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Abstract
We study the complexity of fair division of indivisible goods and consider settings where
agents can have nonzero utility for the empty bundle. This is a deviation from a common
normalization assumption in the literature, and we show that this inconspicuous change can
lead to an increase in complexity: In particular, while an allocation maximizing social wel-
fare by the Nash product is known to be easy to detect in the normalized setting whenever
there are as many agents as there are resources, without normalization it can no longer be
found in polynomial time, unless P = NP. The same statement also holds for egalitarian
social welfare. Moreover, we show that it is NP-complete to decide whether there is an
allocation whose Nash product social welfare is above a certain threshold if the number of
resources is a multiple of the number of agents. Finally, we consider elitist social welfare and
prove that the increase in expressive power by allowing negative coefficients again yields
NP-completeness.

Keywords Fair division · Indivisible goods · Social welfare · Computational complexity

Mathematics Subject Classification (2010) 91B32 · 68Q17 · 68Q25 · 68T42

1 Introduction

We consider problems of social welfare optimization for allocating indivisible resources (or
goods or objects or items) and study them in terms of their computational complexity. For
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an overview of the field, see the survey by Chevaleyre et al. [8] and the book chapters by
Bouveret et al. [3] and by Lang and Rothe [23]. Methods of fair division can be applied, for
example, in course allocation [6] and divorce settlement [5]. A prototypical fair allocation
setting with indivisible goods consists of participating agents, the goods to be allocated, and
the agents’ preferences. We assume that agents’ preferences are represented by k-additive
utility functions. Thus agents assign to each subset of goods (i.e., to each bundle) a utility
value. k-additive utility functions allow for a restricted kind of complementarity and substi-
tutability, where k = 1 corresponds to no synergies between resources and larger values of
k effectively enforce an upper bound on the number of resources that may have synergis-
tic effects among themselves. An allocation, that is, a partition of the set of goods, assigns
to each agent a bundle. Therefore, agents derive a certain amount of utility from an alloca-
tion. In order to aggregate the individual utility values to a common measure, social welfare
functions such as the sum, minimum, or product are used. Social welfare optimization then
describes the process of finding allocations that maximize this aggregate value.

We focus on a common assumption in the fair division literature, namely, that an agent
that receives no resources should have utility zero. We deviate from this normalization
assumption. For a fixed number of agents and resources, this allows for more opportuni-
ties to increase social welfare because agents can now forgo receiving any resources at all.
While it may happen that some agent has to receive a certain resource under the normaliza-
tion assumption in order to guarantee some utility level among all agents, it is now possible
that a greater utility level is achievable by assigning no resources to some agents. The excess
resources can then be allocated to other agents. For illustration, consider a setting with a
rich agent and a poor agent and the set of goods being basic necessities of life. The rich
agent distributes the utility mass differently than the poor agent. Because the rich agent has
her basic needs already covered, her marginal benefit of these goods is small and the utility
mass is concentrated at the empty bundle. In contrast, the poor agent’s utility mass may be
distributed equally over the goods. Hence, higher social welfare can be achieved by allocat-
ing the goods to the poor agent in this example. This example also highlights a use case for
nonnormalized utility functions because division problems are not always solved in isola-
tion. Instead, participants already own goods, which can have an impact on their (reported)
preferences and is related to “dynamical” fair division when new goods are to be allocated
to the agents (see, e.g., the work of Kash et al. [22]).

Note that performing a simple “shift” to convert nonnormalized utility functions to nor-
malized utility functions does not capture the allocation model. In order to simulate the fact
that no resources can be assigned to an agent while still realizing positive utility, additional
resources have to be introduced into the original model. This is problematic for the setting
where there are as many agents as resources, which we are going to consider because this is
one of the few settings where polynomial-time algorithms do exist.

Our contribution Our main contribution is to show that allowing nonnormalized utility
functions comes at a steep computational cost, namely, that it is unlikely that polynomial-
time algorithms for maximizing social welfare exist. This is in contrast to the setting of
normalized utility functions, where, under certain restrictions, such algorithms are available.
More concretely, we show that dropping the normalization assumption leads to prob-
lems that are even strongly NP-complete [17]. Therefore, unless P = NP, they cannot
even have a fully polynomial-time approximation scheme (FPTAS) and they cannot have
pseudo-polynomial-time algorithms.
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In addition, we also consider elitist social welfare that can be maximized in polynomial
time for k-additive utilities whenever all coefficients in the k-additive representation are
nonnegative. We show that such an algorithm cannot exist for the same problem under k-
additive utility functions for k ≥ 2 and arbitrary coefficients, assuming P �= NP. This is
based on a reduction that Chevaleyre et al. [9, 10] designed for utilitarian social welfare.

Related work Additive utility functions with a possibly nonzero utility value for the empty
bundle are also called modular utility/valuation functions. In the context of negotiation
schemes, Chevaleyre et al. [12] showed that modular valuation functions are maximal
in the sense that no larger domain that includes modular valuation functions guarantees
convergence in the studied negotiation setting.

Roos and Rothe [30] showed that the general problem of maximizing the Nash product
(to be formally defined and denoted by Q+-NPSWOk-ADD in Section 2) is NP-complete.
NP-completeness still holds when the given allocation setting has only two agents and
normalized utility functions. Their hardness result rests on a reduction from the NP-
complete problem PARTITION and is not “NP-hard in the strong sense” (unlike our result
for Q+-NPSWOn=m

k-ADD in Theorem 1, where the superscript “n = m” indicates that there are
as many resources as agents). In addition, they and, independently, Ramezani and Endriss
[29] showed that this problem is NP-complete also when utilities are given in the bundle
form [27, 30]. Also for other representation forms that we have not considered here, anal-
ogous results have been obtained [29] (see also, e.g., [13] for the approximability of Nash
product social welfare).

Regarding the optimization problem, Nguyen et al. [28] proposed a polynomial-time
algorithm that provides an allocation with maximal Nash product if both the number of
agents equals the number of resources to distribute and the utility functions are normalized.

Based on the work of Irving et al. [20], Golovin [18] provided an algorithm solving
the problem Q-MAX-ESWn=m

1-ADD with normalized utility functions in polynomial time. The
paper by Bansal and Sviridenko [1] provides one of the many approximability results on
maximizing egalitarian social welfare, see the survey by Nguyen et al. [28] for an overview.

Our results are concerned with centralized auctions “without money” (i.e., without an
optional divisible resource). Another popular model is a decentralized auction with money
as proposed by Endriss et al. [16] based on the work of Sandholm [31]. Dunne et al. [15]
already showed that, in such settings, the problems WELFARE-IMPROVEMENT (WI) and
UTILITARIAN-SOCIAL-WELFARE-OPTIMIZATION (USWO) are NP-complete for mono-
tonic utility functions regardless of whether they are normalized or not. Based on this,
Chevaleyre et al. [11] presented a decentralized approach with an additional undirected
graph (the negotiation topology) over the set of agents. They were able to show that the WI
problem is also NP-complete if we restrict deals on agents which form a clique on the nego-
tiation topology and ask if there exists an envy-free allocation. They also pointed out that
all these problems remain NP-hard for nonnormalized utility functions.

Damamme et al. [14] proposed a model using ordinal single-peaked preferences, which
can be interpreted as normalized utility functions by using the Borda score,1 and rational
swaps without money. The main goal is to find a sequence of rational swaps from an initial
allocation to an allocation such that swu(π) or swe(π) exceeds a given threshold. They
showed that answering this question is an NP-complete problem as well.

1That means ui(rj ) = n − k + 1 if rj is the k-th preferred resource for agent ai .
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2 Preliminaries

Let A denote a set of n agents and R a set of m indivisible and nonshareable resources.
Each agent ai ∈ A is equipped with a utility function ui : 2R → Q and U = (u1, . . . , un).
Then (A,R,U) is an allocation setting. A utility function u over resources R is k-additive
if for every X ⊆ R there is a (unique) coefficient αX ∈ Q, which vanishes if |X| > k, such
that for every Y ⊆ R,

u(Y ) =
∑

X⊆Y

αX .

In an allocation setting (A,R,U), an allocation π is a partition of R into n = |A| (possibly
empty) subsets. Then π(ai) denotes the bundle that agent ai receives. Denote by �A,R the
set of all allocations for agents A and resources R.

We measure the social welfare of an allocation π using

– utilitarian social welfare:

swu(π) =
∑

ai∈A

ui(π(ai)),

– egalitarian social welfare:

swe(π) = min
ai∈A

ui(π(ai)),

– Nash product social welfare:

swN(π) =
∏

ai∈A

ui(π(ai)), and

– elitist social welfare:

swE(π) = max
ai∈A

ui(π(ai)).

Utilitarian social welfare, swu, captures the average utility that agents receive in an allo-
cation setting. Clearly, lopsided allocations are possible when a single agent receives all the
goods. This is put to an extreme under elitist social welfare, swE , whose usage can be justi-
fied, e.g., in settings where the center controls all agents. At the other side of the spectrum is
egalitarian social welfare, swe. Maximizing egalitarian social welfare corresponds to paying
attention to the worst-off agent only, neglecting concerns of efficiency. Nash product social
welfare, swN , strikes a balance between swu and swe in the sense that balanced utility val-
ues maximize swN and its outcomes are Pareto-efficient (see also the paper by Caragiannis
et al. [7]).

Let us now define our optimization problems and their associated decision problems,
starting with the most prominent one: the problem of maximizing utilitarian social welfare.

Q-MAXIMUM-UTILITARIAN-SOCIAL-WELFAREk-ADD

Input: An allocation setting (A,R,U), where each utility function ui : 2R → Q is
represented in k-additive form.

Output: max{swu(π) | π ∈ �A,R}
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We will also use the shorthand Q-MAX-USWk-ADD for this problem. If we require in
addition that the number of agents be equal to the number of resources, the resulting problem
is denoted by Q-MAX-USWn=m

k-ADD; analogously, this superscript “n = m” indicates the same
restriction for the problems defined below.

The decision problem associated with the above optimization problem
Q-MAX-USWk-ADD is defined as follows:

Q-UTILITARIAN-SOCIAL-WELFARE-OPTIMIZATIONk-ADD

Given: An allocation setting (A,R,U), where each utility function ui : 2R → Q is
represented in k-additive form, and a number K ∈ N.

Question: Does there exist an allocation π ∈ �A,R such that swu(π) ≥ K?

Again, we will also use the shorthand Q-USWOk-ADD for this problem. Furthermore,
by replacing utilitarian social welfare by other types of social welfare, we can define the
following decision and optimization problems. Here, the symbol Q+ denotes the set of
nonnegative rational numbers.

– Q-EGALITARIAN-SOCIAL-WELFARE-OPTIMIZATIONk-ADD (Q-ESWOk-ADD) and
Q-MAX-EGALITARIAN-SOCIAL-WELFAREk-ADD (Q-MAX-ESWk-ADD),

– Q+-NASH-PRODUCT-SOCIAL-WELFARE-OPTIMIZATIONk-ADD (Q+-NPSWOk-ADD) and
Q+-MAX-NASH-PRODUCT-SOCIAL-WELFAREk-ADD (Q+-MAX-NPSWk-ADD), and

– Q-ELITIST-SOCIAL-WELFARE-OPTIMIZATIONk-ADD (Q-ELSWOk-ADD) and
Q-MAX-ELITIST-SOCIAL-WELFAREk-ADD (Q-MAX-ELSWk-ADD).

We assume the reader to be familiar with the basic notions of complexity theory, such as
the complexity classes P (deterministic polynomial time) and NP (nondeterministic poly-
nomial time), polynomial-time many-one reducibility, and the notions of NP-hardness and
-completeness based on this reducibility.

3 Nash product social welfare

In this section, we study the complexity of social welfare optimization by the Nash product,
assuming k-additive utility functions for k ≥ 1.

3.1 Allowing nonnormalized utility functions

We show that, assuming P �= NP, Q+-NPSWOn=m
k-ADD is no longer solvable in polynomial

time if utility functions are not required to be normalized, i.e., if ui(∅) = λi with λi ∈ Q+ \
{0} for at least one agent ai . Concretely, we show NP-completeness of Q+-NPSWOn=m

k-ADD.
An ordinary (i.e., not in the “strong sense” [17]) NP-hardness proof can be obtained based
on the observation that in the construction of Roos and Rothe [30] arbitrarily many agents
may be added to the given allocation setting without changing its Nash product (see the
preliminary ISAIM 2018 [24] and M-PREF 2018 [25] versions of this paper for details).
Here, however, we give a different proof that even establishes strong NP-hardness.

821



P. Lange et al.

We reduce from the following NP-complete problem [21]:

EXACT COVER BY 3 SETS (X3C)

Given: A set B = {b1, . . . , b3m} for a natural number m and a collection
S = {S1, . . . , Sn} of subsets Si ⊆ B with |Si | = 3 for each 1 ≤ i ≤ n.

Question: Does there exist an index set I ⊆ {1, . . . , n} with |I | = m such that
B = ⋃

i∈I Si is a disjoint union?

The following lemma will be helpful and can be shown by an application of the inequality
between arithmetic mean and geometric mean.

Lemma 1 Let x1, . . . , xn be n nonnegative real numbers satisfying
∑n

i=1 xi ≤ n. Then

n∏

i=1

xi ≤ 1, (1)

where equality holds in (1) if and only if x1 = · · · = xn = 1.

Let X = {x1, . . . , xn} be a finite set and σX(i) the i-th smallest element in X. A bijective
function μ : X → {1, . . . , n} maps X monotonically onto the set {1, . . . , n} if μ(σX(k)) =
k holds.

Theorem 1 For each k ≥ 1, Q+-NPSWOn=m
k-ADD is strongly NP-complete.

Proof Membership of Q+-NPSWOn=m
k-ADD in NP is easy to observe. To show NP-hardness

in the strong sense, we provide a polynomial reduction from X3C, which is NP-complete
in the strong sense and satisfies the property that all numbers are bounded by a polynomial,
to the problem Q+-NPSWOn=m

1-ADD, i.e., for the case k = 1. From this, the result follows
immediately for each k > 1 because 1-additive utility functions are k-additive (see, e.g.,
[27, Footnote 8]).

Let (B,S) be an X3C instance with B = {b1, . . . , b3m} and S = {S1, . . . , Sn}.
Without loss of generality, assume n ≥ m and construct a Q+-NPSWOn=m

1-ADD instance
((A,R,U), K) with

A = {
a1, . . . , a3m+(n−m)

}
,

R =
{
rB
j | bj ∈ B

}
∪

{
rN

1 , . . . , rN
n−m

}
,

K = 1,

and 1-additive utility functions in U given by the following coefficients:

α
{rB

j }
i = 1

3 (1 ≤ i ≤ n and bj ∈ Si),

α
{rN

j }
i = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ n − m),

α∅
i = 1 (n + 1 ≤ i ≤ 3m + n − m).

All other coefficents are zero (by definition). Obviously, the number of agents is equal to
the number of resources (|A| = |R| = 3m + n − m) and the coefficients are bounded by a
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constant. Resources of the form rB
j are called base resources and resources of the form rN

1
are called dummy resources.

It remains to show that (B,S) is a yes-instance of X3C if and only if ((A,R,U),K) is
a yes-instance of Q+-NPSWOn=m

1-ADD.
From left to right, suppose that (B,S) is a yes-instance of X3C. Then there is an index

set I ⊆ {1, . . . , n} with |I | = m such that B = ⋃
i∈I Si is a disjoint union. Let Ī =

{1, . . . , n} \ I and define

μ : Ī → {1, . . . , n − m}
which maps every index i ∈ Ī monotonically to the set {1, . . . , n − m}. The allocation

π(ai) =
⎧
⎨

⎩

{rB
p | bp ∈ Si} if i ∈ I

{rN
μ(i)} if i ∈ Ī

∅ if i ∈ {n + 1, . . . , 3m + n − m}
satisfies

swN(π) =
⎛

⎝
∏

i∈I

⎛

⎝
∑

bj ∈Si

α
{rB

j }
i

⎞

⎠

⎞

⎠ ·
⎛

⎝
∏

i∈{1,...,n}\I
α

{rN
μ(i)

}
i

⎞

⎠ ·
⎛

⎝
3m+(n−m)∏

i=n+1

α∅
i

⎞

⎠

=
∏

i∈I

(
3 · 1

3

)
· 1n−m · 12m

= 13m+(n−m)

≥ K .

From right to left, suppose that there exists an allocation π with swN(π) ≥ 1. It is easy
to see that no dummy agent ai (n + 1 ≤ i ≤ 3m + n − m) can improve her utility value by
getting nonempty bundles. Also note that the utilitarian social welfare for the first n agents
is bounded above by

n∑

i=1

ui(ai) ≤ 1

3
· 3m + n − m = n. (2)

So we only have to look at allocations π restricted to agents ai , 1 ≤ i ≤ n, with swN(π) = 1
and thus ui(π(ai))) = 1, due to (2) and Lemma 1. Therefore, all resources have to be
allocated to the first n agents (otherwise, one of the first n agents has utility strictly less than
one).

It is easy to check that every agent must be allocated at least three base resources or one
dummy resource to reach the threshold K = 1. The reduction requires that there are only
n−m dummy resources that can be assigned to the agents. So the remaining n−(n−m) = m

agents need to receive exactly the base resources rB
j . Since every resource is assumed to be

nonshareable, each of the 3m base resources must be allocated. We also know that α
{rB

j }
i is

set to 1
3 only for three distinct rB

j . So there must be m bundles Ti ⊆ {rB
j | bj ∈ B} with

|Ti | = 3 where each rB
j belongs to exactly one Ti . Hence, there is an exact cover, which

completes the proof.

823



P. Lange et al.

Example 1 Let (B,S) with

B = {b1, . . . , b9},
S = {S1, S2, S3, S4, S5}, and

S1 = {b1, b2, b4}, S2 = {b2, b5, b7}, S3 = {b1, b6, b9},
S4 = {b3, b4, b8}, S5 = {b2, b6, b8}

be a yes-instance of X3C. Construct from (B,S) the Q+-NPSWOk-ADD instance
((A,R,U), K) according to the reduction given in the proof of Theorem 1, with lower
bound K = 1, agents A = {a1, a2, . . . , a11}, resources R = {rB

1 , . . . , rB
9 , rN

1 , rN
2 }, and

utility functions

u1(X) = 1

3
[rB

1 ] + 1

3
[rB

2 ] + 1

3
[rB

4 ] + 1[rN
1 ] + 1[rN

2 ],

u2(X) = 1

3
[rB

2 ] + 1

3
[rB

5 ] + 1

3
[rB

7 ] + 1[rN
1 ] + 1[rN

2 ],

u3(X) = 1

3
[rB

1 ] + 1

3
[rB

6 ] + 1

3
[rB

9 ] + 1[rN
1 ] + 1[rN

2 ],

u4(X) = 1

3
[rB

3 ] + 1

3
[rB

4 ] + 1

3
[rB

8 ] + 1[rN
1 ] + 1[rN

2 ],

u5(X) = 1

3
[rB

2 ] + 1

3
[rB

6 ] + 1

3
[rB

8 ] + 1[rN
1 ] + 1[rN

2 ],
ui(X) = 1[∅]

for i ∈ {6, . . . , 11}, where [Y ] is 1 if Y ⊆ X and is 0 otherwise (and we omit set parentheses
around singletons for convenience). An exact cover is given by S ′ = {S2, S3, S4}. So let
I = {2, 3, 4} and Ī = {1, 5}, and construct μ : {1, 5} → {1, 2} as follows:

μ(1) = 1 and μ(5) = 2.

The allocation

π(a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{rN
1 } if a = a1

{rB
2 , rB

5 , rB
7 } if a = a2

{rB
1 , rB

6 , rB
9 } if a = a3

{rB
3 , rB

4 , rB
8 } if a = a4

{rN
2 } if a = a5

∅ if a ∈ {a6, . . . , a11}
satisfies swN(π) = 1.

The hardness result of Theorem 1 depends on the fact that the number of agents with
utility functions that are not normalized is a function of n. Suppose a constant c denotes
the number of agents whose utility functions are not normalized. Then, for n = m, by
exhaustive search we can find an allocation of maximum Nash product social welfare in
time O(m3ct), where t is the polynomial running time of the algorithm by Nguyen et al.
[28] for maximizing the Nash product under normalized utility functions.

To sketch this proof (of upcoming Theorem 2) in some more detail, the algorithm con-
siders all 2c possibilities for which of the c agents are going to be ignored and therefore
receive no goods. Denote by d the number of agents that are not ignored among the c agents
that could be ignored. If an agent ai is not ignored, we set ui(∅) = 0. The overall plan is to
use the matching algorithm by neglecting the c − d ignored agents. Therefore, we have to
reduce the number of goods in lockstep as well in order to have an equal number of agents
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and goods. Since c − d agents are ignored, c − d goods have to be merged with some of the
remaining goods to supergoods. To achieve this, there are

(
m

c−d

)
ways to choose the c − d

goods, and for each such choice there are (m− (c−d))c−d ways to merge the chosen goods
to supergoods. Then an agent’s utility for a supergood is the utility for the empty bundle
plus the utility of the bundle that contains all goods that make up that supergood. In this
reduced instance, we have an equal number of agents and goods. Therefore, we can apply
the algorithm by Nguyen et al. [28] for normalized utility functions. We adjust the social
welfare of the output allocation by multiplying by the utility values of the ignored agents
for the empty bundle and collect the resulting allocation in a list. After we have considered
all 2c possibilties, we pick an allocation of maximum welfare.

Now, let π∗ be an allocation of maximum welfare according to the above procedure. Let
π̂ be some allocation. Then the Nash product of π∗ is no less than the Nash product of π̂ .
If π̂ was in the list of the above procedure, the claim holds. If π̂ was not in the list, then
denote by I the set of ignored agents in π̂ (i.e., agents that receive no goods). Consider
the suballocation π̂I that results from π̂ by removing the entries of the ignored agents in I .
Some agents receive only one good, whereas other agents receive multiple goods. However,
this instance was already considered in the exhaustive procedure above: There is an iteration
in the above algorithm where agents in I are ignored and supergoods are formed according
to the bundles in π̂I that contain multiple goods. Since π̂ is not in the list, the matching-
based algorithm by Nguyen et al. [28] finds an allocation π ′

I with greater or equal social
welfare, i.e., swN(π ′

I ) ≥ swN(π̂I ). After adjusting for the ignored agents, the resulting
allocation π ′ is added to the list. Because the set of ignored agents is the same for π ′

I and
π̂I , the social welfare of π̂I cannot become greater than the social welfare of π ′

I after the
adjustment. Overall, we have swN(π∗) ≥ swN(π ′) ≥ swN(π̂). Hence, we have shown the
following result:

Theorem 2 For m ≥ 2, the problem Q+-MAX-NPSWn=m
1-ADD restricted to instances where

the number of agents with nonnormalized utility functions is bounded by some constant c

can be solved in time O(m3cp), where p is a number that is bounded above by a function
that polynomially depends on the size of the input.

To summarize the results of this section: For the hardness of Q+-NPSWOn=m
1-ADD to occur

in Theorem 1 it is essential that the number of agents whose utility functions are nonnormal-
ized is not bounded by a constant, as indicated by Theorem 2 for Q+-MAX-NPSWn=m

1-ADD.

3.2 Further restrictions

In this section, we go back to the standard model again where all utility functions are nor-
malized. However, we now focus on other restrictions on the utility functions. In particular,
note that the problem Q+-NPSWOn=m

k-ADD is a special case of Q+-NPSWOk-ADD, so NP-
hardness of the former is immediately inherited by the latter, and this also holds for only
two agents [30, Theorem 5.1]. We now consider the case where the number of resources to
distribute is a multiple of the number of agents.

Theorem 3 Fix an integer p ≥ 2. For each k ≥ 1, the problemQ+-NPSWOk-ADD restricted
to instances with |R| = p · |A| and normalized utility functions is strongly NP-complete.

Proof Membership of the problem in NP is easy to observe. To show strong NP-hardness,
we present a polynomial reduction from the problem X3C with coefficients bounded by a
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constant to Q+-NPSWO1-ADD restricted to instances with |R| = p · |A| (again, this suffices
to prove strong NP-hardness of Q+-NPSWOk-ADD for each k ≥ 1).

Let (B,S) be an X3C instance with B = {b1, . . . , b3m} and S = {S1, . . . , Sn}.
Without loss of generality, assume n ≥ m and construct a Q+-NPSWO1-ADD instance
((A,R,U), K) with

A = {a1, . . . , a3m+n},
K = 1,

the resource set given by
R = N ∪ D ∪ R1 ∪ R2

with

N = {rN
1 , . . . , rN

n−m}, D = {rD
1 , . . . , rD

n+m},
R1 = {rR1

j | bj ∈ B}, R2 = {rR2
j | bj ∈ B},

and the 1-additive utility functions in U defined by the following coefficients:

α
{rR1

j }
i = 1

3 (1 ≤ i ≤ n and bj ∈ Si),

α
{rN

j }
i = 1 (1 ≤ i ≤ n and 1 ≤ j ≤ n − m),

α
{rR2

j }
i = 1 (n + 1 ≤ i ≤ n + 3m and 1 ≤ j ≤ 3m).

This utility function is also represented graphically in Fig. 1.
Obviously, the number of resources is twice the number of agents: 2|A| = |R| = 2 ·

(3m + n).
It remains to show that (B,S) is a yes-instance of X3C if and only if ((A,R,U),K) is

a yes-instance of Q+-NPSWO1-ADD.
From left to right, suppose that (B,S) is a yes-instance of X3C. Thus there is an index

set I ⊆ {1, . . . , n} with |I | = m such that B = ⋃
i∈I Si is a disjoint union. Let Ī =

{1, . . . , n} \ I and define
μ : Ī → {1, . . . , n − m}

Fig. 1 Utility values of the Q+-NPSWO1-ADD instance constructed in the proof of Theorem 3
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which maps every index i ∈ Ī monotonically to the set {1, . . . , n − m}. The allocation

π(ai) =

⎧
⎪⎪⎨

⎪⎪⎩

{rR1
p | bp ∈ Si} if i ∈ I

{rN
μ(i)} if i ∈ {1, . . . , n} \ I

{rR2
i−n} ∪ D if i = n + 1

{rR2
i−n} if i ∈ {n + 2, . . . , n + 3m}

satisfies

swN(π) =
⎛

⎝
∏

i∈I

⎛

⎝
∑

bj ∈Si

α
{rR1

bj
}

i

⎞

⎠

⎞

⎠ ·
⎛

⎝
∏

i∈{1,...,n}\I
α

{rN
μ(i)

}
i

⎞

⎠

·
⎛

⎝α
{rR2

1 }
n+1 +

n+m∑

j=1

α
{rD

j }
n+1

⎞

⎠ ·
⎛

⎝
n+3m∏

i=n+2

α
{rR2

i−n}
i

⎞

⎠

= 1m · 1n−m · (1 + (n + m) · 0) · 1n+3m−(n+2)+1

= 1n+3m

≥ K .

From right to left, suppose that (B,S) is a no-instance of X3C and assume, for a
contradiction, that there were an allocation π satisfying swN(π) ≥ 1.

We make the following observations: First, any agent an+1, . . . , an+3m must be allocated
exactly one resource from R2 to get a utility value not equal to zero.2 Second, it is irrelevant
who of them gets the dummy resources D.

So the resources T = R1 ∪ N remain unallocated and we only have to concentrate on
the first n agents. Using

n∑

i=1

ui(ai) ≤ 1

3
· 3m + (n − m) = n

and Lemma 1, we have u1(π(a1)) = · · · = un(π(an)) = 1, since swN(π) ≥ 1 is assumed.
Let Î be the largest (cardinality-wise) index subset such that

⋃
i∈Î Si � B is a disjoint

union. It is clear that |Î | = � < m holds, for otherwise (B,S) would be a yes-instance of
X3C.

Due to the reduction, we get ui(T ) = 1 if and only if T = Sj , 1 ≤ j ≤ n or T = {rN
z },

1 ≤ z ≤ n − m.
Only n − m agents can be allocated a resource from N . So there are

(3m + n) − 3m − (n − m) = m

agents with no resource yet. Due to � < m there remain m− � > 0 agents who need exactly
three resources to get a utility value of 1. But there are at most two resources in a bundle that
are not distributed yet. Hence, ui(π(ai)) ≤ 2

3 < 1 for these agents and we get the desired
contradiction by swN(π) < 1.

2The only resources for which the agents A′ = {an+1, . . . , an+3m} get a nonzero utility value are in R2. Since
we have normalized utility functions and the cardinality of A′ is equal to |R2|, every agent a′ ∈ A′ must be
allocated exactly one resource from R2.
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With a simple modification of the reduction from the proof of Theorem 1, we can
prove strong NP-completeness of the Q+-NPSWOk-ADD problem: Omit all dummy agents
an+1, . . . , a3m+(n−m) and thus obtain an instance of Q+-NPSWO1-ADD with n agents
and 3m + (n − m) resources. It is obvious that the resulting instance only contains
normalized utility functions,3 but |R| = |A| cannot be achieved. It then follows imme-
diately that there exists an exact cover if and only if there exists an allocation π with
swN(π) ≥ 1 in the constructed Q+-NPSWO1-ADD instance. This gives Corollary 1, which
improves on an earlier result by Nguyen et al. [27] (see also [30]), who also show NP-
completeness of Q+-NPSWOk-ADD but not strong NP-completeness since their reduction is
from PARTITION.

Corollary 1 For each k ≥ 1, Q+-NPSWOk-ADD is strongly NP-complete.

4 Egalitarian social welfare

In this section, we study the complexity of egalitarian social welfare optimization, again
assuming k-additive utility functions for k ≥ 1.

As we did in the previous section for the Nash product, we now investigate whether
the normalization requirements for the algorithm mentioned above are necessary. We will
show that without this normalization, the corresponding decision problem is strongly NP-
complete.

Theorem 4 For each k ≥ 1, Q-ESWOn=m
k-ADD is strongly NP-complete.

Proof We show that the same polynomial reduction given for the Nash product social wel-
fare in the proof of Theorem 1 works for egalitarian social welfare as well. That is, we now
show that (B,S) is a yes-instance of X3C if and only if ((A,R,U),K), as constructed in
the proof of Theorem 1 from (B,S), is a yes-instance of Q-ESWOn=m

1-ADD. This will give
strong NP-hardness of Q-ESWOn=m

1-ADD and, consequently, of Q-ESWOn=m
k-ADD for each k ≥ 1.

From left to right, suppose that (B,S) with B = {b1, . . . , b3m} and S = {S1, . . . , Sn}
is a yes-instance of X3C. Thus there is an index set I ⊆ {1, . . . , n} with |I | = m such that
B = ⋃

i∈I Si is a disjoint union. Let Ī = {1, . . . , n} \ I and define

μ : Ī → {1, . . . , n − m},
which maps every index i ∈ Ī monotonically to the set {1, . . . , n − m}. The allocation

π(ai) =
⎧
⎨

⎩

{rB
p | bp ∈ S′

i} if i ∈ I

{rN
μ(i)} if i ∈ Ī

∅ if i ∈ {n + 1, . . . , 3s + (n − m)}
satisfies

swe(π) = min

{
3 · 1

3
, 1

}
= 1 ≥ K .

3In the reduction presented in the proof of Theorem 1, only the dummy agents an+1, . . . , a3m+(n−m) have
nonnormalized utility functions.
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From right to left, suppose that there exists an allocation π with swe(π) ≥ 1. First note
that the utility of each of the agents an+1, . . . , a3m+(n−m) is at least one. So it is sufficient
to focus on the first n agents. By using the inequality

n∑

i=1

ui(ai) ≤ 1

3
· 3m + (n − m) = n,

we again get ui(ai) = · · · = un(an) = 1. It is obvious that every agent must be allocated
at least three normal resources or one dummy resource to reach the threshold K = 1. From
the reduction we know that there are only n − m dummy resources that can be assigned to
the agents. So the remaining n − (n − m) = m agents must get their utility values from the
base resources rB

j . Since every resource is assumed to be nonshareable, each of the 3m base

resources must be allocated. We also know that α
{rB

j }
i is set to 1

3 only for three distinct rB
j .

So there must be m bundles Ti ⊆ {rB
j | bj ∈ B} with |Ti | = 3, where each rB

j belongs to
exactly one Ti . Hence, there is an exact cover.

Modifying the reduction from the proof of Theorem 4 the same way that we modified
the reduction from the proof of Theorem 1 to prove Corollary 1, we obtain strong NP-
completeness of Q-ESWOk-ADD in Corollary 2. This again improves on an earlier result
stating that Q-ESWOk-ADD is NP-complete, as was mentioned (without proof) by Bouveret
et al. [4] and explicitly proven by Bouveret in his thesis [2] (an implicit proof can be found
already in the work of Lipton et al. [26]).

Corollary 2 For each k ≥ 1, Q-ESWOk-ADD is strongly NP-complete.

5 Elitist social welfare with normalized utility functions

Finally, we make a small observation regarding elitist social welfare with normalized utility
functions.4 Heinen et al. [19] observed that the problem Q-ELSWO1-ADD (which is called
n-RANK DICTATOR in their paper) can be solved in polynomial time. It is not hard to see
that essentially the same argument gives the same result for Q-ELSWOk-ADD for each k ≥ 2,
provided that all coefficients in the k-additive representation are nonnegative.5 However, if
negative coefficients are allowed, this decision problem turns NP-complete, which follows
immediately from a known reduction due to Chevaleyre et al. [9].

Theorem 5 For each k ≥ 2, Q-ELSWOk-ADD with arbitrary coefficients is NP-complete.

Proof It is obvious that Q-ELSWOk-ADD is in NP for each k ≥ 2: Nondeterministically,
choose an allocation π and verify whether max{ui(π(ai)) | ai ∈ A} ≥ K .

4This section is a bit special in two regards. First, the elitist social welfare is not as well-motivated as any
of the other social welfare measures; one might argue that it is orthogonal to the “social” in social welfare
and to the “fair” in fair division, and thus is more of theoretical interest. Second, unlike in the previous
sections, we do not consider nonnormalized utility functions here. However, we mention that our approach
to proving Theorem 5 would also work for nonnormalized utility functions whenever k = 1 or (k ≥ 2 and
all coefficients are positive).
5In particular, this assumption ensures that every agent realizes the highest utility by receiving all resources.
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Table 1 2-additive terms for
u1 assuming i �= j Clause 2-additive term

(xi ∨ xi) 1[xi ]
(¬xi ∨ ¬xi) 1 − [xi ]
(xi ∨ xj ) [xi ] + [xj ] − [xi ][xj ]
(xi ∨ ¬xj ) [xi ] + (1 − [xj ]) − [xi ] · (1 − [xj ])
(¬xi ∨ ¬xj ) (1 − [xi ]) + (1 − [xj ]) − (1 − [xi ]) · (1 − [xj ])

To prove NP-hardness of Q-ELSWO2-ADD, we make use of a reduction due to Chevaleyre
et al. [10] who showed NP-hardness of Q-USWO2-ADD by a reduction from the well-known
NP-complete problem MAXIMUM-2-SATISFIABILITY (for short, MAX-2-SAT), which is
defined as follows:

MAXIMUM-2-SATISFIABILITY

Given: A boolean formula ϕ in conjunctive normal form, where each clause has
exactly two literals, and a nonnegative integer K .

Question: Does there exist a truth assignment simultaneously satisfying at least K

clauses of ϕ?

Consider the reduction from the proof of [10, Proposition 8], which reduces the problem
MAX-2-SAT to Q-USWO2-ADD. That means that a MAX-2-SAT instance (ϕ,K) is mapped
to a Q-USWO2-ADD instance ((A,R,U), K) consisting of one resource for each variable
of ϕ, two agents, a1 and a2, with utilities u2 ≡ 0 and u1 as shown in Table 1 such that
when there are T satisfied clauses, there are exactly T additive terms equal to 1. (Recall the
notation “[xi]” used in Table 1 from Example 1.)

Note that utility function u1 can also have negative coefficients. It holds that
((A,R,U), K) is a yes-instance of Q-USWO2-ADD exactly if there exists an allocation π

with swu(π) = u1(π(a1))+u2(π(a2)) = u1(π(a1)) ≥ K , if and only if there exists an allo-
cation π with swE(π) = max{u1(π(a1)), u2(π(a2))} = max{T , 0} ≥ K , which in turn is
equivalent to ((A,R,U), K) being a yes-instance of Q-ELSWO2-ADD. Hence, MAX-2-SAT

reduces to Q-ELSWO2-ADD in polynomial time.
The NP-hardness claim for Q-ELSWOk-ADD, k > 2, follows immediately.

6 Conclusions

We have studied the implications of the normalization assumption in fair division of indivis-
ible goods. For the common notions of egalitarian and Nash product social welfare, we have
shown that this assumption is crucial to have polynomial-time algorithms in certain settings.
The key idea of the NP-hardness proofs for nonnormalized utility functions is that dummy
agents can be inserted easily to ensure the cardinality constraint. For n = m, the results
also suggest that there is no general (for a superconstant number of agents with nonnor-
malized utility functions) and efficient transformation to simulate allocation settings with
nonnormalized utility functions using normalized utility functions only, as this would imply
P = NP. This is interesting because assigning nonzero utility to the empty bundle corre-
sponds to merely having a positive base level of happiness. Regarding elitist social welfare,
note that the reduction in Theorem 5 can also produce nonnormalized utility functions.
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In the future, it might be worthwhile to study the effect of the normalization assumption
in settings apart from fair division such as (cooperative) game theory.
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