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Abstract
We used computer proof-checking methods to verify the correctness of our proofs of the
propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a
language closely related to that used in Tarski’s formal geometry. We used proofs as close
as possible to those given by Euclid, but filling Euclid’s gaps and correcting errors. Euclid
Book I has 48 propositions; we proved 235 theorems. The extras were partly “Book Zero”,
preliminaries of a very fundamental nature, partly propositions that Euclid omitted but were
used implicitly, partly advanced theorems that we found necessary to fill Euclid’s gaps, and
partly just variants of Euclid’s propositions. We wrote these proofs in a simple fragment of
first-order logic corresponding to Euclid’s logic, debugged them using a custom software
tool, and then checked them in the well-known and trusted proof checkers HOL Light and
Coq.
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1 Introduction

Euclid was the “gold standard” of rigor for millenia. The Elements of Euclid set the stan-
dard of proof used by Isaac Newton in his Principia and even Abraham Lincoln claimed to
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have read all ten books of Euclid and learned from it how to prove something in court. The
Elements also inspired the form of the American Declaration of Independence. In the mod-
ern era, beginning already in the nineteenth century, the standards of proof in mathematics
became more demanding, and the imprecisions and gaps in Euclid were more apparent than
before. Even before that time, some mathematicians focused on the perceived flaw that the
Fifth Postulate (the “parallel postulate”, or “Euclid 5”) was less intuitively evident than the
other four.1 Efforts to remove this “flaw” by proving Euclid 5 led to the development of
non-Euclidean geometry, showing that in fact Euclid 5 was a necessary postulate, not a flaw.

Nevertheless there are flaws in Euclid, and we want to discuss their nature by way of
introduction to the subject.2 The first gap occurs in the first proposition, I.1, in which Euclid
proves the existence of an equilateral triangle with a given side, by constructing the third
vertex as the intersection point of two circles. But why do those two circles intersect? Euclid
cites neither an axiom nor a postulate nor a common notion. This gap is filled by adding the
“circle–circle” axiom, according to which if circle C has a point inside circle K , and also a
point outside circle K , then there is a point lying on both C and K .

There is, however, a second gap in the proof of I.1. Namely, the proposition claims the
existence of a triangle, which by definition is (or at least is determined by) three non-
collinear points.3 Why are the three points in question not all on a line? Intuitively, if they
were, then one would be between the other two, violating Euclid’s common notion that the
part is not equal to the whole, since all the sides are equal.

A formal proof of Prop. I.1 cannot follow Euclid in ignoring this issue. The proposition
that if B is between A and C then AB is not equal to AC therefore must precede proposition
I.1, unless one is to consider it as an axiom formalizing one of Euclid’s common notions. In
the next section, we discuss the axioms and postulates of Euclid, and how we have chosen
to render them in modern first-order form.

The two gaps in I.1 illustrate two common failures. Many of the gaps in Euclid fall into
one of these categories:

(i) A failure to prove that a point clearly shown in the diagram actually exists, e.g. that
two lines really do intersect, or as in I.1 two circles.

(ii) A failure to prove that points shown in the diagram to be non-collinear, are in fact
non-collinear.

(iii) A failure to prove that a point shown in the diagram to be between two other points,
is in fact between those points.

Another example of an error of type (i) is in the second paragraph of Prop. I.44, “let FG

be drawn through to H”. Here H has not been proved to exist, a strange omission in that a
few lines later Euclid does feel the need to use Postulate 5 to prove that K exists; but then
two lines later “let HA, GB be produced to the points L, M”. That is, the lines shown as
intersecting at L and M do in fact intersect–but Euclid offers no justification for that line of
the proof. There are dozens of such fillable gaps in Euclid’s proofs, some more easily filled
than others.

1Proclus [38], writing in the fifth century, said that Euclid 5 needed a proof, and tried to supply one; and he
was not the first, since he also criticized a previous attempt by Ptolemy. See [21], Ch. 5 for further history.
2It is customary to refer to the propositions of Euclid with notation like I.44, which means Proposition 44 of
Book I.”
3Euclid never defines triangle, although he does define right triangle and equilateral triangle. Instead he
mentions trilateral figure, which is “contained by three straight lines.” We read that to imply non-collinearity,
for otherwise there would be only one line, and nothing “contained.”
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Fig. 1 Euclid’s proof of I.9. What if B = P ? Even if B �= P , why does BP lie in the interior of ABC, i.e.,
why does it meet AC?

Not every error in Euclid falls into these categories, however. Consider Prop. I.9, in which
Euclid bisects an angle. The method is to lay off the same length on both sides of the angle,
and then construct an equilateral triangle on the base thus formed. Connecting the vertex of
the original angle with the vertex of the equilateral triangle, we get the angle bisector (Fig. 1).

Oops, but the two points might coincide! Well, in that case we ought to have drawn the
other equilateral triangle, on the other side of the base. But Prop. I.1 did not provide for the
construction of two triangles, and we cannot easily construct “the other one.” We certainly
need to expand the list of ways in which Euclid’s proofs fall short by at least two more items:

(iv) A failure to prove that points shown in the diagram to be distinct are in fact distinct.
(v) A failure to show that points are on the same side (or opposite sides) of a line, as the

diagram shows them to be.

Even if we could solve these problems, the proof of I.9 still would not be correct, since we
would still need to show that the angle bisector constructed does in fact lie in the interior of
the angle. That difficulty brings us to an important point. There is no “dimension axiom” in
Euclid to guarantee that we are doing plane geometry. Hence “circles” are really “spheres”,
and rather than just two equilateral triangles on a given base, there are infinitely many. BP

might not even lie in the same plane as AC! So even if the vertex of the equilateral triangle
is distinct from the vertex of the original angle, why does the line between them lie in the
interior of the angle? In fact that would be a problem even in two dimensions–an example
of (iii) above.

Even if it were possible to fix that problem by adding a dimension axiom, that would
not be desirable. Euclid didn’t just forget to write down a dimension axiom. In Book X and
beyond, Euclid works in three-space, and the culmination of the whole series of books is the
study of the Platonic solids. Hence it is clear that Euclid is not meant to be restricted to plane
geometry. In the absence of a dimension axiom, it is good advice to the reader to visualize
“circles” as spheres. Then the two circles used in I.1 have not just two but many intersection
points. The circle–circle axiom only guarantees the existence of one intersection point.4

4Since Euclid did not state the axiom, one could consider strengthening it to state the existence of an inter-
section point on a given side of the line connecting the centers of the circles. But Euclid also did not say
in I.1 or I.9 anything about this problem; and we are able to prove I.9 from the more fundamental form of
circle–circle.
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Therefore we conclude that Euclid’s proof of I.9 is fatally flawed. We prove it another way:
by first showing how to bisect a line, and then using that to bisect an angle. The simple
and ingenious proof that a line can be bisected if it is the base of an isosceles triangle was
apparently not noticed until Gupta’s thesis in 1965 [23], but could very well have been
discovered by Euclid.

The fact that there is no dimension axiom is not always remembered in Book I, and is
the source of several difficulties. A good example is Prop. I.7, which says that if ABC is
a triangle and ABD is another triangle congruent to ABC (that is, AC = AD and BC =
BD), and C and D are on the same side of AB, then C is equal to D. Look at the figure
for I.7; in two dimensions it appears contradictory, but as soon as you think that it might be
in three dimensions, the contradiction disappears. The statement of Prop. 7 does correctly
include the hypothesis that C and D are on the same side of AB, but Euclid never uses that
hypothesis in the proof. That is not surprising, since he never defined “same side”, so he
had no possible way to use that hypothesis. It should have been used to verify the claim that
angle DCB is less than angle DCA, because there is a point of intersection of AD and CB.
This turns out to not be provable, even after proving a number of more basic propositions
in “Book Zero”; we could not prove I.7 without using “dropped perpendiculars”, which are
only constructed much later in Euclid.

A well-known geometer told us “there are no errors in Euclid”, in the sense that the
statements of all the propositions are true in the plane. If we supply Tarski’s definition
of “same side”, an even stronger version of that claim is true: the statements of all the
propositions are true in every finite-dimensional space R

n. However, the same cannot be
said of the proofs. Many of these have problems like those of I.9 and I.7; that is, we could
fix these problems only by proving some other propositions first, and the propositions of the
first half of Book I had to be proved in a different order, namely 1,3,15,5,4,10,12,7,6,8,9,11,
and in some cases the proofs are much more difficult than Euclid thought. After proving
those early propositions, we could follow Euclid’s order better, and things went well until
Prop. 44. In Propositions 44 and 47 there are numerous points of difficulty, which took extra
propositions to resolve. As one example we mention the proposition that every square is a
parallelogram, which Euclid uses implicitly in proving Prop. 47. (By definition a square has
equal sides and four right angles, and a parallelogram is a quadrilateral with opposite sides
parallel.) Euclid could and should have proved that.

The aims of the project reported on in this paper are as follows:

(i) Fix Euclid’s axioms (and common notions), using an axiom system rather close to
Euclid’s, but including axioms about betweenness that Euclid omitted, and with other
changes discussed below.

(ii) Give correct proofs of all the propositions in Book I from the new axioms, following
Euclid’s proofs as closely as possible.

(iii) Show that those proofs are indeed correct by checking the proofs using the proof-
checking programs HOL Light and Coq.

(iv) Show that the axioms are indeed correct by computer-checking proofs that the axioms
hold in the Cartesian plane R

2.5

Accordingly, in this paper we limit the discussion of geometry to the description of the
axioms, the description of a few specific flaws in Euclid’s reasoning, and a discussion of

5The axioms hold in F
n, where F is any Euclidean field (an ordered field in which positive elements have

square roots), but we have not computer-checked a proof of that fact, even for n = 2; we did check R
2.
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Euclid’s notion of “equal figures” that is necessary to verify the axioms we use about that
notion. Our focus in this paper is on proof checking. What we report on here would still have
been worth doing, even if there were no gaps or errors in Euclid. The details of our proofs,
and a discussion of the errors in the original proofs of Euclid, will be published separately,
with a focus on the geometry and on the correspondence between the axioms and proofs of
Euclid and those of our formal development. That will necessitate a longer discussion than
is possible here.

The formal proofs themselves, as well as the PHP and ML scripts that we used, are
available on the Web. Look for links to them at http://www.michaelbeeson.com/research/
CheckEuclid/index.php. They are also available as ancillary files to the version of this paper
posted on ArXiv.

2 History

A scholarly history of the previous attempts to axiomatize Euclidean geometry would
require a long paper in itself; we offer only a few highlights here. But before beginning,
we point out that axiomatizing Euclidean geometry is not quite the same as axiomatizing
Euclid: the former aims at an axiom system that permits the derivation of important the-
orems, regardless of whether the axioms or the proofs are similar to Euclid’s axioms and
proofs; the latter pays attention to those points.

The best known attempt is Hilbert’s 1899 book [25]. Hilbert had been a vocal proponent
of the axiomatic method, and his book was probably meant partly to illustrate that method
on the example of geometry. First-order logic was in its infancy and Hilbert’s system was
not first order. He made use of Archimedes’s axiom, and his continuity “axiom” is a strange
mixture of logic and model theory.6 The fundamental idea to use betweenness and con-
gruence as primitive relations goes back to Pasch[35]. Further contributions by Mollerup
[32], Veronese [44], Pasch [35], and Peano[36] are discussed below in connection with the
axioms they helped to develop. After Hilbert, the most important work is the axiom system
of Tarski. This is a first-order system, and not only is it first-order, it is points-only, meaning
that there are variables only for points. Lines are given by two points, and angles by three
points, and equality between angles is a defined notion. This fits Euclid very well: Euclid
almost always refers to lines by two points, and angles by three points. Tarski’s system was
developed in 1927, but publication was long delayed; for the history see the introduction to
(the Ishi press edition of) [40]. Although a development of Euclid in Tarski’s system could
have been done in the 1960s at Berkeley, it was not done. Instead efforts focused on reduc-
ing the number of Tarski’s axioms by finding dependencies, and on proving fundamental
results like the existence of perpendiculars and midpoints without using the parallel postu-
late or any continuity axioms. The results of these efforts finally appeared in [40], which
contains the remarkable results of [23].

In spite of a century of effort, in 2017 we did not possess any formal analysis of Euclid’s
proofs, for Hilbert and Tarski had both aimed at avoiding the circle axioms and developing
segment arithmetic, while Euclid uses the circle axioms and the last half of Book I is based on
the equal-figure axioms (discussed in Section 7). Even if we add the circle axioms, the last
half of Book I can be proved in Hilbert or Tarski’s theories only after the long and difficult
development of segment arithmetic, so that “equal figures” can be defined as “equal area.”

6It can be viewed as a second-order axiom involving quantification over models of the other axioms.

http://www.michaelbeeson.com/research/CheckEuclid/index.php
http://www.michaelbeeson.com/research/CheckEuclid/index.php
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It is now 35 years since the publication of [40], and meantime, the technology of proof
checking by computer has advanced. Our predecessors stopped at the threshold, so to
speak, by working on neutral geometry and minimal axioms systems, instead of formalizing
Euclid. We serendipitously find ourselves in the situation where it is possible for us to take
up that task, and also to verify (using existing computer proof checkers) that our proofs are
flawlessly correct.

3 Language

Euclid did understand the fundamental point that not every fact can be proved; the first fact
accepted could not be proved because there would be nothing to prove it from. But he did
not understand that similarly, not every concept can be defined. Thus he famously attempted
to define “point” and “line” and “rectilinear angle.” (The Greeks also considered “angles”
formed by curved sides.) These natural-language “definitions” are not mathematical usable;
so in practice Euclid treated points, angles, circles, and lines all as primitive notions. In
addition, Euclid treated “figures” as a primitive notion, in the sense that he never made use of
the circular and vague definitions he offered.7 In Book I, only triangle and quadrilaterals are
used. Euclid also accepted concepts of “equal” and “greater than” for each of points, angles,
circles, lines, and figures without definition (but curiously, there is no “greater than” for
figures). In the middle of the nineteenth century, it was recognized that “betweenness” and
“equidistance” were good primitives for geometry, and later it was realized that it is possible
to work with angles represented by triples of points, instead of taking them as primitive, so
angle equality and inequality are defined concepts. That is what we do in our formal work.
Thus all our axioms, except those mentioning circles, are formulated in a “points-only”
language, in which the fundamental relations are betweenness and equidistance.

Betweenness is a 3-ary relation B(A,B,C), which Euclid wrote as “B lies on the finite
straight line AC”, or (for example in Prop. I.14) as “AB and BC lie in a straight line.” We
interpret B as strict betweenness, i.e. the endpoints do not lie on the line.8

Collinearity is the relation L(A, B,C) expressing that either two of the points are equal
or one lies between the other two. This is a statement about points only. It seems that for
Euclid, lines were primitive objects, rather than sets, and the incidence relation (point lies
on line) too fundamental even to notice, as it does not occur in the list where “point” and
“line” are “defined.” Whether close to Euclid or not, we use the first-order formulations of
betweenness (a primitive) and collinearity (defined).9

“Equidistance” is a 4-ary relation representing the congruence of finite lines, “AB is
equal to CD”. Euclid, or at least his translator Heath, used “equal” rather than “congruent”.
(The word “equidistance” is also not faithful to Euclid, who never spoke of distances.)

There is one exception to our “points-only” approach. In order to follow Euclid more
closely, we allow giving a name to a circle. Circles are given by point and radius, so we
can say “J is a circle with center P and radius AB.” (Here the “radius” is not a number but

7 A figure is that which is contained by a boundary; a boundary is that which is an extremity of anything.
8Hilbert used strict betweenness; Tarski used non-strict betweenness, on purpose because the degenerate
cases could be used to reduce the number of axioms. We use strict betweenness, on purpose to avoid
degenerate cases that express unintended things and have to be separately worried about.
9Most of the time Euclid’s lines are finite, which may confuse a modern reader at first, since today finite
lines are called “segments”, and “line” means “infinite line.” Hilbert made (infinite) lines primitive objects,
but treated finite lines (segments) as sets of points.
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Fig. 2 (Left) a and b are on the opposite side of pq. (Right) a and b are on the same side of pq if there exist
points x and y collinear with pq, and a point c, such that B(a, x, c) and B(b, y, c)

a finite line.) This is expressed by the formula CI (X, C, A, B), using a primitive relation
symbol CI . We do not make use of equality between variables of the sort for circles.

Euclid never gives circles a single-character name as we do. Nor does he name circles
by center and radius, or center and point-on-circle. Instead he names circles by listing three
points that lie on the circle. One of those points is a point that appears to exist in the diagram,
and is conjured into existence without proof by the act of naming it. This naming technique
papers over the lack of the circle–circle axiom in Euclid, and introduces a gap into the proof
every time it is used. We therefore must deviate from Euclid’s naming convention for circles.

Betweenness and equidistance are sufficient as primitive relations for elementary geom-
etry, but the latter part of Euclid Book I uses another primitive relation, “equal figures”,
which is discussed in Section 7. We mention it here only to note that the complete definition
of our language requires inclusion of the primitive relations discussed in Section 7.

4 Definitions

Euclid gives a long list of definitions at the beginning of Book I. We do the same. Euclid’s
list has some important omissions, notably “same side” and “opposite side”. These are
defined in Fig. 2.10 Euclid defined “square” but omitted “parallelogram” and “rectangle”.
He defined “parallel lines” to be lines that do not meet but lie in the same plane (thus illus-
trating that his omission of a dimension axiom was no accident!) On the other hand, he
failed to define “lies in the same plane”. Once we have defined “same side” as in Fig. 2,
it is easy to define “lies in the same plane”, as each line and point not on the line deter-
mine two half-planes, together making up a plane. In the formal statement of “same side”, a
line is specified by two distinct points p, q, and the incidence of x on that line is expressed
by “p, q, x are collinear”. Formally we use the relation L(p, q, x) defined above in terms
of betweenness. This definition exemplifies how one works with points only, avoiding the
explicit mention of lines. The price one has to pay for this simplification is that one then has

10This definition is due to Tarski [40]. Hilbert had planes as a primitive concept, and discussed “same side”
and “opposite side” only in the context of a fixed plane, using a definition that would not work without having
planes as a primitive concept. Tarski’s definition of “same side” is vital for making possible a points-only
formalization that would work in more than two dimensions.
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to prove that it doesn’t matter which particular points p, q we chose to represent the line.
That is, “same side” is invariant if p and q are changed to some other pair of distinct points
each of which is collinear with p and q.

Euclid’s failure to define “lies in the same plane” leaves us to complete his definition
of “parallel”. First, we discuss the “not meeting” part of the definition. Lines in Euclid are
finite, but “parallel” is about infinite lines. So “AB does not meet CD” means that no matter
how those two finite lines are produced, the lengthened lines still do not have a point in
common. In other words, there is no point collinear with both AB and CD. On the other
hand, “AB crosses CD” means that there is a point both between A and B, and between C

and D.
We define “Tarski-parallel” by “AB and CD do not meet, and C and D lie on the same

side of AB.” This is clearly not what Euclid intended, as to Euclid it seems obvious that if
AB is parallel to CD then CD is parallel to AB. So we define instead that AB is parallel to
CD if there is no point collinear with both AB and CD, and there are four points a, b, c, d

with a and b collinear with AB, and c, d collinear with CD, and ad crosses bc. With this
definition, there is a very short proof of the symmetry property. On the other hand, the two
definitions can be proved equivalent. It follows that if AB and CD are parallel then A and
B are on the same side of CD, which is quite often actually necessary, but never remarked
by Euclid.

Euclid defines a square to be a quadrilateral with at least one right angle, in which all
the sides are equal.11 He does not specify that all four vertices lie in the same plane. This is
not trivial to prove, but we did prove it, so Euclid’s definition does not require modification.
Euclid does not define “rectangle”. One would like to define it as a quadrilateral with four
right angles. It is a theorem that such a figure must lie in a plane. However, the proofs we
found involve reasoning “in three dimensions”. Even though Euclid Book I has no dimen-
sion axiom, and we must therefore be careful not to assume one, nevertheless all the proofs
in Book I deal with planar configurations. We therefore define “rectangle” to be a quadri-
lateral with four right angles, whose diagonals cross, that is, meet in a point. This condition
is one way of specifying that a rectangle lies in a plane. We can then prove that a rectangle
is a parallelogram.

The Appendix contains a complete machine-generated list of our definitions.

5 Angles

We take only points and circles as primitive objects. Angles are treated as ordered triples
of non-collinear points, ABC. The point B is the vertex of the angle. Equality of angles is
a 6-ary relation, which we write informally as “angle ABC = abc”. The definition is that
there exist four points (one on each side of each angle) that form, with the vertices B and
b, two congruent triangles. (Two triangles are congruent, by definition, if all three pairs of
corresponding sides are equal.)12 This definition does not permit “straight angles”, “zero
angles”, or angles “greater than 180 degrees.” Such “angles” are also not used in Euclid.

A point F lies in the interior of angle ABC if it is between two points lying on the two
sides of the angle. Angle ordering is defined by abc < ABC if angle abc is equal to angle

11But in I.46 and I.47 the proofs work as if the definition required all four angles to be right, so we take that
as the definition.
12This is not the same definition as used in [40], but it works, and seems simpler to us; perhaps the one in
[40] seems simpler in the presence of function symbols for line extension.
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ABF , for some F in the interior of ABC. Note that these definitions make sense without
any dimension axiom; that is, they work fine in three-space.

We then have to prove as theorems those properties of angle equality and ordering that
Euclid assumed as “common notions”: reflexivity, symmetry, and transitivity of angle equal-
ity; the fact that angle ABC is equal to angle CBA; transitivity of angle ordering. The fact
that an angle cannot be both equal to and less than the same angle is quite difficult to prove,
although taken for granted by Euclid in several proofs. That is, of course, the key result
needed to prove antisymmetry and trichotomy for angle ordering.

Hilbert [25] took angles as primitive, and had an axiom about copying angles that spec-
ified the uniqueness of the copied angle. The uniqueness assumption builds in as an axiom
the property that an angle cannot be both less than and equal to itself. Since this can be
proved, it might be considered an imperfection to assume it as an axiom. While Hilbert
took angles and equality of angles as primitive, he did define angle ordering just as we do.
Because of the uniqueness part of his angle-copying axiom, he had no difficulty proving
trichotomy.

6 Axioms and postulates

Euclid had three groups of what would now be called axioms: common notions, axioms,
and postulates. The common notions were intended to be principles of reasoning that
applied more generally than just to geometry. For example, what we would now call equal-
ity axioms. The axioms and postulates were about geometry. The distinction between an
“axiom” and a “postulate”, according to Proclus [38], p. 157, is that a postulate asserts that
some point can be constructed, while an axiom does not. In modern terms an “axiom” is
purely universal, while a postulate has an existential quantifier.

Heath’s translation lists five common notions, five postulates, and zero axioms. Simson’s
translation [17] lists three postulates, twelve axioms, and zero common notions. The extra
axioms are discussed by Heath on p. 223 of [18], where they are rejected.

6.1 Euclid’s common notions

Euclid’s first common notion is “things equal to the same thing are equal to each other.”
That is,

a = c ∧ b = c→a = b.

Modern mathematicians would prefer

a = c ∧ c = b→a = b.

But then, they need symmetry as a separate axiom (a = b→b = a), while that can be
proved from Euclid’s axiom above. We follow Euclid in this matter, although of course it is
of no serious consequence.13

Euclid’s fourth common notion is “Things which coincide with one another are equal to
one another.” We take this to justify reflexivity. We consider the transitivity, reflexivity, and
symmetry of point equality to be part of logic.

13Apparently Euclid considered symmetry too obvious to mention. Or maybe, he considered “A = B”
and “B = A” to just be different expressions of the same proposition, rather than different but equivalent
propositions.
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When “equality” refers to congruence of lines, these principles correspond to three con-
gruence axioms. We also need the axiom that AB is equal to BA. In other words, Euclid’s
lines are not directional. Euclid never explicitly states this principle, but it is often necessary
when formalizing his proofs. Perhaps Euclid would regard AB and BA as “coincident”, in
which case this axiom is covered by common notion 4, quoted above.

Euclid himself used common notion 4 to justify his “proof” of the SAS principle I.3 by
“superposition”. We reject this proof, and that leaves only AB = BA and reflexivity of
congruence, point equality, and figures to correspond to common notion 4.

Angle equality is a defined concept and its properties are theorems, not axioms. Equality
of figures is axiomatized in Section 7.

Euclid’s fifth common notion is “The whole is greater than the part.” In our formalism,
inequality of finite lines AB < CD is defined as “AB is equal to CE for some E between
C and D.” Thus common notion 5 (for lines) is built into the definition. Then “the whole is
not equal to the part” (for lines) becomes AB < CD implies AB is not equal to CD, which
boils down to the principle partnotequalwhole:

B(A,B,C)→¬ AB = AC.

This is a theorem, not an axiom, in our development.
Euclid’s second common notion is “If equals be added to equals, the wholes are equal”,

and the third common notion is “If equals be subtracted from equals, the remainders are
equal.” Common notion 2 becomes our axiom sumofparts, which says that if AB = ab

and BC = bc and B(A,B,C) and B(a, b, c), then AC = ac. Here AB and BC are
“parts” and AC is the “whole” made by “adding” the two lines. The related princi-
ple differenceofparts, corresponding to common notion 3, is proved, rather than
assumed as an axiom; there is a fuller discussion in Section 6.6. Angle inequality is a defined
notion and there are no axioms about it. These two common notions justify several of the
axioms for figures, which are discussed in Section 7.

Equality also enjoys the substitution property for each predicate in our language:

B(a, b, c) ∧ a = A ∧ b = B ∧ c = C→B(A,B,C)

ab = cd ∧ a = A ∧ b = B ∧ c = B ∧ d = D→AB = CD

and similarly for the predicates for “equal figures.” In practice, the proofs are checked
assuming the second-order property:

a = b→∀P (P (a) ⇐⇒ P(b))

which allows to avoid introducing a separate axiom for each predicate. That is, we do not
actually use the substitution axioms for individual predicates, but allow the substitution of A

for B in any derived formula, when A = B or B = A has been derived. Such substitutions
are often needed in formalizing Euclid’s proofs, so even if he did not explicitly state the
principle, he understood it.

A complete machine-generated list of the common notions is in the Appendix.

6.2 Betweenness axioms

Euclid never made explicit mention of betweenness, ignored all places where it should have
been proved, and had no axioms for proving betweenness statements. We will not discuss
the historical origins of the following axioms, nor the possibilities for reducing their number
(this is certainly not a minimal set, but the proofs required to eliminate some of these axioms
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are long and difficult.) We give them the names they are given in our formal development,
which is why there are no spaces in those names.

¬B(a, b, a) betweennessidentity

B(a, b, c)→B(c, b, a) betweennesssymmetry

B(a, b, d) ∧ B(b, c, d)→B(a, b, c) innertransitivity

The following axiom is called connectivity and can be rendered in English as “If B

and C lie on the finite straight line AD, and neither is between A and the other, then they
are equal.”

Formally:

B(a, b, d) ∧ B(a, c, d) ∧ ¬B(a, b, c) ∧ ¬B(a, c, b)→b = c

This principle was expressed in antiquity as “a straight line cannot enclose an area.”14

It is closely related to the principle known in modern times as “outer connectivity”, which
says that if line AB has two extensions C and D then either C is between B and D or D is
between B and C. We prove outer connectivity as a theorem from the connectivity axiom.15

6.3 Extension of lines

Euclid postulated that every line can be extended, but (at least in Heath’s translation) did
not say by how much.16 We render Euclid 1 as

If A �= B then there exists C with B(A,B,C).
Tarski postulated instead that every line AB can be extended by the amount CD; that is,

there exists a point E such that B(A,B,E) ∧ BE = CD. Since Euclid’s lines have distinct
endpoints, it should be required that both A �= B and C �= D.

There is an intermediate form we call localextension, in which you are allowed to
extend AB by the amount BC; that is, the segment used to measure the extension and the
segment to be extended have a common endpoint.

Euclid’s Prop. I.2 asserts that given any point A and line CD there is a point E with
AE = CD. The Tarski extension postulate renders Prop. I.2 superfluous. That is a matter
of some regret, since I.2 has a beautiful proof. Clearly the Tarski extension postulate goes
beyond what Euclid had in mind; therefore we assume only Euclid 1 as stated above.

The line-circle axiom says that if P is inside circle C then any line through P meets C.
This axiom is discussed fully in Section 6.10 below, but it is relevant to line extensions,

14 It is discussed by Proclus [38], p. 126, who thinks it superfluous as it is included in the meaning of
Postulate 1. Apparently Simson was not convinced, as his translation [17] lists it as an axiom. Heath rejects it
as an axiom (p. 232 of [18]), not on mathematical grounds, but because he came to the conclusion that it is an
“interpolation”, i.e., is not in the original Euclid, in spite of being included in three of the “best manuscripts.”
15Outer connectivity was discussed already by Proclus, who stated it as “two straight lines cannot have a
common segment” [38], p. 168-9, Section 216-17. Proclus says it is implicit in Euclid’s line extension axiom.
Neverthless, Proclus considers some possible proofs of it–but not the ingenious proof offered by Potts in the
commentary to Prop. I.11 in [37], p. 14, which shows that outer connectivity follows from perpendiculars
and the fact that an angle cannot be less than itself. The latter, however, is a difficult theorem, if it (or a close
equivalent) is not assumed as an axiom.
16The Simson translation [17] renders the extension postulate as “That a terminated straight line may be
produced to any length in a straight line.” Perhaps Euclid’s extension postulate said more than Heath’s
translation indicates.
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because if we have a circle with center at B, then line-circle enables us to extend AB by
the radius of the circle. In this way one shows that Euclid 2 and line-circle together imply
localextension, since the circle needed for a local extension can be drawn with a
collapsible compass. With localextension, we can carry out the proof of I.2, and after
I.2 we can prove the Tarski extension principle. From there on the development is unaffected
by the choice not to assume the Tarski extension principle as an axiom, but our weaker
axiom exactly reflects what Euclid used and permits us to prove I.2 as he did.

The key to this development is the “bootstrapping” aspect of it: one needs I.2 to prove
the Tarski extension principle with line-circle, but one needs some extensions by a given
amount to prove I.2, so it appears at first that Euclid 1 is not sufficient; so we first prove
localextension, then use it to prove I.2, then prove Tarski extension. For this to work
it is also necessary that “inside” be correctly defined and that the line-circle axiom be cor-
rectly formulated; there are several wrong ways to do these things. Euclid did not give us a
complete proof to follow, since he did not state or use any version of line-circle, and did not
define “inside” which is the key task in formulating line-circle.

6.4 Five-line axiom

Euclid attempted, in Proposition I.4, to prove the side-angle-side criterion for angle con-
gruence (SAS). But his “proof” appeals to the invariance of triangles under rigid motions,
about which there is nothing in his axioms, so for centuries it has been recognized that in
effect SAS is an axiom, not a theorem.

Instead of SAS itself, we take an axiom known as the “five-line axiom.” This axiom is
illustrated in Fig. 3. Its conclusion is, in effect, the congruence of triangles dbc and DBC in
that figure. Its hypothesis expresses the congruence (equality, in Euclid’s phrase) of angles
dbc and DBC by means of the congruence of the exterior triangles abd and ABD.

Our version of the five-line axiom was introduced by Tarski, although we have changed
non-strict betweenness to strict betweenness.17

6.5 Pasch’s axiom

Pasch [35] introduced the axiom that bears his name, in the form that says that if a line enters
a triangle through one side, it must exit through another side (or vertex). That version, of
course, is only true in a plane. Seven years later, Peano [36] introduced what are now called
“inner Pasch” and “outer Pasch”, which work without a dimension axiom. 18 See Fig. 4. In
that figure, we use the convention that solid dots indicate points assumed to exist, while an
open circle indicates a point that is asserted to exist.

Technically “Pasch’s axiom” should be “Pasch’s postulate”, since it makes an existential
assertion, but the terminology is too well-established to change now.

17The history of this axiom is as follows. The key idea (replacing reasoning about angles by reasoning about
congruence of segments) was introduced (in 1904) by J. Mollerup [32]. His system has an axiom closely
related to the 5-line axiom, and easily proved equivalent. Tarski’s version [43], however, is slightly simpler in
formulation. Mollerup (without comment) gives a reference to Veronese [44]. Veronese does have a theorem
(on page 241) with the same diagram as the 5-line axiom, and closely related, but he does not suggest an
axiom related to this diagram.
18Axiom XIII in [36] is outer Pasch, with B(a, b, c) written as b ∈ ac. Axiom XIV is inner Pasch. Peano
wrote everything in formal symbols only, and eventually bought his own printing press to print his books
himself.
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Fig. 3 If the four solid lines on the left are equal to the corresponding solid lines on the right, then the dashed
lines are also equal

6.6 Degenerate cases

Tarski was always interested in minimizing the number of axioms, and was happy if allow-
ing “degenerate” cases in axioms allowed one to combine what would otherwise be several
separate axioms. Tarski’s versions of Pasch’s axiom allow all the points to lie on one line.
From those degenerate cases one can derive basic principles about the order of points on a
line that we take as separate axioms. Our reason for requiring a non-collinearity hypothe-
sis in inner and out Pasch is the principle that axioms should correspond to intuition. If you
have to draw a different picture to convince yourself that the degenerate case is valid, then
that is a different intuition; so generally it should be a different axiom.

Another kind of “degenerate case” is the so-called “null segment” AA. In Euclid, lines
are given by two distinct points, so there is no such thing as the “line” (or segment) AA.
Formally we have the predicate E(A,B, C,D). What happens then when A = B? The idea
that E(A,B,C, D) means that line AB is equal (congruent) to line CD suggests that it
should be false when A = B, since line AA does not exist. But the idea that E(A,B, C,D)

means “equidistance” suggests that E(A,A, C,D) should be equivalent to C = D. Are null
segments allowed, or not? If they are, we need the axiom E(A,A,C,C) that says “all null
segments are equal”. If they are not, we need ¬E(A,B, C,C). Euclid gives us no guidance:
he only works with lines that have distinct endpoints (no null segments), but he never says a
single word about null segments. We were (eventually) able to follow Euclid in that respect:
we have no axioms either way about null segments, and our axiom system has models with
null segments and models without null segments. We are “agnostic” about null segments.

It is not a fundamental philosophical issue, as the talk of “null segments” is just short-
hand; nobody suggests that AA is really a line. The argument against null segments is

Fig. 4 Inner Pasch (left) and outer Pasch (right). Line pb meets triangle acq in one side ac, and meets an
extension of side cq. Then it also meets the third side aq. The open circles show the points asserted to exist
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that we want to follow Euclid closely. The argument for null segments is that allow-
ing E(A,A, C,C) is occasionally convenient in allowing the succinct statement of
theorems. For example, congruence is preserved under reflection in a point, which is
called pointreflectionisometry. That is stated by saying that if B is the mid-
point of both AC and PQ, then AP = CQ. That statement includes the case when
A = P : then the conclusion is Q = C. To keep our theory agnostic, we had to
assume A �= B in pointreflectionisometry, which complicated the proof of
linereflectionisometry. (These theorems do not occur in Euclid anyway, but we
need them to prove Euclid’s Postulate 4, all right angles are equal.)

The picture of the 5-line axiom illustrates that it is meant to capture the intuition lead-
ing to the SAS congruence principle. But when the picture collapses onto a line, the 5-line
axiom makes “one-dimensional” or “linear” assertions about order and congruence of points
on a line. The “degenerate cases” of the 5-line axiom are when point D lies on the line
ABC. What principles are embodied in those degenerate cases? The cases D = A is
sumofparts: if B(A,B,C) and B(a, b, c), and AB = ab and BC = bc, then AC = ac.
The case D = B in the 5-line axiom similarly is differenceofparts: if B(A,B,C)

and B(a, b, c), and AB = ab and AC = ac, then BC = bc. Euclid did not state these prin-
ciples explicitly, but when he used them, he referred to his common notions about “adding
equals to equals” and “subtracting equals from equals”.

Following the principle that there should be a one-to-one correspondence between intu-
itions (or diagrams) and axioms, we should impose the extra hypotheses in the 5-line axiom
that D is not collinear with AC and d is not collinear with ac. If one does that, one will need
to add at least four more “linear” axioms (that are now proved with the help of the 5-line
axiom). One needs more than sumofparts and differenceofparts, and we did not
discover an ideal set of axioms to add. Moreover, one can argue intuitively for the unmodi-
fied axiom as follows: when the fourth point is not on the line, the intuition for the axiom is
SAS. But now think of the fourth point moving onto the line; if it approaches a limit on the
line, all the quantities mentioned vary continously, so the congruences in the 5-line axiom
remain true in the limit. The unmodified axiom makes proofs using it insensitive to the dis-
tinction whether point D is or is not on line AC, and hence it supports intuitionistic proofs,
which a restricted version would not. For these reasons, we retained the unrestricted 5-line
axiom.

6.7 Euclid’s postulate 5

Euclid’s “parallel postulate”, or “Euclid 5”, is a postulate rather than an axiom, because it
asserts that two lines meet, i.e., there exists a point on both lines. The hypothesis as Euclid
stated the postulate involves angles. We use instead a “points-only” version, illustrated in
Fig. 5. Then Euclid’s version becomes a theorem.

Most modern geometry textbooks replace Euclid 5 by “Playfair’s axiom” (introduced
by Playfair in 1729), which asserts the uniqueness of a line parallel to a given line AB,
through a point P not collinear with AB. This also becomes a theorem in our development.
Although it does not occur as a proposition in Euclid, it is several times used implicitly in
Euclid’s proofs.19

19Explicitly: Playfair is used directly in propositions 44, 45, 47, and indirectly in 37, 38, 42, 46; and more
indirectly in 39, 40, 41, 42, 48; so overall it is used in 39-48 except 43. Euclid 5 is used directly in 29, 39, 42,
44 and indirectly in 29-48 except 31, which is the existence of the parallel line. Euclid should have proved
31 before 29, to emphasize that Euclid 5 is not needed for it.
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Fig. 5 Euclid 5. Transversal pq of lines M and L makes corresponding interior angles less than two right
angles, as witnessed by a. The shaded triangles are assumed congruent. Then M meets L as indicated by the
open circle

6.8 Euclid’s postulate 4

Euclid 4 says “all right angles are equal.” The definition of a right angle is this: ABC is a
right angle if there is a point D such that B(A,B,D) and AB = DB and AC = DC. It
has been claimed since the time of Proclus that Euclid 4 is provable, but since the axioms
and definitions were not so precise, we are not certain that any of the alleged proofs could
be counted as correct until the proof in Tarski’s system presented in [40]. In our system this
is a difficult proof, depending on the fact that both reflection in a point and reflection in a
line are isometries (preserve congruence and betweenness). The proof has to work without a
dimension axiom. It is a very beautiful proof and obviously much deeper than the “proofs”
given by Proclus and Hilbert. The beautiful part of the proof (after the observation that
reflections are isometries) is contained in Satz 10.15 of [40].

Even though this proof is difficult, it would clearly be a flaw to assume Euclid 4 as an
axiom, when it can in fact be proved. Therefore we prove it, rather than assume it.20

6.9 Circle construction axioms

To express our theory in first-order predicate calculus, we use a two-sorted predicate calcu-
lus, one sort for points and one for circles. CI (J, A, B, C) means that circle J is a circle
with center A and radius BC.

Euclid’s Postulate 3 is “To describe a circle with any centre and distance.” By this, he
meant that you can draw a circle with a given center and passing through a given point. This
is often called the “collapsible compass” construction, as opposed to the “movable compass”
or “rigid compass”, that permits drawing a circle with given center and radius specified
by a given line (which need not have the center as an endpoint). Euclid’s Prop. I.2 shows
that the collapsible compass can imitate the movable compass. Past formal systems could
not capture the difference. But in our system, Euclid 3 is directly rendered in our language
as

A �= B→∃J CI (J,A,A, B)

20One may well ask, if we find it necessary to prove Euclid 4 “just because we can”, why do we not find
it necessary to prove one of the two Pasch axioms, inner and outer Pasch, from the other “just because we
can”? The answer is that we still need one of them as an axiom, and the same intuition that justifies one of
them also justifies the other. Therefore there is no conceptual economy in reducing the number of axioms by
one. But proving Euclid 4 does offer a conceptual simplification.
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while the movable compass is

B �= C→∃J CI (J,A, B,C).

But a priori, J might also have center P and radius QR. That this is not the case is
the content of Euclid’s Prop. III.1. The statement of III.1 is “To find the centre of a given
circle”, but the proof proceeds by showing that two supposedly different centers must in fact
coincide. In our formalism that is stated: if CI (J, A, B, C) and CI (J, a, b, c) then A = a.
(It can be proved that the radii are equal too: BC = bc.)

We define on(P, J ) to mean that for some A, B, and C, J is a circle with center A

and radius BC, and AP = BC. We do not want a circle to be just a triple of points.
That a circle is determined by its center and radius is expressed by saying that if J is
a circle with center A and radius BC, and P is on J , then AP = BC. This axiom is
called circle-center-radius; see the listing of axioms in an Appendix for a formal
statement.

The predicates “inside” and “outside” can be defined using inequality of finite lines,
and the circle–circle continuity axiom can be translated straightforwardly from the informal
English version given above. We then define relations “on” and “inside” and “outside” that
take both a point argument and a circle argument.

6.10 Circle continuity axioms

Euclid had no postulates or axioms about circles other than Euclid 3. There are three
continuity axioms in the literature:

Circle–circle: if circle C has one point inside circle K and one point outside, then there
is a point on both circles.

Line–circle: if line L has a point P inside circle K , then there are two points A and B on
both L and K , such that P is between A and B.

Segment–circle: if line L has a point A inside circle K and a point B outside, then there
is a point on K between A and B.

The reader should bear in mind that in the absence of any dimension axioms, a “circle”
is “really a sphere”, or even some kind of “hyper-sphere”.

Circle–circle is used twice in Book I, once in Prop. I.1 and once again in Prop. I.22,
which shows how to construct a triangle with sides congruent to given lines. (The third
vertex is the intersection point of two circles with the specified radii.) Although Euclid does
not explicitly mention the axiom, both its applicability and necessity are clear, so we take
circle–circle as an axiom.

Line–circle is used only twice in Book I, in Prop. I.2 and Prop. I.12, the construction
of a “dropped perpendicular.” We might also consider “one-point line–circle”, in which the
conclusion is weakened to assert only the existence of a single point common to L and K .
Since this axiom is inadequate for the application to I.12, we do not consider further the
idea of using it instead of line–circle.

Segment-circle has been suggested as an axiom by many authors, including Tarski (see
[43]). But a detailed study shows that it is inadequate; an irremovable circularity arises in
formalizing Euclid without a dimension axiom. If we try to construct dropped perpendic-
ulars (Euclid I.12) using segment-circle continuity, to check the hypotheses we need the
triangle inequality (I.20). But I.19 is needed for I.20, and I.7 for I.19. In Prop. I.7, the two
triangles that are supposed to coincide might lie in different planes, but for the hypothe-
sis that they lie on the same side of a line, a hypothesis that Euclid stated but never used.
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(He could not have used it, since he never defined “same side.“) Even so, I.7 is more diffi-
cult to prove than Euclid thought, since he took for granted the fact that an angle cannot be
less than itself, but that principle is actually the essential content of I.7. Ever since Hilbert
[25], angle inequality has been regarded as a defined concept, and proving I.7 then requires
dropped perpendiculars (I.12) (or at least, we could not do without I.12). But this is circular.
The conclusion is that segment-circle continuity is not a suitable axiom to use in formalizing
Euclid’s proofs.21

The fact is that each of line–circle and circle–circle implies the other, in the presence
of the other axioms of Euclid. In the interest of following Euclid fairly closely, we simply
take both as axioms: circle–circle is used in I.1 and I.22 (triangle construction), while line–
circle is used in I.12, and both those proofs are far simpler than the proofs of line–circle and
circle–circle from each other.

Even though we take both as axioms, we remark on the equivalence proofs. The proofs
can be found in [24]; see also the last section of [2]. The proof of line–circle from circle–
circle relies on dropped perpendiculars, which in Euclid is I.12, proved from line–circle.
Therefore, a proof of line–circle from circle–circle must rely instead on Gupta’s circle-
free perpendicular construction [23, 40], carrying us far beyond Euclid. The only known
synthetic proof of circle–circle from line–circle uses the “radical axis” [42].

6.11 What was Euclid thinking?

It seems strange that Euclid, who was generally careful, glaringly omits both line-circle
and circle-circle. When he needs to use line-circle in the proof of I.2, he instead says “Let
the straight line AE be produced in a straight line with DA”. In other words, “let DA be
extended until it meets the circle at E.” Remember that lines are always finite, so line-circle
intuitively says that a line can be extended until it meets the circle, as well as saying that
(when it is long enough to reach the circle) it cannot pass through the circle at some “missing
point” without touching. Probably Euclid thought the difficulty was getting the lines long
enough, not getting the circle impenetrable. Then he probably had line-circle in mind when
stating Euclid 2, “To produce a finite straight line continuously in a straight line”, not just
“by some amount”, and not “by an amount equal to a given segment”, but “enough to meet
a given circle”, if the starting point is inside that circle.

7 Equal figures in Euclid

Euclid defined the word “figure” to mean “that which is contained by a boundary or bound-
aries”, and explicitly mentioned that a circle counts as a figure (so boundaries can be
curved). But in Book I, figures are triangles and quadrilaterals, so we do not need to intro-
duce a new primitive sort of variables for “figure.” Euclid used the word “equal” to denote
a relation between figures that he does not define. One possible interpretation is that equal
figures are figures with the same area. But the word “area” never occurs in Euclid, pre-
sumably because Euclid realized that he did not know how to define area. Thus, instead of

21Line–circle continuity does not suffer from this problem, as the triangle inequality is not required to drop
perpendiculars. Of course, as Gupta showed [23], one can construct dropped perpendiculars without men-
tioning circles at all, so there is no formal result that one circle axiom is better for I.7 than another, as none
at all is actually needed. We merely say that Euclid’s proof can be repaired with line–circle, but not with
segment-circle.
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saying “the area of the whole is the sum of the areas of the parts”, Euclid only reasoned
about “equal figures”, without defining that notion.

Nor did Euclid give any explicit axioms about “equal figures”; he treated these as special
cases of the common notions, such as “if equals are added to equals, the results are equal”,
where the “addition” of figures refers to what we would call the union of disjoint sets.
Occasionally he uses without explicit mention a few further axioms, such as “halves of
equals are equal.”

Book I culminates in the Pythagorean theorem, which Euclid states using the notion of
equal figures.22 Although we formalized only Book I in the work reported here, all the
propositions in Book II are about “equal figures”, so a correct formulation of the notion is
critical.

Three ways to make Euclid’s notion of “equal figures” precise have been proposed in
the past. First, one can define two figures to be equal if they have equal areas. That is not
a first-order notion, no matter how area is defined, because it involves measuring areas by
numbers. Second, after introducing “segment arithmetic” geometrically, one can define area
geometrically, but that is a very great deviation from the path taken by Euclid.

A third interpretation of “equal figures” is the notion of “equal content”, explained on
p. 197 of [24], which involves cutting figures into a finite number of pieces and reassembling
them. That is also not a first-order notion, because of the “finite number of pieces” part.
Hence it is irrelevant for our purposes, and we need not go into the details of the definition.

Conclusion: the definitions of “equal figure” that we find in the literature all suffer from
one of the following defects:

(i) Not being first order, because of requiring the concept of real number.
(ii) Not being first order, because of requiring the concept of natural number (even just

for equality of triangle and quadrilaterals).
(iii) First order, but requiring the geometrical definition of coordinates and arithmetic

(addition and multiplication of finite lines), which goes well beyond Euclid.

The introduction of geometrical arithmetic has already been proof checked in [11], from
Tarski’s axioms; and we checked that Tarski’s axioms are equivalent to those used in this
paper, so approach (iii) has already been proof checked.

We are, of course, not the first ones to face these difficulties. Hartshorne lists (p. 196
of [24]) the properties of “equal figures” that Euclid’s proofs use. Not all the properties in
that list are first order. Our approach to the treatment of “equal figures” is to treat “equal
triangles” and “equal figures” (that is, equal quadrilaterals) as primitive relations, and give
first-order axioms for them, sufficient to account for Euclid’s proofs. These axioms are first
order versions of Hartshorne’s.

Since we use variables only for points, not for figures, we must use two relations: ET for
“equal triangles” and EF for “equal quadrilaterals” or “equal figures”; it is only for quadri-
laterals, but EQ is already taken. The axioms for these two relations say that ET and EF
are equivalence relations; that the order of vertices can be cyclically permuted or reversed,
preserving equality; that congruent triangles are equal; that if we cut equal triangles off of
equal quadrilaterals, producing triangles, the results are equal; or if the cuts produce quadri-
laterals, the results are also equal. Then we have “paste” axioms that allow for pasting

22In fact, he says that the squares on the sides together equal the square on the hypotenuse. But what he proves
is that the square on the hypotenuse can be divided into two rectangles, each of which is equal the square on
one of the sides; so the further notion of two figures together being equal to a third is not really needed.
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equal triangles onto equal triangles; if the results are quadrilaterals they are equal, provided
also that the triangles do not overlap, which can be ensured by a hypothesis about vertices
lying on opposite sides of the paste-line. Figure 6 illustrates one of these axioms. Simi-
larly, if pasting equal triangles onto equal quadrilaterals produces quadrilaterals, they are
equal.

Finally we need an axiom that enables us to prove that certain figures are not equal; all
the axioms mentioned so far hold if all figures are equal. Such an axiom was introduced
by de Zolt (see [24], p. 201). But de Zolt’s formulation is not first order. Instead we take
a special case: if ABC is a triangle, and DE is a line that cuts the triangle (in the sense
that B(A,D, B) and B(B,E,C)), then neither of the two resulting pieces ADE or CDE

is equal to ABC). This turns out to be sufficient. A complete list of our axioms, including
all the equal-figures axioms, is in the Appendix.

8 Book Zero and filling in book I

We proved more than 230 theorems, including the 48 propositions of Book I. To list these
theorems in the format used in the Appendix requires 14 pages, and since the files contain-
ing these theorems are accessible (as well as the proofs), we elected not to list them all.
Still we wish to give the reader some idea of the additional theorems that we had to supply.
We use the phrase “Book Zero” informally to encompass those theorems that seem to come
before Book I, in the sense of being used in Book I and not depending on Book I themselves.
Book Zero begins with properties of congruence and betweenness; several important and
often-used lemmas are about the order of four points on a line, when two betweenness rela-
tions are known between them. (There is one axiom about that, and the rest of the relevant
propositions can be proved.) There are variations on the 5-line axiom; there are theorems
about collinearity and non-collinearity; there is the definition of “less than” for finite lines,
and the ordering properties of that relation and how it respects congruence (or equality) of
finite lines. Lying on ray AB (which emanates from A and passes through B) is a defined
relation; there are lemmas about how it relates to betweenness and to collinearity. We can
“lay off” a finite line along a ray, and the result is unique. Euclid says we can “add equals
to equals” as a common notion; the formal version of this is sumofparts, which as we
discussed above can either be an axiom or lemma, depending which version of the 5-line
axiom we take. There is also differenceofparts and subtractequals. Equality and
order of angles are defined concepts, and we have to prove their fundamental properties in

Fig. 6 The axiom paste3. If the lower triangles are equal and the upper triangles are equal, then the
quadrilaterals are equal
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lemmas such as ABCequalsCBA, equalanglestransitive, and so on. The “crossbar
theorem” is also part of Book Zero. The notions of “same side” and “opposite side” are
defined, and their fundamental properties proved, including the plane separation theorem,
according to which if C and D are on the same side of AB, and D and E are on opposite
sides of AB, then C and E are on opposite sides of AB; that is, there is a point collinear
with AB that is between C and E. This is where we pass out of Book Zero, however, since
the proof of that theorem requires constructing a midpoint, which is Proposition 10.

Book Zero comprises about seventy theorems; Euclid’s Book I has 48; we proved an
additional hundred of so theorems that are needed to prove Euclid’s 48, or are variants
of those propositions, but whose proofs use some of Euclid’s propositions as well. Let us
give a typical example: the lemma we call collinearbetween is used 19 times in our
development, including in Propositions 27, 30, 32, 35, 44, and 47. That lemma says that
if two lines AB and CD are parallel, and there is a point E between A and D that is also
collinear with BC, then that point E is actually between B and C. That is not trivial to
prove, and Euclid simply assumes that it is so, because it appears so in the diagram. The
names of some other lemmas will be illustrative:
droppedperpendicularunique, angleordertransitive,
angleorderrespectscongruence, angletrichotomy.
Euclid’s proof of angle bisection in I.9, via I.1, cannot be corrected, and instead we prove
I.10 (line bisection) using Gupta’s 1965 proof, and then prove I.9. Prop. I.12 (dropped
perpendicular) has to precede Prop. I.7 (angle bisection), because Euclid’s proof of I.7 is
hopelessly inadequate, and we give a much more complicated proof that requires perpen-
diculars. Once perpendiculars are available, we prove pointreflectionisometry and
linereflectionisometry, and use them to carry out Szmielew’s proof of Euclid’s Pos-
tulate 4 (all right angles are equal). Euclid fails to state legsmallerhypotenuse, which
is needed to prove another fact about right triangles that Euclid uses without proof: the foot
of the perpendicular from the right angle to the hypotenuse actually lies between the two
endpoints of the hypotenuse. Towards the end of Book I, the steps of the proofs are more
cavalier, and the omitted lemmas are more difficult; for example Euclid omitted to state and
prove that a square is a parallelogram.23

9 Formal representation of Euclid

We wanted to write down our axioms, definitions, postulates, lemmas, and propositions in
a form that would be easy to manipulate by computer, and independent of any particular
computer language, so as to still be readable decades or centuries hence. We chose to use
strings to represent all these things. Euclid used only one-character variable names, and we
did the same. In that case there seemed no need for commas and parentheses; in other words
we used Polish notation. There were, however, more than 26 relations to consider, so we
used in all cases two-character names for the relations. For example, we write B(a, b, c)

in the form BEabc. AB = CD is written EEABCD. We used EQAB to represent A = B,
so we could not use EQ a second time, and chose EE instead. “Parallel” becomes PR, as in
PRABCD. There are quite a few of these abbreviated two-character names, but that is enough

23A square has four right angles and equal sides. A parallelogram has both pairs of opposite sides parallel.
But there is also this difficulty: Nothing in the definition of a square requires the four sides to lie in the same
plane. That can be (and hence should be) proved. We discussed the definition of “parallel” in Section 4.
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to convey the idea. The point is that every formula is a string. Conjunctions and disjunctions
begin with AN or OR and the subformulas are separated by + or |, respectively. Negations
are formed with NO.

Then we define classes Axiom, Definition, and Theorem, each of which has fields
called label, hypothesis, conclusion, and existential. The label field is
used for the name. The hypothesis and conclusion fields each contain an array
of formulas, or a single formula. The existential field contains an empty string by
default, and if it isn’t empty, that means that it contains a list of variables that are supposed
to be existentially quantified in the conclusion.

We have thus defined a subset of first-order predicate logic. Specifically, our formulas
have no function symbols, and only existential quantifiers; universal quantification over the
free variables is left implicit. Nested quantifiers do not occur. Polish notation, one-character
variables, and two-character predicate names make it easy to manipulate these formulas as
strings and arrays of strings, and substitutions can be coded as arrays, making unification
possible by regular-expression matching. Every modern programming language has useful
libraries for this sort of thing.

10 Formal proofs

Each proof is a list of lines. Each line contains a formula and optionally a justification. The
proof is kept in a .prf file whose name gives the label of the theorem it is intended to
prove. The proof begins with a sequence of unjustified lines that must repeat the hypotheses
of the theorem. It ends with a line that is the conjunction of the conclusions of the theorem,
or the sole conclusion if there is only one. The first line after the hypotheses must have a
justification. Any unjustified lines in the rest of the proof must either be repetitions of earlier
lines or must follow by logic alone from some earlier lines. Justifications follow the pattern
kind:label, where kind is either defn, axiom, postulate, proposition, or
lemma, and label is the label of an item of the specified kind. An axiom, postulate, or
definition can be used anywhere, but a lemma or proposition cannot be used anywhere,
because circular arguments must be prevented.

We avoid circularity by having a “master list” of lemmas and propositions, which are to
be proved in the specified order. A valid proof (of a certain item in the master list) is only
allowed to reference previous items in its justified steps.

Euclid’s proofs, and ours, make use of arguments by contradiction and cases. We will
now explain the syntax we used. An argument by contradiction is introduced by a line with
the justification assumption. After some steps of proof, this line must be matched by
a line with the justification reductio. This line must contradict the assumption line. By
saying that A and B contradict each other, we mean that one of them is the negation of
the other. We found it helpful to indent the lines between the assumption and the reductio
labels, especially when nested arguments by cases or reductio occur.

The syntax for cases and proof by contradiction is as illustrated in Fig. 7. (The example
chosen is the proof of Playfair’s form of the parallel postulate, discussed in Section 6.7.)
The first two lines state the hypothesis, that we have two lines CD and CE through C, both
parallel to AB. The last line states the desired conclusion, that C, D, and E are collinear, i.e.,
the two parallel lines coincide. In the proof, BE means “between” and CR means “crosses”,
in the sense given in the line labeled defn:cross.

We wrote more than two hundred thirty formal proofs in this syntax. For convenience,
we introduce a name for this subset of first-order logic: Euc, the first three letters of Euclid.
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Fig. 7 An illustrative proof,
showing the syntax of formulas
and proofs

We believe that these proofs will be readable, and computer-checkable, into the indefinite
future; in particular, past the lifetime of the currently popular proof assistants that we used
to check the correctness of these proofs.

Polish notation is not the favorite of some people, including our referee. But its durability
over a long future seems assured–after all it is already more than a century old. We are sure
that the scientists of the future will easily be able to add parentheses and commas if they
prefer to look at the formulas with those additions; of course they could equally easily strip
out the commas and parentheses, so we think it is not an important issue. With or without
parentheses and commas, we believe a low-level simple formalism is preferable to a high-
level language (for example the Mizar language), because the purpose of these proofs is to
permit easy automatic translation into any desired formal language, without the necessity
of resurrecting a language used in the distant past. It is not our purpose in this paper to
make the proofs easily readable by humans. That subject will be taken up separately; but
our intention is again that formal Polish-notation proofs be the starting point of a translation
into something that humans like to read.
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11 Checking the proofs by computer

The proofs described in this paper only need a rather weak logic. There are no function
symbols, and all the statements have a very restricted form. That made it easy to write
a custom-built proof checker, or “proof debugger”, that we used while developing the
formalization. That tool also checks that we stay within the bounds of that logic.

HOL and Coq use an architecture that guarantees a much higher reliability.
This is called the LCF architecture, after the LCF system from the seventies that pio-

neered the approach. This architecture divides the system in a small kernel (or logical core)
and the rest of the code. By the use of abstract datatypes, the correctness of the mathemat-
ics is then guaranteed by the correctness of the kernel. Whatever errors the rest of the code
of the system may contain, the statements claimed to have been proved will indeed have
been proved. In the case of the HOL Light system (one of the incarnations of HOL), the
correctness of this kernel has even been formally proved (using the HOL4 system, another
incarnation of HOL), which gives an extremely high guarantee that the system will not have
any logical errors.

Our procedure for proof-checking Euclid was thus as follows:

• Write formal proofs in the Euc language, simultaneously checking and debugging them
with our custom proof debugger.

• Translate these proofs into HOL Light or Coq syntax by means of simple scripts.
• Check the resulting proofs in HOL Light and Coq

Was it necessary to use the Euc language? No, but it is closer to Euclid than either HOL
Light or Coq, and allowed us to write the proofs only once, and moreover, has a better
chance of being readable a thousand years from now. Was it necessary to write a custom
checker or debugger for Euc? Perhaps not, but it facilitated our work flow by separating
the writing of the proofs from the use of the two major proof assistants, and by providing
very useful error messages in the case of incorrect proofs. Was it necessary to use two proof
assistants? No, since each one is perfectly reliable, but we did it anyway.

The devil might ask whether we have lost something by using higher order logic to check
first order proofs. While it may appear so at first glance, actually higher order logic itself
ensures that we have not. Consider: in higher order logic (both in Coq and HOL Light)
we proved that for any type of points, and any predicates satisfying the axioms of Euc,
all our theorems are satisfied. In these statements there is a second-order quantification
over the predicates used to interpret betweenness, congruence, and the predicates ET and
EF . In essence we have proved that the axioms hold in any model (of our axioms for
geometry). Then by Gödel’s completeness theorem, the theorems are actually first order
theorems. However, it is a general feature of higher order theorem provers that they do not
directly check first-order proofs. Moreover, we used the Leibniz definition of equality, so
indeed our translated proofs are not first order. However, we did check the first order proofs
directly in our custom proof checker before translating them to higher order logic.

Our debugger also counted the number of inferences. Proofs of more than 200 inferences
were not uncommon, but the majority were under 100 inferences.

We also wrote code that analyzed the dependencies between lines of a given proof. This
enabled us to identify and eliminate lines that were never subsequently used. We follow
Euclid in sometimes repeating previously deduced lines just before applying a proposition,
to make it apparent that the required instances of the hypotheses have indeed been derived.
These lines, of course, are technically eliminable; but mainly we wanted to eliminate “red
herring” lines that were actually irrelevant. The automatic detection of such lines was useful.
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12 Checking the proofs in HOL light

To ensure the correctness of the Euclid formalization from the language Euc to HOL Light,
we built a very small custom checker on top of HOL Light, and used that to check our work
for correctness in HOL as well. The source of this proof checker, proofs.ml, has about
a hundred lines, which then is used to check a translation of the formalization into syntax
that HOL Light can process of almost twenty thousand lines, michael.ml. This last file
is created from the original proof files described above by two small ad hoc scripts, a PHP
script called FreekFiles.php and a Perl script called FreekFiles.pl.

In the HOL system, all input (even the proofs) always consists of executable ML source
code. The proofs of each lemma in our case is checked by calling a function run_proof
(implemented in proofs.ml) on the statement of the lemma and a list of items of a custom
datatype called proofstep. The ML definition of this datatype is shown in Fig. 8. The
output of this function is a HOL thm, a proved statement. In other words, the ML type of
the function that is used here is:

run_proof : term -> proofstep list -> thm.
The list of proofsteps corresponding to the proof from Fig. 7 is shown in Fig. 9.

In that example some of the choices on how to translate the statements from the proof
to the HOL logic can be seen. For instance, we had to decide whether to translate EQ to
the standard HOL equality, or to have it be a custom relation. We chose to make use of the
features of standard first order logic with equality, but nothing beyond that. That means that
we translated equality to the built-in equality of the logic, and translated NE identical to
NOEQ and NC identical to NOCO. Therefore the translation does not have predicates EQ, NE
and NC. As a small optimization, NONC was translated without a double negation.

Within HOL we used an axiomatic approach. That is, we added our axioms to the HOL
axioms. That way, we will be verifying that the theorems of Euclid follow from those
axioms, rather than (for example) that they are true in R

2 or Rn. This raised the number of
HOL axioms by 36, from the original 3 to 39. Before stating these 36 axioms we also added
two new primitive types. point and circle, and five new primitive predicates, BE, EE,
CI, ET and EF.

There are some differences between what was taken to be axioms in the original ver-
sion of the formalization, and what are axioms in the HOL version. The definitions of the
predicates were originally axioms, but in the HOL version are actual HOL definitions, with

Fig. 8 The ML datatype used
when checking the proofs with
HOL
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Fig. 9 The HOL counterpart of the proof in Fig. 7

the ‘axioms’ being the equivalences that these definitions produce. Two exceptions for this
approach are defn:unequal and defn:circle of which the first is omitted (it is not
used anywhere) and the second is an axiom (as it does not have the shape of a HOL defi-
nition). Also, defn:inside, defn:outside and defn:on are still axioms, because
these also state that the defining property does not depend on the points that give the circle,
which one does not get from just a definition.

Of the common notions, cn:equalitytransitive,
cn:equalityreflexive, cn:stability and cn:equalitysub are not axioms,
but proved statements, because they only involve equality and are part of the logic.

The LCF architecture of HOL Light only guarantees that the proofs are valid in the
higher order logic of HOL Light. However, the implementation in proofs.ml only uses
first order tactics (most notably MESON, which is the main tool used for checking the steps),
which shows that the proofs are actually first order. The proofs, written in the Euc language,
contain on each line a formula and its justification. HOL Light checks that the formula
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follows from previous steps of the proof, using the axiom, theorem, or definition mentioned
in the justification, together with first-order logic. The simple logic associated with Euc
allows only instantiation of the axiom, theorem, or definition; or in proofs by cases and
contradiction, some simple propositional logic. Is HOL Light then really checking the given
proof? Yes, it is, because (a) even if it found a more complicated first-order proof, that
would still be a check, and (b) in any case, HOL Light will not use quantificational logic to
prove a theorem without quantifiers.

The full check of the twenty thousand lines is uneventful, but not very fast, mostly
because of the use of the rather heavy MESON. It takes several minutes. At some points
MESON has to work very hard (it loses the fact that the conclusion of the lemma exactly
matches the step being proved, and is trying many possible ways to unify the parts). For
these cases proofs.ml contains two custom lower level tactics, SUBGOAL_UNFOLD_TAC
and SUBGOAL_MATCH_TAC, which do not use MESON.

13 Checking the proofs in Coq

13.1 Formalizing the axioms

The axioms in our axiomatization of Euclid are of two kinds: axioms related to definitions
and others. Axioms that serve as definition as those of the form: ∀x, P (x) ⇐⇒ Q(x).
We translate them to a proper Coq definition to reduce the number of axioms. Technically,
in Coq, we did not use the Axiom keyword. Because axioms are similar to global variables
in a programming language, they reduce the re-usability of the code. We sorted the axioms
into several groups, and defined them in Coq using type classes. Then, the axioms are given
as so-called section variables of Coq, a mechanism which allows to have the axioms as an
implicit assumption for each lemma. For propositions I.1 to I.28 and I.30 we do not use
the fifth postulate of Euclid. For propositions I.1 to I.34, we do not need the equal-figure
axioms. Avoiding the Axiom keyword allows us to reuse the proofs in a different setting by
proving the axioms in Coq as a second-order property either from another axiom system or
by constructing a model (see Section 14.1).

Equality We model the equality using Coq’s built-in equality: Leibniz’s equality. We could
also have assumed an equivalence relation and substitution properties for each of the
predicates of the language.

13.2 Verifying the proofs

Proof assistants differ in their mathematical foundations (e.g. type theory, higher order logic
(HOL), or set theory) and their proof language. In procedural style proof assistants (e.g. Coq
and HOL Light), proofs are described as a sequences of commands that modify the proof
state, whereas in proof assistants that use a declarative language (e.g Mizar and Isabelle),
the proofs are structured and contain the intermediate assertions that were given by the user
and justified by the system.

We wrote a script to translate the proofs to Coq’s language. The translation is relatively
easy as the proofs steps used by the proof debugger are small.

Our translation generate a proof in the traditional language of Coq, not in the declarative
language introduced by Corbineau [16] because this language is not maintained. But, the
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formal proofs we generate are in the declarative style: for case distinctions we give explic-
itly the statement which is used instead of the name of the hypothesis, the proofs are purely
in the forward chaining style, based on sequences of applications of the standard Coq tactic
assert. We do not introduce hypothesis numbers. The existential statements and conjunc-
tions are eliminated as soon as they appear by introducing the witness and decomposing the
conjunction. The assertions are justified using some ad-hoc tactics which use some automa-
tion and congruence closure. We had to circumvent some weakness of Coq’s automation.
Coq is not able to use efficiently lemmas of the form ∀xyz, Pxyz → Pyzx∧Pyxz, because
the apply tactic will always choose to unify the goal with the first term of the conjunction.
The standard way to state such a lemma in Coq is to split the lemmas in two parts. But,
we did not want to modify the original formalization of the lemmas. Hence, to circumvent
this limitation, we verified these proof steps using a tactic based on forward-chaining. The
case distinction tactic allows to distinguish cases on previously proved disjunctions or dis-
junctions which are classical tautologies. The tactic can deal with n-ary disjunctions. The
proof script is structured using curly brackets and indentation. Each proof step of the orig-
inal proof corresponds to one proof step in Coq, except that steps for which there is no
justification in the original proofs. Those steps correspond to the natural deduction rule for
introduction of implication and are implemented using the standard Coq tactic intro. All
tactics are designed such that the names of the geometric objects are preserved from the
original proofs but the names of the hypotheses are automatically generated by Coq and not
used explicitly in the proofs. Figure 10 displays the proof of Playfair’s axiom of uniqueness
of parallels in Coq’s language enriched by the tactics to ease the verification. Some of the
predicates have been renamed into longer names to enhance readability and to match the
names used in the GeoCoq library. The proofs are verified using classical logic. The proofs
can be checked by Coq in about 90 seconds using an Intel(R) Core(TM) i7-7700 CPU @
3.60GH with 32Go RAM.

13.3 Verifying the statements

When evaluating a formalization, even if we trust the proof checker, we need to check that
statements are formalized faithfully. Usually the only method we can use for this process
is to check the statements by human inspection and trust the reviewer to also check the
statements. For this formalization, we were lucky, as many statements had been formalized
independently by the first author and the GeoCoq team. To improve the confidence in the
formalization, we compared the two formalizations of the statements to detect potential
defects. We detected only minor differences in some of the statements.

14 The axioms hold inR
2

The axioms fall into two groups: those that are variants of Tarski’s axioms A1–A10, and the
equal-figure axioms. In order to make sure that there is no mistake in the axiomatization,
we wished to check formally that the axioms hold in the Cartesian plane R2. For reasons of
convenience, we checked that for the first group of axioms in Coq, and for the equal-figure
axioms in HOL Light. We will discuss these two verifications separately.

It has already been checked [7] that Tarski’s axioms hold in R
2. In Tarski’s A1–A10,

without dimension axioms, one can (formally) verify our axioms, which are mainly different
from Tarksi’s by using strict betweenness and hence avoiding degenerate cases. This has
also been verified in Coq.
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Fig. 10 Example proof in Coq

14.1 Verifying the Tarski-style axioms in Coq

Since there is no dimension axiom, the “intended model” is Rn, for any integer n > 1. More
generally, we wish to prove that if F is a Euclidean field, then F

n satisfies our axioms. We
break this claim into four parts.

(i) our axioms for neutral geometry can be derived from the corresponding Tarski’s
axioms.

(ii) circle-circle, circle-line, and Euclid 5 can be derived from the corresponding axioms
from Tarski.

(iii) Tarski’s axioms hold in F
n. By “Tarski’s axioms“ we mean those of our axioms that

expressed using betweenness and equidistance. (These are similar to the axioms and
some theorems of Tarski’s geometry, except we use strict betweenness.)

(iv) the equal-figure axioms hold in F
n.
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The reason for passing through Tarski’s axioms is that it has already been shown that
Tarski’s axioms for neutral geometry hold in F

2, when F is a Pythagorean ordered field. 24

Specifically, Boutry and Cohen have formalized the proof that the Cartesian plane over a
Pythagorean ordered field is a model of our formalization of Tarski’s axioms A1–A10 using
ssreflect [5].

Ad (ii). We chose to assume the circle-circle intersection property and use the formal
proof obtained by Gries and the second author that the circle-line intersection property can
be derived from circle-circle intersection, even without assuming a parallel postulate [22].
Gries also formalized the proof that circle-circle intersection can be derived from the conti-
nuity axiom of Tarski (Dedekind cuts restricted to first-order definable sets). As Euc axiom
system assumes that we have a sort for circles, we need to define the type of circles from
Tarski’s axioms (and Coq’s Calculus of Inductive Constructions CIC). The type of circles is
defined as the triple of points (* is interpreted in this context as the Cartesian product).

Definition Tcircle : Type := Tpoint*Tpoint*Tpoint %type.

Then the predicate CI can be defined by:

Definition CI (J:Tcircle) A C D := J=(A,C,D) /\ C<>D.

Then the relation expressing that a point is on a circle can be defined by destructing the
triple:

Definition OnCirc P (C:Tcircle) :=

match C with

(X,A,B) => tarski_axioms.Cong X P A B

end.

For Euclid 5, we rely on the proofs of equivalence between different versions of the par-
allel postulates studied previously by the first author [3] and formalized in Coq, by Boutry,
Gries, Schreck and the second author [8].

14.2 Verifying the equal-figure axioms

We here outline the verification that the equal-figure axioms hold in R
2. We did not verify

them in F
n or even R

n, because we wanted to use the (scalar) cross product in R
2 and the

existing tools for real and vector algebra in HOL Light.
We interpret points as members of the HOL Light type realˆ2. We write that here as

R2. Then we define the dot product and the two-dimensional cross product as usual:

(a, b) · (c, d) = ac + bd

(a, b) × (c, d) = ad − bc

Twice the signed area of a triangle abc is defined by

tarea(a, b, c) = (c − a) × (b − a).

We define ET (equal triangles) by saying that two triangles are equal if the absolute values
of their signed areas are equal. That is, ET (a, b, c, p, q, r) means

|tarea(a, b, c)| = |tarea(p, q, r)|.

24Recall that a Pythagorean field, is a field where sums of squares are squares.
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Twice the signed area of a quadrilateral abcd is given by the cross product of its diagonals:

sarea4(a, b, c, d) = (c − a) × (b − d).

The area of abcd is the absolute value of the signed area. We wish to define EF (equal
quadrilaterals) by saying two quadrilaterals are equal if the squares of their signed areas are
equal. But we do not allow just any four points to be a quadrilateral. Instead we allow two
kinds of quadrilateral, convex quadrilaterals and ones which are “really triangles“, meaning
that one vertex is between two adjacent vertices. We define abcd to be convex if its diago-
nals cross, i.e., there is a point m with B(a, m, c)∧B(b,m, d). In our formal development the
condition 0 < area(a, b, c, d) is imposed separately. We interpret EF(a, b, c, d, p, q, r, s)

to mean that abcd and pqrs are each quadrilaterals in this sense, and their areas are equal.
Betweenness B(a, b, c) is interpreted (or defined) thus:

B(a, b, c) ↔ ∃t .(b − a) = (c − a) > 0 ∧ 0 < t < 1

These are all the definitions needed to interpret the equal-figures axioms in R2. We
executed this translation by hand, producing a list of sixteen goals to prove in HOL Light.
These theorems turned out not to be as trivial as we initially thought; the axiom that says
congruent triangles are equal required nearly 2000 lines of HOL Light proof. Even more
lines were required for the last axiom, paste4. Altogether the verification of all 16 equal-
figure axioms required about six thousand lines of HOL Light proofs.

Although theoretically these theorems fall within the domain of quantifier elimination
for the real field, in practice they have too many variables, and quantifier elimination was
not used. Instead, we used rotations and translations to reduce the complexity, and used
only the standard vector-algebra theorems that are distributed with HOL Light. Many of
the axioms are consequences of the additivity of area, so we proved them by first proving
(four or five different forms of) the additivity of area, and then deriving the axioms from the
additivity of area. Numerous lemmas seemed to be required. Just to mention two examples:

(i) between norm, which says that B(a, b, c) is equivalent to the “norm condition”,

|b − a| + |c − b| = |c − a|.

(ii) If abcd is a convex quadrilateral (its diagonals meet), and has positive area, then ab

and cd have no point in common.

As mentioned, we used the scalar cross-product to define area. Alternately, we could
have used the definition of area by Lebesgue measure, which already exists in the HOL
Light library. Since we did not do that, we cannot say for certain that it would not have been
easier, but there certainly would have been many details and extra lemmas in that approach
as well.

14.3 An inconsistency and its repair

Our equal-figure axioms include axioms about cutting and pasting equal figures to get other
equal figures. See Fig. 6 for an example, namely paste3, which is about pasting together
triangles with a common side AC to get a quadrilateral ABCD. This is used in Proposi-
tions 35, 42, and 47. Of course we need something to ensure that the two triangles are in
the same plane, and that when pasted together, they do make a quadrilateral. The obvious
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hypothesis is that B and D are on opposite sides of the common side AC, and that was our
first formulation.

Our equal-figure axioms also include axiom cutoff2, which says that if we cut equal
triangles off of equal quadrilaterals, with one end of the cut at a vertex and the other on
a non-adjacent side, the results are equal quadrilaterals. This axiom is used only once, in
Prop. 43; that step of Euclid’s proof is justified by common notion 3, about subtracting
equals from equals. We formulated this axiom without any formal statement that the result-
ing quadrilateral is in fact a quadrilateral; nor does Euclid have any such justification in his
proof.

It turned out, as we discovered when attempting to verify that the axioms hold in R
2, that

these two formulations are inconsistent: This version of paste3 permits the creation of
a non-convex quadrilateral ABCD in which diagonal BD passes outside the quadrilateral.
Then when we attempt to cut off a triangle BAP with P on AD, the triangle is outside
rather than inside, so the area of the result might be larger, rather than smaller, than the area
of ABCD. This phenomenon leads to an inconsistency.

There are two possible ways to remedy this problem: either strengthen the hypotheses of
cutoff2 (requiring that the resulting quadrilateral have crossing diagonals), or strengthen
the hypotheses of paste3 (requiring that ABCD have diagonals that cross, or meet at A

or C). Either way works. Which is more faithful to Euclid? Since these axioms are used
only a few times in Euclid, it is not a matter of much importance. The argument against
modifying cutoff2 is that we would then have to verify the added condition in the proof
of Prop. 43, which Euclid evidently felt no need to do, and which would probably double the
length of the proof of Prop. 43. The argument against modifying paste3 is that it might
not suffice for a proof that requires constructing a non-convex quadrilateral. But there are
no non-convex quadrilaterals in Books I-III, so we chose to modify paste3 rather than
cutoff2. This permits us to apply these axioms in Euclid’s proofs without adding more
steps.

15 Previous work on computer checking geometry

Work on computerizing Euclidean geometry began in 1959, in the first decade of the com-
puter age, with the pioneering work of Gelernter [19, 20]. (The reference has a later date
because it is a reprinting in a collection.) The axiom system used by Gelernter was not given
explicitly, but from the example proofs given, it can be seen that it was, at least in effect,
a points-only system. It was a strong axiom system, including for example all the triangle
congruence theorems, Euclid 4, some strong but unspecified betweenness axioms. Tarski
is not referenced; that is not surprising as Tarski’s first publication of his axiom systems
was also in 1959. Gelernter’s system was claimed to be as good as “all but the best” high
school geometry students. Considering the primitive hardware and software of 1959, it was
an amazing program. However, its authors stated that they viewed geometry as just one area
in which to study heuristic reasoning, and neither the program nor its underlying formal
theory ever raised its head above water again.

As far as we know, nineteen years passed before the next work in computerizing geom-
etry; it was 1978 when Wen-Tsün Wu [45] began a series of papers on the subject,
culminating in his 1984 book, published only in Chinese, and not available in English until
1994 [46]. He was soon assisted by S. C. Chou [12, 13]. Using coordinates, one reduces a
geometry theorem to an implication between polynomial equations. One can then demon-
strate the truth of a geometry theorem by algebraic methods. Such algebraic methods, while
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they may succeed in establishing the validity of a theorem, do not provide a proof from
geometric axioms. One might check the correctness of Euclid’s results this way, but not
his proofs. One problem with this approach is that it works only for problems that involve
equality, not for problems that involve betweenness or inequality. A second problem is that
Wu’s method requires polynomials with hundreds of variables, and hence does not produce
human-comprehensible proofs. Nevertheless, Wu and Wang, Gao, Chou, Ko, and Hussain
proved many theorems. Within a few years three different groups began to use Gröbner
bases to do the algebraic work, instead of the Wu-Ritt algorithm. See [15, 26, 27].

Sometime after 1984, Chou invented the area method, which still uses polynomial com-
putations, but based on certain geometric invariants. The area method, as an algorithm for
solving geometry problems, can be used by humans and has even been used to train stu-
dents for Olympiad-style competitions. [14], p. xi. For the state of the art in area-method
implementation as of 1994, see [14], where more than four hundred computer-produced
and human-readable proofs are given. However, the steps of these proofs are equations,
whose truth is verified by symbolic computation, not by logic. Also, as with Wu’s method,
inequalities and betweenness cannot be treated.

In the 1980s, Larry Wos experimented with proving geometry theorems in Tarski’s theory
using the theorem-prover OTTER. Then Art Quaife took up that same project, publishing
a paper in 1989 [39], and devoting a chapter of his 1992 book to it. Wos and Quaife left a
number of “challenge problems” unsolved by OTTER. In this same decade, the book [40]
was published, containing the results from Gupta’s thesis [23] and Szmielew’s Berkeley
course, together constituting a systematic development of “absolute geometry” (no circle
or continuity axioms) from Tarski’s axioms. This book was quite rigorous, but not (yet)
computer-checked. It also did not reach even to the beginning of Euclid. Twenty years
later, the first author and Wos returned to this project, and used OTTER to find proofs of
all the challenge problems of Quaife, and the first ten chapters of [40] (Part I). But since
[40] spends a lot of effort developing “elementary” results from minimal axioms (no circle
axioms and postponing the parallel postulate as long as possible), the propositions of Euclid
are not reached. In this project, the more difficult proofs were not found automatically, but
instead the theorem prover was used almost like a proof checker, by means of supplying
“hints.” Therefore, when we wanted to proceed to proof check Euclid, it seemed appro-
priate to switch from a theorem prover to a proof checker, which is what we did for this
work.

In 2009, Avigad, Dean, and Mumma [1] reported on a formal system for Euclid’s
Elements. This system is six-sorted (points, lines, circles, segments, angles, and “areas”
(figures), and therefore has also a large number of primitive relations, including “same side”
and “opposite side”. The axiom system of E differs from ours, because it contains more
axioms. They assume 20 constructions axioms, 34 axioms about the two-side, inside and
betweenness relations which they call “diagrammatic inferences.” Their system is intended
for two-dimensional geometry only, a restriction deliberately avoided in our system. They
also assume that distances and areas can be measured using a linearly ordered abelian group.
We follow Euclid in not assigning measures to distance or area; one may compare distances
or areas (figures), but not measure them.

The intention of those authors (see Section 6 of [1]) was to build an interactive proof
checker (with application to education). They wanted to separate the “diagrammatic infer-
ences” from the inferences that Euclid wrote out, using an algebraic program for the
diagrammatic inferences and a prover for the others. The steps that Euclid omitted would
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be done by algebra instead of by logic. This is a “hybrid” approach, halfway between the
completely axiomatic approach and the computer-algebra techniques of verifying geom-
etry theorems by converting them to equations. So far, it has not been made to work,25

but even if it did work, we would still prefer the completely axiomatic approach, which is
part of the tradition extending all the way from Euclid, through Hilbert and Tarski, to the
present.

Starting in 2007, and still continuing as this is written in 2018, the second author of this
paper and Gabriel Braun have been busy computer-checking geometrical theorems in the
proof assistant Coq. They verified Pappus’s theorem [11] (which is important for the geo-
metrical definition of arithmetic). They verified that Hilbert’s axioms follow from Tarski’s
[10]. With Pierre Boutry, they verified that Tarski’s axioms follow from Hilbert’s [9], and
completed [6] the verification of the theorems in Szmielew’s part of [40], which the second
author began (with other co-authors) in [41]. Work is currently being done toward checking
Euclid’s propositions from Hilbert/Tarski axioms within Coq. This work differs from the
work presented in this paper, because the goal is not to verify Euclid’s proofs but Euclid’s
statements using an axiom system as minimal as possible.

For further information, please see the forthcoming survey article [34].

16 Howwrong was Euclid?

The point that has given rise to the most discussion when our work has been presented is not
whether our proofs are certifiably correct, but whether Euclid’s proofs are really wrong, or
“how wrong” they are. Therefore we address this issue explicitly. We classify the problems
with Euclid’s proofs into

• Missing axioms (circle axioms, Pasch, betweenness on a line)
• Gaps (correctable failures to prove collinearity or non-collinearity or betweenness)
• Superfluous axioms: theory of angles (angle equality and order can be defined and its

properties proved, rather than assumed).
• Difficult theorems “justified” by common notions. For example, it can be proved that

an angle cannot be less than itself. Euclid uses this at the end of I.7 without given any
justification at all. Hilbert does no better: he assumes it by including uniqueness in his
angle-copying axiom.

• Superfluous axioms: Postulate IV (all right angles are equal) can be proved, though a
correct proof is rather difficult.

• Out and out errors. We have mentioned Euclid’s incorrect proof of the angle bisec-
tion proposition I.9, and his uncorrectable proof of I.7. Euclid’s errors, and our correct
proofs of his propositions, deserve a full discussion, but that will be lengthy and is post-
poned to a future publication. Our purpose in this paper is to discuss the proof-checking,
not the geometry, i.e., not the proofs themselves.

25Kenneth Manders has studied the role of diagrams in Euclidean proofs and argue that the use of diagrams
in Euclid is limited to some class of properties [28]. Luengo and Mumma have proposed formal systems
which intend to capture the obvious spatial properties as built in inference rules [33], but both systems have
been shown by Miller to be inconsistent [29, 31]. Miller has proposed another system, but the number of
cases which should be considered renders the diagrammatic system difficult to use in practice [30].
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17 Conclusion

Our aim was to remove every flaw from Euclid’s axioms, definitions, postulates, and common
notions, and give formal proofs of all the propositions in Book I. Did we achieve that aim?

The statements of the postulates and the definitions needed little if any change; it is the
axioms and proofs that needed corrections. We replaced Euclid’s axioms and postulates
by similar ones in a language similar to Tarski’s, but using strict betweenness. We added
line-circle and circle-circle axioms, and both inner and outer Pasch; we added the five-line
axiom to enable a correct proof of the SAS congruence criterion (Prop. I.2). We dropped
Postulate 4 (all right angles are equal) because it can be proved, and formulated Postulate
5 (the parallel postulate) in our points-only language. Inequality of lines and angles, and
equality of angles, become defined concepts and the common notions concerning those
concepts become theorems. We used Tarski’s definition of “same side”, an essential concept
which Euclid mentioned but neither defined nor considered as a common notion. We used
Euclid’s rather than Tarski’s extension axiom, so that Euclid’s I.2 would not be superfluous.
We think that this choice of axioms is very close to Euclid’s.

With this choice of axioms, we were able to prove Euclid’s propositions I.1 to I.48. These
proofs follow Euclid as closely as possible, and have been checked in two well-known and
respected proof checkers. We have therefore shown beyond a shadow of a doubt that these
proofs are correct. Then we checked, again using those same proof checkers, that the axioms
we used hold inR2. In particular all of Euclid’s propositions in Book I and corrected proofs of
thosepropositions, close toEuclid’s ideas, are valid, without a shadow of a doubt, in Euclidean
two-space.26 While many paper-and-pencil formalizations of Euclid have been put forward in
the past, we are the first to be able to make this claim. That this was not a superfluous exer-
cise is shown by the many difficulties we encountered, and the fact that we had to prove the
propositions in quite a different order than Euclid, and in some cases by different proofs. In
this paper we have focused on the axioms and the proof checking. A subsequent publication
will present the geometrical difficulties and compare our proofs in detail to those of Euclid.

To play the devil’s advocate, what argument could be made that we did not achieve the aim
stated above? One might complain that we proved the propositions in a different order than
Euclid did. We had to do that, because we could not prove them in the original order using our
axioms. The devil might argue that we should have strengthened the circle-circle axiom to pro-
vide for an intersection point of the two circles on a given side of the line joining the centers.
With this stronger axiom we could have fixed Euclid’s proof of I.9 (angle bisection) and
used it as Euclid did to bisect a line. But this would amount to assuming, rather than proving,
the existence of erected perpendiculars, midpoints, and angle bisectors. Besides, it would
not have fixed the other problems we had with the ordering of theorems, and the proof we
gave, using midpoints to bisect angles rather than bisection of angles to construct midpoints,
is beautiful, even if it was discovered by Gupta more than two thousand years after Euclid.

We think that the devil would be wrong to say we should have strengthened circle-circle,
and we therefore claim that we did indeed remove every flaw from Euclid’s axioms, defini-
tions, postulates, and common notions, and give correct proofs of the propositions in Book I.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

26They hold in Euclidean n-space too, since there is no dimension axiom, but we did not formally check that.

http://creativecommons.org/licenses/by/4.0/
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Appendix A: Formal proof of Prop. I.1

The reader may compare the following proof to Euclid’s. The conclusion ELABC, that ABC

is equilateral, is reached about halfway through, and that corresponds to the end of Euclid’s
proof. The firsts half of our proof corresponds fairly naturally to Euclid’s, except for quoting
the circle-circle axiom, and verifying that is hypotheses are satisfied.

The last half of our proof is devoted to proving that ABC is a triangle, that is, the three
points are not collinear. Note the use of lemma partnotequalwhole. If Euclid had
noticed the need to prove that ABC actually is a triangle, he would have justified it using
the common notions, applied to equality (congruence) of lines. This version of “the part is
not equal to the whole” is not an axiom for us, but a theorem.

At the request of the referee we present this proof in a typeset form rather than in its
native Polish form. Obviously further mechanical processing can increase its superficial
resemblance to Euclid’s style, but the point of our present work is simply its mechanically-
checked correctness.

Proposition A.1 (Prop. I.1) On a given finite straight line to construct an equilateral
triangle.

∀AB A �= B→∃X ABX is equilateral ∧ ABX is a triangle

Proof Let J be such that J is the circle of center A and radius AB by postulate Euclid3.
B �= A by lemma inequalitysymmetric.
Let K be such that K is the circle of center B and radius BA by postulate Euclid3.
Let D be such that A is strictly between B and D ∧ AD ∼= AB by lemma localexten-

sion.
AD ∼= BA by lemma congruenceflip.
BA ∼= BA by common notion congruencereflexive.
D is outside circle K by definition of outside.
B = B by common notion equalityreflexive.
B is inside circle K by definition of inside.
AB ∼= AB by common notion congruencereflexive.
B is on circle J by definition of on.
D is on circle J by definition of on.
A = A by common notion equalityreflexive.
A is inside circle J by definition of inside.
LetC be such that C is on circle K ∧ C is on circle J by postulate circle-circle.
AC ∼= AB by axiom circle-center-radius.
AB ∼= AC by lemma congruencesymmetric.
BC ∼= BA by axiom circle-center-radius.
BC ∼= AB by lemma congruenceflip.
BC ∼= AC by lemma congruencetransitive.
AB ∼= BC by lemma congruencesymmetric.
AC ∼= CA by common notion equalityreverse.
BC ∼= CA by lemma congruencetransitive.
ABC is equilateral by definition of equilateral.
B �= C by axiom nocollapse.
C �= A by axiom nocollapse.
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Let show that C is strictly between A and B does not hold by contradiction:
{

AC � AB by lemma partnotequalwhole.
CA ∼= AC by common notion equalityreverse.
CA ∼= AB by lemma congruencetransitive.
AC ∼= CA by common notion equalityreverse.
AC ∼= AB by lemma congruencetransitive.
We have a contradiction.

}
Let show that B is strictly between A and C does not hold by contradiction:
{

AB � AC by lemma partnotequalwhole.
AB ∼= CA by lemma congruencetransitive.
CA ∼= AC by common notion equalityreverse.
AB ∼= AC by lemma congruencetransitive.
We have a contradiction.

}
Let show that A is strictly between B and C does not hold by contradiction:
{

BA � BC by lemma partnotequalwhole.
BA ∼= AB by common notion equalityreverse.
BA ∼= BC by lemma congruencetransitive.
We have a contradiction.

}
Let show that ABC are collinear does not hold by contradiction:
{

A �= C by lemma inequalitysymmetric.
A = B ∨ A = C ∨ B = C ∨ A is strictly between B and C ∨

B is strictly between B and C ∨ C is strictly between A and B by definition of collinear.
We have a contradiction.

}
ABC is a triangle by definition of triangle.

Appendix B: Axioms and definitions

The following formulas are presented in a format that can be cut and pasted, even from a
pdf file.

Definitions

A and B are distinct points

A, B, and C are collinear
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A, B, and C are not collinear

P is inside (some) circle J of center C and radius AB

P is outside (some) circle J of center U and radius VW

B is on (some) circle J of center U and radius XY

ABC is equilateral

ABC is a triangle

C lies on ray AB

AB is less than CD

B is the midpoint of AC

Angle ABC is equal to angle abc
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DBF is a supplement of ABC

ABC is a right angle

PQ is perpendicular to AB at C and NCABP

PQ is perpendicular to AB

P is in the interior of angle ABC

P and Q are on opposite sides of AB

P and Q are on the same side of AB

ABC is isosceles with base BC

AB cuts CD in E

Triangle ABC is congruent to abc
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Angle ABC is less than angle DEF

AB and CD are together greater than EF

AB, CD are together greater than EF,GH

ABC and DEF make together two right angles

AB meets CD

AB crosses CD

AB and CD are Tarski parallel

AB and CD are parallel

ABC and DEF are together equal to PQR

ABCD is a parallelogram
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ABCD is a square

ABCD is a rectangle

ABCD and abcd are congruent rectangles

ABCD and abcd are equal rectangles

ABCD is a base rectangle of triangle BCE

ABC and abc are equal triangles

ABCD and abcd are equal quadrilaterals

Common notions
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Axioms of betweenness and congruence

Postulates
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Axioms for equal figures
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