
Annals of Mathematics and Artificial Intelligence (2019) 86:193–229
https://doi.org/10.1007/s10472-019-09632-y

Digital forensics and investigations meet artificial
intelligence

Stefania Costantini1,2 ·Giovanni De Gasperis1,2 ·Raffaele Olivieri1,2

Published online: 24 April 2019
© Springer Nature Switzerland AG 2019

Abstract
In the frame of Digital Forensic (DF) and Digital Investigations (DI), the “Evidence Anal-
ysis” phase has the aim to provide objective data, and to perform suitable elaboration of
these data so as to help in the formation of possible hypotheses, which could later be pre-
sented as elements of proof in court. The aim of our research is to explore the applicability
of Artificial Intelligence (AI) along with computational logic tools – and in particular the
Answer Set Programming (ASP) approach — to the automation of evidence analysis. We
will show how significant complex investigations, hardly solvable for human experts, can
be expressed as optimization problems belonging in many cases to the P or NP complexity
classes. All these problems can be expressed in ASP. As a proof of concept, in this paper we
present the formalization of realistic investigative cases via simple ASP programs, and show
how such a methodology can lead to the formulation of tangible investigative hypotheses.
We also sketch a design for a feasible Decision Support System (DSS) especially meant for
investigators, based on artificial intelligence tools.

Keywords Digital forensics · Digital investigation · Artificial intelligence ·
Answer set programming · Automatic investigation · Forensic models

Mathematics Subject Classification (2010) 68T27 · 97R40

� Stefania Costantini
stefania.costantini@univaq.it

Giovanni De Gasperis
giovanni.degasperis@univaq.it

Raffaele Olivieri
raffaele.olivieri@gmail.com

1 Università degli Studi dell’Aquila, L’Aquila, Italy
2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica via Vetoio snc Loc. Coppito,

I-67100, L’Aquila, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-019-09632-y&domain=pdf
http://orcid.org/0000-0002-5686-6124
mailto: stefania.costantini@univaq.it
mailto: giovanni.degasperis@univaq.it
mailto: raffaele.olivieri@gmail.com

194 S. Costantini et al.

1 Introduction

An investigation consists, in general terms, in the series of actions and initiatives imple-
mented by the investigators (law enforcement and judges) in order to ascertain the “truth”
and acquire all possible information and data about a perpetrated crime and related facts
with their logical implications. A large number of subjects are involved in this process,
where they help to pursue a criminal activity, which could still be in progress. In an accu-
rate vision, and according to the Italian Code of Criminal Procedure, investigations can be
defined as “the set of activities carried out by the officers and agents of the criminal police”.
An investigation has, overall, the aim of establishing the existence of a crime and the conse-
quences that it has determined (generic proof or “de delicto”), and identifying the criminals
(specific proof or “de reo”).

These activities start from the act of acquisition of the crime notice or from the analysis
of a crime scene. Through a series of initiatives and actions, the investigation allows the col-
lection of data and elements which, according to certain deductive logical reasoning, should
lead to draw conclusions. Investigative cases are usually complex, and involve a number of
factors that need to be taken into account. Most of the collected data are nowadays obtained
through digital devices and platforms either seized from the suspects, or available on the
Internet or shared by telecommunication companies. Thus, Digital Forensics is a branch
of criminalistics which deals with the identification, acquisition, preservation, analysis and
presentation of the information content of computer systems, or in general of digital devices.
In particular, the main focus of this paper is to address the phase of “Evidence Analysis”,
performed on data collected from various electronic devices by the means of specialized
software, and according to specific regulations.

Such evidence is examined and aggregated so as to reconstruct possible events, event
sequences and scenarios related to a crime. Results of the Evidence Analysis phase are ele-
ments of proof that are then made available to law enforcement, investigators, intelligence
agencies, public prosecutors, lawyers and judges. In the case of a cybercrime for example,
in line with the recommendation of the European Commission: “At a national level, Mem-
ber States should ensure common standards among police, judges, prosecutors and forensic
investigators in investigating and prosecuting cybercrime offenses”. Concerning the poli-
cies used by Police institutions for sharing technologies and information, the European
institutions adopt procedures established within the ENFSI (European Network of Forensic
Science Institutes).

Nowadays, commercial-off-the-shelf (COTS) software products exist to manage Digi-
tal Forensics cases. Such products are usually workflow-driven, and provide mechanisms
for information access, for search and data visualization. However, support for the effec-
tive aggregation and organization of useful evidence is simply non-existent. Human experts
proceed to the analysis of data, including temporal sequences, and reach their conclusions
according to their intuition and their experience. A formal explanation of such conclusions
cannot generally be provided. Often, different experts reach different conclusions, and the
arguments that they provide in support seem equally valid.

Although each case has distinct characteristics, and a variety of cases can be found,
practical experience allows one to notice that many cases, or better significant fragments
of cases, be modeled via well-known algorithmic puzzles. As an officer of the Digital
Forensics Laboratory of an Italian police force with national jurisdiction, Raffaele Olivieri
(one of the authors of the present paper) has performed, for his Ph.D thesis, [49] a deep
analysis of a great number of real cases. The thesis has been carried on as a part-time

Digital forensics and investigations meet artificial intelligence 195

research student, in parallel with everyday investigation work. The aim of attending a Ph.D.
was exactly that of devising novel techniques to be applied to cases in the Laboratory,
which has actually been done in practice. Such analysis has made it possible in some parts
of investigative cases to identify and experimentally treat samples which are representa-
tive of significant classes of complex investigations by analogy to known Computational
Logic techniques. In particular, we have adopted Answer Set Programming (ASP) prob-
lem encodings. ASP is in fact a well-established Computational Logic paradigm for solving
combinatorial/optimization/planning problems starting from a declarative specification of
them and their associated constraints. Solutions to the given problem or, better, plausi-
ble scenarios underlying the ASP problem formulation can be found via publicly available
inference engine called “solvers”.

Thanks to the experience gained over the years in investigations, we are able to claim with
good reason that indeed a wide range of real cases can be mapped to computational prob-
lems, often to known ones. Modern investigative activities are composed of well-established
practical steps, such as the crime scene reconstruction, alibi verification, as well as the anal-
ysis of huge amounts of data coming from data files, smart-phone and telephone logs. So,
in this paper we present ASP formulations of these sample problems. We do not pretend
though that every possible case is reducible to such problem templates. Our wider long-term
perspective is in fact to construct a tool-kit that can be extended in time, to provide support
to the investigation activities, automating most of the low level data handling methods, sup-
porting the investigator at the abstract level as well. When applicable, the ASP formulations
generate all possible scenarios compatible with the case’s data and constraints. In the gen-
eral case, this can be of great help as the human expert might sometimes overlook some of
the possibilities. This has been verified by everyday practice, where different experts often
generate different interpretations.

In a future perspective, we may notice that logical methods (like ASP) could pro-
vide a broad range of proof-based reasoning functionalities (including, e.g., time and time
intervals logic, causality, forms of induction, etc.) that can be possibly integrated into a
declarative framework for Evidence Analysis where the problem specification and the com-
putational program are closely aligned. The encoding of cases via such tools would have
the benefit that (at least in principle) correctness of such declarative systems based on com-
putational logic can be formally verified. Moreover, recent research has led to new methods
for visualizing and explaining the results of computed answers (e.g., based on argumen-
tation schemes). So one could not only represent and solve relevant problems, but might
also employ suitable tools to explain the conclusions (and their proofs) in a transparent,
comprehensible and justified way.

The mapping of a case to a computational-logic-based formulation is clearly a responsi-
bility of the analyst, who may hopefully succeed or possibly fail to devise it. More generally,
it may happen that an investigator fails to find the solution to a case exactly because he is
not aware of suitable techniques and tools, or because he fails in reconstructing the logical
thread that connects the available elements. The European judicial authorities, in case of
unsolved or controversial cases, refer in fact to external consultants to ascertain that all that
could be possibly done has actually been done by the investigators in charge. So, the inves-
tigators are in practice expected to be able to make appropriate analogies in order to decode
case elements, and are (nowadays) supposed to be able to resort to automated tools whenever
available. Thus, it is by no means unreasonable to assume that the proposed methodology,
which improves over the (few) existing tools, can be used by investigators. Digital forensic
experts are usually computer scientists (at the Master or Ph.D. level) who are more skilled

196 S. Costantini et al.

than average and who have the duty to keep themselves updated and well informed about
the latest ICT technological advancements.

In the future however, we envisage the specification and implementation of Decision
Support Systems (DSS) to support the analysts in such task. Available investigative infor-
mation should be treated, in this perspective, via algorithmic solutions whose correctness
can be proven. A very important point concerns the complexity of the required algorithms.
After a thorough analysis and systematization of past real cases, anonymising data, we have
been able to assess that NP formulations are often sufficient, with few cases where one has
to climb a further level of the polynomial hierarchy. The NP representation is mandatory,
as in general the available data will not provide a unique solution, but rather a set of plausi-
ble scenarios which are compatible with what is known. In particular cases, the NP forensic
formulation has a solution in P. Though an investigative case may involve several data, it
translates in general into a relatively small or medium instance of an NP problem, solvable
by state-of-the-art ASP inference engines. However, case analysis is required to obtain the
instance to be calculable in a timely process, that must be performed with due degree of
accuracy and precision, so the necessary CPU time can be scheduled and spent.

In this paper, we make a first step in the above-outlined direction. In fact we illustrate,
as a proof of concept, the transposition of a number of sample common investigation cases
into Answer Set Programming (ASP), and we devise in general terms a methodology for
doing so.

ASP is, as mentioned, a well-established paradigm for representing problems in P and
NP or, with some extensions, even higher in the polynomial hierarchy [4, 27, 28, 31, 40, 43,
57]. ASP has been selected for our experiments because of its easy of use and readability, for
the availability of efficient inference engines (“ASP solvers”, [3]) and for the possibility of
performing proof of correctness of the software (the reader may refer to [41, 50, 51] for the
definition of the underlying formal properties); recent research work [2, 22, 25] allows such
proofs to be resilient w.r.t. changes in the instance or even (with some well-defined restric-
tions) in the representation. The ASP approach to problem-solving consists basically in the
following: (i) encoding of given problem via an ASP program; (ii) computing the “answer
sets” of such program via an inference engine, or “ASP solver”, considering that a program
may have none, one or several answer sets; if no answer set exists, then the given problem
instance is not consistently solvable; different answer sets represent instead alternative solu-
tions; (iii) extracting the problem solution by examining such answer sets so as to choose the
most suitable one; answer set contents must be in general reformulated in the terms of given
problem. Many real-world (industrial) applications have demonstrated the effectiveness of
ASP in practice, since complex business-logic features can be developed with ASP-based
technologies at a lower implementation price with respect to imperative languages. This in
addition to other several advantages observed from the software engineering perspective,
while developing real world applications, like flexibility, readability, extensibility, ease of
maintenance, etc. Indeed, the possibility of modifying complex reasoning tasks by simply
editing a text file with ASP rules, and testing it on web site together with the customer,
is a widely-recognized advantage of ASP-Based development. This aspect of ASP-based
software development has been a success factor for applications where the high complex-
ity of the requirements was a main obstacle. Moreover, ASP solvers implement advanced
optimization techniques leading to a huge speed up of the computation so as to handle real-
world applications where a timely response has to be provided to instances involving huge
data sets. In addition, ASP has been endowed with effective programming tools supporting

Digital forensics and investigations meet artificial intelligence 197

the activities of researchers and implementers and simplify the integration of ASP into the
existing and well-assessed development processes and platforms.

We choose on purpose to translate some sample investigation problems into well-known
combinatorial problems and to use for demonstration existing ASP encodings, in analogy
to the reduction methodology that is customary in complexity theory. This is because our
intent here was not that of devising new code, rather it was exactly that of demonstrating
how sample cases might be reduced to well-known computational problems. These encod-
ings and many others might in perspective constitute elements to exploit, combine and
customize in the envisioned Decision Support System. We do not claim that such a system
should be based on ASP only: on the contrary, we believe that many other AI techniques
can be exploited in a synergistic way in this field; for instance, but not exclusively, abduc-
tion, abductive logic programming and argumentation (cf. among many, [1, 34, 35, 38]),
modal and temporal logics in various forms [5, 26, 39, 52, 58] or hybrid approaches [12,
47], probabilistic logic programming [54], are all good candidates under many aspects. In
fact, a plausible architecture for the envisioned system is depicted in Fig. 1. There, an
intelligent agent is supposed to be in charge of supporting the human investigator in her
activities. The agent should help identify, retrieve and gather the various kinds of potentially
useful evidence, process them via suitable reasoning modules, and integrate the results into
coherent evidence. In this task, the agent may need to retrieve and exploit knowledge bases
concerning, e.g., legislation, past cases, criminal history of the suspects, and so on. The pic-
ture should be seen simply as an illustration of the envisaged environment with no pretence
of precision; the agent considers the sample proof elements discussed in the next sections:
results from blood-pattern analysis on the crime scene, which lead to model such a scene via

Fig. 1 Envisioned DSS architecture

198 S. Costantini et al.

a graph, where suitable graph reasoning may reconstruct the possible patterns of action of
the murderer; alibi verification in the sense of a check of the GPS positions of suspects, so
as to ascertain the possibility of her/him being present on the crime scene at the crime time;
alibi verification in the sense of double-checking the suspect’s declarations with digital data
such as computer logs, videos from video-cameras situated on the suspect’s path, etc. All
the above can be integrated with further evidence such as the results of DNA analysis and
others. The system can also include Complex Event Processing modules so as to infer from
significant clues the possibility that a crime is being or will be perpetrated. For the sys-
tem’s engine, we plan to explore the usability of Multi-Context Systems (MCS) [7, 8, 10]
and of their agent-oriented extensions such as DACMACS (Data-Aware Commitment-based
managed Multi-Agent-Context Systems, [18, 20]) and ACEs (Agent Computational Envi-
ronments, [17]). Thus, in this paper we intend to demonstrate the suitability of automated
reasoning, and of ASP in particular, for realizing the reasoning module to be exploited in
such a prospective system.

This work does not intend to be exhaustive on the covered topics. Rather, the main objec-
tive has been to create a link between the scientific and legal “worlds” to foster further
studies, analysis and research aimed at creating Intelligent Agents and Intelligent Systems
[29], supporting the decisions of judges, lawyers, police forces, criminologists, government
offices, etc.. Notice that, according to current legislation they can merely be auxiliary tools,
and not substitutes, to the human decision-maker. So, the results of Evidence Analysis
provide elements to be considered in trials and do not “solve the case” as a naive interpre-
tation might suggest. We must remark that, according to the current Italian legislation and
to European directives, such a comprehensive system would be a “Decision Support Sys-
tem”, that is, it might support a judge in her/his decision making process but not act as a
substitute.

Concerning related work, a wide corpus of literature about the applications of Artificial
Intelligence (AI) in the legal field exists. The reader may refer to the Springer Journal “Arti-
ficial Intelligence and Law” for a wide perspective. Some papers treat the cognitive and
psychological aspects, and the ethical and social implications of the application of Artificial
Intelligence in the legal field. Such issues are of great importance, and are indirectly related
to this research, concerning the acceptability of the developed techniques by the involved
parties. The technical papers however mostly concern the formalization of norms, and the
automation of reasoning on formalized norms, and the construction and use of expert sys-
tems. A survey (in Italian) about existing Expert Systems for legal reasoning is [44]. An
interesting line of work concerns the representation of norms in terms of modal and deon-
tic logics, so as to be able to represent obligations and permissions, and to model legal
responsibility. The reader may refer to [33, 55, 56] and to the Ph.D. thesis (in Italian) [32].
Therefore, the line of work that we propose is novel in this area of research. In a hypotheti-
cal workflow, existing work would be situated “a posteriori” with respect to the content of
the present work; in fact, we propose a procedure for generating investigation hypothesis
from available data. The aforementioned systems might then be used for evaluating such
hypothesis and reaching a solution according to the normative corpus.

The paper is organized as follows. After an overview (Section 2) on Digital Forensics
(DF) and Digital Investigation (DI), in Section 3 we briefly outline the proposed approach.
In Section 4 we provide a basic introduction to Answer Set Programming (cf., e.g., [9] for
a more complete though synthetic introduction to ASP, accessible also to non-experts read-
ers). In Sections 5, 6, 7, 8, 9 and 10, we will examine the possible solution of some realistic

Digital forensics and investigations meet artificial intelligence 199

investigative cases via ASP, through a reduction to well-known optimization problems. We
have tried to make the paper readable by the non-expert, including readers from the legal
field; this is why we have explicitly included, for all examples, the commented ASP code
(even when it is simple and well-known) and the results returned by ASP solvers, and we
have made the code self-contained so that it can be re-run by the interested reader.

2 Digital forensics and digital investigation

The Digital Forensics (DF)1 is the discipline that deals in the legal field of the study, identifi-
cation, conservation, protection, extraction, documentation and any other form of treatments
of digital data [14]. The aim is that, after being transformed into an information content by
applying suitable forms of reasoning, the data can be assessed as part of a criminal or civil
trial.

The DF is thus a branch of criminalistics whose activities are aimed at highlighting
the existence of digital evidence relevant to the fulfilment of a trial, or even before to the
investigative phases. It is the process that uses science and technology to analyse digital
objects that developing, and tests, theories can also be used legally to answer questions
about events that have happened [13]. DF has quickly carved out an ample space also in
business environments, aiming to highlight the violations within the industrial secret and/or
breach of the security policies and to deal with cyber incidents.

Digital Investigation (DI) involves investigation procedures in which there is the need to
develop and test hypotheses to answer questions about digital events, in order to understand
whether something illegal is happening or is likely to happen. In fact, the operation phase
of the DI concerns a time-frame when the crimes or facts are still ongoing and the aim is
exactly to identify them.

Although the two disciplines are distinct, their operation is not necessarily performed in
sequence, i.e., the latter upon completion of the former. Rather their activities may overlap,
and similar techniques can be used.

DF and DI have some peculiarities with respect to other forensic sciences, among which
the fact that they cannot be considered “comparative sciences”. This is a difference with
respect to forensics concerning, e.g., biology, chemistry or ballistics. DF & DI are char-
acterized by constantly evolving and changing techniques, according to the fast process of
innovation in the ICT sector, involving analysis methods, instruments, tools, protocols, and
structural components relative to the digital systems being analyzed.

The DF and DI approaches are not confined to the obvious cyber-crime spectaculars
which capture media attention, but are applied also in many other penal, civil and industrial
contexts.

2.1 Sectors of digital forensics and digital investigation

Depending on the area of investigation, DF and DI can be seen as divided into sub-
categories, specialized in particular fields of technology. The following are the main
fields:

1The forensic term is understood as the science that studies the value in a case of certain events to the
formation of possible evidence.

200 S. Costantini et al.

– Computer Forensics: is the “oldest” and best scientifically settled sector, and covers the
activities of analysis of the contents of storage devices, such as HDD, SSD, CD, DVD,
Flash Memory, etc.;

– Mobile Forensics: it relates to the activities of analysis of the contents of the memory
of mobile devices, such as mobile phones, smart-phones, tablets, satellite navigator
systems, etc.;

– Network & Internet Forensics: it covers the activities of analysis of network systems
(including the Internet) and involves the collection, storage and analysis of network
events, aimed to the identification of data sources;

– Live Forensics: covers the activities of analysis of the contents of RAM and running
systems that cannot be turned off;

– Embedded Forensics: concerns the analysis of “embedded” systems including trig-
gers explosives, actuators, detectors, functional analysis of electronic systems that are
unknown in features and functionality;

– Cloud Forensics: concerns the analysis of distributed hardware and software resources,
affordable and accessible via the Internet;

– Videos & Multimedia Forensics: concerns the analysis of multimedia files such as
audio, video and images aimed at finding traces of alteration and/or to research hidden
contents.

2.2 Phases of digital forensics and investigation

The DF and DI, as any other forensic discipline, have to follow rigorous methodologies and
procedures whose main stages are reported in Fig. 2.

– Identification: is the phase aimed to research, document and justify all devices (digi-
tal or not) relevant to the investigations, with the aim to establish which among them
are capable, at least theoretically, to store any reliable information relating to the
investigative case;

– Acquisition: is the activity directed to evidence collection, i.e., acquisition of digital
and other data that are relevant or might have some connection with a crime; procedures
must be carried on without altering the data or the system, or at least so as to minimize
the impact;

– Preservation: the technical activity of preserving both logical and physical digital evi-
dence so as to ensure admissibility and resilience w.r.t. possible disputes in trial,
offering the reliability required by law for all trial phases;

– Analysis: is the set of operations performed in a scientific context with methodical
and demonstrable procedures, directed to produce elements that confirm or disprove an
accusatory or defensive hypothesis;

Identify Acquire Preservation Analysis Presentation

Fig. 2 Main Phases of DF and DI

Digital forensics and investigations meet artificial intelligence 201

– Presentation: is the phase aimed to document the activities and results of the single
phases, performed through formal reports.

The goal of the analysis phase is precisely to identify pieces of evidence extracted from
the digital evidence, organize them, and make them robust for their next transformation into
proof to be presented in trial. The constant and ever increasing development of electronic
and digital technologies is rapidly bringing the analysis phase of DF to a breakdown. This
phase is conventionally conducted and performed on the digital evidence sample (or on
its forensic copies) with forensic tools currently available on the various platforms, where
both proprietary and open-source software co-exist; although it is composed of ordered
sequences of activities, with rigorous and formal procedures, it is based on consolidated con-
ventional paradigms that tends to be obsolete while challenging the complexity of current
technology.

Thus, the difficulties are discharged on the human operator not avoiding her inevitable
limitations, such as the responsibility of managing heterogeneous mass of data, often
regarding events, actions, facts and/or sequences of them, so as to produce investigative
hypothesis. In the phases of analysis and evidence evaluation the operator should in fact
construct and evaluate alternative scenarios. Such scenarios should be constructed from the
examination of knowledge that is incomplete, fragmented, or referring to different points
of view. This requires in general the aggregation of heterogeneous knowledge sources and
may involve time, uncertainty, causality, fortuity or randomness. The operator should also
consider collateral though very relevant issues such as the demonstration of the awareness
of a digital action or the conscious possession of certain data, for which it is necessary to
consider the context.

The experience gained in the field of the DF, as well as the observation of the evolution
of the complexity of these analyzes occurred in the last decades, allows us to affirm that
more and more frequently:

– Technical assessments carried out on large amounts of data or digital evidence, although
providing a comprehensive response from the technical profile, are insufficient in terms
of investigative procedure or decision-making for judges, and sometimes are even
unusable, for the reasons mentioned above.

– Evaluation and decision, requiring an interpretation to allow a formulation of hypothe-
ses are charged exclusively to the intellectual effort and skills of the investigator and
her team. This methodology does not guarantee unequivocal and unambiguous results,
because the outcome is necessarily connected to the perception, sensitivity, culture,
experience and interpretation of the individual operator in charge. This is in practi-
cal and ethical terms unacceptable, as even too often episodes occur where the same
evidence, analysed from different human operators, leads to different conclusions.

Currently, no single established procedure exists for Evidence Analysis, which is usually
performed by Scientific Investigation experts on the basis of their experience and intuition.
We intend instead to promote formal and verifiable AI, Knowledge Representation (KR)
and Automated Reasoning methods and techniques for Evidence Analysis. In summary,
relevant aspects to consider include at least the following.

– Timing of events and actions.
– Possible causal correlations.
– Contexts in which suspicious actions occurred.
– Skills of the involved suspects.

202 S. Costantini et al.

– Awareness of the involved suspects of committing a violation or a crime and awareness
of the degree of severity of the violation/crime.

Moreover, given available evidence, all possibilities of interpretation should be identified,
examined and evaluated.

3 Proposed approach

The aim of this research is that all the above-mentioned activities should be performed via
techniques that are verifiable with respect to: (i) the results that they provide; (ii) how such
results are generated, and (iii) how the results can be explained. In the future, such software
tools should be reliable and provide a high level of assurance, in the sense of confidence in
the system’s correct behaviour. Otherwise, there remains an undesirable uncertainty about
the outcome of these stages, and different technicians analysing the same case can reach
different conclusions which may lead to different judgements in court.

In AI and Automated Reasoning, several methods and techniques have been developed
over the years for uncertain, causal and temporal reasoning, and for devising and examining
alternative consistent scenarios that might be compatible with a set of known facts. To the
best of our knowledge, these techniques are rarely applied to Digital Forensics and in par-
ticular to Evidence Analysis. Therefore, studying their applicability for future development
of suitable prototypes is “per se” a significant advance over the state of the art. Moreover,
the application to such a challenging field will foster refinements and improvements of the
known methods and techniques, and development of novel ones.

In the phase of Crime Identification or detection, the exploration of big data and the
application of machine learning techniques can be useful. Instead, the phase of Evidence
Analysis has particular requirements that make our proposal based upon KR and Automated
Reasoning a much more promising approach, potentially becoming a breakthrough in the
state-of-the-art. The ultimate goal of Evidence Analysis is in fact the formulation of ver-
ifiable evidence that can be rationally presented in a trial. Under this perspective, results
provided by machine learning classifiers or other types of “black box” recommender sys-
tems do not have more value than human witness’ suspicions and cannot be used as a legal
evidence. Logical methods provide a broad range of proof-based reasoning functionalities
that can be implemented in a declarative framework where the problem specification and
the computational program are closely aligned. This has the benefit that the correctness of
such declarative systems based on computational logic can be formally verified. Moreover,
recent research has led to new methods for visualizing and explaining the results of com-
puted answers (e.g., based on argumentation schemes). So one can not only represent and
solve relevant problems, but also provide tools to explain the conclusions (and their proofs)
in a transparent, comprehensible and justified way.

In summary, the rationale for the choice of Computational Logic relies on the fact that,
by its very nature, it is based on precise formalizations, and thus allows for the affordable
verification of desired properties of the systems that will be devised in the future as a follow-
up of the proposed Action. Verifiability, reliability and justifiability are key features for
software tools to be applied in a field such as Digital Forensics, where the evidence produced
is aimed at the reconstruction of crimes and establishing innocence or guilt.

For our first experiments that should pave the way to the wider picture that we envision
we have chosen Answer Set Programming because it can express combinatorial and plan-
ning problems in an easy and natural way, and because ASP formulations are understandable

Digital forensics and investigations meet artificial intelligence 203

also by the non-expert. The ASP code can be in fact translated or, more properly, transliter-
ated into natural language much more easily than code written in imperative programming
languages. Another reason is exactly that ASP formulations exist for many problems in both
P and NP complexity classes and, due to well-established programming extensions, even
higher on the polynomial hierarchy.

In the following sections we illustrate some sample investigative cases in which the use
of logic programming, and in particular of Answer Set Programming, allows one to for-
mulate actual investigative hypothesis from the case’s description provided in terms of an
ASP program solving some known combinatorial problem, where actual data about the case
given as facts in the program (problem’s instance).

More generally, we propose a methodology to exploit ASP in DF and DI. We assume
that a tool-kit of ASP programs which solve puzzles related to relevant and often-occurring
investigation problems is available. We also assume that such tool-kit is enriched in time:
whenever no already-included ASP piece of code matches the problem at hand, a new one
will be either found or developed. In fact, DF and DI activities are carried on in Laboratories
by a team involving Computer Science and ICT experts. In view of our approach, the team
will involve personnel which is expert in the applications of ASP and in ASP programs
development. The proposed methodology is organized into the following steps:

1 Description of the given investigative case, and partition into independent fragments.
2 Identification of a problem (typically in the NP complexity class) whose features fit

as best as possible a fragment of the case at hand. This can be repeated in relation to
several independent fragments of a case.

3 For each fragment:

3.1 Definition of a reduction from the case’s elements to the problem’s elements.
3.2 Formalization of the known facts concerning the actual case.
3.3 Identification of an ASP formulation of the problem, in two possible ways:

(i) by adapting a solution already present in the tool-kit;
(ii) if the former way fails, by enriching the tool-kit via a new

solution, tailored to the problem at hand.

3.4 Execution of an ASP solver to find the answer sets.
3.5 Interpretation of the answer sets as possible scenarios for the case fragment

at hand.

4 Integration of results obtained for the case fragments. Formulation of investigation
hypotheses that can constitute pieces of evidence to be provided to the judge and dis-
cussed in Court. This possibly includes transliteration of ASP code and of answer set
contents in terms understandable by lawyers, witnesses and jury.

Notice that the skill of the investigators is however required to identify possible corre-
spondences of (parts of) the given case with a known computational problem and thus with
one element of the ASP puzzles tool-kit. Moreover, reductions cannot be proved correct,
at least not in a formal way. The proposed methodology is however a great advance over
the state of the art. Nowadays in fact, all steps must be performed by human investiga-
tors and (some of the) scenarios that might correspond to solutions of the case are formed
purely on the base of experience and intuitions. So, the identified scenarios can be partial or
incomplete, and different experts may come to divergent interpretations. Defining a corre-
spondence with well-known problems with provably correct solutions that can be computed

204 S. Costantini et al.

via publicly available tools, whose results can be made public and can be explained consti-
tutes a great advancement and a safeguard for all the involved parties. In perspective, the
reduction process should be, if not fully automated, at least supported by suitable tools. At
present, step 2 is probably the most critical. The difficulty can be alleviated by constructing
over time a library of annotated past cases from which those more similar/analogous to the
one at hand can be extracted The corresponding formulation can then be suitably adapted.

To improve the methodology, we believe that a Case Specification Framework should
be defined, to describe each given case in a formal (or at least semi-formal) and organized
way. In fact, at present a case description consists of an unstructured set of pieces of natural
language text, pictures, graphics, tables, etc. Such definition effort goes beyond the scope
of this paper, however it will constitute subject of future work. The envisaged framework
should be human-friendly and should provide an environment for generating an integrated
picture of each given case. It should thus allow, with methods similar to those of Software
Engineering, to assess the quality of a specification and to check the reduction performed
in step 3. Coverage of all elements of the case might for instance be verified.

4 Answer set programming (ASP): an overview

Answer Set Programming (ASP) [30, 31], is a highly declarative and expressive program-
ming language oriented towards difficult search problems. It has been used in a wide variety
of applications in different areas, like problem solving, configuration, information integra-
tion, security analysis, agent systems, semantic web, and planning (for more information
about ASP and its application the reader can refer, among many, [4, 6, 28, 40, 57] and the
references therein).

Answer set programming has emerged from interaction between two lines of research:
first on the semantics of negation in logic programming [30, 31], and second on applications
of satisfiability solvers to search problems [36]. It was (independently) identified as a new
programming paradigm in [42, 46, 48]. In ASP, search problems are reduced to computing
answer sets (or “stable models” as they were originally denominated), and an answer set
solver (i.e., a program for generating stable models) is used to find solutions (if any exists)
[3].

The expressiveness of ASP, the readability of its code and the performance of the avail-
able solvers gained ASP an important role in the field of artificial intelligence; in particular,
it is increasingly adopted to encode problems of planning, diagnosis and, more generally,
combinatorial problems in knowledge representation and automated reasoning; applications
have been developed in several fields, as seen below. In the answer set semantics [30, 31], a
(logic) program Π is a collection of rules of the form: H ← L1, . . . , Ln

The left-hand side and the right-hand side of rules are called head and body, respectively,
where H is an atom, n � 0 and each literal Li is either an atom Ai or its default nega-
tion not Ai . A rule can be rephrased as H ← A1, . . . , Am, not Am+1, . . . , not An where
A1, . . . , Am can be called positive body and not Am+1, . . . , not An can be called negative
body. In practical programming, ’←’ is usually indicated as ’:-’. A rule with empty body
(n = 0) is called a unit rule, or fact. A rule with empty head, of the form ← L1, . . . , Ln,
is a constraint, and states that literals L1, . . . , Ln cannot be simultaneously true in any
answer set.

In the ASP literature, it is customary to implicitly refer to the “ground” version of answer
set program (ASP program) Π , which is obtained by replacing in all possible ways the

Digital forensics and investigations meet artificial intelligence 205

variables occurring in Π with the constants occurring in Π itself, and is thus composed of
ground atoms, i.e., atoms which contain no variables. The answer sets semantics approach
[30, 31] considers a logic program as a set of inference rules (more precisely, default infer-
ence rules), or, equivalently, a set of constraints on the solution of a problem: each answer
set represents a solution compatible with the constraints expressed by the program. Consider
simple program {q ← not p p ← not q}. For instance, the first rule is read as “assuming
that p is false, we can conclude that q is true.” This program has two answer sets. In the
first one, q is true while p is false; in the second one, p is true while q is false. So, nega-
tion in this paradigm is understood as default negation, i.e., not a indicates the (default)
assumption that a is false and thus its negation holds. Unlike other semantics, a program
may have several answer sets or may have no answer set, where however every answer set
is a minimal model of given program,2 and thus the answer sets form an anti-chain. When-
ever a program has no answer sets (as some minimal models may not be answer sets), the
program is said to be inconsistent. For instance, the following program has no answer set:
{a ← not b b ← not c c ← not a.}. The reason is that in every minimal model of this pro-
gram there is a true atom that depends (in the program) on the negation of another true atom,
which is strictly forbidden in this semantics, where every answer set can be considered as
a self-consistent and self-supporting set of consequences of a given program. The program
{p ← not p} has no answer sets either as it is contradictory not in the sense of classical
logic, but in the sense that p cannot be derived from not p, i.e., from the (default) assump-
tion that p itself is false. Constraints of the form defined above can be in fact simulated by
plain rules of the form p ← not p, L1, . . . , Ln. where p is a fresh atom. Consistency of an
ASP program is related (as discussed at length in [15, 16, 19]) to the occurrence of “odd
cycles” (of which p ← not p is the basic case, though odd cycles may involve any odd
number of atoms) and to their connections to other parts of the program. The reason is that,
in principle, the negation not A of atom A is an assumption, that must be dropped whenever
A can be proved, as answer sets are by definition non-contradictory. Many extensions of the
original “Answer Set Prolog” have been proposed, mainly motivated by applications. Some
of them are “syntactic sugar” and some other strictly adds expressiveness to the language.
For details about these extensions, the reader can refer to [28, 29] and to references therein.

In the ASP paradigm, as mentioned each answer set is seen as a solution of given prob-
lem, encoded as an ASP program (or, better, the solution is extracted from an answer set by
ignoring irrelevant details and possibly re-organizing the presentation). So, differently from
traditional logic programming, the solutions of a problem are not obtained through substitu-
tions of variables values in answer to a query. Rather, a program Π describes a problem, of
which its answer sets represent the possible solutions. To find these solutions, an ASP-solver
is used. Several solvers have become available, see [3], each of them being characterized
by its own prominent valuable features. Recently “meta-solvers” such as ME-ASP (multi-
engine ASP system) [45] have been developed, which select the most appropriate solver
according to specific syntactic features of given program. The expressive power of ASP and
its computational complexity have been deeply investigated (cf. e.g., [21]).

In the following section we provide an example of ASP program, with specific attention
to its possible use for the formalization of investigative cases.

2By “minimal model of program Π” we mean a minimal model of Π intended as a classical first-order logic
theory, where ← is intended as implication, the comma as conjunction, and not as negation in classical logic
terms.

206 S. Costantini et al.

5 The zebra escaped

The case of escaped zebra is a well-known academic problem, presented in many textbooks
on declarative programming, which aims to demonstrate the potential of this form of pro-
gramming. At the same time, in its simplicity this problem can also help to demonstrate the
feasibility of the reduction of investigative cases to combinatorial puzzles. Thus, by report-
ing the description of this problem, reported from [24], we intend to: (i) illustrate ASP to
the non-expert via a pertinent example; (ii) highlight the possibility of application of logic
programming, and particularly of Answer Set Programming in investigative cases.

In fact, this problem can be seen as a prototype of the many investigation cases where it
is possible to identify two sets of relevant data collected at different times:

– the first dataset is general, and has usually been collected in the immediacy of the fact,
most probably during the acquisition of the criminal complaints and/or during the initial
inspection; this dataset allows the investigators to outline the elements of the case in
terms of logic;

– the other data, subsequently acquired with the progress of the investigations, can be
used to reduce the circle of suspects in relation to the offence.

In this section the investigative case is purely hypothetical; in the next sections we will
instead treat (skeletons of) real cases.

5.1 The investigative case

As the problem is formulated in the textbook, there are five houses, each of them occupied
by different tenants. On the main street, a zebra in total freedom was found. Question:

Who let the zebra escape?

In terms of real investigations for analogy the question might instead concern, for
instance, who let a wanted person escape, or who was the accomplice of house robbers, or
who sold the drugs to children, etc.

Given the investigative question, sufficient evidence must be collected in order to solve
the case. In the present toy formulation, suppose that an initial investigation carried out in
the immediacy of the fact made it possible collect further general data, listed below:

– each house has a different color: red, green, white, blue, yellow;
– each tenant comes from a different country: Japan, England, Norway, Italy, and Spain;
– each tenant owns an animal: horse, cat, zebra, fox, and dog;
– each tenant usually drinks one of the following beverages: water, coffee, tea, milk, wine;
– each tenant has one car: Fiat, Lancia, BMW, Toyota, Audi.

5.2 ASP solution

Based on the first acquired data, an ASP encoding involves to define the domain of houses,
each of them represented by an integer from 1 to 5, proceeding from left to right:

house(1..5).

For other entities we use constants corresponding to the name of the entity (in lower-case).
We can starts from the following ASP facts. The first ones define which colors and which
nations we consider. We then proceed to list the animals that can be involved. Then we list

Digital forensics and investigations meet artificial intelligence 207

the drinks. Finally we provide a list of cars. Notice that we do not list all possible colors,
nations, cars, etc. Rather, we concentrate on those which are mentioned in the specification
of the problem that we try to solve.

color(red). color(green). color(white). color(blue). color(yellow).
nation(japan). nation(england). nation(norway). nation(italy).
nation(spain).
animal(horse). animal(cat). animal(zebra). animal(fox). animal(dog).
drink(water). drink(coffee). drink(tea). drink(milk). drink(wine).
car(fiat). car(lancia). car(bmw). car(toyota). car(audi).

We define below the concept of proximity between the houses, by means of ASP rules:

on_right(X,X+1) :- house(X), house(X+1).

on_left(X+1,X) :- house(X), house(X+1).

near(X,Y) :- on_right(X,Y).

near(X,Y) :- on_left(X,Y).

At this point, via the rules below we characterize prospective solutions so that each entity
(color, home, car, etc.) has a single type, and that this is associated with only one of them.

other color(House,Color) :-
house(House), color(Color), color(C), have color(House,C),

C!=Color.
other color(House,Color) :-

house(House), color(Color), house(C1), have color(H1,Color),
H1!=House.

have color(House,Color) :-
house(House), color(Color), not other color(House,Color).

other car(House,Car) :-
house(House), car(Car), car(A), have car(House,A), A!=Car.

other car(House,Car) :-
house(House), car(Car), house(C1), have car(C1,Car),
C1!=House.

have car(House,Car) :-
house(House), car(Car), not other car(House,Car).

other drink(House,Drink) :-
house(House), drink(Drink), drink(B), have drink(House,B),

B!=Drink.
other drink(House,Drink) :-

house(House), drink(Drink), house(C1), have drink(C1,Drink),
C1!=House.

have drink(House,Drink) :-
house(House), drink(Drink), not other drink(House,Drink).

other nation(House,Nation) :-
house(House), nation(Nation), nation(N), have nation(House,N),
N!=Nation.

other nation(House,Nation) :-

208 S. Costantini et al.

house(House), nation(Nation), house(C1),
have nation(C1,Nation),

C1!=House.
have nation(House,Nation) :-

house(House), nation(Nation), not other nation(House,Nation).

other animal(House,Animal) :-
house(House), animal(Animal), animal(A), have animal(House,A),
A!=Animal.

other animal(House,Animal) :-
house(House), animal(Animal), house(C1),
have animal(C1,Animal),

C1!=House.
have animal(House,Animal) :-

house(House), animal(Animal), not other animal(House,Animal).

5.3 More information available

The above formulation is able to generate a high number of solution, equal to (n!)x , where
n is the number of houses, and x is the number of entities considered (color, car, etc.). In
our case, n = 5 and the solutions amounts to (5!)5 = 24.883.200.000.

Assume however that at this point, as a result of further investigations, the investigators
have been identified additional elements such as:

(i) the British tenant lives in a red house;
(ii) the Spanish tenant owns the dog;
(ii) the Norwegian tenant lives in the first house on the left;
(iv) in the garage of the yellow house, there’s a Toyota;
(v) the BMW driver lives in the house next to those have the fox;

(vi) the Norwegian lives in a house next to the blue house;
(vii) who owns the Lancia also owns the cat;

(viii) the Fiat driver drinks wine;
(ix) the Italian tenant drinks tea;
(x) the Japanese tenant drives the Audi;

(xi) Toyota is parked in the garage of a house next to the house where there is the horse;
(xii) in the green house people drink coffee;

(xiii) the green house is immediately to the right of the white house;
(xiv) the milk is drunk in the house in the middle (the third one);

By adding suitable ASP constraints, the number of answer sets of the program will be
drastically reduced. In fact, the ASP programming style is widely based on a generate-and-
test methodology. Below we define an ASP rule for each constraint. Then, the additional
rule with head constraints states that the conjunction of all constraints must hold. Finally,
the rule with empty head states that it is not possible that constraints do not hold. In fact,
connective :- at the beginning of a rule means it cannot be that . . .

i :- house(C), have_nation(C,england), have_color(C,red).

ii :- house(C), have_animal(C,dog), have_nation(C,spain).

iii :- have_nation(1,norway).

Digital forensics and investigations meet artificial intelligence 209

iv :- house(C), have_car(C,toyota), have_color(C,yellow).

v :- house(C), house(C1), near(C,C1), have_car(C,bmw),

have_animal(C1,fox).

vi :- house(C), house(C1), near(C,C1), have_color(C,blue),

have_nation(C1,norway).

vii :- house(C), have_car(C,lancia), have_animal(C,cat).

vii :- house(C), have_car(C,fiat), have_drink(C,wine).

ix :- house(C), have_nation(C,italy), have_drink(C,tea).

x :- house(C), have_nation(C,japan), have_car(C,audi).

xi :- house(C), house(C1), near(C,C1), have_car(C,toyota),

have_animal(C1,horse).

xii :- house(C), have_color(C,green), have_drink(C,coffee).
xiii :- house(C), house(C1), have color(C,white),

have color(C1,green),

on_right(C,C1).

xiv :- have_drink(3,milk).
constraints :- i, ii, iii, iv , v, vi, vii, viii, ix, x, xi,
xii, xiii, xiv.

:- not constraints.

:

% The following are directives to the solver

% to state what to show or not when displaying answer sets
% hide everything unless the predicates which are required by #show

#hide.

#show have_nation(C,D).

#show have_animal(C,D).

#show have_car(C,D).

#show have_drink(C,D).

#show have_color(C,D).

5.4 Results

By running an ASP Solver (any of the available ones is equally usable), the output will be:

Answer: 1

Stable Model: have_color(1,yellow) have_color(2,blue)

have_color(4,white)

have_color(5,green) have_color(3,red) have_drink(4,wine)

have_drink(3,milk) have_drink(2,tea) have_drink(5,coffee)
have drink(1,water) have car(5,audi) have car(1,toyota)
have car(2,bmw)

have_car(3,lancia) have_car(4,fiat) have_animal(4,dog)

have_animal(1,fox)

have_animal(5,zebra) have_animal(3,cat) have_animal(2,horse)

have_nation(4,spain) have_nation(2,italy) have_nation(1,norway)

have_nation(3,england) have_nation(5,japan)

The following graphical representation highlights the solution in boldface (Fig. 3):

210 S. Costantini et al.

Fig. 3 Solution of ‘The Zebra Escaped’ puzzle

In this example we have made the simplifying assumption that all collected items of
information are clearly related and non-contradictory. In reality, investigations may provide
different kinds of information, sometimes incoherent, sometimes apparently contradictory.
Therefore, data should be suitably cleansed and pre-processed either by humans or by auto-
mated techniques [53] or both, as it is however always the case in problem scenarios that
involve data collection. Intrinsic contradiction can partly managed by ASP through the gen-
eration of several answer sets outlining possible scenarios, or also by resorting to more
advanced Computational Logic techniques.

6 Data recovery and file sharing hypothesis

6.1 The investigative case

The judicial authority requested the Digital Forensics Laboratory to analyse the contents of
a hard disk, in order to check for the presence of illegal contents files. If so, they requested
to check for potential activities of sharing illegal materials on the Internet.

The hard disk under analysis was physically damaged (as often done by criminals if they
expect to be captured soon). Therefore, after a heads replacement, the evidence acquisi-
tion phase recovered a large amount of files (of various types: images, videos, documents,
etc.), however without their original name because the damage present on the disk plates
disallowed the recovery the information of the MFT.3 For this reason, an arbitrary name is
assigned to all the recovered files. Information about the original names of files and about
their original location in the file system is thus missing.

Starting from the elements described below, we have been able to reply to the judicial
authority’s question with a reasonably reliable hypothesis of association of the recovered
file to the respective original name and a reasonable certainty that illegal files were actually
exchanged on the Internet. This has been obtained by modeling the given problem by means
of a very simple well-known ASP formulation of the “Stable Marriage Problem”, that we
describe below.

6.2 Elements

By analyzing the recovered files, technicians detected the occurrence of:

3Master File Table: is a structured block table containing the attributes of all files in the volume of an NTFS
file system.

Digital forensics and investigations meet artificial intelligence 211

– files with illegal contents;
– various “INDX files”, corresponding in the NTFS file system to directory files, which

contain some METADATA such as filename, physical size of file, logical size of file,
modified timestamp, accessed timestamp, changed timestamp, created timestamp;

– index related to the file-sharing application (which is a widely-used file-exchange
application), including a file containing sharing statistics.

6.3 Themarriage problem

The Marriage Problem (or SMP - Stable Marriage Problem) is a well-known NP-hard opti-
mization problem which finds a stable matching between two sets of elements S1 and S2
(say men and women) given a set of preferences for each element.

A matching is a mapping from the elements of one set to the elements of the other set
which thus creates a set of couples (A,B) where A ∈ S1 and B ∈ S2.

A matching is stable whenever it is not the case that some element Â of the first matched
set prefers some given element B̂ of the second matched set over the element to which Â is
already matched, and the same holds for B̂.

6.4 Reduction

The idea of the reduction from an investigative case is to exploit the SMP to find a corre-
spondence between file names and file contents, in analogy to a correspondence between
men and women. In order to find a plausible solution it is important to identify a suit-
able preference criterion. In particular, each file name should “prefer” to be coupled with
those files that might indeed correspond to its original content. The given problem is in fact
reducible to SMP as follows. In the real case, the lists have been created as follow:

– men list: defined as the list of names (with associated properties, such as size, type)
extracted from directory files “INDX files”;

– women: defined as the list of recovered files with have been provisionally assigned
arbitrary names.

The preferences list (or relation order) between the men and women lists is derived from
the comparison of the properties of the individual recovered files (file type, size, etc.) with
those identified in file ‘INDX files”. For each file name, a preference is created with those
file contents which match its properties.

6.5 Answer set programming solution

Once compiled the lists men, women and preferences, one can search for answer sets by
means of the following ASP program. Facts in the program correspond to a real (though
very small) example.

preference(f001, flower_jpg).

preference(f001, woman_jpg).

preference(f002, flower_jpg).

preference(f002, child_jpg).

preference(f003, child_jpg).

preference(f003, woman_jpg).

... ...

212 S. Costantini et al.

bigamy(X,Y) :- preference(X,Y), preference(X,Y1),

couple(X,Y), couple(X,Y1), Y!=Y1.
bigamy(X,Y) :- preference(X,Y), preference(X1,Y), couple(X1,Y),
X!=X1.

couple(X,Y) :- preference(X,Y), not bigamy(X,Y).

#hide.

#show couple(X,Y).

The preference/2 predicate merely expresses possible pairings, but not (numerical)
preferences as in the original Stable Marriage problem.

6.6 Results

The results obtained via a solver on the real example are the following:
Answer: 1

Stable Model: couple(f002,child_jpg) couple(f001,woman_jpg)

couple(f001,flower_jpg)

Answer: 2

Stable Model: couple(f003,child_jpg) couple(f001,woman_jpg)

couple(f001,flower_jpg)

Answer: 3

Stable Model: couple(f003,child_jpg) couple(f002,flower_jpg)

couple(f001,woman_jpg)

Answer: 4

Stable Model: couple(f002,child_jpg) couple(f002,flower_jpg)

couple(f001,woman_jpg)

Answer: 5

Stable Model: couple(f003,woman_jpg) couple(f002,child_jpg)

couple(f002,flower_jpg)

... ...

From the answer sets, it is possible (as the reader can see) to formulate hypotheses
about the original names of the recovered files. Furthermore, by comparing the file names
indexed in the file known.met,4 it has been possible to make reasonable assumptions about
the effective sharing of files with illegal content.

It is worth noticing that the results returned by the program, showing that in most answer
sets (i.e., scenarios) illicit files appear to have been exchanged, constitutes a piece of evi-
dence that a judge will evaluate together with other elements. By considering the suspect’s
precedents and, for instance, illegal material seized at the suspect’s premises, communica-
tion records, etc., the judge will decide whether there are elements enough for conviction.
Thus, Evidence Analysis does not “solve a case”, rather it provides elements to allow a
judge to do so (beyond any reasonable doubt).

4As mentioned, known.met is a file of the widely-used eMule file-exchange application that stores the
statistics of all files that the software shared, all files present in the download list and downloaded in the past.

Digital forensics and investigations meet artificial intelligence 213

7 Identification of “Puppeteers”

7.1 The investigative case

After a long and complicated investigation, the police locates a criminal organization.
All technological devices in possession of members of this criminal organization were
sequestered.

The DF analysis aims to hypothesize who can be the subjects in charge of criminal orga-
nization, by examining the records of digital communication made with any means (phone
calls, text messages, chat applications, etc.). The objective is to identify active subjects, i.e.,
those subjects who serve as a hub for members of the organization, and that therefore trans-
mit directives and orders to other members or are even the bosses of the organization. It
may be supposed that such subjects are those who communicate with various sub-groups of
the organization.5 It is clear that a communication network can be modeled as a graph (cf.,
e.g., [23]). In fact, there are many approaches to do this, and a large body of research for
identifying various forms of influence (neutral or fraudulent) among network members by
means of algorithms based upon graph theory.

7.2 Elements

In the case at hand, data were collected as follows:

– by requests to the operators of phone records for seized telephone devices;
– by forensic analysis of seized devices for the exploration and extraction of all conver-

sations made through the various messaging clients (WhatsApp, Telegram, Messenger,
Facebook Messenger, etc.).

7.3 Clique problem

The problem of clique is a problem considered difficult, as in fact it belongs to the class of
NP-complete problems. The clique problem is defined as follows: given an undirected graph
G = (V ,E), a clique in G is a subset of vertices C ⊆ V , such that every pair of vertices is
connected by an edge:

∀u, v ∈ C =⇒ (u, v) ∈ E

Essentially, a clique is a complete subgraph of the graph G (Fig. 4).
The problem of clique is an optimization problem, which can be seen as a decision prob-

lem which consists in asking whether there is in the graph G a clique of size k, where k is
the size of the involved set of vertexes. For this search, a traditional algorithm performs an
enumeration of all subsets of vertices of size k of V to check if each of them forms a clique,
with running time of such algorithm in Ω(k2

(|G|
k

)
); that is, polynomial with constant k for

value of k low. If the value of k if next to |V |/2, the algorithm exhibits a super-polynomial
running time.

5There is the notable exception of Mafia bosses, who even nowadays never use electronic means but rather
write their directions on small pieces of papers, called ’pizzini’, to be memorized and then destroyed by their
minions

214 S. Costantini et al.

Fig. 4 Example of clique

7.4 Reduction

The reduction here is simple and direct, and as a result the set of conversations obtained
from the analysis is transformed into a graph, of the type shown in Fig. 5, where:

– every chat account, phone number, etc., is a node of the graph;
– every conversation is an edge of the graph.

If you need to create a directed graph, you might consider the direction of the conversation
to represent the direction of the arcs.

7.5 Answer set programming solution

From an investigative point of view the clique problem is particularly well-suited to this
investigation as it is useful to analyse big data including phone records, log files, activities
of social network analysis. The following ASP code6 searches a graph for the existence of
a clique:
e(1, 2).

......

v(X) :- e(X,Y).

v(Y) :- e(X,Y).

n {in(X) : v(X)}.

:- in(X), in(Y), v(X), v(Y), X!=Y, not e(X,Y), not e(Y,X).

:

#maximize [in(X) : v(X)].

6source: Håkan Kjellerstrand

Digital forensics and investigations meet artificial intelligence 215

Fig. 5 Typical communication graph

7.6 Results and observations

The result of the execution of the ASP program allows the investigators to highlight the
nodes connected to each other that represent sub-groups of the organization (in fact, ’clique’
is translated into Italian as ’cricca’, that outside graph theory indicates a sinister group of
people, presumably adept to obscure common objectives). More importantly, nodes belong-
ing to several sub-groups may presumably indicate the persons acting as representatives for
communication aspects of the organization, and for transmitting orders among subgroups.

We do not claim that the ASP solution provides complete knowledge on who is a pup-
peteer. However, it provides an automation and a systematization of a routine check that is
always performed on telephone and social network logs. “Busy” nodes resulting from the
solution of the clique problem may provide suggestions on who can be the Puppeteers. This
is a pieces of evidence that needs however to be combined with the results of other investi-
gation activities in order to form robust evidence (against some suspect) to be presented and
defended in court. Basically, solutions of the puzzle provide the investigators with useful
well-founded suggestions for further analysis.

8 Crime scene solver

8.1 The investigative case

After a crime has been committed, the first activity that often gives rise to the investigations
is the crime scene analysis (inspection), a means for gathering evidence aimed to observa-
tion and description of places, to finding and collecting items suitable for the reconstruction

216 S. Costantini et al.

Fig. 6 Crime scene

the facts. Particular importance, during the inspection, are the descriptive, planimetric and
photographic survey (Fig. 6).7 Starting from the evidence and elements location on crime
scene, the investigators have to try reconstruct the sequence of events.

8.2 Elements

Investigators can rely upon the data collected on the crime scene, including fingerprints,
bloodstains, shoe-prints left on the floor etc. On this basis, they have to establish a hypo-
thetical sequence of actions taken in the crime scene during the crime. So, a first step is
to produce a scaled planimetry of the location of the crime scene, where points of interest
can be identified and marked, or where the evidence were detected during the inspections
(Fig. 7).

Once again, the set of points of interest and their connections can be represented as a
graph, which suggests that graph theory can profitably be used to analyse the situation. A
first aspect that must be considered is to establish the possible path followed by the culprit
during the action.

8.3 Hamiltonian path

The Hamiltonian path problem is defined as follows: given a directed graph G, a path in
G is called “Hamiltonian” if it passes through all nodes of G exactly once (Fig. 8). For the
graph (G, s, t) in the Fig. 8, the path s, 1, 2, 3, 4, 5, t is a Hamiltonian path.

8.4 Reduction

We can perform the reduction of a relevant part of the investigative case, i.e., hypothesizing
a possible ’modus operandi’, to the problem of finding an Hamiltonian path on a suitable
directed graph. This graph has the aim to identify the possible route covered by the culprit.
It is obtained through the analysis of the evidence collected at the crime scene, and marked
on the planimetry (Fig. 7) (Fig. 9).

To draw the directed graph we can use in particular the following schema:

7Image courtesy from Wired.it

Digital forensics and investigations meet artificial intelligence 217

Fig. 7 Crime Scene planimetry with marked points of interest

• vertices correspond to evidences indicated in the planimetry;
• vertices closed to potential “escape routes” are indicated the as initial and final vertices

of the searched-for path;
• arcs are inserted between each couple of nodes which are “in sight” of each other;
• the direction of each arc is obtained from:

– directional trajectory of the evidence (for, example direction of shoe-prints);

Fig. 8 Hamiltonian path

218 S. Costantini et al.

e

f

d

h

gc

a

b

i

j 1

2

3

4

5

6

7

8

9

1010 11

12

13

14

15

16

17

18

19
20

Fig. 9 Crime scene graph

– the study of the bloodstains (through bloodstain pattern analysis,8 see Fig. 10
below;

– for ambiguous directions we insert arcs in both directions.

8.5 Answer set programming solution

To solve this problem we can use the following ASP code taken from the course notes by
Prof. Vladimir Lifschitz, University of Texas at Austin.

{in(X,Y)} :- edge(X,Y).

:- 2 {in(X,Y) : edge(X,Y)}, vertex(X).

:- 2 {in(X,Y) : edge(X,Y)}, vertex(Y).

:

r(X) :- in(0,X), vertex(X).

r(Y) :- r(X), in(X,Y), edge(X,Y).

:- not r(X), vertex(X).

8.6 Results and possible generalization

The result of the execution of the ASP program allows in general several answer sets to be
obtained, corresponding to hypothetical sequences of actions undertaken at the crime scene
by criminal and victim, compatible with the release of the tracks identified. To generalize
the work, it also possible to create separate graphs, one with the victim tracks, and the oth-
ers with the criminal(s) tracks, find the answer sets separately and verify whether there are

8Bloodstain Pattern Analysis (BPA), is a scientific method of forensic analysis of the morphology of the
sketches, blotches or spots of blood at a crime scene.

Digital forensics and investigations meet artificial intelligence 219

Fig. 10 Blood stains analysis mathematical principles

answer set that matches or are compatible with each other. Also, in case a full Hamiltonian
path cannot be found, we can employ weak constraints, which is a well-known ASP exten-
sion which allows to express “optional” constraints that will be satisfied whenever possible.
By this construct one can obtain quasi-Hamiltonian paths, and can even specify the degree
of coverage.

9 Path verification

9.1 The investigative case

After a crime, a suspect has been arrested. The police sequestered all his mobile devices
(smart-phone, route navigator, tablet, etc.). The judicial authority requested the DF labora-
tory to analyze the digital contents of the mobile devices in order to determine their position
with respect to the crime site during an interval of time which includes the estimated time
when the crime was perpetrated.

9.2 Elements

From the analysis of the mobile devices, a set of geographical GPS coordinates have been
extracted, some of them related to the the time interval under investigation. There are how-
ever some gaps, one of them certainly due to a proven switch off of few minutes around the
crime time.

To start with, a list called GPS-LIST is generated, collecting all the positions extracted
from the various devices, grouped and ordered by time unit of interest (seconds, multiple
of seconds, minutes, etc..). The objective is that of establishing whether the known GPS
coordinates are compatible with some path which locates the given mobile devices at the
crime site during the given time interval. If no such path exists, then the suspect must be
discharged. If some compatible path is found, then the investigation about the potential
perpetrator can proceed. This is a very common investigative problem, which is proposed
virtually everyday to the DF Laboratories for a variety of issues. This problem in fact may
concern minor violations (“The speed camera failed, it was not my car at that position at
that date, so the fine is ill-placed”) but also major crimes such as murder or meetings of
criminal organizations. The task of solving the problem in an automated though reliable can
be accomplished via reduction to the following simple game.

220 S. Costantini et al.

9.3 Hidato puzzle (Hidoku)

Hidato, from the Hebrew word “Hida” meaning riddle, is a logical puzzle (also known as
“Hidoku”) invented by the Israeli mathematician Dr. Gyora Benedek. The aim of Hidato is
to fill a matrix of numbers, partially filled a priori, using consecutive numbers connected
over a horizontal, vertical or diagonal ideal line.

9.4 Reduction

It has been possible to perform the reduction of the given investigation problem to the
“Hidato Puzzle” problem, by creating a matrix representing the geographical area of inter-
est, where each element of the matrix represents a physical zone crossable in a unit of time.
The physical size of the individual cell of the matrix (grid) on the map will be proportionate
to the time unit that will be considered, both the hypothetical transfer speed.

The matrix has been populated as follow:

– in each box corresponding to a GPS position in GPS-LIST the corresponding numeric
value has been inserted;

– each box corresponding to a GPS position not in GPS-LIST has been set to a
conventional value 0.

Considering the above matrix, assume that the crime has been committed at the cell
marked with 0 located between 14, 8 and 5, at a time included in the interval with lower
bound corresponding to when the suspect was at location 1 and upper bound corresponding
to when the suspect was at location 36. All devices have been provably switched off when
long sequences of zero’s occur (Fig. 11).

9.5 Answer set programming solution

Once the matrix has been built, we can determine whether a possible route for the suspect to
have committed the crime exists; this by finding the answer sets of the following ASP pro-
gram [37] (here we have used the clingo solver). Notice that the omitted cells are assumed
to have value 0.

matrix(1, 1, 18). matrix(1, 5, 26). matrix(2, 1, 19). matrix(2, 4, 27).
matrix(3, 2, 14). matrix(3, 5, 23). matrix(3, 6, 31). mtrix(4, 1, 1).
matrix(4, 4, 8). matrix(4, 5, 33). matrix(5, 3, 5). matrix(6, 3, 10).

matrix(6, 5, 36). matrix(6, 6, 35).

18 0 0 0 26 0
19 0 0 27 0 0
0 14 0 0 23 31
1 0 0 8 33 0
0 0 5 0 0 0
0 0 10 0 36 35

Fig. 11 Hidato Matrix from GPS-LIST

Digital forensics and investigations meet artificial intelligence 221

#const n = 6.

size(1..n).

values(1..n*n).

values2(1..n*n-1).

diffs(-1;0;1).

1 x(Row, Col, Value) : values(Value) 1 :- size(Row), size(Col).
1 x(Row, Col, Value) : size(Row) : size(Col) 1 :- values(Value).
x(Row, Col, Value) :- matrix(Row, Col, Value).

valid(Row, Col, Row2, Col2) :- diffs(A), diffs(B),

Row2 = Row+A, Col2 = Col+B,
Row2 >= 1, Col2 >= 1, Row2 <= size, Col2 <= size,

size(Row), size(Col).

:- x(Row, Col, Value+1), x(Row2, Col2, Value),

not valid(Row, Col, Row2, Col2), values2(Value).

#hide.

#show x(Row, Col, Value).

9.6 Results

The results obtained by running an ASP solver are the following:

Answer: 1
x(1,1,18) x(1,5,26) x(2,1,19) x(2,4,27) x(3,2,14) x(3,5,23)
x(3,6,31) x(4,1,1) x(4,4,8) x(4,5,33) x(5,3,5) x(6,3,10)
x(6,5,36) x(6,6,35) x(5,1,2) x(6,1,3) x(6,2,4) x(6,4,6) x(5,5,7)
x(5,4,9) x(5,2,11) x(4,2,12) x(3,1,13) x(4,3,15) x(3,3,16)
x(2,3,21) x(3,4,22) x(2,6,24) x(1,6,25) x(1,3,28) x(1,4,29)
x(2,5,30) x(4,6,32) x(5,6,34) x(1,2,20) x(2,2,17)

Answer: 2
x(1,1,18) x(1,5,26) x(2,1,19) x(2,4,27) x(3,2,14) x(3,5,23)
x(3,6,31) x(4,1,1) x(4,4,8) x(4,5,33) x(5,3,5) x(6,3,10)
x(6,5,36) x(6,6,35) x(5,1,2) x(6,1,3) x(6,2,4) x(6,4,6) x(5,5,7)
x(5,4,9) x(5,2,11) x(4,3,12) x(3,3,13) x(4,2,15) x(3,1,16)
x(2,3,21) x(3,4,22) x(2,6,24) x(1,6,25) x(1,3,28) x(1,4,29)
x(2,5,30) x(4,6,32) x(5,6,34) x(1,2,20) x(2,2,17)
graphically represented by the matrices shown in Fig. 12.

18 20 28 29 26 25
19 17 21 27 30 24
13 14 16 22 23 31
1 12 15 8 33 32
2 11 5 9 7 34
3 4 10 6 36 35

18 20 28 29 26 25
19 17 21 27 30 24
16 14 13 22 23 31
1 15 12 8 33 32
2 11 5 9 7 34
3 4 10 6 36 35

Fig. 12 Matrix Representation of answer sets 1 and 2

222 S. Costantini et al.

These results are particularly interesting for the investigation, as they both correspond to
paths which are compatible with the hypothesis of the suspect committing the crime.

Finally it can be noted that the above program, through a small variant, allows one to
calculate solutions not only in rectangular matrices but also in irregularly shaped to better
adapt the program to the complex structure of the maps occurring in real cases.

Notice that the ASP solution does not provide a complete proof about who was present on
the crime scene. It however allows to perform reliably a systematic check that must however
be done in such circumstances. The solution of the Hidato puzzle says that a telephone (and
presumably its holder, but maybe not) might possibly have been at the crime scene at the
given time or not, considering its previous and past positions. Other investigation activities
will charge or discharge a suspect, and the resulting investigative hypothesis must however
be presented and defended in court.

10 Alibi verification

In many investigations of the Criminal Police, the investigators find themselves confronted
with the problem of verifying an alibi for one or more suspects. An alibi is made up of pre-
cise moments, indications of some places and times well specified and of some places and
times which are known within some approximation. Faced with not fully detailed scenar-
ios, it is often not easy for the investigators to verify the perfect sequence of actions. The
following is a generic case resolvable via Computational Logic.

10.1 The investigative case

During an investigation concerning a murder, it is necessary to check the alibi provided by a
(male) suspect. In the interrogation, the suspect was vague on the timing of his movements,
but said:

– to have left home (place X) at a certain time;
– to have reached the office at place Y where he worked on the computer for a certain time;
– to have subsequently reached place Z where, soon after opening the entrance door, he

discovered the body and raised the alarm;
– to have forgotten his smart-phone at the office (place Y).

In order to verify the suspect’s alibi, the judicial authority requested the DF laboratory to
analyse:

– the contents of the smart-phone owned by the suspect (that has actually been retrieved
where indicated);

– the computer confiscated in place Y, where the suspect says to have worked;
– a video-surveillance equipment installed at a post office situated near place Z, as its

video-camera surveys the street that provides access to Z.

10.2 Elements

The coroner’s analysis on the body has established the temporal interval including the time
of death. From the forensic analysis of the smart-phone it has been possible to compile
a list of GPS positions related to a time interval including the time of death, denoted by
GPS-LIST. The analysis of the computer allowed the experts to extract the list of accesses
on the day of the crime, denoted by LOGON-LIST. The analysis of the video-surveillance

Digital forensics and investigations meet artificial intelligence 223

equipment allowed the experts to isolate some sequences, denoted by VIDEO-LIST, that
show many frames with a male subject in the distance, whose somatic features are compatible
with the suspect. All the above lists have been ordered according to the temporal sequence
of their elements. The investigation case at hand can be modelled as a planning problem
where time is a fundamental element in order to establish whether a sequence of actions
exist that may allow to reach a certain objective within a certain time. Several approaches
to causal and temporal reasoning in ASP exist, that could be usefully exploited for this kind
of problem (cf, e.g., [11] and the references therein). Here, for lack of space and for the
sake of simplicity we model the problem by means of the very famous “Monkey & Banana”
problem, which is the “drosophila” of such kind of problems in Artificial Intelligence.

We may notice that if the suspect has achieved the objective of being at the places he
declared to have been and to commit the murder he has, consciously or unconsciously,
previously or step-by-step, devised a plan to do so. Therefore, it must be checked if a feasible
plan indeed exists encompassing all the certain available elements and the crime. ASP is
indeed a state-of-the-art tool for planning, and several examples exist of planners written in
ASP. However, for the sake of simplicity we will resort to a simple formulation, extrapolated
again from a well-known puzzle.

10.3 Monkey & Banana

The problem “Monkey & Banana” is a typical planning problem of Artificial Intelligence.
The specification of “Monkey & Banana” is the following: A monkey is in a room. Sus-
pended from the ceiling is a banana, beyond the monkey’s reach. In the room there is also a
chair (in some versions there is also a stick, that we do not consider). The ceiling is just the
right height so that a monkey standing on a chair could knock the banana down (in the more
general version by using the stick, in our version just by hand). The monkey knows how to
move around, carry other things around, reach for the banana. What is the best sequence of
actions for the monkey? The initial conditions are that:

– the chair is not just below the bananas, rather it is in a different location in the room;
– the monkey is in a different location with respect to the chair and the bananas.

10.4 Reduction

The case at hand can be reduced to the “Monkey & Banana” problem by finding a cor-
respondence between actors and actions of the case and actors and actions of the puzzle.
A possible correspondence is listed below. Notice the reduction of the “idle” state of the
monkey to unknown actions that the suspect may have performed at that time.

Monkey → Suspect
Banana → Body
Eats Banana → Raise Alarm
Initial Position Monkey → X
Initial Position Chair → Y
Below Banana → Z
Walks → Walks
Move Chair → Motion to Z
Ascend → Open the Door
Idle → Unknown Action

224 S. Costantini et al.

The constraints of the problem are that, at any time, the monkey (and, in the case, the
suspect):

– can perform only one action at each time instant;
– if the monkey ascends on the chair, it cannot walk, and it cannot climb further;
– if the chair is not moved then it stays where it is;
– if the chair is moved it changes its position;
– the monkey is somewhere in the room, where it remains unless it walks, which implies

changing position;
– the monkey may climb or move the chair only if it is in the chair’s location;
– the monkey can reach the banana only if it has climbed the chair, and the chair is under

the banana (the suspect may have possibly committed the crime only if he had reached
the crime place and he opened the door).

10.5 Answer set programming solution

The following ASP program, a modified version from the one that can be found online,9

is formulated for the DLV solver, and provides in the answer sets the timed sequences of
actions (if any exists) by which the monkey can reach and eat the banana.

walk(Time) v move_chair(Time) v ascend(Time) v idle(Time) v

eats_banana(Time) :- #int(Time).

monkey_motion(T) :- walk(T).

monkey_motion(T) :- move_chair(T).

stands_on_chair(T2) :- ascend(T), T2 = T + 1.

:- stands_on_chair(T), ascend(T).

:- stands_on_chair(T), monkey_motion(T).

stands_on_chair(T2) :- stands_on_chair(T), T2 = T + 1.

chair_at_place(X, T2) :-

chair_at_place(X, T1), T2 = T1 + 1,not move_chair(T1).

chair_at_place(Pos, T2) :-

move_chair(T1),T2 = T1 + 1,monkey_at_place(Pos, T2).

:- move_chair(T1), chair_at_place(Pos,T2),

chair_at_place(Pos1,T1), T2 = T1+1, Pos=Pos1.

monkey_at_place(monkey_starting_point, T) v

monkey_at_place(chair_starting_point, T) v

monkey_at_place(below_banana, T) :- #int(T).

:- monkey_at_place(chair_starting_point, 0).

:- monkey_at_place(below_banana, 0).

:- not monkey_at_place(monkey_starting_point, 0).

:

:- monkey_at_place(Pos1, T2),

9at http://www.dbai.tuwien.ac.at/proj/dlv/tutorial

http://www.dbai.tuwien.ac.at/proj/dlv/tutorial

Digital forensics and investigations meet artificial intelligence 225

monkey_at_place(Pos2, T1), T2 = T1 + 1,

Pos1 != Pos2, not monkey_motion(T1).

:- monkey_at_place(Pos, T2), monkey_at_place(Pos, T1),

T2 = T1 + 1, monkey_motion(T1).

:- ascend(T),monkey_at_place(Pos1, T),

chair_at_place(Pos2, T),Pos1 != Pos2.

:- move_chair(T),monkey_at_place(Pos1, T),

chair_at_place(Pos2, T),Pos1 != Pos2.

monkey_at_place(monkey_starting_point, 0) :- true.

chair_at_place(chair_starting_point, 0) :- true.

reach_banana(T) :- can_reach_banana(T).
can reach banana(T) :- stands on chair(T),
chair at place(below banana, T).

:-eats_banana(T), not can_reach_banana(T).

:- eats_banana(T1),eats_banana(T2), T1!=T2.

happy :- eats_banana(T).

:- not happy.

:

step(N, walk, Destination) :- walk(N),

monkey_at_place(Destination, N2),N2 = N + 1.

step(N, move_chair, Destination) :-
move chair(N),monkey at place(Destination, N2), N2 = N + 1.

step(N, ascend, " ") :- ascend(N).

step(N, idle, " ") :- idle(N).

step(N, eats_banana, " ") :- eats_banana(N).

10.6 Results

The proposed reduction allows investigators to perform a first though reliable verification
of the alibi provided by the suspect. In fact, the possible timed lists of actions performed by
the suspect are determined as answer sets of the above program. Such lists are checked for
compatibility with the detected GPS positions of the suspect, the detected computer activity
and the actions that the suspect has declared to have performed. By running the solver on
the real case with a maximum number of steps N = 3, corresponding to the situation where
the suspect is provably at the office at time 0, we get the action sequences by which the
suspect might have reached the place where the crime has been perpetrated. For the sake
of clarity, below we rewrite such sequences in terms of elements of the case rather than of
elements of the puzzle.

{step(0,walk,at_office),

step(1,motion_to_crime_location,at_crime_location),

step(2,open_door," "), step(3,raise_alarm," ")}

Therefore, if the suspect raised the alarm at time 3 he actually had no time for committing
the crime and therefore he should presumably be discharged.

226 S. Costantini et al.

In case instead the alibi is not fully verified, then further investigation is needed. By
increasing the time, for example to N = 5, we in fact get many sets of possible alterna-
tive actions, where “unknown action” provides open possibilities for which it might be
interesting to investigate further so as to prove or reject the investigation thesis.

{step(0,unknown_action," "),step(1,walk,at_office),

step(2,motion_to_crime_location,at_crime_location),

step(3,open_door," "),

step(4,unknown_action," "),step(5,raise_alarm," ")}

{step(0,walk,at_crime_location), step(1,walk,at_office),

step(2,motion_to_crime_location,at_crime_location),

step(3,open_door," ")

step(4,unknown_action," "), step(5,raise_alarm," ") }

Among the answer sets there are many which suggest suspicious behaviour. The first one
above outlines a scenario where the suspect would not have had the time to commit the
crime, as he moved to the office and then to the location of the crime where he immediately
raised the alarm. In the second one the initial suspect’s actions are unknown. Then he moves
to the crime site where however he has the time and opportunity to commit the crime at
step 4. Even worse is the third answer set, where the suspect moves to the crime site, than
moves back to the office, moves a second time to the crime site where again he has the time
and opportunity to commit the crime at step 4. As the suspect’s presence at the crime site is
confirmed by the video-surveillance equipment records, this behavior is suggestive of, e.g.,
going to meet the victim and having a discussion, going back to the office (maybe to get a
weapon) and then actually committing the crime.

11 Conclusions & future work

The challenge of which this paper constitutes just a first step aims to create an infrastructure
for the application of Artificial Intelligence (AI) and Automated Reasoning in the Digital
Forensics field. In particular, the challenge is to address the Evidence Analysis phase. In
this phase, evidence about possible crimes and crime perpetrators collected from various
electronic devices (by means of specialized software, and according to specific regulations)
must be examined and aggregated so as to reconstruct possible events, event sequences
and scenarios related to a crime. Evidence Analysis results are then made available to law
enforcement, investigators, intelligence agencies, public prosecutors, lawyers and judges.

The challenge is actually meant for both areas: digital forensics on the one hand and
automated reasoning in AI on the other hand. From the AI perspective, this research aims in
the long term at the construction of software tools that will require a complex combination
of results and techniques from different areas of Knowledge Representation and Reasoning
such as diagnosis, causal explanation, temporal reasoning about actions, epistemic reason-
ing, treatment of incomplete knowledge, deontic and legal reasoning, inductive learning and
formal concept analysis, to cite some of the most relevant ones surely involved in the digital
forensics activity. On the other hand, the application of (intelligent) automated tools in digi-
tal forensics, capable of an exhaustive search for exploring evidence and going much further
than the scope of human observation will surely become a breakthrough with an immediate
impact in the practical investigation of crime scenarios.

Digital forensics and investigations meet artificial intelligence 227

In the medium-long term, we envisage a situation where law enforcement, investigators,
intelligence agencies, criminologists, public prosecutors, lawyers and judges will be pro-
vided with decision-support-systems that can effectively aid them in their activities. The
adoption of such systems can contribute to making legal proceedings clearer and faster, and
also under some respects more reliable. Our choice of Computational Logic as a basis has
a strong reason: the formality of logic indeed guarantees transparency and verifiability of
tools and results. Results can thus be explained and motivated by the system to human users;
explainability and accountability are in fact of particular importance in this field.

The main risk concerning the proposed approach and its future developments is in our
opinion that it may be to some extent difficult to convince the involved parties and the
general public of the real applicability of such systems. While for some forensic techniques,
such as DNA analysis, there is nowadays a high and widespread level of trust, an Artificial-
Intelligence-Based decision support system may appear unconvincing or even threatening.
So, a parallel interdisciplinary challenge of no less importance will be that of transforming
scientific concepts such as verifiability and correctness into concepts such as psychological
reliability and trust.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The Sciff abductive proof-procedure. In:
Bandini, S., Manzoni, S. (eds.) AI*IA 2005: Advances in Artificial Intelligence, 9th Congress of the
Italian Association for Artificial Intelligence, Proceedings, volume 3673 of Lecture Notes in Computer
Science, pp. 135–147. Springer (2005)

2. Alferes, J.J.: Preserving strong equivalence while forgetting. In: Logics in Artificial Intelligence - 14Th
European Conference, JELIA 2014, Proceedings, Volume 8761 of Lecture Notes in Computer Science,
pp. 412–425. Springer (2014)

3. ASP. Answer set programming solvers online (incomplete list), 2016. http://assat.cs.ust.hk, http://www.
cs.utexas.edu/users/tag/ccalc/, http://www.cs.utexas.edu/users/tag/cmodels/, http://www.cs.uky.edu/ai/,
http://www.dbai.tuwien.ac.at/proj/dlv, http://www.potassco.org, http://www.tcs.hut.fi/Software/smodels

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Univer-
sity Press, Cambridge (2003)

5. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Informatica 20, 207–226
(1983)

6. Borchert, P., Anger, C., Schaub, T., Truszczynski, M.: Towards systematic benchmarking in answer set
programming the dagstuhl initiative. In: LPNMR, volume 2923 of Lecture Notes in Computer Science,
pp. 3–7. Springer (2004)

7. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: A flexible approach for inte-
grating heterogeneous knowledge sources. In: Balduccini, M., Son, T.C. (eds.) Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, volume 6565 of Lecture Notes in Computer Science, pp. 233–258.
Springer (2011)

8. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) IJCAI
2011, Proc. of the 22nd Intl. Joint Conf. on Artificial Intelligence, pp. 786–791. IJCAI/AAAI (2011)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance . Commun. ACM 54(12),
92–103 (2011)

10. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive reasoning in dynamic envi-
ronments. In: Schaub, T. (ed.) ECAI 2014, Proc. of the 21st European Conf. on Artificial Intelligence.
IJCAI/AAAI (2014)

11. Cabalar, P.: Causal logic programming. In: Correct Reasoning - Essays on Logic-Based AI in Honour of
Vladimir Lifschitz, Volume 7265 of Lecture Notes in Computer Science, pp. 102–116. Springer (2012)

12. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: KR. Citeseer
(2014)

13. Casey, E.: Handbook of Digital Forensics and Investigation. Elsevier, Amsterdam (2009)

http://assat.cs.ust.hk
http://www.cs.utexas.edu/users/tag/ccalc/
http://www.cs.utexas.edu/users/tag/ccalc/
http://www.cs.utexas.edu/users/tag/cmodels/
http://www.cs.uky.edu/ai/
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.potassco.org
http://www.tcs.hut.fi/Software/smodels

228 S. Costantini et al.

14. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet.
Academic press, Cambridge (2011)

15. Costantini, S.: Contributions to the stable model semantics of logic programs with negation. Theor.
Comput. Sci. 149(2), 231–255 (1995)

16. Costantini, S.: On the existence of stable models of non-stratified logic programs. TPLP 6(1-2), 169–212
(2006)

17. Costantini, S.: Ace: a flexible environment for complex event processing in logical agents. In: Baresi,
L., Baldoni, M., Dastani, M. (eds.) Engineering Multi-Agent Systems, Third International Workshop,
EMAS 2015, Revised Selected Papers, volume 9318 of Lecture Notes in Computer Science, Springer
(2015)

18. Costantini, S.: Knowledge acquisition via non-monotonic reasoning in distributed heterogeneous envi-
ronments. In: Truszczyński, M., Ianni, G., Calimeri, F. (eds.) 13th Int. Conf. on Logic Programming and
Nonmonotonic Reasoning LPNMR 2013. Proc., volume 9345 of Lecture Notes in Computer Science
Springer (2015)

19. Costantini, S., D’Antona, O.M., Provetti, A.: On the equivalence and range of applicability of graph-
based representations of logic programs. Inf. Process. Lett. 84(5), 241–249 (2002)

20. Costantini, S., DeGasperis, G.: Exchanging data and ontological definitions in multi-agent-contexts sys-
tems. In: Paschke, A., Fodor, P., Giurca, A., Kliegr, T. (eds.) RuleMLChallenge track, Proceedings,
CEUR Workshop Proceedings. CEUR-WS.org (2015)

21. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic program-
ming. ACM Comput. Surv. 33(3), 374–425 (2001)

22. Delgrande, J.P., Wang, K.: Proceedings of the twenty-ninth AAAI conference on artificial intelligence,
january 25-30, 2015, austin, texas, USA. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, pp. 1482–1488. AAAI Press (2015)

23. Deswal, S., Singhrova, A.: Application of graph theory in communication networks. International
Journal of Application or Innovation in Engineering and Management 1 (2012)

24. Dovier, A., Formisano, A.: Programmazione Dichiarativa in Prolog, CLP, ASP, e CCP. free, 2008.
Available (in Italian) at http://users.dimi.uniud.it/agostino.dovier/DID/corsi.html

25. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif Intell. 172(14), 1644–1672
(2008)

26. Emerson, E.A.: Temporal and Modal Logic. InL: Handbook of theoretical computer science, vol. B. MIT
Press (1990)

27. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68
(2016)

28. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation. Chapter 7, pp. 285–316.
Elsevier, Amsterdam (2007)

29. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University Press, New York (2014)

30. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen,
K. (eds.) Proc. of the 5th Intl. Conf. and Symposium on Logic Programming, pp. 1070–1080. MIT Press
(1988)

31. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. N. Gener.
Comput. 9, 365–385 (1991)

32. Governatori, G.: Un modello formale per il ragionamento giuridico. PhD thesis, Dottorato Di Ricerca in
Informatica Giuridica E Diritto Dell’informatica - CIRFID Università Di Bologna, 1996. Supervisors:
Professors Alberto Artosi and Maurizio Matteuzzi

33. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S.: Computing strong and weak permissions in
defeasible logic. J. Philos. Log. 42(6), 799–829 (2013)

34. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770
(1992)

35. Kakas, A.C., Toni, F.: Computing argumentation in logic programming. J. Log Comput. 9(4), 515–562
(1999)

36. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI, vol. 92, pp. 359–363. Citeseer (1992)
37. Kjellerstrand, H.: Hidato. Available at http://www.hakank.org/answer set programming (2015)
38. Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3-4), 275–296 (1996)
39. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–

299 (1990)
40. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to systems and applications.

In: Baral, C., Brewka, G., Schlipf, J. (eds.) Logic Programming and Nonmonotonic Reasoning, 9th Intl.
Conference, LPNMR 2007. Springer (2007)

http://users.dimi.uniud.it/ agostino.dovier/DID/corsi.html
http://www.hakank.org/answer_set_programming

Digital forensics and investigations meet artificial intelligence 229

41. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log.
2, 526–541 (2001)

42. Lifschitz, V.: Action languages, answer sets, and planning. In: The Logic Programming Paradigm, pp.
357–373. Springer (1999)

43. Lifschitz, V.: Twelve definitions of a stable model. In: de la Banda, M.G., Pontelli, E. (eds.) Proc. of the
24th Intl. Conference on Logic Programming, volume 5366 of LNCS, pp. 37–51. Springer (2008)

44. Lucatuorto, P.L.M.: Intelligenza artificiale e diritto: le applicazioni giuridiche dei sistemi esperti.
Ciberspazio e Diritto 7(2), 103–125 (2006)

45. Maratea, M., Pulina, L., Ricca, F.: Multi-engine ASP solving with policy adaptation. J. Log. Comput.
25(6), 1285–1306 (2015)

46. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The
Logic Programming Paradigm, pp. 375–398. Springer (1999)

47. Montali, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.: Evaluating compliance: from LTL to
abductive logic programming. In: Ancona, D., Maratea, M., Mascardi, V. (eds.) Proceedings of the 30th
Italian Conference on Computational Logic, volume 1459 of CEUR Workshop Proceedings, pp. 101–
116. CEUR-WS.org (2015)

48. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann.
Math. Artif. Intell., Springer 25(3-4), 241–273 (1999)

49. Olivieri, R.: Digital Forensics meets Complexity Theory and Artificial Intelligence: Towards Auto-
mated Generation of Investigation Hypothesis. PhD thesis, Dottorato di ricerca in Ingegneria e Scienze
dell’Informazione, Università degli Studi dell’Aquila. Supervisor: Prof. Stefania Costantini. (2016)

50. Pearce, D.: A new logical characterization of stable models and answer sets. In: Non-Monotonic
Extensions of Logic Programming, Number 1216 in LNAI, pp. 55–70. Springer (1997)

51. Pearce, D., Valverde, A.: Synonymous theories in answer set programming and equilibrium logic. In:
Proc. of ECAI04, 16th Europ. Conf. on Art. Intell. pp 388–390 (2004)

52. Pnueli, A.: The temporal logic of programs. In: Proc. Of FOCS, 18th Annual Symposium on Foundations
of Computer Science, pp. 46–57. IEEE (1977)

53. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13
(2000)

54. Riguzzi, F., Bellodi, E., Zese, R., Cota, G., Lamma, E.: A survey of lifted inference approaches for
probabilistic logic programming under the distribution semantics. Int. J. Approx. Reason. 80, 313–333
(2017)

55. Rotolo, A., Governatori, G., Sartor, G.: Deontic defeasible reasoning in legal interpretation: two options
for modelling interpretive arguments. In: Proceedings of the 15th International Conference on Artificial
Intelligence and Law, ICAIL 2015, June 8-12, 2015, pp. 99–108. San Diego (2015)

56. Smith, C., Calardo, E., Rotolo, A., Sartor, G.: Legal responsibility for the acts of others a logical analysis.
In: Rules on the Web. From Theory to Applications - 8Th International Symposium, RuleML 2014, Co-
Located with the 21St European Conference on Artificial Intelligence, ECAI 2014, August 18-20, 2014.
Proceedings, pp. 329–338, Prague (2014)

57. Truszczyński, M.: Logic programming for knowledge representation. In: Dahl, V., Niemelä, I. (eds.)
Logic Programming, 23rd Intl. Conference, ICLP 2007, pp. 76–88. Springer, Berlin (2007)

58. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Proceedings of the 2001 Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2001, number 2031 in LNCS, pp.
1–22. Springer (2001)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Digital forensics and investigations meet artificial intelligence
	Abstract
	Introduction
	Digital forensics and digital investigation
	Sectors of digital forensics and digital investigation
	Phases of digital forensics and investigation

	Proposed approach
	Answer set programming (ASP): an overview
	The zebra escaped
	The investigative case
	ASP solution
	More information available
	Results

	Data recovery and file sharing hypothesis
	The investigative case
	Elements
	The marriage problem
	Reduction
	Answer set programming solution
	Results

	Identification of ``Puppeteers''
	The investigative case
	Elements
	Clique problem
	Reduction
	Answer set programming solution
	Results and observations

	Crime scene solver
	The investigative case
	Elements
	Hamiltonian path
	Reduction
	Answer set programming solution
	Results and possible generalization

	Path verification
	The investigative case
	Elements
	Hidato puzzle (Hidoku)
	Reduction
	Answer set programming solution
	Results

	Alibi verification
	The investigative case
	Elements
	Monkey & Banana
	Reduction
	Answer set programming solution
	Results

	Conclusions & future work
	References

