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Abstract
Disjunctive answer set programming (ASP) is an important framework for declarative mod-
eling and problem solving, where the computational complexity of basic decision problems
like consistency (deciding whether a program has an answer set) is located on the sec-
ond level of the polynomial hierarchy. During the last decades different approaches have
been applied to find tractable fragments of programs, in particular, also using parameterized
complexity. However, the full potential of parameterized complexity has not been unlocked
since only one or very few parameters have been considered at once. In this paper, we con-
sider several natural parameters for the consistency problem of disjunctive ASP. In addition,
we also take the sizes of the answer sets into account; a restriction that is particularly inter-
esting for applications requiring small solutions as encoding subset minimization problems
in ASP can be done directly due to inherent minimization in its semantics. Previous work
on parameterizing the consistency problem by the size of answer sets yielded mostly nega-
tive results. In contrast, we start from recent findings for the problem WMMSAT and show
several novel fixed-parameter tractability (fpt) results based on combinations of parameters.
Moreover, we establish a variety of hardness results (paraNP, W[2], and W[1]-hardness) to
assess tightness of our parameter combinations.
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1 Introduction

Answer set programming (ASP) is an important framework for declarative modeling and
problem solving [50]. In propositional ASP, a problem is described in terms of a logic
program consisting of rules over propositional atoms. Answer sets, which are sometimes
also referred to as stable models [35, 48, 54], are then the solutions to such a logic program.

We illustrate answer set programming by showing how to encode a generalized version
of the well-known vertex cover problem on hypergraphs where no more than two vertices of
a hyperedge are selected. The problem HITTING SET2 asks given a hypergraph H = (V ,E)

with E ⊆ 2V \ ∅ and an integer k whether there exists a set S ⊆ V of size at most k which
intersects with each e ∈ E and for every distinct vertices u, v,w ∈ e of any hyperedge e ∈
E we have {u, v,w} �⊆ S. To decide the problem HITTING SET2 one can use the encoding
{ v1 ∨ . . . ∨ v� ← : {v1, . . . , v�} ∈ E } ∪ { ← v1, v2, v3 : {v1, v2, v3} ⊆ e, v1 �= v2, v2 �=
v3, v1 �= v3, e ∈ E } and then decide whether there is an answer set matching the bound k.
Note that this program in fact already encodes the subset minimal version of the problem,
however, still allows to find a hitting setting with the properties mentioned above if one
exists. Namely, we simply ask for an answer set of size at most k of the program above.

Fundamental problems of ASP are the CONSISTENCY and BRAVE REASONING prob-
lem. CONSISTENCY asks to decide whether a given disjunctive, propositional program has
an answer set. BRAVE REASONING asks given a disjunctive, propositional program and an
atom that occurs in the program whether the atom occurs in some answer set of the program.
Interestingly, both problems CONSISTENCY and BRAVE REASONING are complete for the
second level of the polynomial hierarchy [15]. In consequence, one can encode problems
into ASP that are harder than NP such as conformant planning [61], maximal satisfiable
sets [42], minimal diagnosis [33], and 2-QBF [55].

Even though CONSISTENCY and BRAVE REASONING are of high classical worst-case
complexity, this does not rule out that we can efficiently find solutions if the input instances
are restricted. On that score, several restrictions on input programs have been identified
in the literature that make the CONSISTENCY and BRAVE REASONING problem tractable
such as forbidding disjunctions and negations (Horn programs) or NP-complete such as
forbidding disjunctions (normal programs). Truszczyński [60] has established detailed tri-
chotomy results (P-membership, NP-completeness, and �P

2 -completeness) for the classical
complexity of ASP reasoning problems depending on syntactic properties of programs sim-
ilar to Schaefer’s base classes for propositional satisfiability [57]. Fichte, Truszczyński,
and Woltran [28] provide classes of programs (dual-normal and body-cycle-free programs)
where the complexity of deciding whether a program has an answer set is NP-complete.

Further, the high classical worst-case complexity of the ASP problems CONSISTENCY

and BRAVE REASONING does not rule out that a certain (hidden) structure is present in
an input instance and then we can use this structure for more efficient problem solving.
A prominent approach to analyze and understand computational complexity incorporat-
ing the existence of certain hidden structure is to use the framework of parameterized
complexity [13]. The main idea of parameterized complexity is to fix a certain struc-
tural property (the parameter) of a problem instance and to consider the computational
complexity of the problem in dependency of the parameter. Many parameterized complex-
ity analyzes have been carried out for ASP problems with various parameters. Gottlob,
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Scarcello, and Sideri [37] have provided fixed-parameter tractability results of several prob-
lems in artificial intelligence (AI) and non-monotonic reasoning, including answer set
programming without disjunctions. Gottlob and Szeider [38] presented a survey on param-
eterized complexity of problems in AI, database theory and automated reasoning. Gottlob,
Pichler, and Wei [36] have shown various tractability results for problems including CON-
SISTENCY and BRAVE REASONING for disjunctive answer set programming. Their results
are based on a logical characterizations of the problems in terms of a formula in monadic
second order logic and a well-known theorem by Courcelle [8], which states that a problem
is fixed-parameter tractable when parameterized by treewidth if the problem is expressible
in monadic second order logic. Jakl, Pichler, and Woltran [39] have established tractability
results for bounded treewidth of a graph representation of a program, namely the incidence
graph, by means of dynamic programming algorithms. Pichler et al. [56] have shown both
hardness and tractability results for bounded treewidth and bounded weights for programs
that contain in addition weight constraints. Bliem, Ordyniak, and Woltran [3] have estab-
lished that for most of the natural directed width measures of disjunctive programs one
cannot expect tractability. However, they have given a fixed-parameter tractable algorithm
for the parameter signed clique-width. Fichte et al. [20, 21] have considered decision, count-
ing, and optimization problems for ASP programs that allow for all kinds of ASP rules used
in modern solvers [59] when parameterized by the treewidth of the primal graph as well
as the incidence graph. Both works prove that the presented algorithms are fixed-parameter
tractable and also give solvers to exploit treewidth in practice. There have been also ini-
tial investigations on non-ground (first-order) answer set programming and the effect of
grounding on treewidth [2]. Fichte and Szeider have established several tractability results
and reductions for the parameter size of a backdoor into various tractable [17, 25] and
intractable classes of programs [26] for disjunctive programs, where a backdoor is a set of
atoms that represents in a way “clever reasoning shortcuts” through the search space. Also
fine-grained approaches to the evaluation of strong backdoors in terms of backdoor trees
have been considered [27]. Finally, Lonc and Truszczyński [49] have considered the param-
eterized complexity of the consistency problem parameterized by a given integer k, when the
input is restricted to normal (i.e., disjunction-free) programs and when then answer sets are
allowed to be of size exactly k, or at most k, or at least k, and established various hardness
results.

While all results stated above only consider one parameter at a time, one may also
investigate on multiple parameter combinations. This has been done already in the 90s for
problems in computational biology [4, 5]. Later in AI systematic analysis of various param-
eter combinations with the goal to cover all possible parameter combinations have been
done for weighted minimal model satisfiability (WMMSAT) [46], sub-graph isomorphism
[51], and planning [43–45]. So far, there has been no rigorous study of disjunctive ASP
when considering various combinations of structural properties.

In this paper, we study the computational complexity of propositional disjunctive ASP
for the problems CONSISTENCY and BRAVE REASONING using the framework of param-
eterized complexity theory [10, 13]. We consider several combinations of natural ASP
parameters at once, which allows us to draw a detailed map for a multiparametric view on
ASP complexity. In particular, we also take the sizes of the answer sets into account. Such
a restriction is particularly interesting for applications that require small solutions. Small
solutions are often interesting for minimization problems originating in graph theory and
closest string problems, which have applications to computational biology [47].
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Paper organization anddetailed contributions After giving some preliminary explanations
on propositional satisfiability, answer set programming, and parameterized complexity in
Sections 2.1–2.3, we formally define the considered parameters in Section 2.4. We briefly
state connections between the considered ASP problems when we are interested in answer
sets of size at most k and of arbitrary size in Section 2.5. We then turn our attention to the
hardness results (Section 3). It will turn out that most hardness results hold for the prob-
lems CONSISTENCY and BRAVE REASONING as well as for its versions where we restrict
the size of the answer set. In particular, we present a paraNP-, three W[2]- and three W[1]-
hardness results for each of the problems. Table 3 on page 12 provides an overview on our
results. The proofs of four results are based on a novel, direct fixed-parameter tractable
reduction from the problem WMMSAT. Our reduction preserves the semantics in the sense
that models are in a one to one correspondence, which immediately allows WMMSAT solv-
ing by means of an ASP solver (proof of Theorem 9). Furthermore, we incorporate results
by Lonc and Truszczyński [49] and Truszczyński [60]. In Section 4, we then present several
novel fixed-parameter tractability results for k-CONSISTENCY and BRAVE REASONING.
Since the problem WMMSAT and ASP are quite related in terms of their semantics when
the answer set programs are restricted to programs where no negations except in rules with
an empty head occur, we start from results by Lackner and Pfandler [46] for WMMSAT,
transform several of these results to this restricted version of ASP (Lemma 12) and point out
limitations where the methods used for WMMSAT are insufficient. Then, we show which
additional structural properties we need to take into account to still obtain fixed-parameter
tractability. Therefore, we construct a reduction that builds multiple programs, which can
then be solved in fpt-time using results for the restricted version from above. Beyond, we
relate our parameters to parameters such as backdoors and treewidth, which have previously
been studied in the literature only for ASP problems when arbitrarily large answer sets are
allowed (Section 5). Our results allow us to draw a detailed map for various ASP parameter
combinations, however, also open up a few remaining interesting cases for which we can
neither establish tractability nor hardness.

2 Preliminaries

2.1 Answer set programming

Let U be a universe of propositional atoms. A literal is an atom a ∈ U or its negation ¬a. A
disjunctive logic program (or simply a program) P is a set of rules of the form a1∨. . .∨al ←
b1, . . . , bn,¬c1, . . . , ¬cm where a1, . . . , al, b1, . . . , bn, c1, . . . , cm are atoms and l, n, m

are non-negative integers. Further, let H , B+, and B− map rules to sets of atoms such that
for a rule r we have H(r) = {a1, . . . , al} (the head of r), B+(r) = {b1, . . . , bn} (the positive
body of r), and B−(r) = {c1, . . . , cm} (the negative body of r). In addition to the traditional
representation of a rule above, we sometimes also write H(r) ← B+(r),¬B−(r), and
H(r) ← B+(r) instead of H(r) ← B+(r),¬∅. We denote the sets of atoms occurring in
a rule r or in a program P by at(r) := H(r) ∪ B+(r) ∪ B−(r) and at(P ) := ⋃

r∈P at(r),
respectively. We write occP (a) := { r ∈ P : a ∈ at(r) }. We denote the number of rules of
P by |P | := |{ r : r ∈ P }|. The size ‖P ‖ of a program P is defined as

∑
r∈P |H(r)| +

|B+(r)| + |B−(r)|.
A rule r is negation-free if B−(r) = ∅, r is normal if |H(r)| ≤ 1, r is a constraint (an

integrity rule) if |H(r)| = 0, r is Horn if it is negation-free and normal or a constraint, r is
definite Horn if it is Horn and not a constraint, r is tautological if B+(r)∩(H(r)∪B−(r)) �=
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∅, and non-tautological if it is not tautological, and r is positive-body-free if B+(r) = ∅.
We say that a program has a certain property if all its rules have the property. NF+Cons
refers to the class of all programs where negation-free rules and arbitrary constraint rules
(may also contain negative atoms) are allowed. Let P and P ′ be programs. We say that P ′
is a subprogram of P (in symbols P ′ ⊆ P ) if for each rule r ′ ∈ P ′ there is some rule r ∈ P

with H(r ′) ⊆ H(r), B+(r ′) ⊆ B+(r), B−(r ′) ⊆ B−(r). We identify the parts of a program
P consisting of proper rules as Pr := { r ∈ P : H(r) �= ∅ } and constraints as Pc := P \Pr .
We occasionally write ⊥ as head if H(r) = ∅. If B+(r)∪B−(r) = ∅, we simply write H(r)

instead of H(r) ← ∅,∅. We also write H(P ) := ⋃
r∈P H(r), B−(P ) := ⋃

r∈P B−(r).
A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩ M �= ∅ or B+(r) \ M �= ∅.

The set M is a model of P if it satisfies all rules of P . We say that M is a minimal model if
M is a model of P and there is no M ′ � M such that M ′ is a model of P .

The Gelfond-Lifschitz (GL) reduct of a program P under a set M of atoms is the pro-
gram P M := { H(r) ← B+(r) : r ∈ P, B−(r) ∩ M = ∅ } [35]. M is an answer set (or
stable model) of a program P if M is a minimal model of P M . We denote by AS(P ) the
set of all answer sets of P and for some integer k ≥ 0 by ASk(P ) the set of all answer sets
of P of size at most k.

Example 1 Consider the following program P consisting of the rules:

P = { a ∨ c ← b; b ∨ c ← e; b ← c, ¬g;
e ←; ← e, ¬a,¬c; g ← a}.

The set M1 = {a, b, e, g} is an answer set of P , since M1 is a model of P and a min-
imal model of the reduct P M1 = { a ∨ c ← b; b ∨ c ← e; e ←; g ← a }. Further,
M2 = {b, c, e} is an answer set, since M2 is a model of P and a minimal model of the
reduct P M2 = { a ∨ c ← b; b ∨ c ← e; b ← c; e ←; g ← a }.

It is easy to see that M1 and M2 are the only answer sets of P . Then, we have AS(P ) =
{M1,M2}. However, the set of all answer sets of P of size at most 3 consists only of one
answer set, namely AS3(P ) = {M2}.

It is well known that Horn programs have a unique answer set or no answer set and
that this set can be found in linear time. Note that every definite Horn program P has a
unique minimal model which equals the least model LM(P ) [34]. Dowling and Gallier [11]
have established a linear-time algorithm for testing the satisfiability of propositional Horn
formulas which easily extends to Horn programs.

Observation 2 (Folkore) Let P be a program and M ⊆ at(P ). If M is a minimal model of
P M , then (i) M is a minimal model of P , (ii) M ⊆ ⋃

r∈P H(r), and (iii) |M| ≤ |Pr |.

Proof We prove Statement (i). Assume that M is a minimal model of P M . By definition of
an answer set for each rule r ∈ P we have (a) B−(r)∩M �= ∅ or (b) there is a corresponding
rule r ′ ∈ P M such that H(r) = H(r ′), B+(r) = B+(r ′), and B−(r ′) = ∅. If Case (a)
holds, M satisfies r . If Case (b) holds, M satisfies r ′ as M is a minimal model of P M . Thus,
M also satisfies r . Consequently, M satisfies every r ∈ P and is hence a model of P .

In order to show that no proper subset of M is a model of P choose arbitrarily a proper
subset N � M . Since M is a minimal model of P M , N cannot be a minimal model of P M .
Consequently, there must be a rule r ∈ P such that B−(r) ∩ M = ∅ (i.e., r is not deleted
by forming P M ), B+(r) ⊆ N and H(r) ∩ N = ∅. Since N � M and B−(r) ∩ M = ∅, we
obtain B−(r) ∩ N = ∅. Hence, (H(r) ∩ B−(r)) ∩ N = ∅ and B+(r) \ N �= ∅. Thus, N

does not satisfy r and is consequently not a model of P . We conclude that M is a minimal
model of P .
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For Statement (ii) we refer to standard texts [31, Chapter 2]. Statement (iii) is an
immediate consequence of Statements (i) and (ii).

In this paper, we consider the following decision problems of ASP.
Problem: k-CONSISTENCY

Input: A program P and an integer k.
Task: Decide whether P has an answer set of size at most k.

Problem: k-BRAVE REASONING

Input: A program P , an atom a ∈ at(P ), and an integer k.
Task: Decide whether P has an answer set M of size at most k such that

a ∈ M .
We denote by k-AspProblems the family of the decision problems k-CONSISTENCY and

k-BRAVE REASONING.
Further, we use the following problem.

Problem: k-ENUM

Input: A program P and an integer k.
Task: List all answer sets of size at most k of P .

We refer to the problems as CONSISTENCY, BRAVE REASONING, and ENUM, respec-
tively, if the integer k can be arbitrarily large. We denote by AspProblems the family of the
reasoning problems CONSISTENCY and BRAVE REASONING.

2.2 Propositional satisfiability

We also need some notions from propositional satisfiability. A literal is a variable or
its negation. A clause is a finite set of literals. For a clause c of the form c =
{x1, . . . , x�,¬x�+1, . . . ¬xm} we let L+(c) := {x1, . . . , x�} (the positive literals) and
L−(c) := {x�+1, . . . , xm} (the negative literals). For a positive literal � = x we sometimes
write x1 and for a negative literal � = ¬x we sometimes write x0. A CNF formula is a finite
set of clauses. The set of variables of a CNF formula F is denoted by var(F ).

A set M of atoms satisfies a clause c if L+(c) ∩ M �= ∅ or L−(c) \ M �= ∅. M is a
model of F if it satisfies all clauses of F .

The problem WSAT≤ is defined as follows.
Problem: WEIGHTED SATISFIABILITY (WSAT≤)
Input: A CNF formula F and some integer k.
Task: Decide whether F has a model M ⊆ var(F ) of cardinality |M| ≤ k.

We say that M is a minimal model of F if M is a model of P and there is no M ′ � M

such that M ′ is a model of F .
The problem WEIGHTED MINIMAL MODEL SATISFIABILITY (WMMSAT) is defined as

follows.
Problem: WEIGHTED MINIMAL MODEL SATISFIABILITY (WMMSAT)
Input: CNF formulas ϕ and π and some integer k.
Task: Decide whether ϕ has a minimal model M ⊆ var(F ) such that M is

also a model of π and is of cardinality |M| ≤ k.
Intuitively, the purpose of π is to select particular minimal models among the minimal

models of ϕ. Note that if the formula ϕ is empty the problem WMMSAT is equivalent to
WSAT≤. Clearly, WMMSAT asks for “more than” just deciding whether the formula ϕ ∧ π

has a minimal model. Therefore, consider formulas ϕ := (x ∨ ¬x) and π := x. While {x}
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is a minimal model of ϕ ∧ π , the only minimal model of ϕ is ∅. However, ∅ is not a model
of π . Consequently, the answer to the WMMSAT problem is no.

2.3 Parameterized complexity

We assume that the reader is familiar with the main concepts of computational complexity
theory, in particular, algorithms, standard encodings, (decision) problems, and complexity
classes [1, 53]. In the following, we briefly give some basic background on parameterized
complexity. For more detailed information we refer to other sources [10, 13].

A parameterized problem L is a subset of �∗ × N for some finite alphabet �. For an
instance (I, k) ∈ �∗ ×N we call I the main part and k the parameter. L is fixed-parameter
tractable if there exist a computable function f and a constant c such that we can decide by
an algorithm whether (I, k) ∈ L in time O(f (k) ·‖I‖c) where ‖I‖ denotes the size of I . We
call such an algorithm an fpt-algorithm. In other words, the running time of an fpt-algorithm
is bounded by a computable function f on the parameter k and a polynomial ‖I‖c of the
size of the main part of the input I . Then, FPT is the class of all fixed-parameter tractable
decision problems. Let L ⊆ �∗ ×N and L′ ⊆ �′∗ ×N be two parameterized problems for
some finite alphabets � and �′. An fpt-reduction r from L to L′ is a many-to-one reduction
from �∗ × N to �′∗ × N such that for all I ∈ �∗ we have (I, k) ∈ L if and only if
r(I, k) = (I ′, k′) ∈ L′ such that k′ ≤ g(k) for a fixed computable function g : N → N

and there is a computable function f and a constant c such that r is computable in time
O(f (k)‖I‖c) where ‖I‖ denotes the size of I [30]. Thus, an fpt-reduction is, in particular,
an fpt-algorithm. It is easy to see that the class FPT is closed under fpt-reductions.

Parameterized complexity also facilitates a hardness theory to rule out the existence of
fpt-algorithms. Next, we will define several parameterized complexity classes capturing
fixed-parameter intractability needed in this work. We would like to note that the theory
of fixed-parameter intractability is based on fpt-reductions [12, 29]. The Weft hierarchy
consists of parameterized complexity classes W[1] ⊆ W[2] ⊆ · · · which are defined as
the closure of certain parameterized problems under parameterized reductions. Note that
showing NP-hardness is not sufficient here, since we can not distinguish between problems
that are solvable in time nf (k) from problems solvable in time f (k) · nO(1). More precisely,
the class W[1] contains all problems that are fpt-reducible to the problem INDEPENDENT

SET when parameterized by the size of the solution [12, 30], which asks given an undirected
graph and an integer k to decide whether G has an independent set of size at most k. An
independent set of a graph G = (V ,E) is a subset I ⊆ V of vertices for which no two
vertices v, w ∈ I are neighbors, i.e., vw /∈ E. A prominent W [2]-complete problem is
HITTING SET [12, 13] which asks given a family of sets (S, k) where S = {S1, . . . , Sm}
and an integer k whether there exists a set H of size at most k which intersects with all
the Si . There is strong theoretical evidence that parameterized problems that are hard for
classes W[i] are not fixed-parameter tractable [13]. This often results in the fundamental
assumption FPT � W[1] in parameterized complexity, which is a natural parameterized
analogue of the conjecture that P �= NP. It is well-known that different variations of WSAT≤
can be used to define the W-hierarchy (see, e.g., the work of Flum and Grohe [30]).

The class XP of non-uniform polynomial-time tractable problems consists of all parameter-
ized decision problems that can be solved in polynomial time if the parameter is considered con-
stant. That is, (I, k) ∈ L can be decided in time O(‖I‖f (k)) for some computable function f.
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Table 1 List of considered parameters in the work of Lackner and Pfandler [46] for the problem WMMSAT

k Maximum weight of the minimal model

d Maximum clause size

d+, d− Maximum positive / negative clause size

h Number of non-Horn clauses

p Maximum number of positive occurrences of a variable in ϕ

v+, v− Number of variables that occur as positive / negative literals in ϕ or in π

d+
π Maximum positive clause size in π

||π || Size of π , i.e., the total number of variable occurrences in π

Further, the parameterized complexity class paraNP contains all parameterized deci-
sion problems L such that (I, k) ∈ L can be decided non-deterministically in time
O(f (k) · ‖I‖c), for some computable function f and constant c [30]. Intuitively, the
class paraNP consists of all problems that are in NP after a pre-computation that only
involves the parameter [29]. The complexity class paraNP can be seen as an analogue of
NP in parameterized complexity. The complexity classes XP and paraNP are incompa-
rable subject to standard assumptions in computational complexity. Further, we have the
classes of the Weft hierarchy between FPT and paraNP and XP in the following relation:
FPT ⊆ W [1] ⊆ . . . ⊆ W[i] ⊆ XP ∩ paraNP.

For function problems like k-ENUM, it is sometimes important to check whether it is
possible to output all solutions in time O(f (k) · nc) for some computable function f and
constant c or more precisely O(f (k) · (n + |Sol(n)|)c), which is also known as outputFPT.
This intuition is enough for what we consider in this paper. For a more formal definition we
refer to the work of Creignou et al. [9].

The parameterized complexity of the problems WSAT≤ and WMMSAT has been studied
in the work of Lackner and Pfandler [46]. In their work, they have considered the parameters
as listed in Table 1. Several hardness and tractability results for parameter combinations turn
out to be useful to show hardness and tractability results for the considered ASP problems.

2.4 Considered parameters

In this section, we introduce a list of ASP parameters, which mainly originate from ear-
lier work for WMMSAT, for our parameterized complexity analysis. In particular, we are
interested in parameter combinations. First, we give a definition what we mean by an ASP
parameter.

Definition 3 An ASP parameter is a function p that assigns to every program P some
non-negative integer p(P ).

Table 2 lists the considered parameters, and their intuitive descriptions. All parameters
except k can be computed in polynomial time. For a more formal description, let P be a pro-
gram and X ⊆ {H, B+, B−} where H , B+, and B− are mappings defined as in Section 2.1.
We omit P if the program is clear from the context. Further, let atX,r := ⋃

f ∈X f (r).
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Table 2 List and informal description of the considered parameters

k Maximum size of an answer set

maxsizer
H,B+,B− Maximum size of a non-constraint rule

maxsizer
H,B− Maximum size of the head and negative body of a rule

maxsizer
H,B+ Maximum size of the head and positive body of a rule

maxsizeH Maximum size of the head of a rule

maxsizer
B+ Maximum size of the positive body of a non-constraint rule

maxsizer
B− Maximum size of the negative body of a rule

maxsizec
B− Maximum size of the negative body of a constraint

#non-Hornr Number of non-Horn rules

maxoccr
H,B− Maximum number of occurrences of a variable in Pr when only the

head and negative-body occurrences are counted

maxoccr
B+ Maximum number of occurrences of a variable in Pr when only the

positive-body occurrences are counted

#atH Number of atoms that occur in the head

#atB+ Number of atoms that occur in the positive body

#atB− Number of atoms that occur in the negative body

#atr
B− Number of atoms that occur in the negative body of all non-constraint rules

||Pc|| The total number of variable occurrences in Pc

Then, we define the following parameters.

#atX := |
⋃

r∈P

atX,r |

#atrX := |
⋃

r∈P,|H(r)|>0

atX,r |

maxsizer
X := max

{ ∑

f ∈X

|f (r ′)| : |H(r ′)| > 0, r ′ ∈ P
}

maxsizec
X := max

{ ∑

f ∈X

|f (r ′)| : |H(r ′)| = 0, r ′ ∈ P
}

#non-Hornr := |{r ′ : r ′ ∈ P, r ′ non-Horn}|
maxoccr

X := max
{
i : a ∈ at (P ), i =

∑

f ∈X, r ′∈P, |H(r ′)|>0

|{ a : a ∈ f (r ′) }| }

Definition 4 Let p and q be ASP parameters. We say that p dominates q if there is a
computable function f such that p(P ) ≤ f (q(P )) holds for all programs P .

Figure 1 depicts the relationship in terms of domination of parameters that are useful for
our results. Note that this list is not complete.
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Fig. 1 Domination graph (relationship between parameters). Let x and y be parameters. There is an arc
x → y whenever x dominates y

2.5 Relationship ofAspProblems and k-AspProblems

Recent research in parameterized complexity in the setting of answer set programming has
mainly focused on consistency or reasoning problems, which allow arbitrarily large answer
sets. However, we focus on ASP problems that also take the sizes of the answer sets into
account. In the following, we explain and summarize connections between both versions.
We observe that if the parameters do not depend on the maximum size of an answer set, we
can trivially extend known membership and hardness results for problems in AspProblems to
the respective problem in k-AspProblems . In other words, the problem k-CONSISTENCY

is at least as hard as CONSISTENCY. Finally, we state how to extend known results for
CONSISTENCY using standard counters that do not effect the other considered parameters.

Observation 5 Let p be an ASP parameter, C be a parameterized complexity class, and
L ∈ {CONSISTENCY, BRAVE REASONING}, and k-L its corresponding decision prob-
lem k-CONSISTENCY or k-BRAVE REASONING, respectively. In other words, k-L decides
the question of L when restricted to answer sets of size at most k. Then the following
statements are true.

1. If the problem k-L is in C when parameterized by p and p does not depend on k, then
the problem L is in C under fpt-reductions when parameterized by p.

2. Further, if the problem L is C-hard when parameterized by p and p does not depend
on k, then the problem k-L is C-hard under fpt -reductions when parameterized by p.

Note that in Observation 5 the restriction “p does not depend on k” is quite weak as in
that case both problems coincide.

Next, we will see that if a decision problem in AspProblems is fixed-parameter tractable
when parameterized by some fixed parameter p and p is not affected by restricting the
solution size to at most k, then the corresponding problem for answer sets of size at most k

is fixed-parameter tractable when parameterized by the parameter combination p+k where
k is the size of the answer set.

Definition 6 Let p be an ASP parameter. Then we call p counter-preserving if p(P ) =
f (p(Pk)) for some computable function f , an integer k and Pk := P ∪ { cn+1,0 ← � } ∪
{ ⊥ ← c1,k+1 } ∪ { ci,j+1 ← ci+1,j , ai; ci,j ← ci+1,j : 1 ≤ i ≤ n, 0 ≤ j ≤ k + 1 } where
a1, . . . , an are the atoms of P .
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Proposition 7 Let p be a counter-preserving ASP parameter, C be a parameterized com-
plexity class, L ∈ {CONSISTENCY, BRAVE REASONING}, and k-L its corresponding
decision problem k-CONSISTENCY or k-BRAVE REASONING, respectively. If the problem L

belongs to class C when parameterized by p, then the problem k-L belongs to class C under
fpt-reductions when parameterized by p.

Proof Let P be a program and n an integer such that n = |at(P )|. We restrict the decision
question to answer sets of size at most k by means of a simple counter. Therefore, we apply
the construction from Definition 6, which implements an at most k constraint as described
in standard literature [31, p.18ff.], to ensure that at most k atoms are set to true and hence
belong to an answer set of P . In Pk we introduce auxiliary atoms ci,j for 1 ≤ i ≤ n + 1
and 0 ≤ j ≤ k + 2 resulting in O(n · k) additional auxiliary atoms and O(n · k) additional
rules. We can then simply decide L on Pk instead of P and obtain the result for our initial
problem k-L. Since L is fixed-parameter tractable, p(P ) = p(Pk), and ‖Pk‖ is polyno-
mial in n · k, the overall construction gives an fpt-algorithm with respect to k. Hence, the
proposition sustains.

3 Hardness results

In this section, we present several hardness results for ASP reasoning problems. The results
are also summarized in Table 3. Observe that hardness for a combination of parameters
trivially implies hardness for any subset of these parameters.

In the next proposition, we summarize known hardness results for WMMSAT which turn
out to be useful for showing hardness for several parameter combination for k-CONSIS-
TENCY and k-BRAVE REASONING.

Table 3 Summary of multiparametric complexity results for k-CONSISTENCY. We refer to Section 6 for
open parameter combinations
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Proposition 8 ([46]) WMMSAT is paraNP-hard when parameterized by the following
parameter combination

(i) d + d+ + d− + p + v− + d+
π + ||π ||;

WMMSAT is W[2]-hard when parameterized by each of the following parameter combina-
tion

(ii) k + d− + v− + d+
π + ||π || and

(iii) k + d− + h + p + v−;

WMMSAT is W[1]-hard when parameterized by the following parameter combination

(iv) k + d− + h + p + d+
π + ||π ||,

where k is the maximum weight of the minimal model, d is the maximum clause size, d+
and d− are the maximum positive or negative clause size, respectively, h is the number of
non-horn clauses, p is the maximum number of positive occurrences of a variable in ϕ, v+
and v− are the numbers of variables that occur as positive or negative literals in ϕ or in π ,
respectively, ||π || is the size of π , i.e., the total number of variable occurrences in π (see
also Table 1).

Theorem 9 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING}. Then L is paraNP-hard
when parameterized by each of the following parameter combinations

(i) maxsizer
H,B+,B− + maxsizer

H,B− + maxsizer
B+ + #atB+ + maxsizec

B− + ||Pc||, and
(ii) maxsizer

H,B+,B− + maxsizer
H,B− + maxsizer

B+ + #atB− .

L is W[2]-hard when parameterized by each of the following parameter combinations

(iii) k + maxsizer
H,B+ + maxoccr

B+ + maxsizec
B+ + maxsizec

B− ,
(iv) k + maxsizer

B− + maxsizec
B+ + maxsizec

B− ,
(v) k + maxsizer

B+ + #atB+ + maxsizec
B− + ||Pc||, and

(vi) k + maxsizer
B+ + #non-Hornr + maxoccr

H,B− + #atB+ .

L is W[1]-hard when parameterized by the following parameter combination

(vii) k + maxsizer
B+ + #non-Hornr + maxoccr

H,B− + maxsizec
B− + ||Pc||.

Proof We proceed by a reduction from the problem WMMSAT for Statements (i) and
(v)–(vii) and WSAT≤ for Statement (iv). Statement (ii) has already been established by
Truszczyński [60]. Statement (iii) is an immediate consequence from a reduction established
by Lonc and Truszczyński [49, Theorem 4.4].

Let (ϕ, π, k) be an instance of WMMSAT. We assume w.l.o.g.that ϕ contains no clauses
without positive literals, since otherwise we can shift such clauses into π without affecting
the size of the models and hence the minimality.1 We now construct an instance (P, k) of
k-CONSISTENCY as follows. For a clause C and i ∈ {0, 1} we define

Ci := { ai : xi ∈ C, x ∈ var(C) }

1Note that this has also no effect to the results we use for WMMSAT, since the parameters used in the proofs
for WMMSAT remain unaffected (it only effects d and d−, however, there d− is already bounded by v−; see
the proofs of Theorems 16 and 17 in the work by Lackner and Pfandler [46]).
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where a is a fresh atom and a0 = ¬a and a1 = a. Now, let

P min := {C1 ← C0 : C ∈ ϕ }
and

P cons := { ← ¬C1, C0 : C ∈ π }
and we define a program

P := P min ∪ P cons.
Next, we show that ϕ has a minimal model X of size at most k such that X is also a model
of π if and only if P has an answer set of size at most k.
(⇒): Let X be a minimal model of ϕ of size at most k such that X is also a model of π .
Further, let M := X1. For every rule r ∈ P min, there is a corresponding clause C ∈ ϕ.
Since for each clause C ∈ ϕ it is true that (i) C1 ∩ M �= ∅, or (ii) C0 \ M �= ∅, we obtain
by construction of P min that (i) H(r) ∩ M �= ∅, or (ii) B+(r) \ M �= ∅ holds. Hence, M

is a model of P min. Since (P min)M = P min, the set M is also a model of (P min)M . For
every rule r ∈ P cons, there is a corresponding clause C ∈ π . Since for each clause C ∈ ϕ

it holds that (i) C1 ∩ M �= ∅, or (ii) C0 \ M �= ∅, we have by construction of P cons that (i)
B−(r) ∩ M �= ∅, or (ii) B+(r) \ M �= ∅. Hence, M is a model of P cons. Then, for every
rule r ∈ P cons there is either (i) a corresponding rule r ′ ∈ (P cons)M with B+(r) = B+(r ′)
and B+(r ′) \ M �= ∅, since B+(r) \ M �= ∅, or (ii) B−(r) \ M �= ∅ and the rule r has
been removed from P cons when constructing (P cons)M . Consequently, M is also a model
of (P cons)M . It remains to observe that M is also a minimal model of P M . For proof by
contradiction assume that P M has a model N such that N � M . Let now r ∈ P M . Then,
by the construction of P there is a corresponding clause Cr such that either (i) Cr ∈ ϕ,
C1

r = H(r) and C0
r = B+(r), or (ii) Cr ∈ π and C0

r = B+(r). Since N is a model of P for
every rule r ∈ P M , it holds that H(r) ∩ N �= ∅ or B+(r) \ N �= ∅. Thus we can conclude
in Case (i) C1

r ∩ N �= ∅ or C0
r \ N �= ∅ and thus N is also a model of ϕ, which however

contradicts the assumption that X is a minimal model of ϕ. Further, we can conclude in
Case (ii) that C0

r \ N �= ∅, which however contradicts the assumption that X is a model of
π . Consequently, M is an answer set of P of size at most k.
(⇐): Conversely, assume that M is an answer set of P of size at most k. Let X consist
of the corresponding variables of M in var(π) ∪ var(ϕ). For each rule r ∈ P there is a
corresponding clause (i) Cr ∈ π such that C0

r = B+(r) and C1
r = B−(r) if H(r) = ∅, or

(ii) Cr ∈ ϕ such that C1
r = H(r) and C0

r = B+(r) if B−(r) = ∅. We proceed with Case (i):
By definition of an answer set, M is a model of P . Hence, for rules where H(r) = ∅, we
have B+(r) \ M �= ∅ or B−(r) ∩ M �= ∅. Thus, we obtain C1

r ∩ M �= ∅ or C0
r \ M �= ∅,

which yields that X is a model of π . We proceed with Case (ii): By definition of an answer
set, the set M is a model of P . Hence, for rules where H(r) �= ∅, we have H(r) ∩ M �= ∅
or B+(r) \ M �= ∅. Since H(r) = C1

r and B+(r) = C0
r , we have C1

r ∩ M �= ∅ or
C0

r \ M �= ∅. Hence, X is a model of ϕ. For proof by contradiction assume that there is
some model Y of ϕ such that Y � X and Y is also a model of π . By construction of P for
a clause C ∈ ϕ there is a corresponding rule rc ∈ P such that H(rc) = C1, B+(rc) = C0,
and B−(rc) = ∅. Since B−(r ′) = ∅ for every rule r ∈ P min, we have that N is also a
model of (P min)M , which contradicts the assumption that M is an answer set of P . Further,
by construction of P for a clause C ∈ π there is a corresponding rule rc ∈ P such that
H(rc) = ∅, B+(rc) = C0, and B−(rc) = C1. Since Y is a model of π we conclude that
(i) B−(rc) ∩ N �= ∅, or (ii) B+(rc) \ N �= ∅. Hence, N is also a model of (P cons)M . Thus,
by Statement (ii) of Observation 2 the set N is also an answer set of P , which contradicts
our assumption. Consequently, X is a minimal model of ϕ, has size at most k, and is also a
model of π .
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We have established the claim that ϕ has a minimal model X of size at most k such that
X is also a model of π if and only if P has an answer set of size at most k.

Next, we can employ the construction and proofs from above to establish a reduction
from an instance (ϕ, k) of WSAT≤ for Statement (iv). Note that WSAT≤ is a well known to
be W[2]-hard, e.g., [13]. Therefore, observe that ϕ has a model M of size at most k if and
only if P min has an answer set of size at most k.

Finally, it remains to observe that our reduction preserves the parameters:

– k: directly corresponds to the maximum weight of a minimal model (k)
– maxsizer

H,B+,B− : directly corresponds to the maximum clause size in ϕ (d)
– maxsizer

H,B− : directly corresponds to the maximum positive clause size in ϕ (d+)
– maxsizer

B+ : directly corresponds to the maximum negative clause size in ϕ (d−)
– #non-Hornr : directly corresponds to the number of non-Horn clauses (h)
– maxoccr

H,B− : directly corresponds to the maximum number of positive occurrences of
a variable in ϕ (p)

– #atB+ : directly corresponds to the number of variables that occur as negative literals
in ϕ or in π (v−)

– maxsizec
B− : directly corresponds to the maximum positive clause size in π (d+

π )
– ||Pc||: directly corresponds to the size of π , i.e., the total number of variable occur-

rences in π (‖π‖)

Fixed-parameter tractability follows from the results by Lackner and Pfandler [46] for
WMMSAT as stated in Proposition 8. We obtain hardness for k-BRAVE REASONING by the
same arguments. This concludes the proof.

4 Membership results

In this section, we present several novel fixed-parameter tractability results for ASP reason-
ing problems, which are summarized in Table 3. Observe that fpt results for a combination
of parameters trivially imply fpt results for any superset of these parameters.

We first observe that parameterizing in the number of head atoms already yields fixed-
parameter tractability.

Observation 10 Each problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING} is fixed-
parameter tractable when parameterized by each of the following parameters (i) #atH and
(ii) maxsizeH + |Pr | where |Pr | is the number of rules in Pr .

Proof First we show Statement (i) for k-CONSISTENCY. Therefore, let h := #atH . By State-
ment (ii) of Observation 2 for every answer set M ∈ ASk(P ) holds that M ⊆ ⋃

r∈P H(r).
Hence, we use a simple bounded search tree approach.

Therefore, we use slightly extended concepts from earlier work [26, 27] and define the
concept of a reduct under sets M and N of atoms. Intuitively, M contains atoms that are
interpreted as set to true and N contains atoms that are interpreted as set to false. Let P be
a program, M ⊆ at(P ), and N ⊆ at(P ) \ M . The reduct of program P under (M, N) is
the logic program PM,N obtained from program P by (i) removing all rules r with H(r) ∩
M �= ∅; (ii) removing all rules r with B+(r) ∩ N �= ∅; (iii) removing all rules r with
B−(r) ∩ M �= ∅; (iv) removing from the heads and negative bodies of the remaining rules
all atoms a with a ∈ N ; and (v) removing from the positive bodies of the remaining rules
all atoms a with a ∈ M .
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We construct a complete binary search tree T of depth h.

(1) Therefore, we label the root of the tree with the triple (P,∅, ∅).
(2) Then, we label the remaining nodes of the tree recursively as follows: Let (R,M, N)

be the label of a node t of T whose two children are not labeled yet. Choose an
atom a ∈ at(P )H \ (M ∪ N).

(i) Label the left child of t with (RM,N , M ∪ {a}, N).
(ii) Label the right child of t with (RM,N , M, N ∪ {a}).

(3) If there exists a node labeled with (R,M, N) such that R has no rules, then M is a
model of P , c.f., [25, 27]. It remains to check whether there is some M ′ � M such
that M ′ is a model of P M and M is of size at most k. Therefore,

(a) we check for each M ′ � M whether M ′ is still a model of P M ; if so, we discard
M; and

(b) we check whether |M| ≤ k; if the answer is no, we can discard M otherwise, M

is an answer set of P of size at most k.

Since the depth of T is bounded by h, the size of M is at most h. We conclude that the above
algorithm solves the problem k-CONSISTENCY in time O(22h · h · nc) for n = |at(P )| and
some constant c. Statement (ii) follows directly from the previous one as the value #at(P )

is bounded by maxsizeH · |Pr |.
Note that this results trivially extends to k-BRAVE REASONING by adding a rule that

consists of an empty head, an empty positive body and a negative body that contains only
the atom we are interested in. Further, we would like to mention that partial evaluation
techniques are frequently used in the literature of ASP, however, there the minimality check
is often done in terms of the completion or loop formulas (cf. [32, 58]).

Observation 11 For each problem L ∈ {k-CONSISTENCY, k-BRAVE REASONING} we
have L ∈ XP when parameterized by each of the following parameters (i) k and (ii) |Pr |
where |Pr | is the number of rules in Pr .

Proof Let P be a program and n be an integer such that n = |at(P )|. For Statement (i)
let further k > 0 be some integer. For Statement (ii) let k be an integer with k = |Pr |. By
Statement (iii) of Observation 2 the size of an answer set is at most k. In both cases, we have
at most

∑k
i=1

(
n
k

)
answer sets of size at most k. For each of these answer set candidates,

the minimality check can be done in time O(2k) by first checking whether the candidate is

a model and then trying all smaller models. Since
(
n
k

) ≤ nk

k! is true, the algorithm runs in
time O(nk). Consequently, the observation is established.

4.1 Negation-free programs

Lackner and Pfandler [46] presented several fixed-parameter tractability results that turn
out to be useful for showing fixed-parameter tractability for k-CONSISTENCY and k-BRAVE

REASONING. In order to use their results, we first establish an fpt-reduction from the ASP
problems to WMMSAT for a restricted version of programs, namely, when the main part
of the input is restricted to programs with negation-free non-constraint rules plus arbitrary
constraints (NF+Cons). In fact, the problem CONSISTENCY is already �P

2 -complete when
the main part of the input is restricted to programs from NF+Cons [15].
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Lemma 12 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING} and (x, y) ∈ N×N where
x is a parameter for L and y a parameter for WMMSAT. If the main part of the input of L is
restricted to programs from NF+Cons, then there is an fpt-reduction from L to WMMSAT

such that x preserves y, i.e., the value of y only depends on x, for all of the following
pairs (x, y)

(i) (k, k),
(ii) (#atB+ , v−),

(iii) (#non-Hornr , h),
(iv) (maxsizer

H,B− , d+),

(v) (maxsizer
B+ , d−),

(vi) (maxoccr
H,B− , p), and

(vii) (maxsizec
B− , d+

π ).

Proof We give a reduction to WMMSAT, which preserves all parameters considered in the
statement. Therefore, we use ideas from the construction in the proof of Theorem 9 for the
opposite direction.

Let (P, k) be an instance of k-CONSISTENCY where P ∈ NF+Cons. We now construct
an instance (ϕ, π, k) of WMMSAT as follows. The variables of the CNF formulas ϕ and π

will consist of a variable for each atom of P . Then for a rule r ∈ P we let

C(r) := { xa : a ∈ H(r) ∪ B−(r) } ∪ { ¬xa : a ∈ B+(r) }.
Further, we define

ϕ := {C(r) : r ∈ P, H(r) �= ∅ }
and

π := {C(r) : r ∈ P,H(r) = ∅ }.
Then, we show that formula ϕ has a minimal model M of size at most k such that M is also
a model of π if and only if P has an answer set of size at most k. We can use the exact same
construction as in the proof of Theorem 9 to establish the statement, since the program P cons

consists only of constraint rules and program P min consists only of non-constraint rules.
Next, we observe that our reduction preserves the parameters:

(i) k: directly corresponds to the maximum weight of a minimal model (k),
(ii) #atB+ : directly corresponds to the number of variables that occur as negative literals

in π or ϕ (v−),
(iii) #non-Hornr : directly corresponds to the number of non-horn clauses (h),
(iv) maxsizer

H,B− : directly corresponds to the maximum positive clause size in ϕ (d+)
(v) maxsizer

B+ : directly corresponds to the maximum negative clause size in ϕ (d−)
(vi) maxoccr

H,B− : directly corresponds to the maximum number of positive occurrences
of a variable in π (p),

(vii) maxsizec
B− : directly corresponds to the maximum positive clause size in π (d+

π ),

We obtain fpt-reductions for k-BRAVE REASONING by the same arguments. This concludes
the proof.

Remark 13 We would like to mention that, using the reductions above, instances from
WMMSAT and k-CONSISTENCY restricted to NF+Cons coincide. More precisely, the
proofs give a linear time reduction that transforms an instance from WMMSAT into an
instance of NF+Cons from k-CONSISTENCY and vice versa. In particular, our reductions
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make certain concepts of parameters in the setting of answer set programming such as fpt-
results for acyclicity-based backdoors [25] or bounded treewidth [20, 21] directly accessible
to WMMSAT.

The following proposition states a result by Lackner and Pfandler for WMMSAT, which
we will later use in our proofs.

Proposition 14 ([46]) WMMSAT is fixed-parameter tractable when parameterized by each
of the following parameter combinations

(i) k + d+,
(ii) d+ + h,

(iii) k + v− + p + d+
π , and

(iv) v− + h + d+
π ,

where k is the maximum weight of the minimal model, d+ is the maximum positive clause
size, h is the number of non-Horn clauses, p is the maximum number of positive occurrences
of a variable in π , v− is the number of variables that occur as negative literals in ϕ or in
π , and d+

π maximum positive clause size in π .

From Proposition 14 and the reduction in Lemma 12 that preserves all parameter
combinations, we immediately obtain the following result.

Proposition 15 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING}. If the main part of
the input of L is restricted to programs from NF+Cons, then L is fixed-parameter tractable
when parameterized by each of the following parameter combinations

(i) k + maxsizer
H,B− ,

(ii) #non-Hornr + maxsizer
H,B− ,

(iii) k + #atB+ + maxoccr
H,B− + maxsizec

B− , and
(iv) #atB+ + #non-Hornr + maxsizec

B− .

Now, we consider how and under which conditions we can extend the above results
to arbitrary programs. To this end, we construct fpt-reductions from arbitrary programs
to programs that contain only negation-free non-constraint rules and arbitrary constraints
(NF+Cons) while preserving certain parameters.

We obtain the following two stronger tractability results.

Theorem 16 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING}. Then, L is fixed-
parameter tractable when parameterized by each of the following parameter combinations

(i) k + maxsizer
H,B− and

(ii) #non-Hornr + maxsizer
H,B− .

To show the statement, we first present the main idea of the proof by providing intuition
and defining the reduction. Based on this reduction we then show two lemmas which in a
next step will help to show the correctness.

Proof-idea and reduction The main idea of the proof is to shift negations in non-constraint
rules and use the reduction in Lemma 12 to WMMSAT. WMMSAT is fixed-parameter
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tractable when parameterized by the parameter combination stated in Proposition 14. Our
reduction runs in linear time and preserves all necessary parameters.

In more detail, for a program P this reduction consists of two steps:

– First, from P we construct in linear time a program P nshift ∈ NF+Cons in the
following way. Let P nshift := P pos ∪ P supset where

P pos := P min ∪ P subset

P min := {
H(r) ∪ (

B−(r)
)′ ← B+(r) : r ∈ P

}

P subset := {
a′ ← a : a ∈ at(P )

}

P supset := { ← a′,¬a : a ∈ at(P )
}
.

– Second, from P nshift we construct in linear time an instance of WMMSAT using the
reduction presented in the proof of Lemma 12.

To establish the correctness of this two-step reduction, we first show the following two
lemmas.

For this, let P be a program and for a set X we denote by the macro (X)′ the
set {a′ | a ∈ X}.

Lemma 17 Given a program P , we can construct in linear time a program P nshift =
P pos ∪ P supset over atoms at(P ) ∪ (at(P ))′, as defined previously, such that every model O
of P nshift is of the form O = M ∪ M ′ where M ⊆ at(P ), M ′ ⊆ (at(P ))′, and M ′ = (M)′.

Proof It is straightforward to see that this reduction runs in linear time in the size of P . We
show that a model O of P shift is of the form O = M∪M ′ where M ⊆ at(P ), M ′ ⊆ (at(P ))′,
and M = (M)′.

Let O be a model of P nshift. Let M and M ′ be sets such that M ·∪ M ′ = O, M ⊆ at(P ),
and M ′ ⊆ (at(P ))′. By definition O is also a model of P subset and P supset. Then, for
every a ∈ at(P ) there is rule r ∈ P subset of the form a′ ← a. By definition r is satisfied
if (i) H(r) ∩ M ′ �= ∅ or (ii) B+(r) \ M �= ∅. Since M ∪ M ′ satisfies r , we conclude the
following. If a ∈ M , we have that a′ ∈ M ′. If a′ /∈ M ′, we have that a /∈ M . Conse-
quently, it remains to exclude the case a′ ∈ M and a /∈ M . For every a ∈ at(P ) there is a
rule r ′ ∈ P supset of the form ← a′,¬a. By definition r ′ is satisfied if (i) B+(r ′) \ M ′ �= ∅
or (ii) B−(r ′) ∩ M �= ∅. Since M ∪ M ′ satisfies r , we conclude that if a′ ∈ M ′, we have
that a ∈ M . Hence, we established that (M)′ = M ′.

Lemma 18 A set M ⊆ at(P ) is an answer set of a program P if and only if M ∪ (M)′ is
an answer set of P nshift where P nshift is defined in the reduction given before Lemma 17.
Moreover, P pos is negation-free and P supset contains only constraints.

Proof We show that M is an answer set of P if and only if M ∪ (M)′ is an answer set of
P nshift.
(⇒): Let M be an answer set of P and M ′ := (M)′ = { a′ : a ∈ M }.

Since a ∈ M if and only if a′ ∈ M ′, M ∪ M ′ is also a model of P subset and P supset.
By definition of an answer set M is a model of P . Since in addition a′ ∈ M ′ if and only if
a ∈ M , we have that M ∪ M ′ is a model of P min.

It remains to show that M ∪ M ′ is an answer set of P nshift. For proof by contradiction
assume that there is some O � (M ∪ M ′) such that O is a model of (P nshift)M∪M ′

. Let
N := (O ∩ M) and N ′ := (O ∩ M ′), and hence, we have that N ∪ N ′ = O. Since O is a
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model of P subset and P supset, for every a ∈ at(P ) rule a′ ← a ensures that if a ∈ N , then
a′ ∈ N ′. In other words, (N)′ ⊆ N ′.

Next, we show that, however, then N is also a model of P M , which yields a contradiction
to the assumption that M is an answer set of P . Therefore, consider an arbitrarily chosen
rule r ′′ ∈ P M . Hence, by construction of the GL reduct, there is a rule r ′ ∈ P such that
H(r ′′) = H(r ′), B+(r ′′) = B+(r ′), and B−(r ′) ∩ M = ∅. By construction there is a
rule r ∈ P min such that H(r) = H(r ′) ∪ (B−(r ′))′, B+(r) = B+(r ′), and B−(r) = ∅.

Since O is a model of (P min)M∪M ′
, one of the following cases holds (i) H(r) ∩ O �= ∅

or (ii) B+(r) \ O �= ∅. If Case (i) holds, we know from N = O ∩ M , N ′ = O ∩ M ′, and
H(r) = H(r ′)∪(B−(r ′))′, and H(r)∩N ′ = ∅ that (ia) B−(r ′)∩N ′ �= ∅ or (ib) H(r ′)∩N �=
∅ is true. Consider that (ia) B−(r ′) ∩ N ′ �= ∅ holds. Since N ′ � (M)′, we also have that
B−(r ′) ∩ M �= ∅. Consequently, the case is irrelevant. Consider that B−(r ′) ∩ N ′ = ∅ and
(ib) H(r ′) ∩ N �= ∅ holds. Since H(r ′) = H(r ′′) and N � M , we have that H(r ′′) ∩ N �=
∅. Consequently, N also satisfies r ′′. If Case (ii) holds, by B+(r) ∩ N ′ = ∅, we have
B+(r) \ N �= ∅. Since B+(r) = B+(r ′) = B+(r ′′), B+(r ′′) ∩ N �= ∅. Consequently, N

also satisfies r ′′. We conclude that N is also a model of P M , which contradicts that M is
minimal model of P M and thus contradicts that M is an answer set of P . Hence, the only-if
direction holds.
(⇐): Let O be an answer set of (P nshift)O and O := M ∪ M ′, for M ⊆ at(P ) and M ′ ⊆
(at(P ))′. Since O is a model of P nshift, we know that (M)′ = M ′ is true according to the
established Claim 1 above.

We first show that M is a model of P . Therefore, consider a rule r ′ ∈ P . By construction
there is a rule r ∈ P min such that H(r) = H(r ′) ∪ (B−(r ′))′ and B+(r) = B+(r ′).
Since M ∪ M ′ is a model of r and B−(r) = ∅, we have that one of the following is true
(i) H(r) ∩ (M ∪ M ′) �= ∅ or (ii) B+(r) \ (M ∪ M ′) �= ∅. Assume that Case (i) holds. Since
(B−(r ′))′ ∩ M = ∅ is true by construction of P min, we have that (ia) H(r ′) ∩ M �= ∅ or
(ib) (B−(r ′))′ ∩M ′ �= ∅. If Case (ia) holds, M satisfies r ′. If Case (ib) holds, we know from
(M)′ = M ′ that B−(r ′) ∩ M �= ∅ is true. Consequently, we conclude that M satisfies r ′.
Assume that Case (ii) holds. Since (B−(r ′))′ ∩ M ′ = ∅ is true by construction of P min

and B+(r) = B−(r ′), we immediately obtain that B+(r ′) \ M �= ∅. We obtain that M

satisfies r ′. Both cases then yield that M is also a model of P .
It remains to show that M is also an answer set of P M . For proof by contradiction assume

that there is some N � M such that N is a model of P M . Let N ′ := (N)′ = { a′ : a ∈
N }. We show that, however, then N ∪ N ′ is also a model of (P nshift)O , which yields a
contradiction to the assumption that M is an answer set of (P nshift)O . Therefore, consider
an arbitrarily chosen rule r ∈ (P nshift)O . Since for every a ∈ N , a′ ∈ N ′ and vice versa.
N ∪ N ′ satisfies every rule r ∈ P subset ∪ P supset. Thus, assume that r ∈ (P min)O . Since
B−(r) = ∅, there is a rule r ′ ∈ P such that H(r) = H(r ′)∪(B−(r ′))′ and B+(r) = B+(r ′)
where B−(r) = ∅. Further, by definition of the GL reduct, there is a rule r ′′ ∈ P M such
that H(r ′′) = H(r ′), B+(r ′′) = B+(r ′), and B−(r ′) ∩ M = ∅ or there is no rule r ′′ ∈ P M

because B−(r ′) ∩ M �= ∅.
Since N is a model of P M , one of the following cases holds (i) H(r ′′) ∩ N �= ∅,

(ii) B+(r ′′) \ N �= ∅, or (iii) B−(r ′) ∩ M �= ∅. Assume that Case (i) holds. Since H(r) =
H(r ′) ∪ B−(r ′) and H(r ′) = H(r ′′), we obtain that H(r) ∩ N �= ∅. Thus, N also satisfies
r . Assume that Case (ii) holds. Since B+(r ′′) \ N �= ∅ and B+(r) = B+(r ′) = B+(r ′′),
we have that B+(r) \ N �= ∅. Hence, N also satisfies r . Assume that Case (iii) holds.
Since B−(r) = ∅, the rule r is not removed from (P nshift)O when constructing the GL
reduct from P nshift. As B−(r ′) ∩ M �= ∅ and H(r) = H(r ′) ∪ B−(r ′), we conclude that
H(r)∩M �= ∅. Finally, since N � M , we obtain that H(r)∩N �= ∅. Consequently, N also
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satisfies r . We conclude that N is also a model of (P nshift)O , which contradicts the assump-
tion that O is minimal model of (P nshift)O and thus contradicts that O is an answer set of
P nshift. Hence, we also established the if direction of the claim.

After showing the previous two lemmas, we are ready to show the correctness of Theorem 16.

Proof (Correctness of Theorem 16) From Lemma 17, Lemma 18, and the reduction in
Lemma 12 it immediately follows that we have a formula Fpos, which encodes P pos, and a
formula Fsupset, which encodes P supset. Then, P is a yes-instance, i.e., M is an answer set
of P , if and only if the constructed WMMSAT instance with ϕ = Fpos and π = Fsupset is a
yes-instance, i.e., VM∪M ′ is a minimal model of ϕ and VM∪M ′ is a model of π where VM∪M ′
is the set of variables that correspond to M and M ′.

Using the reduction of the proof of Lemma 12, the WMMSAT instance is then given
by ϕ := Fpos and π := Fsupset for a formula that encodes P pos and a formula that
encodes P supset. It remains to observe that the reduction preserves all parameters.

– maxsizer
H,B− : Let d ≥ 2 be some integer. Moreover, assume that maxsizer

H,B− ≤ d,
by construction of Fpos each clause in Fsubset contains at most 1 positive literal and the
maximum number of positive literals in a clause of Fmin is at most d. Moreover, each
clause in Fsupset contains at most 1 positive literal. Hence, maximum number of positive
literals in each clause of the resulting formulas is at most d.

– k: Let k ≥ 0 be some integer. Moreover, assume that |M| ≤ k. By construction of
Fpos, M ⊆ at(P ) is an answer set of P if and only if VM∪M ′ is a minimal model of
Fpos and VM∪M ′ is a model of Fsupset. Hence, we have |VM∪M ′ | ≤ 2k by construction.
Consequently, the maximum weight of the minimal model of Fpos is bounded by 2k.

– #non-Hornr : Let h ≥ 0 be some integer and assume that #non-Hornr ≤ h. By con-
struction of Fsubset and Fsupset contain only Horn clauses. Moreover, a rule is not Horn
if and only if the corresponding clause in Fmin is not Horn. Hence, h provides an upper
bound for the number of non-Horn clauses of Fmin and thus of Fpos and Fsupset.

Finally, we obtain according to Proposition 14 fixed-parameter tractability of the prob-
lem k-CONSISTENCY when parameterized by k + maxsizer

H,B− or when parameterized by
#non-Horn + maxsizer

H,B− . We obtain membership for k-BRAVE REASONING by the same
arguments. Hence, the statement of the theorem holds.

Next, we lift Statements (iii) and (iv) of Proposition 15 to arbitrary programs. Recall that
by definition programs in NF+Cons have an empty negative body for non-constraint rules
and hence the parameter #atr

B− is of value 0. Then, we can see the parameter #atr
B− as an

immediate measure for the number of GL reducts of non-constraint rules.

Theorem 19 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING}. Then L is fixed-
parameter tractable when parameterized by each of the following parameter combinations

(i) k + #atB+ + maxoccr
H,B− + maxsizec

B− + #atr
B− and

(ii) #atB+ + #non-Hornr + maxsizec
B− + #atr

B− .

Proof In order to decide k-CONSISTENCY, we give an fpt-reduction that constructs 2#atr
B−

many programs that can be solved in fpt-time using results established in Proposition 15.
To this end, let (P, �) be an instance of k-CONSISTENCY, N := ∪r∈Pr

(
atr

B−
)
, M1 ⊆ N ,

and M0 := N \ M1. Further, we define the partial GL reduct of a program P under
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the tuple (M0, M1) of disjoint sets of atoms as the program P (M0,M1) := {H(r) ←
B+(r),¬(B−(r) \ M0) : B−(r) ∩ M1 = ∅ }. Then, we set P c

M1,M0
:= {⊥ ← ¬a : a ∈

M1 } ∪ {⊥ ← a : a ∈ M0 } and let P [M0,M1] := P (M0,M1) ∪ P c
M1,M0

.
The program P has an answer set of size at most k if and only if at least one pro-

gram P [M0, M1] has an answer set of size at most k − |M1|. Therefore, observe that
AS(P ) = { AS(P [M0,M1]) : M1 ⊆ N,M0 = N \ M1 } is true from the definitions of an
answer set and the construction of P [M0, M1] (see also Proposition 4 in earlier work [28]).
In this way, we give a reduction to 2#atr

B− many instances of k-CONSISTENCY that consists
of 2#atr

B− many subprograms by constructing partial GL reducts under a set M1 and a set M0
together with constraints that enforce that any minimal model M of the GL reduct satisfies
that atoms in M1 belong to M and atoms in M0 do not belong to M . Recall that the set M1
consists of atoms that we have set to true and M0 consists of atoms that we have set to false.

It remains to observe that our reduction preserves the parameters:

– k remains unaffected,
– #atB+(P [M0,M1]) = #atB+(P ) + #atr

B−(P ),
– #non-Hornr (P [M0,M1]) = #non-Hornr (P ),
– maxoccr

H,B−(P [M0,M1]) ≤ maxoccr
H,B−(P ), and

– maxsizec
B−(P [M0, M1]) = max{ maxsizec

B−(P ), 1 }.
Since our algorithm constructs 2#atr

B− many programs that can be solved in fpt-time
according to Proposition 15, our algorithm runs in fpt-time. We obtain membership for
k-BRAVE REASONING by the same arguments. Hence, the theorem follows.

5 Discussion

The reduction in the proof of Theorem 19 states that ASP and WMMSAT are very related
with respect to the considered reasoning problems. However, answer sets additionally
require minimality with respect to the GL reduct of the given program. In consequence,
we need to parameterize additionally in the number of negative atoms that occur in non-
constraint rules of the given program. Particularly, we do not have a direct counterpart of
the concept of a compact representation for atoms in the head (see the concept of SSMs
in [46]) if the positive body is empty and the negative body is not empty. An alternative way
to parameterize in the number of negative atoms that occur in non-constraint rules would
be a transformation that compiles negative atoms away while the blowup is bounded by a
function of the parameter. There are already results in the literature that provide transfor-
mations from programs that contain negations into programs with few negations, however
with a slightly different focus. Eiter and Polleres [16] have established a reduction from
head-cycle free programs, which are disjunctive programs where certain cyclic dependen-
cies are forbidden and where the complexity of the problem CONSISTENCY is still in NP.
Janhunen [40] considered programs and transformations between classes of programs if
default negation is also allowed in the heads of disjunctive rules.

The next result states that a fixed-parameter tractability result for the ENUM problem
directly extends to a fixed-parameter tractability result with the same parameter for our
considered ASP reasoning problems, where we are interested only in answer sets of size at
most k.
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Proposition 20 Let p be an ASP parameter. If the problem ENUM is fixed-parameter
tractable when parameterized by p, then for every problem L ∈ {k-CONSISTENCY,
k-BRAVE REASONING}, L is fixed-parameter tractable when parameterized by p.

Proof If the problem ENUM is fixed-parameter tractable when parameterized by p, then
the problem k-ENUM is fixed-parameter tractable with respect to p. Thus, we can simply
enumerate all answer sets of size at most k in fpt-time and decide any of the listed problems
in fpt-time. Hence, the claim holds.

5.1 Backdoors

Known results for backdoors [26] immediately apply to our problems in k-AspProblems .
Backdoors have been defined as follows. Let C be a class of programs. A set X of atoms is
a strong C-backdoor of a program P if PM,N ∈ C for all sets M ⊆ X and N = X \ M . A
class C of programs is enumerable if for each P ∈ C we can compute AS(P ) in polynomial
time. Intuitively, if the class of programs is enumerable it has a small number of answer
sets, which can then be used to easily answer various reasoning questions.

Proposition 21 ([26]) Let C be an enumerable class of normal programs. The problem ENUM

is fixed-parameter tractable when parameterized by the size of a strong C-backdoor.

Corollary 22 Let C be an enumerable class of normal programs. Every problem L ∈
{k-CONSISTENCY, k-BRAVE REASONING} is fixed-parameter tractable when parameter-
ized by the size of a strong C-backdoor.

5.2 Treewidth

Earlier work on the computational complexity of ASP problems when parameterized by
treewidth [20, 21, 39] has considered these problems only when arbitrarily large answer sets
are allowed. In this section, we comment on these results under the restriction that we are
interested in answer sets of size at most k.

Graph representations Treewidth is a parameter that originates in graph theory. To employ
treewidth in our setting we require standard definitions [20, 39] of a graph representation of
a program as follows. The primal graph GP of program P has the atoms of P as vertices
and an edge {a, b} if there exists a rule r ∈ P and a, b ∈ at(r). The incidence graph IP of
P is the bipartite graph that has the atoms and rules of P as vertices and an edge {a, r} if
a ∈ at(r) for some rule r ∈ P .

Treewidth Intuitively, treewidth measures the closeness of a graph to a tree. The idea of
exploiting treewidth is mainly based on the observation that problems on trees are often
computationally easier to solve on trees than on arbitrary graphs. The definition of treewidth
is based on so-called tree decompositions of graphs where sets of vertices of the input graph
are arranged as labels (bags) at the nodes of a tree such that certain conditions are satisfied.
The width of a tree decomposition is the size of a largest bag minus 1. Then, the treewidth of
a graph is the width of an tree decomposition of smallest width. Next, we provide a formal
definition for the parameter treewidth. Let G = (V ,E) be a graph, T = (N, F, n) a rooted
tree, and χ : N → 2V a function that maps each node t ∈ N to a set of vertices. We call the
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sets χ(·) bags and N the set of nodes. Then, the pair T = (T , χ) is a tree decomposition
of G if the following conditions hold:

1. for every vertex v ∈ V there is a node t ∈ N with v ∈ χ(t);
2. for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and
3. for any three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2).

We call max{ |χ(t)| − 1 : t ∈ N } the width of the tree decomposition. The treewidth tw(G)

of a graph G is the minimum width over all possible tree decompositions of G. Then,
primtw(P ) := tw(GP ), which defines the parameter primal treewidth, or primtw for short.
Further, inctw(P ) := tw(IP ) yielding the parameter incidence treewidth, or inctw for short.

The next result states that previous results for treewidth on answer set programming can
be extended when we consider answer sets of size at most k.

Corollary 23 Let L ∈ {k-CONSISTENCY, k-BRAVE REASONING}. Then, the problem L

is fixed-parameter tractable when parameterized by each of the following parameters (i)
primtw + k and (ii) inctw + k.

Proof (Sketch) The result follows from earlier work [20, 21]. In the presented dynamic pro-
gramming algorithm for the dependency graph one stores tuples in the table for each node
of the tree decomposition. Such a tuple consist of a set of atoms relevant for the SAT part of
the problem and a family of sets of atoms relevant for the UNSAT part. Similar when solv-
ing the counting problem (see [20, Algorithm 4]), we can extend each tuple by an integer �

which expresses how many atoms have been set to true during the (bottom-up) traversal of
the tree decomposition. Then, the algorithm discards results where � > k. This algorithm is
an fpt-algorithm for the parameter primtw + k. For the parameter inctw, previous dynamic
programming algorithms require larger tuple, which store additional information. How-
ever, we can proceed in a similar way as before by extending each tuple with an integer �.
Again, the algorithm discards results where � > k which in turn gives an fpt-algorithm. This
concludes the proof of the corollary.

6 Conclusion

We have identified several natural structural parameters of ASP instances, which are sum-
marized in Table 2. We have carried out a fine-grained complexity analysis of the main
reasoning problems in answer set programming when parameterized by various combina-
tions of these parameters. Our study also considers the parameterized complexity of the
main ASP reasoning problems while taking the size of answer sets into account. Such
a restriction is particularly interesting for applications that require small solutions. We
have presented various hardness and membership results, which are outlined in Table 4
and detailed references to the results can be found in Table 2. Every hardness result of
the reasoning problems when parameterized by a parameter combination also holds for
any parameter that consists of a subset of the combination. Further, every fixed-parameter
tractability result of the considered problems when parameterized by a parameter com-
bination also holds for any extension of the parameter by additional structural properties
(superset of the parameter combination). In that way, we have improved on the theoretical
understanding by providing a novel multiparametric view on the parameterized complexity
of ASP, which allows us to draw a detailed map for various ASP parameter combinations.
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Table 4 Summary of multiparametric complexity results for k-CONSISTENCY. For each line the marked
columns indicate according to the header a ASP parameter combination. Membership or hardness results are
stated in the last column

Future work The results and concepts of this paper give rise to several research questions.
For instance, it would be interesting to close the gap for the remaining parameter combina-
tions. Therefore, we need to identify important corner cases. Another interesting question
is whether we can drop the number of atoms in the negative body of non-constraint rules
from Statements (i) and (ii) in Theorem 19 (k + #atB+ + maxoccr

H,B− + maxsizec
B− or

#atB+ + #non-Hornr + maxsizec
B− ), which does not complete the picture but would give

insights on how to reduce ASP to WMMSAT without #atr
B− as parameter. Moreover, we

think that it would also be interesting to consider ASP with extended rules such as choice
rules for a systematic analysis. Currently, the size of the program for the counters as used
in Definition 6 are fairly big. One can reduce the size by using BDD-style [14, 41] or car-
dinality network [6, 7] based counters. We think that a comprehensive analysis of whether
these translations preserve the various parameters, as presented in our work and additional
parameters as present in the literature, are interesting for future work. Another interest-
ing further research direction is to study how the parameters empirically distribute among
ASP instances from the last ASP competitions, in particular, in random versus structured
instances. An interesting problem for multiparametric view on the computational complex-
ity is counting in answer set programming and in particular projected counting [18, 22]
as well as related frameworks such as argumentation [19]. Additionally, it would be inter-
esting to conduct a parameterized analysis as well as considering multiple parameters in
the non-ground setting. Finally, it might be interesting to consider multiple parameters for
generalizations of ASP such as default logic [23, 24, 52].
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