies that A−α is admissible w.r.t. RAF−α . Furthermore, since
A is complete, it follows that (S ∪ Γ ) ⊇ Acc(RAF,A). From Lemma 49, this implies
(S ∪ Γ −α) ⊇ Acc(RAF−α,A−α) and, thus, that A−α is complete w.r.t. RAF−α .

Lemma 52 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some conflict-free
structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Let A′ = 〈S′, Γ ′〉
some conflict-free structure w.r.t. RAF−α such that Γ −α ⊆ Γ ′. Then, the structure A′′ =
〈S′, Γ ∪ Γ ′〉 is conflict-free w.r.t. RAF.

Proof Let Γ ′′ = Γ ∪ Γ ′. Pick first a ∈ S′ and any β ∈ Γ ′′ such that t(β) = a. Then,
since t(β) = a, it follows that β �� α and, thus, that β ∈ K−α . Hence, β ∈ Γ implies
β ∈ Γ −α ⊆ Γ ′. Then, since A′ is conflict-free, it follows that s(β) /∈ S′. This implies that
every β ∈ Γ ′′ with t(β) = a satisfies s(β) /∈ S′ and, thus, that a /∈ Def (RAF,A′′).

Pick now γ, β ∈ Γ ′′ such that t(β) = γ . Suppose, for the sake of contradiction, that
γ ∈ (Γ ′′ \ Γ ) and β ∈ (Γ ′′ \ Γ ′). Then, γ /∈ (Γ ′′ \ Γ ) implies γ ∈ Γ ′ ⊆ K−α and,
thus, it follows that γ �� α and β �� α. On the other hand, β ∈ (Γ ′′ \ Γ ′) implies β ∈ Γ

which, since β �� α, implies β ∈ Γ −α ⊆ Γ ′. This is a contradiction with the assumption.
Similarly, suppose that γ ∈ (Γ ′′ \ Γ ′) and β ∈ (Γ ′′ \ Γ ). Then, γ ∈ (Γ ′′ \ Γ ′) implies and
γ ∈ Γ . Furthermore, since Γ −α ⊆ Γ ′, it follows that γ /∈ Γ ′ implies γ /∈ Γ −α and, this
plus γ ∈ Γ , imply γ � α. Since t(β) = γ , the latter implies that β � α holds and, thus,
that β /∈ Γ ′. This is a contradiction with the assumption that β ∈ (Γ ′′ \ Γ ). Hence, either
γ, β ∈ Γ or γ, β ∈ Γ ′ must hold. In both cases, the fact that A and A′ are conflict-free
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imply s(β) /∈ S. This implies that every β ∈ Γ ′′ with t(β) = γ satisfies s(β) /∈ S and, thus,
that γ /∈ Inh(RAF,A′′). Consequently, A′′ is conflict-free.

Lemma 53 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some naive struc-
ture w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, A−α is naive w.r.t.
RAF−α .

Proof Since A is a naive structure w.r.t. RAF, it follows that it is conflict-free and, from
Proposition 18, this implies that A−α is conflict-free w.r.t. RAF−α . Suppose, for the sake
of contradiction, that there exists some structure A′ = 〈S′, Γ ′〉 which is conflict-free
w.r.t. RAF−α and that satisfies A−α � A′. Then, we may assume without loss of generality
that A′ is also naive w.r.t. RAF−α .

Let Γ ′′ = (Γ ∪ Γ ′) and let A′′ = 〈S′, Γ ′′〉 be some structure. Then, from Lemma 52, it
follows that A′′ is conflict-free. Furthermore, note that by construction, A,A′ � A′′ holds
and, thus, the fact that A is a naive structure implies A � A′′. On the other hand, A−α � A′
implies that there is some element x ∈ ((S′ ∪ Γ ′) \ (S−α ∪ Γ −α). Moreover, x ∈ (S′ ∪ Γ ′)
implies that x �� α and that x ∈ (S′ ∪Γ ′′). Since A � A′′, the latter implies that x ∈ (S∪Γ )

which, together with x �� α, implies that x ∈ (S−α ∪ Γ −α). This is a contradiction and,
consequently, we have that A−α must be naive.

Lemma 54 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some grounded
structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, A−α is
grounded w.r.t. RAF−α .

Proof Since A is a grounded structure w.r.t. RAF, it follows that it is complete and, from
Lemma 51, this implies that A−α is complete w.r.t. RAF−α . Suppose, for the sake of contra-
diction, that there is some structure A′ = 〈S′, Γ ′〉 which is complete w.r.t. RAF−α and that
satisfies A−α � A′. Then, we also have A � A′. So A′ must not be complete w.r.t. RAF.
Obviously, since A is conflict-free and A � A′, we have that A′ is also conflict-free. Sup-
pose, for the sake of contradiction, that A′ is not admissible w.r.t. RAF. Then, there is
x ∈ (S′ ∪ Γ ′) and β ∈ K such that t(β) = x and there is no γ ∈ Γ ⊇ Γ ′ such that
t(γ ) ∈ {β, s(β)} and s(γ ) ∈ S ⊇ S′. Since A is admissible w.r.t. RAF−α , it must be
that β /∈ K−α and, thus, that β � α. However, this is a contradiction with the fact that
A−α � A′. Hence, A′ must be admissible. Suppose now that A′ is not complete w.r.t. RAF.
Then, there is some x ∈ Acc(RAF,A′) such that x /∈ (S′ ∪ Γ ′). Hence, for every β ∈ K
such that t(β) = x and there is γβ ∈ Γ ′ such that t(γβ) ∈ {β, s(β)} and s(γβ) ∈ S′. On the
other hand, since A′ is complete w.r.t. RAF−α , this means that x ∈ Acc(RAF−α,A′) and,
thus, that γβ � α. This is a contradiction with the fact that γβ ∈ Γ ′ ⊆ Γ −α . Hence, A′ is
complete w.r.t. RAF which is a contradiction with the fact that A is grounded. Thus, A−α

must be grounded.

Lemma 55 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some admissible
structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Let A′ = 〈S′, Γ ′〉
some admissible structure w.r.t. RAF−α such that A−α � A′. Then, the structure A′′ =
〈S′, Γ ∪ Γ ′〉 is admissible w.r.t. RAF.

Proof From Lemma 52, it follows that A′′ is conflict-free. Furthermore, since A is admis-
sible, it follows that (S ∪ Γ ) ⊆ Acc(RAF,A). Note also that A−α � A′ and α ∈ K implies
that Γ = Γ −α ⊆ Γ ′ and, thus, that A � A′′. Then, from Observation 2, it follows that
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(S ∪ Γ ) ⊆ Acc(RAF,A′′). Pick now any attack γ ∈ (Γ ′′ \ Γ ) and any attack β ∈ K such
that t(β) = γ . Since γ ∈ (Γ ′′ \ Γ ), it follows that γ ∈ Γ ′ ⊆ K−α and, thus, that γ �� α

and β �� α. Hence, β ∈ K implies β ∈ K−α . Furthermore, since A′ is admissible w.r.t.
RAF−α , this implies that either s(β) ∈ Def (RAF−α,A−α) or β ∈ Inh(RAF−α,A−α).
From Lemmas 47 and 48 respectively, this implies that either

s(β) ∈ Def (RAF,A)−α ⊆ Def (RAF,A)

or

β ∈ Inh(RAF,A)−α ⊆ Inh(RAF,A)

holds.
Furthermore, since A � A′′, Observation 1 implies either s(β) ∈ Def (RAF,A′′) or

β ∈ InhRAFA′′. Hence, every γ ∈ (Γ ′′ \ Γ ) satisfies that γ ∈ AccRAFA′′ and, thus,
(S ∪ Γ ′′) ⊆ AccRAFA′′. This means that A′′ is admissible.

Lemma 56 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some pre-
ferred structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, A−α is
preferred w.r.t. RAF−α .

Proof Since A is a preferred structure w.r.t. RAF, it follows that it is admissible and, from
Lemma 50, this implies that A−α is admissible w.r.t. RAF−α . Suppose, for the sake of
contradiction, that there is some structure A′ = 〈S′, Γ ′〉 which is admissible w.r.t. RAF−α

and that satisfies A−α � A′. Then, from Proposition 1, we may assume without loss of
generality that A′ is also preferred w.r.t. RAF−α .

Let Γ ′′ = (Γ ∪ Γ ′) and let A′′ = 〈S′, Γ ′′〉 be some structure. Then, from Lemma 55,
it follows that A′′ is admissible. Furthermore, note that by construction, A,A′ � A′′
holds and, thus, the fact that A is a preferred structure implies A � A′′. On the other
hand, A−α � A′ implies that there is some element x ∈ ((S′ ∪ Γ ′) \ (S−α ∪ Γ −α).
Moreover, x ∈ (S′ ∪ Γ ′) implies that x �� α and that x ∈ (S′ ∪ Γ ′′). Since A �
A′′, the latter implies that x ∈ 7(S ∪ Γ ) which, together with x �� α, implies that
x ∈ (S−α ∪ Γ −α). This is a contradiction and, consequently, we have that A−α must be
preferred.

Lemma 57 Let RAF = 〈A,K, s, t〉 be some framework, A = 〈S, Γ 〉 be some stable struc-
ture w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack. Then, it follows that A−α

is stable w.r.t. RAF−α .

Proof Since A is a stable structure w.r.t. RAF, it follows that it is conflict-free and, from
Lemma 45, this implies that A−α is conflict-free w.r.t. RAF−α . Furthermore, since A is
stable, it follows that S = DefRAFA and Γ = Inh(RAF,A). From Lemmas 47 and 48
respectively, this implies that S = Def (RAF−α,A−α) and Γ −α = Inh(RAF−α,A−α).
This implies that A−α is stable w.r.t. RAF−α .

Proof of Proposition 19 The fact that A−α is complete, naive, grounded, preferred or stable
respectively follows from Lemmas 51, 53, 54, 56 and 57.
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