
Ann Math Artif Intell (2018) 84:57–74
https://doi.org/10.1007/s10472-018-9588-8

Engineering a multi-agent system in Jason and CArtAgO
Multi-agent programming contest 2017

Jørgen Villadsen1 ·Oliver Fleckenstein1 ·
Helge Hatteland1 · John Bruntse Larsen1

Published online: 1 June 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract This paper presents the overall strategy utilized by Jason-DTU to achieve a shared
second place in the annual Multi-Agent Programming Contest. It provides an overview of
the implementation details considering perception, task handling, agent logic and more. The
paper analyzes the team’s results in each match, and is summarized by evaluating strengths
and weaknesses of the proposed multi-agent system.

Keywords Multi-agent programming contest 2017 · Multi-agent systems · Agents in the
city · Jason · CArtAgO

Mathematics Subject Classification (2010) 68T42

1 Introduction

The name of our team is Jason-DTU. We participated in the Multi-Agent Programming
Contest (MAPC) in 2009 and 2010 as the Jason-DTU team [2, 6], in 2011 and 2012 as the
Python-DTU team [3, 9], in 2013 and 2014 as the GOAL-DTU team [8] and in 2015/2016
as the Python-DTU team [7].1

The MAPC 2017 scenario consists of two teams of agents, each moving through the
streets of a realistic city as vehicles. The goal for each team is to earn as much money

1https://multiagentcontest.org/

� Jørgen Villadsen
jovi@dtu.dk

1 Algorithms, Logic and Graphs Section, Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800
Kongens Lyngby, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-018-9588-8&domain=pdf
http://orcid.org/0000-0003-3624-1159
https://multiagentcontest.org/
mailto: jovi@dtu.dk

58 J. Villadsen et al.

as possible, which is rewarded for completing certain jobs. Jobs comprise the acquisition,
assembly and delivery of items, utilizing certain facilities placed randomly on the map.2

To earn more money than the opposing team, our multi-agent system uses centralized
planning, deciding which jobs to solve; problem decomposition, dividing jobs into several
tasks, which in turn are delegated to individual agents; and hierarchical planning, defining
high-order plans on how to complete their assigned tasks.

The scenario features four distinct roles for the agents: drones, motorcycles, cars and
trucks, sorted by increasing capacity and energy, and decreasing speed. More interestingly,
each role is associated with a set of usable tools, such that no agent is single-handedly able
to assemble all items. As a result, the scenario encourages agent coordination, having to use
several agents to assemble certain items.

The competition is an attempt to stimulate research in the area of multi-agent system
development and programming, which has also been the goal of Jason-DTU. The team’s
effort has been focused on devising fitting solutions for the key problems introduced; on
how to implement it in practice, emphasizing a high level of abstraction and robustness; and
on collecting and analyzing results, constantly looking for improvement.

The overall strategy of Jason-DTU’s multi-agent system is described in Section 2. The
section also covers prior attempts at solutions, having developed a system targeting last
years version of the scenario as a part of a bachelor thesis. Section 3 goes into detail about
how the system is implemented, from server communication to agent coordination, focus-
ing on the crucial elements of the system. Section 4 gives an overview of Jason-DTU’s
matches in terms of results as well as statistics, concluding with a summary of the team’s
performance. Section 5 concludes. Finally, Appendix A includes a questionnaire, intended
to give insight into the participants’ background, the developed system and their take on the
competition.

2 Strategy

During the development of the Jason-DTU multi-agent system for this year’s contest, mul-
tiple approaches and strategies have been considered and explored for the best possible way
to solve the problems presented in the scenario. The overall goal was to build a solution
capable of solving problems spanning a wide range of parameters. It should be able to scale
to simulations of different lengths, and handle simple and more complex items, all with a
varying number of agents. The early work for this project was based on last year’s con-
test, but extended to this year’s version as soon as possible. The first working version of the
system was also developed during the bachelor thesis [4].

2.1 Early strategies

A decision was made to make a centralized planner, subject to delegating tasks to different
agents, while each individual agent would be responsible for planning how its assigned task
should be solved. However, there was a question of how much the work should be done on
a centralized level versus a decentralized level.

The early strategies for the system were heavily leaned toward doing much of the work
in the central planner. For example, agents would be given concrete shops, items, and

2https://github.com/agentcontest/massim/blob/master/docs/scenario.md#background-story

https://github.com/agentcontest/massim/blob/master/docs/scenario.md#background-story

Engineering a multi-agent system in Jason and CArtAgO 59

delivery locations, and then just execute the necessary actions to achieve their objectives.
This was fine for the early strategies, but problems began to rise when assembling more
complex items. This part of the system was however reused and expanded for later use.
In order to retrieve all the items necessary for a job, a shopping list was created, being
a map of the shops and which items and the amount that should be bought. Then the
planning to retrieve these items could be done easily by the agents by visiting each shop
in turn.

The first solution developed was able to solve simple jobs, meaning jobs agents could
handle entirely by themselves. However, as many jobs required items that were too complex
for one agent to assemble alone, this strategy had to be revised. Because all synchronization
and coordination was handled through the central planner, unnecessary complexity arose,
without the planner having any need to influence these situations.

To solve this problem, trucks were assigned to each shop and as many workshops as pos-
sible, to build a hierarchical structure of the agents. These trucks would act as a middle layer
between the central planner and the rest of the agents, and be responsible for assembling
all items. All other agents would then have much simpler tasks, only going between differ-
ent trucks and storage locations to retrieve, give, and deliver items. However, this solution
introduced bottlenecks when too many jobs should be completed in parallel, as the trucks
were unable to handle the workload.

2.2 Centralized vs decentralized planning

The initial strategy relied on decentralized planning, using the Contract Net Protocol to
delegate tasks between agents. As a result, the agent best suited for each task was chosen
to complete it, realizing optimal task delegation on an individual level. This strategy was
based on last year’s scenario, where assembling did not necessarily require tools, hence
neither did it require agent coordination. For this year’s competition however, tools became
an important part of solving jobs, thus requiring the use of multiple agents to assemble
certain items. Using the decentralized approach, agent coordination became increasingly
difficult with the number of agents involved, and the development eventually took a turn
toward centralized planning.

With a centralized planner, the system is able to decide which jobs to complete based
on the available agents, in contrast to a decentralized planner, where free agents would
immediately start solving jobs, prior to knowing whether the required resources are at their
disposal. This is checked prematurely by the centralized planner, not assigning any tasks to
the agents before the whole job has been successfully delegated, based on the parameters of
the available agents’ vehicles. While the planner delegates tasks, the agents are responsible
for figuring out how to solve the tasks themselves. In a sense, the centralized planner com-
mands agents to achieve high-level goals, in which each individual agent continues planning
in a decentralized manner on how to proceed.

Using a combination of centralized and decentralized planning, the system is only
responsible for maintaining a global state of the simulation, and telling the agents what to
do. Doing so allows the agents to decide for themselves how their goals are best achieved,
taking their current charge, carrying capacities and so on into consideration.

2.3 Final strategy

The final approach used for the contest moved most of the heavy planning away from the
central part of the system, simplifying the overall structure. This was done by only having

60 J. Villadsen et al.

the central planner handle high-level tasks. These were assigned to a group of agents,
where the number and type of agents would be estimated based on the difficulty of the
job. As specific tools were needed to solve certain jobs, the roles of the agents also had
to match the requirements. Doing so, the system was able to easily handle different com-
plexities of jobs, using different groups of agents based on the requirements and agents’
availability.

All of the planning and coordination for actually solving jobs is done between the agents
in the group. The central planner delegates to each agent a shopping list, including tools,
and after retrieving the items, every agent meets at the same workshop and waits. Next
the agents work together to assemble and deliver the items, using the assembling protocol
described in Section 3.4.2.

This approach was still limited with too complex jobs. However, the problem was in the
end solved by dividing jobs into smaller jobs, when not enough agents were available. For
example, if a job required multiple items to be delivered, each item could be handled as an
independent partial job. Using this strategy, the system was able to handle both simple and
more complex jobs with a varying amount of agents available.

Auctions often provided more profit per step compared to normal jobs, and was therefore
an option to gain larger profits, without risking other teams completing the job before our
team could. To handle auctions as efficient as possible, the agents only bid on auctions in
the last possible step, in order to avoid bidding wars with other teams. Bidding on jobs did
not cost anything in terms of money, but did cost the bidding agent an action, hence removed
the option for the agent to do anything else in the given step. As there often were more than
enough auctions available, it was not prioritized to win every auction. Agents only bid on
auctions if they were sure the team would be able to solve the job. After winning an auction,
the agents would prioritize the job the same way as missions, as assigned auctions have a
penalty if they are not completed on time.

2.4 Free agents

The simulation server did not always post enough jobs to keep every agent busy, thus the
agents proactively prepare for new jobs. They would first of all ensure that their charge were
above a certain threshold, which is done by visiting the nearest charging station. Secondly,
each agent would try to gather resources at one of the resource nodes. Lastly, the agents
never made use of the SKIP action, but instead used RECHARGE to get as much charge as
possible, when not doing anything else.

3 Implementation

The multi-agent system has been developed using two frameworks, namely Jason, a Java-
based interpreter for an extended version of AgentSpeak; and CArtAgO, a common artifact
infrastructure for agents open environments.

Jason implements the operational semantics of AgentSpeak, and provides a platform
for the development of multi-agent systems, including several customizable features. The
extended version of AgentSpeak is a logic based agent-oriented programming language with
Prolog-like syntax, allowing for succinct agent logic [1].

CArtAgO is a general purpose framework/infrastructure that facilitates the programming
of virtual environments for multi-agent systems. The framework is based on the Agents
& Artifacts meta-model, introducing high-level metaphors taken from human cooperative

Engineering a multi-agent system in Jason and CArtAgO 61

working environments such as agents, artifacts and workspaces. Artifacts are resources and
tools, which can be dynamically constructed, used and manipulated by agents to realize
their individual or collective goals [5].

3.1 Server communication

In the contest the multi-agent system communicates with the Multi-Agent Systems Sim-
ulation (MASSim) server through a piece of client-side software called EISMASSim.3

EISMASSim is based on the Environment Interface Standard (EIS), a proposed stan-
dard for agent-environment interaction. It maps the communication between agents and
the MASSim server, (i.e. sending and receiving XML-messages), to Java method calls.
Also, it automatically establishes and maintains connections to a specified MASSim server.
In other words, EISMASSim is a proxy environment on the client side which handles
communication with the MASSim server completely by itself.

EISMASSim is fully configurable, allowing percepts to be delivered as notifications;
scheduling of actions, such that subsequent calls to PERFORMACTION will block until
a valid action-id is available; and queued percepts, such that GETALLPERCEPTS only
yields one collection of percepts per invocation. By receiving percepts as notifications,
percept handlers can be attached to entities, enabling the system to respond or trigger
execution when certain percepts are perceived. Furthermore, instead of having multiple
PERFORMACTION invocations block the agent thread, the system defines its own schedul-
ing mechanism, where subsequent calls to PERFORMACTION are ignored, except for the
first action. The scheduling mechanism allows agents to queue a single action, but only if
the server’s response deadline has passed. Doing so makes the system robust toward a slow
server connection, allowing the agents to continue planning, regardless of the data being
outdated.

3.2 Perception

Percepts are sent by the server as XML files, and contain information about the current
simulation. Initial percepts (sent via SIM-START messages) contain static information
while other percepts (sent via REQUEST-ACTION messages) contain information about
the current simulation state.4

Once a new step is perceived, a series of events occur, starting by collecting all current
information available to the agents. While doing so, agent specific percepts are passed on
to the agent’s personal artifact, responsible for parsing and updating both the agent model
and the agent’s observable state. After having collected all percepts, they are passed on to
one or two different artifacts depending on the message type. Static information remains
unchanged, thus only needs to be perceived the very first time while other information must
be perceived in every step, reflecting changes to facilities and jobs.

When all the information has been perceived, new jobs are evaluated and a task delega-
tion algorithm is run asynchronously not to interfere with the perception cycle. Finally, the
agents are notified that the simulation has advanced to the next step, continuing their rea-
soning cycle. As a result, the system comprises a perceive-act cycle doing the thinking in
parallel, opposed to the more general perceive-think-act approach.

3https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
4https://github.com/agentcontest/massim/blob/master/docs/scenario.md#percepts

https://github.com/agentcontest/massim/blob/master/docs/eismassim.md
https://github.com/agentcontest/massim/blob/master/docs/scenario.md#percepts

62 J. Villadsen et al.

3.3 Task handling

In short, a job comprises the acquisition of base items, assembling items into the job’s
required items, and delivering these items at a given storage facility. The central planner
evaluates a job in terms of profit, minimum number of agents required and an average
amount of steps needed to complete it. While the profit is easily calculated, being the job’s
reward without the cost of buying base items, finding the number of agents and amount
of steps calls to use for extensive approximations. First of all, a shopping list is created,
considering all base items needed and in which shops they can be bought. Note that shops
have different item availability, both in terms of assortment and quantity. Then the number
of assembling agents is based on the volume of the items, while the number of agents to
retrieve items is based on both the volume and the number of shops to visit. The sum of
assembling and retrieving agents comprise the minimum number of agents required, being
a rough approximation. Finally, to solve the job agents must retrieve the base items from
shops, assemble items in workshops and deliver items in storage facilities. Based on an
average agent speed and location, an average amount of steps needed to complete the job
is calculated from the steps required to get between all facilities, in addition to the steps
required to purchase and assemble all items.

Having evaluated the profit and a step estimate for each job, jobs can be compared in
terms of profit per step. This is done by adding all job evaluations to a prioritized queue,
where the job with the highest profit per step has first priority. The task delegation algo-
rithm attempts to delegate tasks according to this prioritization, considering whether there
are enough agents available and whether the job can be completed in time. Note that all jobs
have a time frame in which they are active, given by a start step and an end step. A job is
delegated by dividing it into several tasks. Firstly, a job is split into partial jobs, where the
job’s required items are distributed across multiple assemblers. Each assembler is respon-
sible for assembling and delivering a subset of the job’s required items, mobilizing a team
of agents for efficiency. A shopping list is created for the subset of items, and agents are
selected to retrieve items and assist assemble based on the contents of their inventory and
how much they can carry. The remaining step is to define the teams and assign the tasks.
While each agent knows what to assemble or what to retrieve, how to do so is up to the
individual agents. The task delegation algorithm simply uses CArtAgO elements to signal
agents of new tasks, providing all necessary information to allow for autonomous problem
solving and agent coordination.

3.4 Agent logic

Each agent tries to complete one task at the time, and assigning an agent a new task will
cause the agent to drop all ongoing plans. By doing so, agents are able to do several tasks
such as charging or gathering resources while they are awaiting assignments.

Jobs are solved using hierarchical planning, having defined a limited number of tasks
agents can be delegated with and several higher-order plans to do so. All plans eventually
boil down to compositions of the same primitive action, namely PERFORMACTION, sending
a given action to the MASSim server. Since only one action can be performed each step, this
primitive action is the natural synchronization point of the agents’ reasoning cycle. While
evaluating several steps into the future is reasonable, random failures and unpredictable
events can occur, thus the agents only consider one step at the time. This is achieved by
synchronizing the agents after performing an action, having them wait to receive a signal
before advancing. As a result, the agents are proactive, working toward completing tasks;

Engineering a multi-agent system in Jason and CArtAgO 63

reactive, considering changes to the environment in every step; and autonomous, doing both
on their own.

Agents perceive their surroundings in the form of beliefs, and each agent has a personal
belief base, containing all information the agent considers to be true or not. As mentioned
earlier, each agent has its personal artifact as well, and this is directly related to the agent’s
beliefs. An artifact defines a subenvironment, which agents can selectively observe to obtain
beliefs about the environment. More specifically, the agent’s personal artifact contains infor-
mation about its current state, for instance in which facility it is located, how much charge
is remaining and how much it carries. Even more crucial is the information about what
kind of vehicle the agent is, and the vehicle’s attributes. By incorporating this data into a
subenvironment, each agent only considers what is relevant to them.

3.4.1 Planning

Even though agents only reason about the current step of the simulation, they are capable
of autonomous planning, choosing which goals to fulfill and which plans to select to do so.
Plans are usually associated with one or more rules, deciding whether a plan is applicable.
Rules are the second-most primitive part of an agent’s repertoire, comprising literals and
arithmetic, and relying on unification to evaluate to some boolean value. The simplest of
rules are used to retrieve information from the agent’s belief base, such as the speed of the
vehicle, while more advanced rules execute internal actions.

Internal actions allow AgentSpeak to interact with Java, and retrieve information unavail-
able to the agent. As previously mentioned, a shop’s assortment is subject to change every
step, leaving it unfeasible to model in every agent. As a result, internal actions are defined
to, among other, get the amount available of a specific item in a given shop; get the loca-
tion of a facility of a given type; and get the base items needed for a list of items. By doing
so, only agent-specific data is available to each individual agent, while global data must be
retrieved using internal actions. This requires some extra work on the agent’s part, however
the system only has to manage a single model.

Jason plans are defined using compositions of primitive actions, rules to select plans,
and internal actions to retrieve information from CArtAgO artifacts. Goals are fulfilled by
executing plans, and an example of such a goal is to charge a vehicle, which is fulfilled by
the plan: go to a charging station and perform the CHARGE action. Using a logical approach,
different cases are considered depending on the state of the vehicle, corresponding to one
plan each. Continuing with the charge example, there are three cases to consider: (1) the
vehicle is fully charged, and the goal is therefore fulfilled; (2) the vehicle is not fully charged
and in a charging facility, fulfilling the goal by performing a charge action and executing
the plan once more; and (3) the vehicle is neither fully charged nor in a charging facility,
thus fulfilling the goal by first executing the plan of getting to a charging facility followed
by another attempt at executing the plan. All plans except the one where the vehicle is
fully charged, will recursively execute itself, making sure that when the entirety of the plan
succeeds, the vehicle is in fact fully charged.

This example shows how plans can be used in other plans to achieve a form of hierarchi-
cal planning. Returning to the agents’ most abstract and high-level plans, namely the tasks
delegated by the system, they can be depicted as hierarchical plan trees as illustrated by the
assemble task in Fig. 1.

Note that all leaves of the tree are primitive actions, and that plans can be used for
multiple purposes taking one or more arguments, for instance to specify in which facility
to go. As a result, each plan is uttermost specific to fulfilling a goal, facilitating the use

64 J. Villadsen et al.

Fig. 1 Hierarchical plan tree for AssembleTask

of problem decomposition to devise elegant hierarchical plans. Furthermore, by using the
recursive approach the agents are robust toward random failures and unpredictable events,
as they check in every step whether their goal is fulfilled. Some goals do however require
the help of other agents, in which plans such as the INITIATEPROTOCOL has been defined,
describing an agent coordination procedure.

3.4.2 Cooperation

Even the simplest assemble task may require help from multiple agents, given that vehicles
can only use a specific subset of tools. This requirement is accounted for by the delega-
tion algorithm, assigning each task to a team of agents. A team consists of an assembler,
responsible for performing assemble actions and delivering the assembled items to a storage
facility, and an arbitrary number of retrievers, responsible for retrieving items from shops
and performing assist assemble actions. The number of retrievers selected for a task depends
on several factors, namely the volume of the required base items, the tools required to assem-
ble all items and whether agents carry any needed items in their inventories. Using items
intended for previous failed jobs is prioritized to save both money and time on retrieving
them.

Engineering a multi-agent system in Jason and CArtAgO 65

Once a team has been assigned, each individual agent completes their task of retrieving a
set of items. After doing so, each retriever sends a message to the assembler, notifying that
they are ready to assist. The assembler waits until all assistants are ready, before setting a
flag to indicate the start of the assembling process. Once all the required items have been
assembled, the assembler removes the flag, concluding the assemble protocol.

While assisting with an assembly, the retrievers have no knowledge of which items are
being assembled, nor how many steps it will require. This may seem disadvantageous, but
has the benefit of not having to take random failures into account. With several agents
assisting, the chance for any of them to randomly fail increases, and by simply using a flag,
only the assembler has to keep track of which items are successfully assembled or not. To
ensure flexibility, the assistants are released once they have used up all items they carried. A
more dynamic approach would be to time the arrivals of the required assistants according to
which base items are needed when; however doing so is unfeasible due to random failures
and unpredictable events.

The system is designed to utilize all free agent capacity, not having idle agents when
there are jobs to complete. As a result, the system attempts to divide jobs into tasks which
can be solved by the agents individually, keeping agent coordination to a minimum. While
coordination is necessary to assemble items, it generally involves having one or more agents
wait, making the problem solving inefficient. By doing as much as possible on an individual
level, the system is capable of solving a vast amount of tasks in parallel.

4 Results

The multi-agent system developed by this year’s DTU team was able to claim a shared
second prize in the 2017 competition, with many interesting matches. The contest was
especially interesting for the developers, as the system had never been tested against other
multi-agent systems. We explore each of Jason-DTU’s matches, and try to compare the
weaknesses and strengths between the different systems and their respective strategies. We
first separately analyze the six matches.

4.1 Analysis of Jason-DTU’s matches

4.1.1 BusyBeaver vs. Jason-DTU

Jason-DTU’s first match was against BusyBeaver, whom turned out to be the winning team,
and therefore the most challenging match. While the system performed badly in the sec-
ond and third simulations of the match, the first simulation was quite exciting, with DTU
being in the lead for most of the time but ending up loosing. By analyzing the graphs from
all three simulations, it is easy to see the difference in strategy. BusyBeaver invests a lot in
items early on, trying to have the necessary resources ready when a new job is posted. Jason-
DTU’s strategy uses a just-in-time approach, by only buying and assembling the required
items when needed. Looking at the average time it takes each team to complete missions,
which can be seen in Table 1, the superiority of BusyBeaver’s strategy is seen; it is able to
complete jobs around three times faster. One positive note for the Jason-DTU team was its
ability to complete all of the auction jobs it bid on, while BusyBeaver did not complete any.
Looking at the actions performed by the agents on the two teams, BusyBeaver is in gen-
eral doing more actions, and is utilizing the GIVE and RECEIVE actions which Jason-DTU
is not.

66 J. Villadsen et al.

Table 1 The number of jobs completed, the average time to complete a job, and the average reward per job
for each team in the match between BusyBeaver and Jason-DTU

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3

Team Completed jobs Average time Average reward

BusyBeaver 31/48 53/59 33/49 7 15 23 2697 3202 5223

Jason-DTU 17/48 6/59 16/49 33 42 77 3367 4429 4111

Completed auctions Average time Average reward

BusyBeaver 0/4 0/3 0/1 − − − − − −
Jason-DTU 4/4 3/3 1/1 36 33 112 2354 2705 8962

Final scores, BusyBeaver vs. Jason-DTU, Sim 1 88646:77716, Sim 2 138592:53370, Sim 3 128250:73308

4.1.2 Jason-DTU vs. TUBDAI

While the second match, against TUBDAI, was a big victory for Jason-DTU, the statistics
still show some interesting data. The first two simulations were quite similar in the kind
and amount of actions the agents were doing. Both of the teams were very active with
ASSEMBLE and ASSISTASSEMBLE. However, when analyzing the number of jobs that each
of the teams completed, there is a clear difference. The Jason-DTU system completes far
more jobs than TUBDAI, while also delivering the jobs faster on average, both of which
can be seen in Table 2. One very interesting point from the data is that TUBDAI is able to
complete many auctions, showing that their system is optimal when completing jobs without
competition.

4.1.3 Chameleon vs. Jason-DTU

The match between Chameleon and Jason-DTU was less interesting, as Chameleon was
quite passive, however a very good display of howwell the Jason-DTU system works. While
the earning of money stalled and even lowered a bit at the end of the first simulation, the
second and third simulation displayed a stable, linear growth of money throughout the sim-
ulation, which illustrates how good the final strategy is. This data is displayed in Fig. 2.
The good results were because of the many jobs completed, both normal jobs and auctions,
which were done rather quickly on average. It can also be seen in the statistics from the

Table 2 The number of jobs completed, the average time to complete a job, and the average reward per job
for each team in the match between Jason-DTU and TUBDAI

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3

Team Completed jobs Average time Average reward

Jason-DTU 48/52 53/58 31/32 24 56 63 2076 2902 2925

TUBDAI 4/52 5/58 1/32 30 93 81 1958 3461 3806

Completed auctions Average time Average reward

Jason-DTU 9/15 16/19 0/0 30 51 − 2570 3182 −
TUBDAI 6/15 3/19 0/0 35 67 − 3291 4231 −

Final scores, Jason-DTU vs. TUBDAI, Sim 1 132481:3675, Sim 2 176406:10630, Sim 3 115192:37275

Engineering a multi-agent system in Jason and CArtAgO 67

Fig. 2 Results for Jason-DTU in the match with Chameleon. Final scores, Jason-DTU vs. Chameleon, Sim
1 119821:26018, Sim 2 182542:29233, Sim 3 136206:11819

contests that the agents are very active compared to many of the other simulations, where
almost all of the actions are based on assembling and assisting each other.

4.1.4 Flisvos vs. Jason-DTU

The match with Flisvos was the most interesting match in the entire competition for Jason-
DTU, from which some problems with the Jason-DTU system were exposed. This forced
an error in the first of the simulations, making the Jason-DTU system stall, and thereby
leading to the only match where the agents were unable to make a profit. However, because
of this match, bugs in the system were identified and fixed quickly. It also showed some
non-fatal problems with the multi-agent system, where items from failed jobs were not
being collected, and existing items were not reused effectively. Hence, a lot of items and the
agents’ time were wasted.

Table 3 shows that Flisvos was able to complete more jobs than Jason-DTU in gen-
eral. From the data, the two teams seems to use almost exactly the same time on average

Table 3 The number of jobs completed, the average time to complete a job, and the average reward per job
for each team in the match between Flisvos and Jason-DTU

Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3 Sim 1 Sim 2 Sim 3

Team Completed jobs Average time Average reward

Flisvos 50/60 51/65 47/58 20 31 63 2963 2960 4847

Jason-DTU 10/60 14/65 11/58 20 34 56 2376 3032 5340

Completed auctions Average time Average reward

Flisvos 0/10 0/23 0/9 − − − − − −
Jason-DTU 10/10 23/23 9/9 36 52 57 3950 4624 5583

Final scores, Flisvos vs. Jason-DTU, Sim 1 121141:35837, Sim 2 125639:135220, Sim 3 157291:48352

68 J. Villadsen et al.

to complete jobs. However, since only completed and not attempted jobs are included, the
data does not necessarily show the whole picture. Only the faster of the two teams com-
pleting a job will be counted, hence Flisvos must be faster at completing jobs on average.
Jason-DTU was able to complete auction jobs, which the Flisvos system could not. Espe-
cially in the second match, with far more auctions available, the two teams were fairly
close.

4.1.5 Jason-DTU vs. SMART-JaCaMo

The match against SMART-JaCaMo was very intense, especially after the first simulation
had to be replayed because of a server side crash with only 200 steps remaining, and less
than 10k in difference between the two teams’ scores! The replay of the match turned out to
be just as close, unfortunately with a loss for Jason-DTU. The money for all of the matches
can be found in Fig. 3.

Overall, the two systems seemed to apply a quite similar strategy, both being able to
solve all kinds of jobs. The average time to complete these jobs and the average reward
for them also seemed very similar for the two teams, however, Jason-DTU was capable
of completing more standard jobs than SMART-JaCaMo, which determined the match.
SMART-JaCaMo was able to complete more auctions in all of the simulations, even though
Jason-DTU performed far more BIDFORJOB actions. From this match, it was also clear that
Jason-DTU’s agents were able to retrieve items from failed jobs, which had caused issues
in earlier matches. Hence, items were no longer wasted if the other team was able to com-
plete a job faster, which resulted in both faster completion times for future jobs, as well

Fig. 3 Overview of Jason-DTU and SMART-JaCaMo’s money in the match between them. Final scores,
Jason-DTU vs. SMART-JaCaMo, Sim 1 149751:160820, Sim 2 213863:149896, Sim 3 181097:105952

Engineering a multi-agent system in Jason and CArtAgO 69

as saved money that would have otherwise been spent on buying new items. An interest-
ing difference to note, is that SMART-JaCaMo was utilizing the storage facilities, as the
only team in the competition. This seemed like a very good strategy, reusing items and
making them available to every agent on the team, instead of repeatedly buying the same
items.

4.1.6 Jason-DTU vs. lampe

The final match for Jason-DTU was against lampe, which had produced varying results dur-
ing its other matches. The Jason-DTU system preformed very well in this match, having
all of its agents active most of the time, thereby completing many jobs. This led to a clear
victory in all of the three simulations, along with setting one of the highest scores of the
contestants on the last map (final scores, lampe vs. Jason-DTU, Sim 1 53628:157063, Sim
2 85659:139869, Sim 3 100880:225755). Note that lampe earned money in all three simu-
lations, but simply at a slower rate. The system was able to complete both standard jobs and
auctions, but did not win nearly as many auctions as Jason-DTU.

4.2 Summary of analysis

As the results from the matches show, Jason-DTU performs well in general. The contest
showed some of the strengths and weaknesses in Jason-DTU that did not show in testing. In
this section, we summarize the analysis of the matches by providing an overview of overall
strengths and weaknesses.

4.2.1 System robustness

Outside the match with Flisvos, Jason-DTU was very stable and was able to make money.
Even in the match against BusyBeaver, where Jason-DTU could not complete jobs fast
enough, Jason-DTU completed jobs and was able to make money. Part of this was due to
Jason-DTU’s ability to retrieve items from failed jobs and thus saving money. This shows
that the system is robust.

4.2.2 System performance

Jason-DTU earned a shared second place in the competition and as Table 4 shows, it gen-
erally earned more money than the opponents. In most matches, Jason-DTU completed

Table 4 Average differences in system performance between Jason-DTU and the other teams, and the
overall average performance difference

Opponent Money difference Job % Auction % Job time difference Auction time difference

BusyBeaver −50364.67 26.08 100.00 −35.67 −
TUBDAI 133703.00 93.52 72.11 20.33 10.50

Chameleon 123833.00 100.00 100.00 − −
Flisvos −61554.00 18.95 100.00 1.33 −
SMART-JaCaMo 42681.00 73.05 37.75 −4.67 2.33

lampe 94173.33 61.81 91.53 −19.00 −1.50

Overall 47078.61 62.3 83.56 −7.53 3.78

70 J. Villadsen et al.

more jobs than the opponent, and it consistently completed auctions in all matches,
which provided an additional income. This shows that the system generally performs
well.

4.2.3 Customization

The overhead of implementing new strategies is low, which means that it was easy to imple-
ment new strategies into the system. During development, Jason-DTU was frequently tested
by playing against itself with different strategies to identify strengths and weaknesses in
strategies. The use of CArtAgO also made it easy to introduce new artifacts and experiment
with different testing setups. This shows that the system is customizable.

4.2.4 Weaknesses in strategy

The just-in-time strategy of only buying and assembling items as needed was slower than
investing in many items early on to be ready for new jobs.

4.2.5 Static strategy

As the competition shows, exploiting the weaknesses in the just-in-time strategy can be
critical to winning. In complex games such as MAPC, where there are rarely dominant
strategies, it is necessary to make the system able to recognize the exploitation early and
dynamically switch strategy. However in Jason-DTU, the strategy is static with no self-
adjustments.

5 Conclusion

We have presented the overall strategy of the multi-agent system of Jason-DTU which
achieved a shared second place in MAPC 2017. A central planner prioritizes and delegates
jobs to groups of agents. One agent in the group is then assigned as “leader” whom is
responsible for assembling and delivering the required items. All other agents in the group
assists the leader with assembling.

We have provided an overview of implementation details including perception, task
handling and agent logic. We have implemented the system in Jason and have used the
CArtAgO framework to make the agents able to perceive their surroundings in the form
of beliefs. It is also used to implement agent communication in task handling. The agents
use hierarchical plans to compute their assigned jobs quickly and protocols to synchronize
actions with each other.

CArtAgO was initially used to decentralize the task delegation, using the Contract Net
Protocol. As the complexity of the scenario increased by introducing tools and more con-
strained roles, our system leaned toward a more centralized approach. As a result, the role of
CArtAgO in the system became less crucial and was mostly used for handling percepts and
dividing the environment into several optionally observable sub-environments, separating
agent-specific percepts.

CArtAgO allowed for easily extending agent functionality by defining various opera-
tions, however CArtAgO operations do not rely on unification, and could thus not be used
in AgentSpeak rules. Furthermore, internal operations executed by CArtAgO artifacts run
asynchronously, which introduces race conditions when agents execute operations to access

Engineering a multi-agent system in Jason and CArtAgO 71

data the artifact is updating. To avoid these problems, all operations were implemented as
Jason internal actions instead.

We have analyzed the results of the competition and evaluated strengths and weaknesses
of the multi-agent system. Overall the system performed very well in the competition and
the goal of developing a highly sophisticated multi-agent system has been achieved. Fitting
solutions to key problems have been devised and implemented in practice, emphasizing a
high level of abstraction utilizing problem decomposition and agent coordination.

Acknowledgements We are affiliated with DTU Compute, short for Department of Applied Mathematics
and Computer Science, Technical University of Denmark (DTU), and located in the greater Copenhagen
area. We are grateful to Innovation Fund Denmark for partially funding John Bruntse Larsen’s Industrial PhD
project Hospital Planning with Multi-Agent Goals between PDC A/S and DTU Compute.

Appendix A: Team overview: short answers

A.1 Participants and their background

What was your motivation to participate in the contest?
We have a general interest in artificial intelligence and logic, and in particular in multi-

agent systems.

What is the history of your group? (course project, thesis, . . .)
Our group consist of two master students, Helge and Oliver, who together did

their bachelor thesis on multi-agent systems, using the contest as the platform for the
implementation, and with Jørgen and John as supervisors.

What is your field of research?Which work therein is related?Helge and Oliver have
taken courses in multi-agent systems theory and development as part of their bachelor
degree. In his PhD, John is doing research on applying multi-agent systems theory for
hospital decision support systems. Jørgen’s field of research include formal logic and
multi-agent systems. He has supervised DTU’s team for the contest since 2009.

A.2 The cold hard facts

How much time did you invest in the contest (for programming, organizing your
group, other)?
We invested about 300 man hours, including 180 hours of programming for two

people.

How many lines of code did you produce for your final agent team?
We produced 5361 total lines of code. Of these, the project included 282 lines of Jason

code, while the remaining lines were Java code.

How many people were involved?
Two people have been responsible for implementing the project, with guidance from

their supervisors.

When did you start working on your agents?
Helge and Oliver started implementing the agents doing their bachelor thesis in the

spring of 2017. These agents were based on the contest from 2016. Most of the work
done for the agents used in the actual competition was done in August and September
2017.

72 J. Villadsen et al.

A.3 Strategies and details

What is the main strategy of your agent team?
The main strategy is to delegate each job to a group of agents. Each agent will be

responsible for collecting some of the items, go to a workshop and assemble them if
necessary, and have the leader of the job deliver them.
If the job is too big to be completed by one single group, the job is split into multiple

smaller jobs, which can be completed in parallel.

How does the team work together? (coordination, information sharing, ...)
Information about the facilities in the world are shared between all agents. This also

include information about what items there are located at the different facilities, along
with what items the agents are planning to buy.
When new jobs are received, the system estimates which resources (amount and type

of agents, along with items) that are necessary to complete the job.
Afterwards, the job is delegated to the free agents of the required types. One agent is

assigned “leader”, whom is responsible for assembling and delivering the job. All other
agents on the job will assist the leader with assembling.

What are critical components of your team?
Some of the critical components of our team are the job delegation and synchronizing

actions.

Can your agents change their behavior during runtime? If so, what triggers the
changes?
The agents follow the same behavior throughout a simulation.

Did you have to make changes to the team during the contest?
We fixed a bug that caused the system to crash between simulations. During the contest

we also found a bug, causing our agents to not always reuse items from failed jobs, which
was fixed as well.

How do you organize your agents? Do you use e.g. hierarchies? Is your organization
implicit or explicit?
All agents are the same at the start. We do not use hierarchies. Groups of agents

are assigned to jobs, where one agent in each group is the leader and responsible for
completing the job.

Is most of your agents’ behavior emergent on an individual or team level?
Most of the agents’ behavior is on their individual level, and only assembling items

require team actions.

If your agents perform some planning, how many steps do they plan ahead?
Our agents use hierarchical planning, using as abstract plans as possible. As such, no

concrete sequence of actions is chosen for future steps, however, the agents would be
committed to their abstract plans for many steps into the future. This could wary a lot,
based on the difficulty of the task, but we would assume planning for 100 or more steps
would be very unlikely.

If you have a perceive-think-act cycle, how is it synchronized with the server?
The agents perceive the latest information from the server, and deliberate this asyn-

chronously. Whenever the agents have finished and found the actions they want to take,
this is sent to the server. As the system had trouble computing this within the time limit
for each step, any further synchronization protocol was not implemented.

Engineering a multi-agent system in Jason and CArtAgO 73

A.4 Scenario specifics

How do your agents decide which jobs to complete?
Jobs are evaluated, estimating steps and agents required to complete the job. The jobs

are then sorted according to profit per step, and a delegation algorithm attempts to divide
the job into tasks, assigning the tasks to the available agents.

Do you have different strategies for the different roles?
Jobs are delegated depending on the agents’ capacity and usable tools, hence the

strategy remains the same across all roles.

Do your agents form ad-hoc teams for each job?
Agents solve tasks individually, although tasks involving assembly may require

multiple agents, thus in a sense working as a team.

What do your agents do when they do not pursue any job?
Free agents charge, gather resources, and after doing so, they go to a random location

within the center of the city.

How did you go about debugging your system?
The Java part of our system has been debugged using the standard Eclipse debugging

tools, and the AgentSpeak part has been analyzed using the debugging tools provided by
the Jason MAS Console.

What were prominent questions you would have asked your system during develop-
ment? (i.e. “why did you just do X?”)
Prominent questions include: Why did agents sometimes try to complete unsolvable

jobs? In what parts of the system were bottlenecks likely to occur? How much time do
the agents spend on solving jobs vs waiting for other agents?

A.5 And the moral of it is . . .

What did you learn from participating in the contest?
Among other, we gained experience with working with CArtAgO and identified miss-

ing features that we found useful; gained experience with optimizing Jason programs;
and learned that there is a huge difference between running simulations and competing
in the actual contest.

What are the strong and weak points of your team?
We are able to solve multiple jobs simultaneously, utilizing all available agents and

resources. Our system did not perform as well when there was a lack of jobs and not
being able to utilize our full potential.

How viable were your chosen programming language, methodology, tools, and
algorithms?
Jason was an excellent platform for developing a large-scale multi-agent system,

allowing us to implement succinct agent logic in AgentSpeak. We also integrated key fea-
tures of CArtAgO, although keeping the use to a minimum since the framework would
quickly overcomplicate simple tasks.

Did you encounter new problems during the contest?
We encountered some problems with delayed perception, thus forcing us to revise the

perceive-think-act cycle. We also had to shift our priorities in terms of gameplay.

74 J. Villadsen et al.

Did playing against other agent teams bring about new insights on your own agents?
Playing against as well as watching other teams compete gave a lot of new insight,

especially in terms of overall strategies.

What would you improve if you wanted to participate in the same contest a week
from now (or next year)?
Our goal has been to develop a highly sophisticated multi-agent system, thus focusing

on problem decomposition and agent coordination instead of focusing on gameplay and
applying game theory.

Which aspect of your team cost you the most time?
The most challenging and time consuming aspect of the system has been to implement

an algorithm to efficiently decompose tasks and assign them optimally.

What can be improved regarding the contest/scenario for next year?
We would like more emphasis on flexibility and scalability, possibly by running simu-

lations with a varying amount of steps; utilizing the different roles for different purposes,
possibly by restricting the number of partial deliveries allowed for a job; and agent
coordination, possibly by limiting the amount of agents staying at the same location.

Why did your team perform as it did? Why did the other teams perform bet-
ter/worse than you did?
We were able to perform very well due to efficient problem decomposition, using

abstract plans and being able to quickly adapt to new information. This allowed our
agents to dynamically work together and divide tasks between them.
We had a bug the first two days, which in turn affected our score, however our results

improved significantly after resolving it.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using
Jason. Wiley, New York (2007)

2. Boss, N.S., Jensen, A.S., Villadsen, J.: Building multi-agent systems using Jason. Ann. Math. Artif. Intell.
59, 373–388 (2010)

3. Ettienne, M.B., Vester, S., Villadsen, J.: Implementing a multi-agent system in Python with an auction-
based agreement approach. Lect. Notes Comput. Sci. 7217, 185–196 (2012)

4. Hatteland, H., Fleckenstein, O.: Multi-Agent Systems. Bachelor thesis, Technical University of Denmark
(2017)

5. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an artifact-based
perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192 (2011)

6. Vester, S., Boss, N.S., Jensen, A.S., Villadsen, J.: Improving multi-agent systems using Jason. Ann. Math.
Artif. Intell. 61, 297–307 (2011)

7. Villadsen, J., From, A.H., Jacobi, S., Larsen, N.N.: Multi-agent programming contest 2016— the python-
DTU team. Int. J. Agent-Oriented Softw. Eng. 6(1), 86–100 (2018)

8. Villadsen, J., Jensen, A.S., Christensen, N.C., Hess, A.V., Johnsen, J.B., Woller, Ø.G., Ørum, P.B.:
Engineering a multi-agent system in GOAL. Lect. Notes Comput. Sci. 8245, 329–338 (2013)

9. Villadsen, J., Jensen, A.S., Ettienne, M.B., Vester, S., Andersen, K.B., Frøsig, A.: Reimplementing a
multi-agent system in Python. Lect. Notes Comput. Sci. 7837, 205–216 (2013)

	Engineering a multi-agent system in Jason and CArtAgO
	Abstract
	Introduction
	Strategy
	Early strategies
	Centralized vs decentralized planning
	Final strategy
	Free agents

	Implementation
	Server communication
	Perception
	Task handling
	Agent logic
	Planning
	Cooperation

	Results
	Analysis of Jason-DTU's matches
	BusyBeaver vs. Jason-DTU
	Jason-DTU vs. TUBDAI
	Chameleon vs. Jason-DTU
	Flisvos vs. Jason-DTU
	Jason-DTU vs. SMART-JaCaMo
	Jason-DTU vs. lampe

	Summary of analysis
	System robustness
	System performance
	Customization
	Weaknesses in strategy
	Static strategy

	Conclusion
	Acknowledgements
	Appendix: A: Team overview: short answers
	A.1 Participants and their background
	A.2 The cold hard facts
	A.3 Strategies and details
	A.4 Scenario specifics
	A.5 And the moral of it is …
	References

