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Abstract In the database world, integrity constraints are essential to guarantee database
integrity. The related problem of database repair deals with finding the best way to change
a database so that it satisfies its integrity constraints. These two topics have been stud-
ied intensively since the 1980s. The formalism of active integrity constraints, proposed in
2004, aims at addressing them jointly, by providing a syntax whereby a particular subclass
of integrity constraints can be specified together with preferred ways to repair inconsis-
tency. In the last decade, several authors have proposed adaptations of the notion of integrity
constraints to other reasoning frameworks than relational databases. In this article, we
extend this line of work in two ways. First, we target multi-context systems, a general-
purpose framework for combining heterogeneous reasoning systems, able to model most
other reasoning frameworks, as we demonstrate. Second, we extend the notions of active
integrity constraints and grounded repairs to this generalized setting. This way of includ-
ing repair suggestions inside integrity constraints, subject to a validity check, enables us to
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define simple iterative algorithms to find all possible grounded repairs for an inconsistent
multi-context system, avoiding the need to solve complex or undecidable problems.

Keywords Integrity constraints · Multi-context systems · Repairs · Ontologies

Mathematics Subject Classification (2010) 03B80 · 68P15

1 Introduction

Integrity constraints in databases have been around for decades, and are universally
acknowledged as one of the essential tools to ensure database consistency [2]. The associ-
ated problem of finding out how to repair an inconsistent database – i.e., change it so that
it again satisfies the integrity constraints – was soon recognized as an important and diffi-
cult one [1], which is unlikely to be solvable in a completely automatic way [27]. Typically,
inconsistent databases can be repaired in several different ways, and it is important to have
the means to establish preferences between different possible repairs. Active integrity con-
straints [31] were originally introduced as a way to address this issue in a restricted setting
– first-order integrity constraints that can be written in denial clausal form.

In parallel with relational databases, many research efforts have been spend in consider-
ing more powerful reasoning systems, where information is not entirely described explicitly,
but may be inferred by logical means. This work started in the early 1980s with the proposal
of deductive databases, and became more diversified since the turn of the century.

In this setting, an important topic of study is how to combine the reasoning capabilities
of different systems, preferably preserving the properties that make them useful in prac-
tice – e.g. consistency, decidability of reasoning, efficient computation. One of the most
general frameworks to combine reasoning systems abstractly is that of heterogeneous non-
monotonic multi-context systems [7]. Besides being studied from a theoretical perspective,
these have been implemented, and many specialized versions have been introduced to deal
with particular aspects deemed relevant in practice [22, 30, 35, 49]. In this article, we work
with managed multi-context systems [9], a first-order generalization of the original systems,
which were based on a propositional syntax.

As a very simple kind of reasoning system, databases can naturally be viewed as par-
ticular cases of MCSs. In this paper we propose to define active integrity constraints in
MCSs in a way that naturally generalizes the corresponding theory for relational databases.
In particular, we explore how to write clausal integrity constraints in MCSs, and what we
should consider as possible repair actions. Our approach differs from previous suggestions
on how to model integrity constraints in MCSs [8, 9, 26, 45]: in those works, the authors
routinely embed integrity constraints into the system, thereby making them part of the rea-
soning mechanism – unlike the situation in databases, where they form an independent layer
whose purpose is only to signal whether the database is in a consistent state. We argue that
integrity constraints for MCSs should also follow this principle, and show how our approach
is also in line with investigations on how to add integrity constraints to other reasoning
frameworks, namely description logic knowledge bases [29, 40]. Due to the richer struc-
ture of MCSs, we can define two distinct notions of consistency with respect to integrity
constraints, which coincide in the case of databases. Furthermore, our formalism gives us
enough information from which we can compute repairs for an inconsistent MCSs, as long
as its entailment relation is decidable.
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Of particular interest is the application to the ontology domain. Integrity constraints for
ontologies have been discussed in recent years, with several approaches on how to define
them and how to check their satisfaction [28, 40, 42]. Given its challenges, the more com-
plex problem of repairing ontologies that do not satisfy their integrity constraints has not
received as much attention. We dedicate a section of this presentation to the study of AICs
over ontologies, and show that we can use our algorithms to find repairs for ontologies that
are inconsistent with respect to a set of AICs.

Part of the material included in this article has been previously presented in [20, 21].

1.1 Contributions

We summarize the main contributions of this work.

Active integrity constraints for multi-context systems Our main contribution is the
notion of active integrity constraints over an MCS, which in particular yields a uniform
notion of active integrity constraint over several formalisms, together with notions of weak
and strong satisfaction of these. We show that the problem of deciding whether an MCS
satisfies a set of AICs is polynomial-time reducible to the problem of deciding whether an
MCS has a model. We show how our definition captures the traditional notion of denial
clausal integrity constraints over relational databases, and how it naturally generalizes this
concept to distributed databases and deductive databases. We also compare our definition
with existing proposals for integrity constraints over ontology languages.

Grounded repairs Our second contribution is a notion of grounded repair for an MCS that
is inconsistent with respect to a set of active integrity constraints, together with algorithms
for computing grounded repairs. In the general setting of MCSs, the benefits of working
with AICs are much more substantial than in the database case: while in the database case
every clausal IC can be transformed into an AIC automatically, in the general case such a
transformation would require solving complex abduction problems [37]. Using AICs, we
can automatically compute repairs for inconsistent MCSs, bypassing the need to solve such
reasoning problems, as long as we prove that an AIC is valid (Definition 13). This should in
general not pose a problem: integrity constraints are written with a very clear semantic idea
in mind, typically by an engineer with a deep knowledge of the underlying system, and the
validity of the repair actions proposed should thus follow easily. We argue in more detail
for this point in the remainder of the article. Thus, in practice, the complexity involved in
computing each repair is moved to a one-time verification of validity of AICs.

Application to ontologies As an example of the expressivity of our framework, we
show that we can capture all types of integrity constraints over ontologies identified as
relevant in [28]. Furthermore, we show how they can be systematically written as valid
active integrity constraints, from which we can automatically generate grounded repairs for
ontologies that do not respect them.

1.2 Outline

This article is structured as follows.
Section 2 presents an overview of related work that is most directly relevant to us. We

summarize the theory of active integrity constraints for databases and the relevant notions
from the framework of managed multi-context systems in Section 3.
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In Section 4, we propose our definition of active integrity constraints over MCSs,
together with notions of weak and strong satisfaction, repair and grounded repair. We show
how satisfaction of integrity constraints can be reduced to the problem of logical consis-
tency, obtaining decidability and complexity results. We also discuss how the repair actions
allowed in an AIC should be restricted, and provide simple criteria for establishing valid-
ity of AICs. As a sanity check, we show that our active integrity constraints generalize the
corresponding concept in relational databases. We conclude by presenting algorithms to
compute grounded repairs, inspired by their database counterparts.

In Section 5 we look at how our notions particularize to other frameworks, namely dis-
tributed databases and deductive databases, compare to previous proposals for defining
integrity constraints in those systems, and provide some complexity results.

Section 6 focuses on the case of ontologies. We discuss how an ontology can be viewed
as a multi-context system, and show that our notion of active integrity constraint captures
previous proposals for modeling integrity constraints in this formalism, while helping with
the computation of repairs. We evaluate our formalism by showing that we can capture the
classes of integrity constraints identified in [28].

We discuss some design options and possible extensions in Section 7, before concluding
with an overview of our results in Section 8.

2 Related work

2.1 Integrity constraints for databases

The topic of integrity constraints has been extensively studied in the literature. In this sec-
tion, we discuss the work that we feel to be more directly relevant to the tasks we carry out
in this paper.

Integrity constraints and updates – ways of repairing inconsistent databases – were iden-
tified as a seminal problem in database theory almost thirty years ago [1]. The case for
viewing integrity constraints as a layer on top of the database, rather than as a component of
it, has been made since the 1980s. The idea is that data inconsistencies captured by integrity
constraints need to be resolved, but they should not necessarily interfere with the ability to
continue using the database. In this line, much work has been done e.g. in query answering
from inconsistent databases [3, 47], by ensuring that the only answers generated are those
that hold in minimally repaired versions of the database.

Integrity constraints are typically grouped in different syntactic categories [51]. Many
important classes can be expressed as first-order formulas, and can also be written in denial
(clausal) form – the fragment expressable in our formalism.

Whenever an integrity constraint is violated, the database must be repaired to regain
consistency. The problem of database repair is to determine whether such a transformation
is possible, and many authors have investigated algorithms for computing database repairs
efficiently. Typically, there are several possible ways of repairing an inconsistent database,
and several criteria have been proposed to evaluate them. Minimality of change [27, 54]
demands that the database be changed as little as possible, while the common-sense law of
inertia [44] states that every change should have an underlying reason. While these criteria
narrow down the possible database repairs, it is commonly accepted that human interaction
is ultimately required to choose the “best” possible repair [50]. (A similar argument has also
been made in other contexts related to resolving inconsistencies, see e.g. [24].)
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2.2 Active integrity constraints for databases

The formalism of active integrity constraints, introduced in [31], addresses the issue of
choosing among several possible repairs. An active integrity constraint specifies not only
an integrity constraint, but it also gives indications on how inconsistent databases can be
repaired through the inclusion of update actions, which can be the addition and the removal
of tuples from the database – a minimal set that can implement the three main operations of
database updates [1].

The original, declarative, semantics of AICs defined founded repairs [10], in which every
action is supported: it occurs in the head of a constraint that is violated if that action were
not included in the repair. Despite this characterization, there are unnatural founded repairs
where two actions mutually support each other, but do not have support from other actions
– a phenomenon that the authors called circularity of support.

The same authors then proposed justified repairs [13]. These have several other prob-
lems: its verification is challenging, due to a quantification over all subsets of atoms in
the database; the authors’ claim that they avoid circularity of support has never been for-
mally substantiated; and there are examples where justified repairs are over-restrictive [17].
Moreover, the formal definition of justified repairs is technically complicated, and lacks
a clear intuition. Finally, the definition of justified repairs is intrinsically linked to the
syntactic structure of databases, and cannot be adapted to other knowledge representation
formalisms.

Grounded repairs [16] form a middle ground between both semantics, requiring support
not only for individual actions, but also for arbitrary subsets of the repair. They are grounded
fixed points of the intuitive operation of “applying one action from the head of each AIC that
is not satisfied”, which is in line with the intuitive motivation for studying AICs. They are an
instance of the general notion of grounded fixpoints [6], and as such have the properties of
being buildable “from the ground up” (thereby avoiding circularity of support) and minimal
under set inclusion. Grounded repairs are a particular case of semantics for AICs that can
be defined using approximation fixpoint theory [5].

Founded and justified repairs can be computed via revision programming [13]. Alterna-
tively, an operational semantics for AICs [17] was implemented for SQL databases [18].
There, repairs are leaves of particular trees, yielding a semantics equivalent to the declara-
tive one when existence of a repair is an NP-complete problem. For grounded and justified
repairs, where this existence problem is �

p

2 -complete, the trees still contain all repairs, but
may also include spurious leaves – requiring a post test that brings the overall complexity
to the theoretical limit.

2.3 Multi-context systems

Multi-context systems were originally inspired by the work of McCarthy [39] and developed
initially by the Trento School [33, 34]. We follow the modern formulation of heterogeneous
non-monotonic multi-context systems [7], which gave rise to an extremely powerful formal-
ism that is aimed at the Semantic Web. Multi-context systems can be informally described
as collections of logic knowledge bases – the contexts – connected by Datalog-style bridge
rules.

Since their introduction, several variants of multi-context systems have been proposed
that add to their potential fields of application. Relational multi-context systems [30] were
proposed as a way to allow a formal first-order syntax, introducing variables and aggregate
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expressions in bridge rules, and extending their semantics accordingly. Managed multi-
context systems [9] proceed this line of generalization by abstracting from the possible
actions that change individual knowledge bases. Dynamic multi-context systems [23] were
intended to cope with situations where knowledge sources and their contents may change
over time and are not known a priori. Evolving multi-context systems [36] extend this idea
by incorporating knowledge resulting from dynamic observations through different belief
change operations with different levels of persistence. This framework has been further
extended with the notion of evolving bridge rules [36].

2.4 Integrity constraints in other frameworks

The first authors to consider deductive databases [4, 32] also discussed this issue. They
identify three ways to look at deductive databases: by viewing the whole system as a
first-order theory; by viewing it as an extensional database together with integrity con-
straints; and a mixed view, where some rules are considered part of the logic theory
represented by the database, and others as integrity constraints identifying preferred mod-
els. In [4], it is argued that this third approach is the correct one, as it cleanly separates
rules that are meant to be used in logic inferencing from those that only specify consistency
requirements.

More recently, authors have considered adding integrity constraints to other types of rea-
soning systems such as ontologies. This integration poses several challenges, mainly due to
the open-world assumption and the absence of the unique name assumption [28, 41, 43, 48].
In this context, integrity constraints are conventionally modeled as T-Box axioms [40], but
variants based on hybrid knowledge bases, auto-epistemic logic, modal logic, and grounded
circumscription have recently been proposed. (An overview of these proposals can be found
in Section 2 in [42].)

The authors of [40] also discuss why integrity constraints should be kept separate from
the logical theory, even if they can be syntactically written in the language of the ontology.
Therefore, they separate the axioms in the T-Box (the deductive part of an ontology) into two
groups: reasoning rules, which are used to infer new information, and integrity constraints,
which only verify the consistency of the knowledge state without changing it.

The setting of multiple ontologies was also considered in [29]. This work considers the
problem of combining information from different knowledge sources while guaranteeing
the overall consistency, and preserving this consistency when one of the individual ontolo-
gies is changed. This is achieved by external integrity constraints, written in a Datalog-like
syntax, which can refer to knowledge in different ontologies in order to express relationships
between them. Again, the purpose of these rules is uniquely to identify incompatibilities in
the data, and not to infer new information.

By contrast, the authors who have discussed integrity constraints in multi-context
systems have not felt the need to take a similar approach. Integrity constraints appear
routinely in examples in e.g. [8, 9, 26, 45], but always encoded within the system, so
that their violation leads to logical inconsistency of the global knowledge base. These
works focus instead on the aspect of identifying the sources of inconsistencies – integrity
constraints being only one example, not given any special analysis. Following this line
of research, the authors of [25] propose a declarative policy language, together with
methodologies to apply it, to provide a means to create policies to avoid or repair
inconsistencies in multi-context systems in a controlled way (e.g. specifying which incon-
sistencies can be repaired automatically, and which ones need external input by a human
operator).
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3 Background

In this section we summarize the theory and results that are directly relevant for our
development.

3.1 Active integrity constraints

Active integrity constraints were originally introduced in [31], and their denotational seman-
tics subsequently developed in [10, 13]. Our presentation follows that of [13], albeit with a
different notation.

Let � be a first-order signature without function symbols. A database is a set of ground
atoms over �, and an update action is an expression of the form +a or −a, where a is an
atom (possibly containing variables) over �. An active integrity constraint (AIC) over a
database DB is a rule r of the form

p1, . . . , pm, not (pm+1), . . . , not (p�) =⇒ α1 | · · · | αk (1)

where each pi is an atom over the database’s signature, for 1 ≤ i ≤ �, every vari-
able free in pm+1, . . . , p� occurs in p1, . . . , pm, and each update action αi is either
−pj for some 1 ≤ j ≤ m or +pj for m < j ≤ �. The body of r is body(r) =
p1, . . . , pm, not (pm+1), . . . , not (p�), and the head of r is head(r) = {α1, . . . , αk}. The
body of an active integrity constraint expresses an integrity constraint in denial clausal form,
i.e. in the form ∀ (∨

li
)

(universally quantified negation of a disjunction of literals).
The original proposal of AICs [31] also allowed for existentially quantified variables to

occur in negative literals. This possibility was not discussed in later work, and we do not
consider it here.

If r is ground, then DB satisfies r , denoted DB |= r , if DB �|= pi for some 1 ≤ i ≤ m or
DB |= pi with m < i ≤ �. If r contains variables, then DB |= r if DB satisfies all ground
instances of r . Otherwise, r is applicable in DB [31]. If η is a set of AICs, then DB |= η if
DB |= r for every r ∈ η.

A set of ground update actions U is consistent if it does not contain both +a and −a

for any ground atom a. Given a consistent U , we write U(DB) for the result of applying all
actions in U to DB:

U(DB) = (DB ∪ {a | +a ∈ U}) \ {a | −a ∈ U} .

Definition 1 Let DB be a database over a signature � and η be a set of active integrity
constraints over �. A consistent set of ground update actions U over � is a weak repair for
〈DB, η〉 if:

– every action in U changes DB, i.e. if +a ∈ U , then a �∈ DB, and if −a ∈ U , then
a ∈ DB;

– U(DB) |= η.

Furthermore, U is a repair if V(DB) �|= η for every V � U .

In order to take into account the preferences expressed by the heads of AICs, several dif-
ferent types of repairs have been considered. In this work we focus on grounded repairs [5,
16]: they prevent circularities in support for repair actions (unlike founded repairs [13]),
and their definition is not strictly tied to the syntax of databases (unlike justified
repairs [13]).
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Definition 2 Let DB be a database over a signature � and η be a set of active integrity
constraints over �. A repair U for 〈DB, η〉 is grounded if, for every V � U , there exists a
ground instance r of a rule in η such that:

– V(DB) �|= r;
– head(r) ∩ (U \ V) �= ∅.

Although the original semantics for AICs was declarative, later work showed that the
different types of repairs for an inconsistent database with respect to a set of AICs could be
computed by building a tree where each node has a descendant for each repair action that
solves an inconsistency [17, 18]. In particular, grounded repairs can be computed as follows:
starting with the original database, iteratively choose an AIC whose body is satisfied and
apply one of the actions in its head; continue with this updated database until all AICs are
satisfied. This procedure is guaranteed to produce all grounded repairs; however, it also
produces some repairs that are not grounded; therefore, every time a repair is found, it is
still necessary to check that the second condition in Definition 2 holds. This can not be
overcome, since this algorithm runs in polynomial time and deciding whether a grounded
repair exists is a �

p

2 -complete problem.1

3.2 Multi-context systems

We now briefly introduce multi-context systems (MCSs). Intuitively, these are a collection
of logic knowledge bases – the contexts – connected by Datalog-style bridge rules.

We work with managed multi-context systems [9], which are a specialization of rela-
tional multi-context systems [30]. We present our definitions in several steps, starting
with relational logic, moving to relational multi-context systems and their semantics, and
finally introducing managed multi-context systems. In this way, the complex framework
we actually work in is easier to understand, and we can illustrate the different notions by
intermediate examples.

Brewka and Eiter motivate their abstract definition of relational logic as follows [7]. The
syntax of a logic L is defined by a set KBL of its well-formed knowledge bases, which
we assume to be sets. The language of L is the set of elements occurring in any of its
knowledge bases, i.e., the set of its well-formed formulas. We assume that a subset of this
language is inductively generated from a signature �L. The semantics of L is given by the
set of its possible belief sets BSL, which are syntactic representations of an agent’s possible
beliefs. (This will often also be sets of formulas.) Again, the signature �L generates a subset
of all possible beliefs. Finally, we use a function ACCL to characterize the sets of beliefs
consistent with a particular knowledge base kb. For classical, monotonic logics, ACCL(kb)
typically contains only the set of consequences of kb (see Example 1 below); however, in
non-monotonic logics there may be multiple acceptable belief sets for a given knowledge
base.

Definition 3 A relational logic L is a tuple 〈KBL,BSL,ACCL,�L〉, where:

– KBL is a set of sets; the elements of KBL are called well-formed knowledge bases of L,
and the elements of each kb ∈ KBL are called well-formed formulas;

1See page 15 for a definition of the polynomial hierarchy, including the complexity class �
p

2 .
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– BSL is a set of sets; the elements of BSL are called possible belief sets;
– ACCL : KBL → 2BSL is a function assigning to each knowledge base a set of belief

sets, called its acceptable sets of beliefs;
– �L is a signature consisting of sets P KB

L and P BS
L of predicate names (with associated

arity) and a universe UL of object constants, such that UL ∩ (P KB
L ∪ P BS

L ) = ∅.

As informally described above, the purpose of the signature �L is to identify a first-order
sublanguage of L. Given c1, . . . , ck ∈ UL, and p with arity k, we require that:

– if p ∈ P KB
L , then p(c1, . . . , ck) must be an element of some knowledge base (i.e., it is

a well-formed formula);
– if p ∈ P BS

L , then p(c1, . . . , ck) must be an element of some belief set (i.e., it is a
well-formed possible belief).

The elements in the sublanguage generated by �L are called relational ground elements,
while the remaining elements of knowledge bases or belief sets are called ordinary. The
signature �L is a characteristic of relational logics, by contrast with the notion of logic intro-
duced in the original works on heterogeneous non-monotonic multi-context systems [7].
Having a first-order sublanguage of L allows us to have bridge rules (defined below) that
use variables as first-class citizens in relational multi-context systems, unlike previous mod-
els, where rules with variables were seen only as short-hand for the set of all their ground
instances.

Example 1 We can see first-order logic over a first-order signature �FOL as a logic FOL =
〈KBFOL,BSFOL,ACCFOL, �FOL〉, where KBFOL is the set of sets of well-formed formulas
over �FOL, BSFOL is the set of first-order interpretations over �FOL, and ACCFOL maps each
set of formulas to the set of its models. This logic only contains relational elements.

Definition 4 Let I be a finite set of indices, {Li}i∈I be a set of relational logics, and V

be a set of (first-order) variables distinct from predicate and constant names in any Li . A
relational element of Li over V has the form p(t1, . . . , tk), where p ∈ P KB

Li
∪ P BS

Li
has arity

k and each tj is a term from V ∪ULi
, for 1 ≤ j ≤ k. A relational k-bridge rule over {Li}i∈I

and V is a rule of the form

(k : s) ← (c1 : p1), . . . , (cq : pq), not (cq+1 : pq+1), . . . , not (cm : pm) (2)

such that k, ci ∈ I, s is an ordinary or a relational knowledge base element of Lk and each
pi is either an ordinary or a relational belief of Lci

, for 1 ≤ i ≤ m.

The notation (c : p) indicates that p is evaluated in context c. In other words, bridge
rules allow one particular context (k) to be changed based on queries that are posed to other
contexts. These rules intuitively generalize logic programming rules, and as usual in that
context we impose a safety condition: all variables from V occurring in pq+1, . . . , pm must
also occur at least once in p1, . . . , pq .

Definition 5 A relational multi-context system is a collection M = {Ci}i∈I of contexts
Ci = 〈Li, kbi , bri , Di〉, where:

– Li is a relational logic;
– kbi is a knowledge base;
– bri is a set of relational i-bridge rules;
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– Di is a set of import domains Di,j , with j ∈ I, i.e., Di = {Di,j | j ∈ I}, such that
Di,j ⊆ ULj

.

Import domains define which constants are exported from one context to another: since
the underlying logic languages can be different, these sets are essential to allow one context
to reason about individuals introduced in another. Import domains are used in the semantics
of relational MCSs (given below) to restrict the possible instantiations of bridge rules: the
inclusion Di,j ⊆ ULj

requires that bridge rules yielding conclusions in context Cj can only
be instantiated with constants from the universe ULj

. One might wonder why we do not
also require the inclusion Di,j ⊆ ULi

: this is actually undesirable, since we can use bridge
rules to propagate information about an individual that is represented by different names
in different contexts. Following [9], we assume that Di,j is the finite domain consisting of
the object constants appearing in kbj or in the head of a relational bridge rule in brj , unless
otherwise stated.

For simplicity of notation, when working with multi-context systems we write only
the index i instead of Li in the components of the logic Li , i.e., we assume Li =
〈KBi ,BSi ,ACCi , �i〉. Using this convention the condition in the last item of Definition 5
above becomes Di,j ⊆ Uj .

Example 2 Let C1 and C2 be contexts over the first-order logic FOL with R and Rt binary
predicates in �FOL, and let kb1 = kb2 = ∅. We can use the following bridge rules in br2 to
define Rt in C2 as the transitive closure of R in C1.

(2 : Rt(x, y)) ← (1 : R(x, y)) (2 : Rt(x, y)) ← (1 : R(x, z)), (2 : Rt(z, y))

We use the MCS M = 〈C1, C2〉 to exemplify the concepts we introduce below.

The semantics of relational MCSs is defined in terms of ground instances of bridge rules:
the instances obtained from each rule r ∈ bri by uniform substitution of each variable X in
r by a constant in

⋂
Di,j , with j ranging over the indices of the contexts to which queries

containing X are made in r .

Definition 6 A belief state for M is a collection S = {Si}i∈I where Si ∈ BSi for each i ∈ I

– i.e., a tuple of belief sets, one for each context. The ground bridge rule (2) is applicable in
a belief state S if pi ∈ Sci

for 1 ≤ i ≤ q and pi �∈ Sci
for q < i ≤ m. The set of the heads of

all applicable ground instances of bridge rules of context Ci w.r.t. S is denoted by appi (S).
An equilibrium is a belief state S such that Si ∈ ACCi (kbi ∪ appi (S)) for each i ∈ I.

Intuitively, an equilibrium is a belief state S that is stable under application of all the
bridge rules, i.e., if we consider all ground instances of all bridge rules whose bodies are
satisfied by S and we add their heads to the original knowledge base, then S is an acceptable
set of beliefs. An MCS is (logically) consistent if it admits at least one equilibrium.

Particular types of equilibria (minimal, grounded, well-founded) [7] can be defined for
relational MCSs, but they are not used in this work and we do not discuss them here.

Example 3 In the setting of the previous example, all equilibria of M must include the
transitive closure of R in S1 in the interpretation of Rt in S2. For example, if we take S =
〈S1, S2〉 with S1 = {R(a, b),R(b, c)} and S2 = {Rt(a, b),Rt(b, c),Rt(a, c)}, then S is an
equilibrium. However, S′ = 〈S1, S

′
2〉 with S′

2 = {Rt(a, b),Rt(b, c)} is not an equilibrium, as
it does not satisfy the second bridge rule.
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Checking whether an MCS has an equilibrium is known as the consistency problem in the
literature. We refer to this property as logical consistency (to distinguish from consistency
with respect to integrity constraints, defined in the next section) throughout this paper. This
problem has been studied extensively [8, 24, 26, 53]; its decidability depends on decidability
of reasoning in the underlying contexts. The complexity of checking logical consistency of
an MCS M depends on the context complexity of M – the highest complexity of deciding
consistency in one of the contexts in M (cf. [26] for a formal definition and known results).

Managed multi-context systems further generalize relational MCSs by abstracting over
the possible actions on the heads of bridge rules.

Definition 7 A managed multi-context system is a collection of managed contexts {Ci}i∈I,
with each Ci = 〈Li, kbi , bri , Di,OPi ,mngi〉 as follows.

– Li = 〈KBi ,BSi ,ACCi , �i〉 is a relational logic, kbi ∈ KBi is a knowledge base, and Di

is a set of import domains, as in relational MCSs.
– OPi is a set, whose elements are called operation names.
– mngi : ℘(OPi × ⋃

KBi ) × KBi → KBi is a management function.
– bri is a set of managed bridge rules: syntactic entities with the form described by (2),

but where s is of the form o(p) with o ∈ OPi and p ∈ ⋃
KBi .

The intuition is as follows: heads of bridge rules can now contain arbitrary actions (iden-
tified by the labels in OPi), and the management function specifies the semantics of these
labels.2 The use of

⋃
KBi (the set of all well-formed formulas over the logic Li) in mngi

and bri reflects the fact that any formula can be given as argument to the management func-
tion, regardless of the actual state of the knowledge base. Equilibria for managed MCSs are
defined exactly as in Definition 6, but with the obvious adaptations to range over managed
bridge rules.

Example 4 Every relational MCS can be seen as a managed MCS where OPi = {add} for
every context i, with the semantics mngi ({〈add, s〉}, kb) = kb ∪ {s}.

We typically write operation names applied to knowledge base elements, rather than as
pairs – e.g., in the previous example, we write add(s) rather than 〈add, s〉.

4 Active integrity constraints

In this section we introduce our main notion: active integrity constraints over managed
multi-context systems. We consider the problem of satisfying a set of AICs, and show decid-
ability and complexity results for this problem. We also discuss with repair actions should
be allowed on the heads of AICs, and show criteria for automatically establishing valid-
ity of AICs. After defining grounded repairs for a multi-context system in an inconsistent
state with respect to a set of AICs and discussing how to compute them, we show that our
notions and results generalize previous work on AICs over databases by viewing databases
as MCSs.

2Our definition is slightly simplified from that in [9], where the management function can return several
possible effects for each action.
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4.1 Key definitions

The definition of managed multi-context system include a set of operation names OPc for
each context c. These operations are used to change the knowledge base in the process of
computing equilibria. However, when we consider the process of attempting to repair incon-
sistencies, not all of these operations make sense: we should only allow those operations that
also model updates or revisions of the context’s knowledge base. Consider as an example
the case of deductive databases. There are two types of tables in these databases: exten-
sional tables and intensional tables (views). The latter can only be manipulated by means
of deductive rules, while the former can be changed directly. Inconsistencies in deductive
databases should thus only be repaired by changing the extensional tables.

In order to model this behavior, we assume a distinguished subset OP∗
c ⊆ OPc of update

operation names of each set of operation names in each context c. As we will see, these are
the only operations that we allow when attempting to repair inconsistencies. In examples,
we assume OP∗

c = OPc unless otherwise stated explicitly; in Sections 5.2 and 6 we present
examples where OP∗

c � OPc.

Definition 8 Let M = {Ci}i∈I be a managed multi-context system and V be a set of (first-
order) variables distinct from predicate and constant names in any Li . An active integrity
constraint over M3 is a rule r of the form

(c1 :p1), . . . , (cm :pm), not (cm+1 :pm+1), . . . , not (c� : p�) =⇒ (c′
1 : α1) | · · · | (c′

k : αk)

(3)
where, for 1 ≤ i ≤ � and 1 ≤ j ≤ k:

– ci, c
′
j are context identifiers (elements of I);

– each pi is an ordinary or a relational belief in Cci
;

– each αj , which we call an update action, is a pair consisting of an operation name from
OP∗

cj
and a set of ordinary or relational knowledge base elements from Lcj

;4

– all variables from V in pm+1, . . . , p� occur in p1, . . . , pm (safety condition).

This definition follows the syntax of AICs for databases (1), and we define body and
head of r similarly. The body of an AIC can also be read as an integrity constraint in denial
clausal form.

We again impose the same safety condition as previously. It can be slightly relaxed to
capture general tuple-generating dependencies, by allowing pm+1, . . . , p� to introduce new
variables with the restriction that they can be used only once in the whole rule. Although this
generalization poses no significant changes to the theory, it makes the presentation heavier,
so we do not consider it hereafter.

Syntactically, active integrity constraints are similar to disjunctive bridge rules. However,
we give them a different semantics: bridge rules are directly used in defining equilibria,
and thus every equilibrium satisfies every bridge rule; integrity constraints are meant to
be checked against equilibria, so equilibria may satisfy them or not (as we formalize in
Definition 10). This separation between the internal logic of reasoning systems and formulas
that express its consistency can be found in previous work in several settings [4, 14, 29, 40,

3Technically, over M and V , but we leave V implicit hereafter.
4Thus, heads of grounded bridge rules are elements of OPcj

× ⋃
KBcj

.
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42], although (interestingly) not in the setting of MCSs, where previous work [8, 9, 26, 45]
routinely presents examples of integrity constraints integrated into the knowledge bases.

However, by keeping integrity constraints separate from the data, we do not restrict the
models of MCSs, in particular avoiding issues of logical inconsistency. This allows to treat
violation of integrity constraints as indicative of an error in the model or in the data, pre-
venting it from deriving additional inferences; furthermore, when we take into account the
heads of active integrity constraints, we can find ways to repair the inconsistency that are
clearly distinguished from inferences inside the system.

These considerations are similar to those made in Section 2.7 of [40] and in [29], in the
(more restricted) context of integrity constraints over description logic knowledge bases.
Likewise, several authors defend an approach for integrity constraints in databases where
inconsistencies should be brought to the users’ attention, but not affect the semantics of
the database [1, 27]. In particular, it may be meaningful to work with reasoning systems
not satisfying integrity constraints (see [47] for databases and [45] for description logic
knowledge bases). Our approach is also in line with [9], where it is argued that in MCSs it
is important to “distinguish data from additional operations on it”.

Example 5 Continuing the example from the previous section, we can write an active
integrity constraint over M stating that the relation R (in context C1) must be transitive, and
if this is not the case, then the missing fact about it must be added.

(2 : Rt(x, y)), not (1 : R(x, y)) =⇒ (1 : add(R(x, y))) (4)

Note that we use the embedding of relational MCSs into managed MCSs given in Example 4.

In the following sections, we work with ground instances of AICs. As with bridge rules,
we need to consider only instantiations that map each variable X occurring in an AIC r

to a constant in
⋂

Di,j , with j ranging over the indices of the contexts to which queries
containing X are made in body(r) and i ranging over the indices of the contexts appearing
in head(r) whose actions contain X. We implicitly assume all instantiations to satisfy this
property hereafter.

4.2 Satisfaction

Determining whether active integrity constraints are satisfied is done at the level of equi-
libria. Since this is a property of the body of the AICs, which, as mentioned above, are
intuitively integrity constraints in denial clausal form, we omit the qualifier “active” in this
subsection.

Definition 9 Let M = {Ci}i∈I be an MCS and S = {Si}i∈I be a belief state for M .
Then S satisfies the integrity constraint (3) if, for every instantiation θ of the variables in
p1, . . . , pm, either pkθ �∈ Sck

for some 1 ≤ k ≤ m or pkθ ∈ Sck
for some m < k ≤ �.

In other words: equilibria must satisfy all bridge rules (if their body holds, then so must
their heads), but they may or may not satisfy all integrity constraints. In this sense, integrity
constraints express preferences among equilibria.

Definition 10 Let M be an MCS and η be a set of integrity constraints.

1. M strongly satisfies η, M |=s η, if:
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(a) M is logically consistent;
(b) every equilibrium of M satisfies all integrity constraints in η.

2. M weakly satisfies η, M |=w η, if there is an equilibrium of M that satisfies all integrity
constraints in η.

Example 6 The equilibrium S from Example 3 does not satisfy the integrity constraint (4),
thus M does not strongly satisfy this formula. However, M weakly satisfies this constraint,
as seen by considering the equilibrium S ′′ = 〈S′

1, S
′
2〉 with S′

2 as above and where S′
1 =

{R(a, b),R(b, c),R(a, c)}.

We say that M is (strongly/weakly) consistent with respect to a set of integrity con-
straints η if M (strongly/weakly) satisfies η, and inconsistent otherwise.5 These two notions
express different interpretations of integrity constraints. Strong satisfaction views them as
necessary requirements, imposing that all models of the MCS must satisfy them. Examples
of these are the usual integrity constraints over databases, which express semantic connec-
tions between relations that must always hold. Weak satisfaction views integrity constraints
as expressing preferences: the MCS may have several equilibria, and those that satisfy the
integrity constraints are considered to be “better”.

The distinction is also related to the use of brave (credulous) or cautious (skeptical)
reasoning. If M strongly satisfies a set of integrity constraints η, then any inferences drawn
from M using brave reasoning are guaranteed to hold in some equilibrium that also satisfies
η. If, however, M only weakly satisfies η, then this no longer holds, and we can only use
cautious reasoning if we want to be certain that any inferences are still compatible with η.

Since strong and weak satisfaction both require M to be logically consistent, M |=s η

implies M |=w η. In particular, the problems of deciding whether M |=s η and M |=w η

are both at least as hard as deciding whether M has an equilibrium – and thus undecidable
in the general case. When logical consistency of M is decidable and its set of equilibria
is enumerable, weak satisfaction is semi-decidable (if there is an equilibrium that satisfies
η, we eventually encounter it), while strong satisfaction is co-semi-decidable (if there is an
equilibrium that does not satisfy η, we eventually encounter it). Furthermore, we have the
following results.

Theorem 1 Weak satisfaction of integrity constraints is reducible to logical consistency in
linear time (in the size of the MCS).

Proof To decide whether M |=w η, construct M ′ by extending M with a context C0 where
KB0 = ℘({∗}), kb0 = ∅, ACC0(∅) = {∅}, ACC0({∗}) = ∅, and the bridge rules are obtained
by replacing the head of every rule in η with (0 : ∗). Then M ′ has an equilibrium iff
M |=w η: any equilibrium of M not satisfying η corresponds to a belief state of M ′ where
app0(S) = {∗}, which is never an equilibrium of M ′; but equilibria of M satisfying η give
rise to equilibria of M ′ taking S0 = ∅.

Theorem 2 Strong satisfaction of integrity constraints is reducible to logical inconsistency
in linear time (in the size of the MCS).

5We deal with two different notions of (in)consistency in this work: the one just defined, and the property of
having an equilibrium, which is the one usually considered in the literature. To distinguish them, we reserve
the term logical (in)consistency for the latter.
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Proof Construct M ′ as before, but now defining ACC0(∅) = ∅, ACC0({∗}) = {{∗}}. If M

is inconsistent, then M �|=s η. If M is consistent, then any equilibrium of M satisfying η

corresponds to a belief state of M ′ where app0(S) = ∅, which can never be an equilibrium
of M ′; in turn, equilibria of M not satisfying η give rise to equilibria of M ′ taking S0 = {∗}.
So if M is consistent, then M |=s η iff M ′ is inconsistent.

The reductions given in the proofs of these two theorems are constructible in time lin-
ear in the size of the set η, and independent of M . Combining them with the well-known
complexity results for consistency checking (Table 1 in [26]), we directly obtain complexity
results for these decision problems. We use the standard denotations of complexity classes
in the polynomial hierarchy: �

p

0 = �
p

0 = P contains the decision problems solvable in
polynomial time; �

p

n+1 contains the decision problems solvable in polynomial time given
an oracle for decision problems in �

p
n ; and �

p

n+1 contains the decision problems solv-
able in non-deterministic polynomial time given an oracle for decision problems in �

p
n . In

particular, NP = �
p

1 .
These complexity results rely on the notion of context complexity. In the following def-

inition, the set Outi contains all beliefs in Ci that occur in the body of some bridge rule
in M .

Definition 11 Let M = {Ci}i∈I be a relational multi-context system. The context complex-
ity of context Ci , with i ∈ I, is the computational complexity of deciding, given H ⊆ ⋃

KBi

and T ⊆ Outi = {p | (i, p) ∈ body(r), r ∈ brj , j ∈ I}, whether there exists a belief state
Si ∈ ACCi (kbi ∪ H) such that Si ∩ Outi = T .

The context complexity of M is C if: every context in M has context complexity at most
C, and there is at least one context in M with context complexity C.

For instance, if the context complexity of M is �
p

2 , then there is at least one context Ci in
M with context complexity �

p

2 . This is the complexity of deciding, given a set H of well-
formed formulas in the logic of Ci and a subset T of well-formed formulas from Ci that
occur in the bodies of ground instances of bridge rules in M , whether there is a belief state
Si for Ci such that: (i) Si is an acceptable set of beliefs with respect to the information in
the knowledge base kbi and in H , and (ii) the set of elements of Si that occur in the bodies
of rules in M is precisely T . The complexity of logical consistency depends on the context
complexity of M , since testing whether a belief state is an equilibrium requires solving
decision problems similar to the one in the definition of context complexity.

Corollary 1 The complexity of deciding whether M |=w η or M |=s η, depending on the
context complexity of M , CC(M), is given in Table 1.

These results also imply that integrity constraints can be modeled in MCSs simply by
adding them as bridge rules whose head is a special atom interpreted as inconsistency (the
approach taken in e.g. [24]), but as argued at the end of the previous section we gain from
keeping them separate.

Table 1 Complexity of integrity
checking of an MCS in terms of
its context complexity

CC(M) P NP �
p
i PSPACE EXPTIME

M |=w η NP NP �
p
i PSPACE EXPTIME

M |=s η �
p

2 �
p

2 �
p

i+1 PSPACE EXPTIME
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4.3 Validity

The actions in the head of active integrity constraints are meant to resolve the inconsistency
detected by its body. In the database world, this property is enforced by means of a simple
syntactic check. However, the reasoning capabilities of MCSs imply that such a simple
restriction is not possible, and we replace it by semantic criteria: we require that each action
must be capable of solving the inconsistency in some “reasonable” state of the system. It
is also not reasonable to require (as in databases [10]) that every action in head(r) be able
to solve every inconsistency detected by body(r): since inconsistencies may be triggered
by derived information, they may have different origins, and the different actions may be
solutions for those different causes.

Example 7 We illustrate this point by means of a concrete toy example: a deductive database
with two unary base relations p and q, a view consisting of a relation r such that r(x) ↔
p(x) ∨ q(x), and the integrity constraint ¬r(a).

We model this database as an MCS M = 〈CE,CI 〉 where CE is an extensional database
including predicates p and q (but not r), CI is the view context including predicate r (but not
p or q), and they are connected by the bridge rules

(I : add(r(X))) ← (E : p(X)) (I : add(r(X))) ← (E : q(X)) .

Furthermore, mngE and mngI allow addition and removal of any tuples to CE and CI ,
respectively, using operations add and del. We also assume OP∗

E = OPE and OP∗
I = ∅.6

Due to the structure of M , r(a) can only be obtained as a deduction from p(a) or q(a)
(or both); furthermore, it is reasonable to assume that the definition of the views does not
change (in contrast to the actual information in the extensional database), so it makes sense
to write an AIC

(I : r(a)) =⇒ (E : del(p(a))) | (E : del(q(a))) .

The actions on the head of this AIC solve the problem in all future states of M . However,
restoring consistency may require performing both actions (if the database contains both
p(a) and q(a)).

This example illustrates an important point that is implicit also in the database case:
active integrity constraints (both their body and the repair actions they suggest) are written
under the assumption that there is a “structural” part of the MCS that does not change. In the
database case, this is the database’s underlying signature – if tables are added or removed,
for example, then clearly the integrity constraints associated to the database need to be
revised (or at least examined to see whether they still make sense). In a managed MCS, we
use the management function to capture the system’s allowed variability.

Definition 12 The set of variants to an MCS M , denoted vrt(M), is

vrt(M) = {U(M) | U is a finite set of update actions over M} .

The restrictions on the actions in the head of AICs range over vrt(M), which contains all
possible future evolutions of M .

6In Section 5.2 we describe the systematic construction of an MCS from a deductive database, of which this
is a particular instance.
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Definition 13 An AIC r of the form (3) is (weakly/strongly) valid with respect to an MCS
M if:

(i) for every logically consistent M ′ ∈ vrt(M) such that M ′ �|= r , there is U ⊆ head(r)
with U(M ′) |= r;

(ii) for every α ∈ head(r), there is M ′ ∈ vrt(M) such that M ′ �|= r and α(M ′) |= r .

These conditions require that the set of suggested actions be complete (it can solve all
inconsistencies) and that it not contain useless actions.

Example 8 The AIC in Example 7 is valid: the only possible changes to M are in kbE ,
which only contains information about p and q, thus, in any element of vrt(M) the only way
to derive r(a) is still from either p(a) or q(a). The second condition follows by considering
the two variants of M obtained by taking kbE = {p(a)} or kbE = {q(a)}.

Theorem 3 Deciding whether an AIC is valid is in general undecidable.

Proof Let L be any logic with an undecidable entailment problem, C be a context over L

with add ∈ OPC such that mngC(add(ϕ), 
) = 
 ∪ {ϕ}, and M = {C}. Assume also that
vrt(M) includes all knowledge bases over L. Then (C : ¬B) =⇒ (C : add(A)) is valid iff
A |=L B.

In practice, though, proving validity of AICs should not pose a problem: AICs are writ-
ten by humans with a very precise semantic motivation in mind, and this means that the
conditions in Definition 13 should be simple for a human to prove. In general, the following
simple criteria are useful for establishing validity of AICs over an MCS M .

– If the body of an AIC includes (c : p) such that p does not occur in the head of any
bridge rule in M , then including an action “remove p from context c” in the head of the
AIC guarantees condition (i), and that action satisfies condition (ii).

– If the body of an AIC includes (c : p) such that p is defined exclusively by means of
bridge rules, then including in its head actions that negate the bodies of those bridge
rules guarantees condition (i), and those actions all satisfy condition (ii).

These criteria are used repeatedly in the examples in Sections 5 and 6.

4.4 Repairs and their computation

We now consider the problem of repairing an MCS that is inconsistent with respect to a set of
active integrity constraints η. Again, the situation is more complex than in the database case.
In the database case, we defined repairs to be sets of update actions that could be applied
simultaneously, and required consistency in order to make this application well defined.
However, in an MCS, we are again faced with the problem that this requirement cannot
be expressed syntactically, since two apparently unrelated update actions can interfere with
each other depending on the management function.

The consistency requirement we impose on sets of update actions for MCSs is therefore
more restrictive: we require that the order in which actions are executed be irrelevant for the
end result. This is a strong condition – the management function for each context is defined
over sets of actions, so it must in particular be able to process sets including contradictory
actions –, but the algorithms we later introduce for computing repairs are iterative, building
repairs one action at a time, and therefore need this invariance property.
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Definition 14 Let M = {Ci}i∈I be an MCS, U be a finite set of update actions,
and Ui be the set of actions in U affecting Ci . Ui is consistent with respect to
kbi if, for every permutation α1, . . . , αk of the elements of Ui , mngi (Ui , kbi ) =
mngi (α1,mngi (. . . ,mngi (αk, kbi ) . . .)). U is consistent with respect to M if each Ui is con-
sistent with respect to kbi , and in this case we write U(M) for the result of applying each
Ui to each kbi .

Definition 15 Let M = {Ci}i∈I be an MCS, η be a set of AICs over M and U be a finite
set of update actions. U is a weak repair for 〈M, η〉 if U is consistent with respect to M and
U(M) |= η. Furthermore, U is a grounded repair if: for every V � U , there is an AIC r ∈ η

such that V(M) �|= r and head(r) ∩ (U \ V) �= ∅.

In [17], we showed how to use active integrity constraints to compute repairs for incon-
sistent databases, by using the actions in the head of unsatisfied AICs to build a repair tree
whose leaves were the repairs. We showed how the construction of the tree could be adapted
to the different types of repairs considered originally in [13]; in particular, for the case of
grounded repairs (which is the one we are interested in this work), it is enough to expand
each node with the actions in the heads of the AICs that are not satisfied in that node. This
constructibility “from the ground up” is a general property of grounded fixpoints [6]), which
embodies the common-sense law of inertia [44]. The property of being a grounded repair
also implies minimality under inclusion [16], which guarantees the principle of minimality
of change [54].

The adaptation of the notion of repair tree to the framework of AICs over MCSs requires
some changes to the previous algorithms. We show that it still allows us to construct all
grounded repairs for a given (inconsistent) MCS automatically, as long as entailment in all
contexts is decidable.

In the context of computing repairs, we say that an AIC r is applicable to an MCS M if
M �|= r .

Definition 16 Let M be an MCS and η be a set of active integrity constraints over M . The
repair tree for 〈M, η〉, T〈M,η〉, is defined as follows.

• Each node is a set of update actions.
• A node n is consistent if:

– n(M) is logically consistent;
– if n′ is the parent of n, then n is a consistent set of update actions with respect

to n′(M).

• Each edge is labeled with a closed instance of a rule.
• The root of the tree is the empty set ∅.
• For each consistent node n and rule r , if n(M) �|= r then n′ = n ∪ U is a child of n if:

– U ⊆ head(r);
– n′(M) |= r;
– if U ′ ⊆ U then (n ∪ U ′)(M) �|= r .

In the database case [17], repair trees are trivially finite, since the syntactic restric-
tions on AICs over databases guarantee that each rule can only be applied at most once
in every branch. In the general MCS case, this is not true, as the following example
shows.
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Example 9 Consider an ontology with four concepts B1, B2, B3 and D, where the T-Box
contains axioms B1 � D and B2 � B3 � D, and the A-Box is {B1(a), B3(a)}.

We represent this ontology as an MCS with two contexts T and A, corresponding to the
T-Box and A-Box, respectively. Both contexts are based on the description logic underlying
the ontology, with ACC being the usual first-order consequence operator; the information
flow from the A-Box and T-Box is obtained by the bridge rules

(T : add(Bi(X))) ← (A : Bi(X))

and the management function on A allows addition and deletion of instances, while the
management function on T only allows addition. Furthermore, we take OP∗

A = OPA and
OP∗

T = ∅. (See Section 6 for the general construction of an MCS from an ontology, of
which this is an instance, and the discussion of the design options.)

Over this ontology we write the following active integrity constraints.

(T : D(a)) =⇒ (A : del(B1(a))) | (A : del(B3(a))) (r1)

not (T : B1(a)), not (T : B2(a)) =⇒ (A : add(B2(a))) (r2)

Constructing the repair tree as described above, we obtain

1

del 1

2

del 1 add 2

1

del 1 add 2 del 3

and the leaf of this tree is a grounded repair for the system. Note however that the same
ground instance of rule r1 was applied twice.

Nevertheless, we can establish termination and completeness of this construction.

Lemma 1 Let M be a managed multi-context system and η be a finite set of active integrity
constraints over M . Then the tree T〈M,η〉 is finite.

Proof By definition, every node of T〈M,η〉 has a finite number of descendants, since there
are only finitely many ground instances of AICs with a finite number of actions in each
one’s head. By construction, in every branch the labels of the nodes form an increasing
sequence (with respect to set inclusion), and each node is again a subset of the (finite) set
of all actions in the heads of all rules. Therefore, T〈M,η〉 has finite depth and finite degree,
hence it is finite.

Lemma 2 Let M and η be as above. Every grounded repair for 〈M,η〉 is a leaf of
T〈M,η〉.

Proof Let U be a grounded repair for M and η. By definition of grounded repair, if U ′ ⊆ U
then there is a ground instance r of an AIC such that: there exists V ⊆ head(r) ∩ U
such that (U ′ ∪ V)(M) |= r . This directly yields a branch of the repair tree ending
at U .
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(This is essentially the same argument for showing that, in the database case, grounded
repairs are well-founded, see [16].)

The construction of T〈M,η〉 is similar to that of the well-founded repair tree in the database
case [17].7 In both cases, this tree may, in general, contain leaves that are not grounded
repairs [16]. Under the assumption that P �= NP, this cannot be avoided, since existence of
grounded repairs for databases is already a �

p

2 -complete problem [16].

Theorem 4 Let M be a managed multi-context system that is inconsistent with respect
to a set of active integrity constraints η. Given an oracle that decides whether an MCS
satisfies η, the problem of deciding whether there exists a grounded repair for 〈M, η〉 is �

p

2 -
complete.

Proof The proof of Lemma 1 shows that the depth of T〈M,η〉 is polynomial in the size of the
ground instances of η, which is also polynomial on η (since M is fixed). Given an oracle that
decides whether an MCS satisfies a set of AICs, we can find a grounded repair for M , when
one exists, as follows: find the right leaf of T〈M,η〉 (this can be done in non-deterministic
polynomial time, guessing which rule to apply at each node and using the oracle to decide
whether the descendant is a leaf), and validate that it is a grounded repair (again in co-NP
time: if the set of actions is not consistent, we guess a permutation that yields a differ-
ent result when applied to M and check this in polynomial time; if it is not a grounded
repair, then we guess the subset that violates the definition and use the oracle to confirm
this).

4.5 Relation with databases

The development of AICs for multi-context systems throughout this section was always
motivated by the existing theory for the database case. In this subsection, we show how to
model databases as managed multi-context systems, and show that our formalism faithfully
captures the previous work on AICs for databases.

Definition 17 Let DB be a database. The context generated by DB, Ctx(DB), is defined as
follows.

– The underlying logic is first-order logic over the database’s signature � (Example 1).
– Belief sets are sets of ground literals over �.
– The knowledge base is DB.
– For all kb, there is only one belief set compatible with kb: ACC(kb) = {kb�} = {kb ∪

{¬a | a �∈ kb}}.
– The set of bridge rules is empty.

We can see any database DB as a single-context MCS consisting of exactly the context
Ctx(DB); we also denote this MCS by Ctx(DB), as this poses no ambiguity. The only equi-
librium for Ctx(DB) is DB� itself, corresponding to the usual closed-world semantics of
relational databases. Previous work (cf. [9, 26]) implicitly treats databases in this way,
although Ctx is not formally defined.

7There is also a notion of repair tree for databases in [17], but it relies on the ability of inferring heads of
AICs automatically, which does not exist in the MCS setting.
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Let DB be a database and r be an active integrity constraint over DB (in the sense of
e.g. [13]).8 We write r as an active integrity constraint over Ctx(DB) as follows: if r is

p1, . . . , pm, not (pm+1), . . . , not (p�) =⇒ α1 | · · · | αk

then br(r) is

(1 : p1), . . . , (1 : pm), not (1 : pm+1), . . . , not (1 : p�) =⇒ (1 : α1) | · · · | (1 : αk) .

The following result follows straightforwardly from the definition of Ctx(DB).

Theorem 5 Let DB be a database and η be a set of AICs over DB. Then DB satisfies all
AICs in η iff Ctx(DB) |=s br(η) iff Ctx(DB) |=w br(η), where br is extended to sets in the
standard way.

Since every database (viewed as an MCS) has exactly one equilibrium, weak and strong
satisfaction of active integrity constraints coincide.

Lemma 3 Every AIC over a database DB yields a valid AIC over Ctx(DB).

Proof Recall that Ctx(DB) has exactly one equilibrium. If DB does not satisfy the body
of (1), then it can always be repaired by performing exactly one of the actions in its
head [12], establishing both conditions for validity.

Corollary 2 Let DB be a database and η a finite set of AICs over DB. A set of update
actions U is a grounded repair for 〈DB, η〉 iff U is a grounded repair for 〈Ctx(DB), br(η)〉.

Proof Straightforward by applying Theorem 5.

5 Specializations

In this section we show how our notion of AICs for MCSs can be specialized to two par-
ticular types of reasoning systems: distributed databases and deductive databases. When
applicable, we also compare to previous proposals for integrity constraints for those
systems.

5.1 Distributed databases

Distributed databases are databases that store their information at different sites in a net-
work, typically including information that is duplicated at different nodes [52] in order to
promote resilience of the whole system.

A distributed database consisting of individual databases DB1, . . . ,DBn can be mod-
eled as an MCS with n contexts Ctx(DB1), . . . ,Ctx(DBn). The internal consistency of the
database, in the sense that tables that occur in different DBis must have the same rows, can

8As discussed earlier, the original presentation in [31] allowed more general tuple-generating dependencies;
modeling these requires allowing singleton variables in the Bis, which as discussed earlier would not pose
significant changes to our theory. If we take first-order logic with equality as the underlying logic for Ctx(DB),
we can also write AICs whose body is an equality-generating constraint.
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be specified as integrity constraints over this MCS as follows. For each relation p, let γ (p)

be the number of columns of p and δ(p) be the set of indices of the databases containing p.
Then the set of all AICs of the form

(i : p(x1, . . . , xγ (p))), not (j : p(x1, . . . , xγ (p))) =⇒ α1, . . . , αk

where p is a relation and i, j ∈ δ(p) logically specify the integrity of the system (each
body corresponds to an inconsistency). Different strategies for fixing inconsistencies in
distributed databases can be implemented by adequately choosing the repair actions.

– To define a repair strategy based on “always add missing information” (meaningful, for
example, if we know updates to the database to consist only of additions), we have only
the action (j : add(p(x1, . . . , xγ (p)))) in the head of each AIC.

– Dually, a repair strategy based on “always remove extra information” would be
achieved by having only the action (i : del(p(x1, . . . , xγ (p)))) in the head of each AIC.

– Majority vote can be implemented by writing (i : del(p(x1, . . . , xγ (p)))) | (j :
add(p(x1, . . . , xγ (p)))) as the head of each AIC, and choosing repairs that are minimal
with respect to cardinality.

A more sophisticated repair strategy is described below.

Example 10 Another interesting possibility is choosing a repair strategy that always picks
the information on the most recently updated node. To implement this, we need to add a
context C0 to the MCS that tracks this information, with OP∗

C0
= ∅. This context has a

knowledge base containing a single table most recent(p, kp) indicating, for each relation
p, the index of the most recently updated context among those in δ(p), and bridge rules

(0 : add(p(x1, . . . , xγ (p)))) ← (0 : most recent(p, i)), (i : p(x1, . . . , xγ (p)))

for every context i. Note that this is implemented not as a higher-order bridge rule, but as a
set of all rules for the possible values of i and p.

The active integrity constraints now become

(i : p(x1, . . . , xγ (p))), not (j : p(x1, . . . , xγ (p))),

(0 : most recent(p, k)), (k : p(x1, . . . , xγ (p))) =⇒ (j : add(p(x1, . . . , xγ (p))))

(i : p(x1, . . . , xγ (p))), not (j : p(x1, . . . , xγ (p))),

(0 : most recent(p, k)), not (k : p(x1, . . . , xγ (p))) =⇒ (i : del(p(x1, . . . , xγ (p))))

for all relations p and i, j, k ∈ δ(p).

A similar approach could be used to implement majority vote, bypassing the quantifica-
tion over all repairs suggested earlier.

In this case, we can internalize the integrity constraints as bridge rules of the form

(j : add(p(x1, . . . , xγ (p)))) ← (i : p(x1, . . . , xγ (p))) .

but these significantly change the semantics of the database: instead of describing preferred
equilibria, they impose a flow of information between nodes.

Example 11 Consider a country with a central person register (CPR), mapping a unique
identifying number to the name and current address of each citizen using a relation person,
e.g. person(1111111118, old lady, gjern). Furthermore, each electoral district keeps a local
voter register using a relation voter, e.g. voter(1111111118), and a list of addresses local
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to the given electoral district using a relation address, e.g. address(gjern). Then the active
integrity constraints9

(Skbg : voter(Id)), not (CPR : person(Id)) =⇒ (Skbg : del(voter(Id)))
(Skbg : voter(Id)), (CPR : person(Id,Add)),

not (Skbg : address(Add)) =⇒ (Skbg : del(voter(Id)))
ensure that all voters registered in the Silkeborg electoral district are registered in the central
person register, and that they are registered with an address that is local to the Silkeborg
electoral district. If any of these conditions fails, then the only acceptable solution is to
remove that person from the voter register.

In addition, the following set of active integrity constraints (where Ci ranges over ED \
{Skbg}) models the fact that each person registered in the Silkeborg electoral district cannot
be registered in any other electoral districts from the set ED; if that is the case, then the
person must be removed from one of the registers.

(Skbg : voter(Id)), (Ci : voter(Id)) =⇒ (Skbg : del(voter(Id))) | (Ci : del(voter(Id)))
If there is a single voter v that appears in the register for both Silkeborg and one or more
elements of ED, the grounded repairs for the database are either {(Skbg : del(voter(v)))}
or {(Ci : del(voter(v))) | Ci ∈ ED, voter(v) ∈ kbi}. In general, the grounded repairs for
databases that are inconsistent with respect to this active integrity constraint are unions of
sets of the above forms, one for each voter.

This section’s treatment of distributed databases is equivalent to considering their disjoint
union as a database. Consequently, there is no need to use MCSs for distributed databases,
but this mapping shows that our theory abstracts the practice in this field. Furthermore,
results in previous work [15] indicate that the processing of active integrity constraints can
be efficiently parallelized in this disjoint scenario, given suitable assumptions.

5.2 Deductive databases

We now address the case of deductive databases. These consist of two different com-
ponents: the (extensional) fact database, containing only concrete instances of relations,
and the (intensional) rule database, containing Datalog-style rules defining new relations.
Every relation must be either intensional or extensional, unlike in e.g. full-fledged logic
programming.

One standard way to see the intensional component(s) of deductive databases is as views
of the original database. The instances of the new relations defined by rules are generated
automatically from the data in the database, and these relations can thus be seen as content-
free, having a purely presentational nature. For simplicity of presentation, we consider the
case where there is one single view.

Definition 18 Let �E and �I be two disjoint first-order signatures. A deductive database
over �E and �I is a pair 〈DB, R〉, where DB is a relational database over �E and R is a set
of rules of the form p ← q1, . . . , qn, where p is an atom of �I and q1, . . . , qn are atoms
over �E ∪ �I .

9We implicitly assume that the database is closed under projection, and overload the person relation for the
sake of simplicity. This assumption is meaningful from a practical point of view, and has been implemented
for databases e.g. in [18].
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More precisely, this definition corresponds to the definite deductive databases in [32];
we do not consider the case of indefinite databases in this work.

Definition 19 Let 〈DB, R〉 be a deductive database over �E and �I . The MCS induced by
〈DB, R〉 is M = 〈CE,CI 〉, where CE = Ctx(DB) as in Definition 17 and CI = Ctx(R) is a
similar context where:

– the knowledge base is ∅;
– for each rule p ← q1, . . . , qn in R there is a bridge rule (I : p) ← (i1 : q1), . . . , (in :

qn) in Ctx(R), where ik = E if qk is an atom over �E and ik = I otherwise;
– there are no update operation names, i.e., OP∗

I = ∅.

We already presented a deductive database in this manner (Example 7).
The bodies of active integrity constraints over MCSs generated in this way correspond

precisely to integrity constraints over deductive databases as defined in [4]. The choice of
update operation names captures the typical constraints of deductive databases – that consis-
tency can only be regained by changing extensional predicates – in line with the traditional
view-update problem. More modern works [11] restrict the syntax of integrity constraints,
allowing them to use only extensional relations; in the induced MCS, this translates to the
additional requirement that only relational elements from CE appear in the body of active
integrity constraints.

Example 12 Consider a deductive database for class diagrams, where information about direct
subclasses is stored in the extensional database using a relation isa, e.g. isa(list, collection)
and isa(array, list). Intensionally, we model the transitive closure of the subclass relation
using a view created by the two rules sub(A, B) ← isa(A,B) and sub(A,C) ← isa(A,B),

sub(B,C), thus allowing us to find out that in our example sub(array, collection).
The integrity constraint ¬sub(A,A) states the acyclicity of the subclass relation. To

write it as an AIC, we need to specify which repair actions we can take to resolve the
inconsistency. Since sub is a defined predicate, the only possible way to break this inference
is by removing facts concerning isa, namely by writing e.g.

(CI : sub(A,A)) =⇒ (CE : del(isa(A)))

with the intended meaning that the management function deletes all instances of isa(A,X)

for some X.10 Observe that this AIC is valid, since a cycle through A must necessar-
ily include an instance isa(A,X) for some X, and removing all such X is guaranteed to
eliminate all such cycles. In this case, all repairs are grounded.

This integrity constraint cannot be expressed in the language of the extensional database
– there is no way to define a fixpoint in this language, and the only (incomplete) solution
would be to add n integrity constraints disallowing cycles of length up to n. This example
thus illustrates our gain of expressive power compared to the approach in [11].

We can also consider databases with several, different views, each view generating a
different context. Active integrity constraints over the resulting MCS can then specify
relationships between relations in different views.

10This extended semantics of the behavior of the management function is again very reasonable in practice;
see the discussion in the previous subsection.
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The complexity of verifying whether an MCS induced by a deductive database satis-
fies its active integrity constraints is lower than the general case. In particular, consistency
checking is reducible to query answering (all active integrity constraints are satisfied iff
there are no answers to the queries expressed in their bodies). If we do not allow negation
in the definition of the intensional relations, then there is only one model of the database as
before, and consistency checking w.r.t. a fixed set of active integrity constraints is PTIME-
complete [46]. In the general case, weak and strong consistency correspond, respectively,
to brave and cautious reasoning for Datalog programs under answer set semantics, which
are known to be co-NP-complete and NP-complete, respectively. At the algorithmic level,
the advantage of working with active integrity constraints is that we avoid dealing with the
view update problem to fix inconsistencies, as we simply need to consider the actions in the
head of applicable AICs.

5.3 Other models

In [21] we also considered the model of peer-to-peer systems [14] and showed how they
could be interpreted as MCSs with integrity constraints (in denial clausal form). However,
since these generalize deductive databases, we cannot systematically translate them into the
richer formalism we present herein – that would require solving the view-update problem
systematically in order to determine which repair actions to include in the heads of AICs,
which is beyond the scope of this work.

6 The case of ontologies

This section is devoted to examples illustrating how our framework can be applied to the
particular case of integrity constraints over ontologies.

6.1 Ontologies as multi-context systems

Previous work [19, 21] shows how to view an ontology as a context of an MCS. This
encoding is significantly different from ones considered previously for different types of
databases: since description logics reject the closed-world assumption, thereby contradict-
ing the semantics of negation-by-failure, encoding ontologies as a context in an MCS
requires a different approach.

In the present work, we refine the previous construction by representing an ontology
as two contexts: one for the A-Box, one for the T-Box, connected by bridge rules that
port every instance from the former into the latter. (This is reminiscent of how deductive
databases are encoded in MCSs, see Section 5.2.) This finer encoding allows us, in partic-
ular, to reason about asserted instances (which are given in the A-Box) and those that are
derived using the axioms (see Example 15). Previous work [43] has already discussed the
importance of being able to write integrity constraints that distinguish asserted and derived
information.

We further assume that the A-Box only contains instances of atomic concepts or roles
(C(t) or R(t, t ′)). This option does not restrict the expressive power of the ontology, but it
helps structure AICs: to include instance axioms about e.g. C � D, one instead defines a
new concept E = C � D in the T-Box and includes instance axioms about E in the A-Box
(see also Example 19).



238 L. Cruz-Filipe et al.

Definition 20 A description logic L is represented as the relational logic LL =
〈KBL,BSL,ACCL, �L〉, where:

– KBL contains all well-formed knowledge bases of L;
– BSL contains all sets of queries in the language of L;
– ACCL(kb) is the singleton set containing the set of queries to which kb answers “Yes”.
– �L is the first-order signature underlying L.

An ontology O = 〈T , A〉 based on L induces the multi-context system M(O) =
〈Ctx(T ),Ctx(A)〉 where Ctx(T ) = 〈LL, T , brT ,�0,OPT ,mngT 〉 with

– brT contains all rules of the form (T : add(C))(X) ← (A : C)(X) where C is a
concept, and (T : add(R))(X, Y ) ← (A : R)(X, Y ) where R is a role;

– �0 is the set of constants in �L;
– OPT = {add}, mngT (add(p), kb) adds p to kb, and OP∗

T = ∅;

and Ctx(A) = 〈LL, A, ∅, �0,OPA,mngA〉 where OPA and mngA are the set of allowed
(update) operation names and their definition.

The management function only allows adding instances to the T-Box, and this is not an
update operation. The particular operations in the A-Box depend on the concrete ontology.
This is in line with our motivation that writing AICs requires knowledge of the system’s
deductive abilities (expressed by the T-Box), which should not change.

As in the database scenario, ontologies viewed as MCSs always have one equilibrium, as
long as they are logically consistent. Therefore, the notions of weak and strong satisfaction
of active integrity constraints again coincide, and we get the same notion of consistency with
respect to a set of integrity constraints as that defined in [40]; however, our syntax is more
restricted, as we do not allow general formulas as integrity constraints, but only queries.
Our active integrity constraints only apply to named individuals (explicitly mentioned in the
ontology’s A-Box), which is a desirable consequence that yet again can only be gained from
keeping integrity constraints separate from the knowledge base. This is standard practice in
ontologies, taken in the works cited throughout this section.

Our scenario is also expressive enough to model the distributed ontology scenario
of [29], which defines integrity constraints as logic programming-style rules with empty
head whose body can include atoms from different ontologies: we can simply consider the
MCS obtained from viewing each ontology as a separate context, and the active integrity
constraints (with appropriate actions added to their heads) as ranging over the joint system.

6.2 Evaluation of expressivity

We now evaluate the expressivity of our development by showing how to formalize sev-
eral types of ICs over ontologies. We follow the classification in Section 4.5 of [28], which
describes families of ICs determined by OWL engineers and ontologists as the most inter-
esting, as well as other types of ICs considered in the scientific literature. Several classes of
ICs are syntactically similar, so we do not include examples for all categories in [28], but
explain in the text how the missing ones can be treated. In addition, we discuss how to deal
with missing properties and unnamed individuals in our framework.

Most of our examples are adapted from [28], which frames them in a variant of the
Lehigh University Benchmark [38], an ontology designed with the goal of providing a real-
istic scenario for testing. We follow the description in Section 4.4 of [28]. This ontology
considers concepts student, gradStudent, class and email, and roles hasEmail, enrolled and
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webEnrolled. Our semantics is: class is a concept including all classes of a common course;
enrolled(c, s) holds if student s is enrolled in course s; and webEnrolled holds if the student
is furthermore to be contacted only electronically.11

The actual contents of the A-Box are immaterial for our presentation, and we restrict
ourselves to the fragment of the T-Box containing the following axioms.

gradStudent � student ∃enrolled.student � class
webEnrolled � enrolled ∃hasEmail.email � student

∃webEnrolledR.class � ∃hasEmail

6.2.1 Functional dependencies

Functional dependencies are one of the most frequently occurring families of ICs: they
are requirements that certain relations be functional on one argument. In our example, this
applies to hasEmail: two distinct students cannot have the same e-mail.

Since ontologies do not have the Unique Name Assumption, we cannot distinguish indi-
viduals by checking name equality (as in databases), but must query the ontology instead.
Furthermore, while in the database world such violations can only be repaired by remov-
ing one of the offending instances, in ontologies, we can also add the information that two
individuals are the same.

Example 13 Suppose that the management function includes operations add and del to add
or remove a particular instance from the A-Box, as well as assertEqual, establishing equality
of two individuals. Under these assumptions, we can express functionality of e-mail as the
following AIC.

(A : hasEmail(X,Z)), (A : hasEmail(Y, Z)), not (T : (X = Y ))

=⇒ (A : del(hasEmail(X,Z))) | (A : assert(X = Y )) (5)

Observe that, if T explicitly proves that X �= Y , then only the first action can be used, as
asserting equality between X and Y would lead to an inconsistency. However, if this is not
the case then the second action is also a repair possibility, and hence this AIC is valid. There
are several possibilities for the implementation of assert: it can add the equality X = Y

to the A-Box, but it can also syntactically replace every occurrence of one of them for the
other.

6.2.2 Key constraints, uniqueness constraints, functionality constraints

These types of dependencies from Section 4.5 of [28] are expressed by similar formulas.

6.2.3 Property domain constraints

This family of ICs specifies that the domain of a role should be a subset of a particular
concept. In case such a constraint is violated, the offending element has to be added as an
instance of that concept. The treatment of these ICs is thus very similar to the database
case.

11This semantics is slightly changed from that of [28], in order to make some aspects of our example more
realistic.
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Example 14 To model that only students can be enrolled in courses, we write the following
AIC.

(T : enrolled(X, Y ), not (T : student(Y )) =⇒ (A : add(student(Y ))) (6)

We could also add the action (A : del(enrolled(X, Y ))) to the head of this AIC; note that it
would only restore consistency in the case where this fact is explicitly stated in the A-Box
and not otherwise derivable.

6.2.4 Property range constraints

These constraints, which restrict the range of a role, can be similarly treated.

6.2.5 Specific type constraints

In many applications, it is interesting to minimize redundancy in the A-Box. In particular,
in the presence of inclusion axioms, it is often desirable only to include instances pertaining
to the most specific type class of each individual. In order to address this issue, we take
advantage of the separation between the A-Box and the T-Box in a multi-context system.

Example 15 Since gradStudent � student, we guarantee that the A-Box only contains
instances of the most specific class a student belongs to by writing:

(A : gradStudent(X)), (A : student(X)) =⇒ (A : del(student(X))) (7)

Thus, if the A-Box contains e.g. student(john) and gradStudent(john), then the axiom
student(john) must be removed. Observe that the system can still derive student(john), but
only in context CT (using the information in the T-Box). The separation of the A-Box and
T-Box in different contexts is essential to express this integrity constraint in our formalism.
Constraints that distinguish between assertions explicitly stated in the A-Box and derived
ones have been considered e.g. in [43].

6.2.6 Min-cardinality constraints

We now consider a more interesting type of ICs: min-cardinality constraints. Inconsistencies
arising from the violation of such constraints are hard to repair automatically, as such a
repair requires “guessing” which instances to add. Using AICs and adequate management
functions, we can even specify the construction of “default” values that may depend on the
actual ontology.

Example 16 We want to express that each class must have a minimum of 10 students.
Classes with less enrolled students should be closed, and those students moved to the
smallest remaining class using an operation redistribute.

(T : (≤ 10.enrolled)(X)) =⇒ (A : redistribute(¬class(X))) (8)

This is an example of an AIC whose repair is performed in a context different from the one
where the inconsistency is detected: even though all instances of enrolled are in CA (they
come from the A-Box), the inference that there are less than 10 such instances can only be
done in CT .
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For this AIC to be valid, redistribute must check whether students are enrolled or
webEnrolled and change the appropriate instance in the A-Box. This also uses the knowl-
edge that instances of enrolled cannot be derived in other ways.

6.2.7 Max-cardinality constraints

Dually to the previous ones, max-cardinality constraints express that there may be a max-
imum number of instances of some concept or role. We can solve inconsistencies detected
by these by similar techniques as demonstrated both for functional dependencies and for
min-cardinality constraints: add repair actions, unifying some individuals, or calling more
sophisticated management functions.

Example 17 Dually to the previous example, we now want to express that each class can
have at most 25 students. If a class has more enrolled students, then either some student
must be removed from it, or (alternatively) students may be redistributed between two
classes.

(T : (≥ 25.enrolled)(X)), (T : enrolled(S,X))

=⇒ (A : del(enrolled(S,X))) | (A : redistribute(¬class(X))) (9)

Observe that S may be instantiated by any student in the offending class, so that removing
any excess student is a viable repair option. This is a valid option, because this particular
instance of the AIC will no longer be applicable – although, if there still are more than 25
students left in the class, other instances of the same AIC are still able to fire.

6.2.8 Totality constraints

A similar kind of constraints are totality constraints, which require that a role be total on
one of its arguments.

Example 18 Suppose we want to ensure that every student is enrolled in at least one course.
We can write this by means of the following active integrity constraint

not (T : (enrolledR)(X)) =⇒ (A : enroll(student(X))) (10)

This situation is similar to Example 16. The management function enroll has the task of
enrolling X in a particular course (using criteria that may depend on the state of the knowl-
edge base, for example, on which courses X has completed previously). Again, the repair is
performed in a different context from the one where the body of the AIC is tested.

Validity of this AIC depends again on the semantics of enroll.

6.2.9 Missing property value constraints

Another kind of ICs, also very common in ontologies, is disallowing unnamed individuals
for particular properties [43].

Example 19 Our ontology specifies that all students that are webEnrolled in a class must
have an e-mail address. However, for the purpose of contacting these individuals, this
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e-mail address must be explicitly provided. We address this issue with the following
AIC.

(T : (∃hasEmail)(X)), not (T : hasEmail(X, Y ))

=⇒ (A : unregister(¬∃webEnrolledR(X))) (11)

Here, unregister replaces the axiom webEnrolled(X) with enrolled(X), as it makes sense
to keep the student enrolled in the course. (Recall that webEnrolled is included in
enrolled.) Validity of this AIC follows from observing that the only possible ways to
derive ∃hasEmail(X) are either from an explicit assertion hasEmail(X, Y ) or indirectly from
webEnrolled(Z,X).

This example also justifies our requirement that the A-Box can only contain instances
of atomic concepts or roles. If the A-Box were allowed to contain e.g. ∃hasEmail(john),
then AIC (11) would no longer be valid. By restricting to atomic concepts, the only way to
perform a similar change would be by defining a new concept as equivalent to ∃hasEmail
– and this information would be present in the T-Box, making it clear that AICs should
consider it.

6.2.10 Managing unnamed individuals

Finally, we illustrate how we can write AICs in different ways to control whether they range
over all individuals of a certain class, or only over named ones.

Example 20 For ecological reasons, we want all students with an e-mail address to be
enrolled in the web version of courses. We can write this as follows.

(T : (hasEmail)(Y, Z)), (T : enrolled(X, Y )), not (T : webEnrolled(X, Y ))

=⇒ (A : webEnroll(webEnrolled(X, Y ))) (12)

Operation webEnroll will replace enrolled(X, Y ) with webEnrolled(X, Y ), dually to
unregister in the previous example.

Alternatively, we could consider writing

(T : (∃hasEmail)(Y )), (T : enrolled(X, Y )), not (T : webEnrolled(X, Y ))

=⇒ (A : webEnroll(webEnrolled(X, Y ))) (13)

In this particular context, this formulation is undesirable, as it will also affect individuals
who do not have a known e-mail address. By writing an explicit variable in the first query
of the body, as in (12), we guarantee that we only affect those individuals whose e-mail
address is known.

Similar considerations about the two possible ways to formulate this type of ICs can be
found in [43].

6.3 Discussion

The examples in this section illustrate how our framework is powerful enough to capture
the types of integrity constraints over ontologies discriminated in [28], which presents a
comprehensive overview of integrity constraints that are desired in practice. We furthermore
discussed two examples from [43], of a slightly different nature.
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Although this section consists mostly of examples, we believe that they substantiate our
claim regarding expressiveness of our framework of active integrity constraints over multi-
context systems, when applied to the case of ontologies. Indeed, our underlying ontology
is generic and simple enough for these examples to be readily adaptable to other instances
of the same types of integrity constraints. Furthermore, by presenting them in a concrete
ontology rather than as abstract formulations, we were also able to illustrate the criteria for
choosing the repair actions to include in the heads of the active integrity constraints, as well
as how to show validity. This is in line with our earlier claim that, even though validity of
an AIC is in general an undecidable problem (Theorem 3), in practice the semantics behind
the predicates used in concrete AICs makes this task feasible for a human.

7 Discussion

We briefly consider some questions and generalizations that were not addressed in this paper.

7.1 Normalization

The original study of AICs dedicated special attention to normal AICs: those with only one
action in their head. This is possible because any AIC of the form in (1) can be split into k

separate AICs with the same body and only one action in the head; this trivially preserves
satisfaction, and it also preserves the set of repairs (except for justified repairs [13], which
we do not consider in this work). The drawback is that normalization increases the size of
the set of AICs.

In the setting of AICs over MCSs, this transformation is not straightforward. As Exam-
ple 7 shows, we may need different actions due to there being several possible different
origins for the inconsistency; restricting to normalized AICs would thus require strengthen-
ing their bodies to guarantee that they only apply in the cases where the particular action
in their head suffices. Furthermore, we would need additional AICs for cases where several
actions are needed simultaneously, and we cannot express this in our formalism – consider
e.g. a variation of Example 7 where p and q originate from different contexts, so that no sin-
gle invocation of a management function (which is local to a given context) can remove p(a)
and q(a) simultaneously. Therefore, normalized AICs are not as interesting in the general
scenario as in the database case.

7.2 Validity

At the end of Example 7, we pointed out that restoring consistency with respect to an AIC
r may require applying several actions in head(r). This suggests allowing sets of actions
(rather than actions) in the heads of AICs. Besides increasing the complexity of our develop-
ment, it is not clear that this change would bring significant benefits. In terms of computing
repairs, we already cover those cases, since we add sets of actions when going from a node
to its descendants. Also, it is not clear that there exists a situation when every possible
inconsistent MCS requires a set of actions to repair.

One could also remove the second condition of validity of an AIC, i.e. allow the actions
in the head to be insufficient to restore consistency of some MCSs. This would remove
some burden from the programmer who has to specify the AICs, and would not affect the
performance of the algorithms in Section 4.4. However, it would contradict the original
motivation for AICs [31]: that the actions in the head of a rule should provide the means for
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restoring consistency. It might then be the case that, in some situations, repairs (that are not
grounded) cannot be found because the inconsistency can only be addressed in ways that
were not considered by the programmer.

7.3 Variants of AICs

The authors of [31] also considered conditioned active integrity constraints, where the
actions on the head of AICs are guarded by additional conditions that have to be satisfied.
In their setting, conditioned AICs do not add expressive power to the formalism, as they can
be split into several unconditioned AICs (with more specific bodies) preserving the notions
of consistency and repairs. In our setting, this transformation is not possible, and it would
thus be interesting to study conditioned active integrity constraints over multi-context sys-
tems. However, we point out that the management function can use information about the
actual knowledge bases in its implementation, so some conditions can actually be expressed
in our setting (see Example 16).

8 Conclusions

In this paper, we proposed a notion of active integrity constraints for multi-context sys-
tems, a general framework for combining reasoning systems. We showed that our notion
generalizes the well-studied concept of active integrity constraint over databases, and stud-
ied its relation to proposed notions of integrity constraints in other formalisms. Satisfaction
of active integrity constraints comes in two variants, weak and strong, related to the usual
concepts of brave and cautious reasoning.

By showing how to encode the bodies of active integrity constraints within the syntax of
MCSs, we obtained decidability and complexity results for the problem of whether a partic-
ular MCS weakly or strongly satisfies a set of active integrity constraints, and of deciding
whether it can be repaired (in the negative case). We argued however that keeping active
integrity constraints as an added layer on top of an MCS allows for a clean separation
of intrinsic logical inconsistency from inconsistencies that may arise e.g. from improper
changes to an individual context, which we want to detect and fix, rather than propagate
to other contexts – in line with several authors who have argued for these concerns. Our
examples show that we indeed capture the usual behavior of integrity constraints in several
existing formalisms.

We also defined a notion of grounded repair, the type of repair in the database setting that
appears most suitable for generalization to other frameworks. We showed that grounded
repairs for inconsistent MCSs can be computed automatically. We presented simple criteria
for validity of AICs and illustrated by means of examples that we can write valid AICs system-
atically for several interesting scenarios. This shows that the undecidability of validity in the
general case does not limit their practical application in many useful reasoning frameworks.
We evaluated our formalism for the ontology scenario, and showed its wide applicability.
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13. Caroprese, L., Truszczyński, M.: Active integrity constraints and revision programming. Theory Pract.
Log. Program. 11(6), 905–952 (2011)

14. Caroprese, L., Zumpano, E.: Consistent data integration in P2P deductive databases. In: Prade, H.,
Subrahmanian, V.S. (eds.) SUM, volume 4772 of LNCS, pp. 230–243. Springer (2007)

15. Cruz-Filipe, L., Beierle, C., Meghini, C.: Optimizing computation of repairs from active integrity
constraints. In: FoIKS, volume 8367 of LNCS, pp. 361–380. Springer (2014)

16. Cruz-Filipe, L.: Grounded fixpoints and active integrity constraints. In: Carro, M., King, A., De Vos, M.,
Saeedloei, N. (eds.) ICLP’16, volume 52 of OASIcs, pp. 11.1–11.14. Schloss Dagstuhl (2016)
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50. Teniente, E., Olivé, A.: Updating knowledge bases while maintaining their consistency. VLDB J. 4(2),

193–241 (1995)
51. Thalheim, B.: Dependencies in Relational Databases. Teubner-Texte zur Mathematik, B.G Teubner

(1991)
52. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press,

Rockville (1988)
53. Weinzierl, A.: Advancing multi-context systems by inconsistency management. In: Bragaglia, S.,

Damásio, C., Montali, M., Preece, A.D., Petrie, C.J., Proctor, M., Straccia, U. (eds.) RuleML2011@BRF
Challenge, volume 799 of CEUR Workshop Proceedings. CEUR-WS.org (2011)

54. Winslett, M.: Updating Logical Databases. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, Cambridge (1990)


	Active integrity constraints for general-purpose knowledge bases
	Abstract
	Introduction
	Contributions
	Active integrity constraints for multi-context systems
	Grounded repairs
	Application to ontologies


	Outline

	Related work
	Integrity constraints for databases
	Active integrity constraints for databases
	Multi-context systems
	Integrity constraints in other frameworks

	Background
	Active integrity constraints
	Multi-context systems

	Active integrity constraints
	Key definitions
	Satisfaction
	Validity
	Repairs and their computation
	Relation with databases

	Specializations
	Distributed databases
	Deductive databases
	Other models

	The case of ontologies
	Ontologies as multi-context systems
	Evaluation of expressivity
	Functional dependencies
	Key constraints, uniqueness constraints, functionality constraints
	Property domain constraints
	Property range constraints
	Specific type constraints
	Min-cardinality constraints
	Max-cardinality constraints
	Totality constraints
	Missing property value constraints
	Managing unnamed individuals

	Discussion

	Discussion
	Normalization
	Validity
	Variants of AICs

	Conclusions
	References


