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Abstract In this paper, we propose a novel notion of statistical consistency for single-stage
Stochastic Constraint Satisfaction Problems (SCSPs) in which some of the random vari-
ables’ support set is infinite. The essence of this novel notion of local consistency is to
be able to make an inference in the presence of infinite scenarios in an uncertain environ-
ment. This inference would be based on a restricted finite subset of scenarios with a certain
confidence level and a threshold tolerance error. The confidence level is the probability that
characterizes the extend to which our inference — based on a subset of scenarios — is cor-
rect. The threshold tolerance error is the error range that we can tolerate while making such
an inference. We propose a novel statistical consistency enforcing algorithm that is based
on sound statistical inference; and experimentally show how to prune inconsistent values in
the presence of an infinite set of scenarios.

Keywords Infinite chance constraints · Statistical consistency · Constraint propagation

Mathematics Subject Classification (2010) 62F25

The original version of this article was revised: The name “Abdelwahad Rebaii” should be corrected to
“Abdelwaheb Rebai”. The correct name is now shown here.

� Imen Zghidi
zghidi.imen@gmail.com

Brahim Hnich
hnich.brahim@gmail.com

Abdelwaheb Rebai
Abdelwaheb.Rebai@fsegs.rnu.tn

1 Modils Research Lab, FSEG, University of Sfax, Sfax, Tunisia

2 CES, ENIS, University of Sfax, Sfax, Tunisia

3 Department of CS, Monastir University, Monastir, Tunisia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-018-9572-3&domain=pdf
mailto:zghidi.imen@gmail.com
mailto:hnich.brahim@gmail.com
mailto:Abdelwaheb.Rebai@fsegs.rnu.tn


166 I. Zghidi et al.

1 Introduction

In most industrial contexts, decisions are made based on incomplete information. Stochas-
tic Constraint Satisfaction Problems (SCSPs) [8, 15, 17] provide a powerful modeling
framework for problems in which we are required to take decisions under uncertainty.

An m-stage SCSP [8, 15, 17] is defined as a 7-tuple 〈V, S,D, P,C, β, L〉, where V

is a set of decision variables and S is a set of random variables, D is a function map-
ping each element of V (respectively, S) to a domain (respectively, support) of potential
values. In classical SCSPs both decision variable domains and random variable supports
are assumed to be finite. P is a function mapping each element of S to a probability
distribution for its associated support. C is a set of chance-constraints over a non-empty
subset of decision variables and a subset of random variables. β is a function mapping
each chance-constraint h ∈ C to βh which is a threshold value in the interval (0, 1].
L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of decision stages such that each
Vi ⊆ V , each Si ⊆ S, the Vi form a partition of V , and the Si form a partition of S.

For the rest of the paper, we restrict ourselves to single-stage SCSPs. To solve a (single-
stage) SCSP, an assignment to the decision variables must be found such that, given random
values for random variables, the chance constraints are satisfied in the specified fraction of
all possible scenarios. Under the assumption that random variable supports are finite, the
solution of a SCSP is, in general, represented by means of a policy tree [15]. The arcs in
such a policy tree represent values observed for random variables; whereas nodes at each
level represent the decisions associated with the different stages.

If the random variables’ support set is infinite, the number of scenarios would be infinite
and the policy tree itself would be infinite. Hence, finding a satisfying policy tree in such
cases is impossible in general. We refer to such SCPS as infinite SCSPs.

In this paper, we propose a novel notion of statistical consistency for single-stage SCSPs
in which some of the random variables’ support set is infinite. This statistical consistency
is crucial if one wants to lift the inference about value consistency in the presence of uncer-
tainty, especially when the set of possible scenarios is infinite. Any constraint solver or
search algorithm can use the stochastic inference (through the statistical consistency enforc-
ing algorithm) to directly reason and solve an infinite SCSP. The new notion of statistical
consistency is parameterized by a confidence probability, αc, and an error threshold ϑ . The
goal is to be able to make an inference, with confidence probability αc, about whether
a value is consistent or not with respect to the uncertain environment without the error
exceeding threshold value ϑ .

The rest of this paper is organized as follows. First, we review the concept of an
(αc, ϑ)-solution to an infinite SCSP in Section 2. Then, We formalize the notion of (αc, ϑ)-
consistency in Section 3. Next, in Section 4, we present our approach based on confidence
intervals to infer whether or not a value v is (αc, ϑ)-consistent; and we empirically validate
our approach in Section 5. Then, in Section 6 we show how to enforce (αc, ϑ)-consistency
for a whole infinite SCSP. Before we conclude in Section 8, we present a comparison to
related works in Section 7.

2 (αc, ϑ)-solutions

Let us consider a single-stage SCSP in which V = {x1, x2} and S = {s1, s2}. The random
variable s1 may take two possible values 4 and 5, each with a probability of 0.5. The random
variable s2 may also take two possible values 3 and 4, each with a probability of 0.5. The
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Fig. 1 A satisfying policy tree with x1 = 3 and x2 = 6

domain of decision variable x1 is {1, 2, 3, 4} whereas that of x2 is {3, 4, 5, 6}. We have two
chance constraints h1 and h2 defined as follows:

h1 : pr{s1 · x1 + s2 · x2 ≥ 30} ≥ 0.75

h2 : pr{s2 · x2 = 12} ≥ 0.5

Since this SCSP is a single-stage one, then decision variables x1 and x2 must be set to
unique values before the random variables are observed. A satisfying policy tree to this
SCSP is shown in Fig. 1, in which x1 = 3 and x2 = 6. The first chance constraint is satisfied
in all four scenarios and hence the satisfaction probability (i.e. pr{s1 · x1 + s2 · x2 ≥ 30}) is
1 which is larger than the needed 0.75. The second chance constraint is only satisfied in two
scenarios out of four with a satisfaction probability of 0.5, which is just enough to satisfy
chance constraint h2.

Now, assume instead that the random variables s1 and s2 are two continuous random
variables. Assume s1 takes values following a uniform distribution over the interval [4, 5]
and s2 takes values following a uniform distribution over the interval [3, 4]. In this case,
the policy tree for the same assignment x1 = 3 and x2 = 6 becomes infinite. This
renders it impossible, in general, to check whether or not such a policy tree is a satisfy-
ing policy tree in a finite amount of time, since we need to check an infinite number of
scenarios.

The authors in [12, 13] introduce the notion of (αc, ϑ)-solutions where αc
1 is a confi-

dence level and ϑ is a threshold tolerance. Instead of looking for an exact solution, as in
the classical m-stage SCSPs, which may not even be possible, we search for a solution that,
with confidence level αc, guarantees a satisfaction probability that is no lower than βh − ϑ

for each chance constraint h. The (αc, ϑ)-solution to an infinite SCSP P is indeed a solu-
tion (i.e., a satisfying policy tree) to a restricted version P̂ of P in which we only consider
a finite subset of the scenarios.

1In the original paper αc is referred to as α. But, to differentiate it later on from the significance level α, we
rename it here as αc .
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3 Introducing (αc, ϑ)-consistency

Constraint propagation techniques are inference methods that help reducing the original
CSP into another which is smaller in size [2]. The propagator associated with every con-
straint, removes — from the domains of the variables in the scope of that constraint —
inconsistent values. Inconsistent values are values that do not appear in any solution to that
particular constraint. For a constraint c, a value v in the domain of xi is generalized arc
consistent (GAC) iff there exist values in the domains of all other variables such that c is
satisfied. A constraint c is GAC iff every value in the domain of every variable is GAC. A
CSP is GAC iff all constraints are GAC.

The authors in [8] extend the notion of GAC for chance constraints in SCSPs. Since, in
this paper we restrict ourselves to single-stage SCSPs, we present here a simplified defini-
tion of GAC for chance constraints. Let h be a chance constraint constraining a subset of
decision variables Xh ⊆ V and a non-empty subset of random variables Sh ⊆ S:

h : pr{C} ≥ βh

Let �h denote the set of scenarios constructed from the random variables Sh. Let A be an
assignment of the decision variables in Xh. Let T A

h be the policy tree restricted to h in which
the decision variables Xh take the values in assignment A. In other words, each arc in this
policy tree is a possible scenario s ∈ �h whose probability is denoted by pr(s). Let Cs

h

denote the constraint C in which the random variables are replaced with the actual values
in s. Let Cs

h denote the expression in which the decision variables in Cs
h take the values

specified in assignmentA. Let the boolean Bs
h be 1 if expressionCs

h is satisfied, 0 otherwise.

Definition 1 Given a chance constraint h. A value v in the domain of x ∈ Xh is GAC iff
there exists an assignment A in which x = v and

∑

s∈�h

Bs
h · pr(s) ≥ βh

Example 1 Consider the following chance constraint involving two binary decision vari-
ables (x and y) and a random variable r with finite support set:

h : pr{max(2x, 1 − y) ≤ r} ≥ βh = 0.75

where the support set of r is {(0, 0.25), (1, 0.25), (2, 0.25), (3, 0.25)}, i.e., r can take values
between 0 and 3 with equal probabilities. The policy tree associated with h comprises 4
arcs, one for each scenarios s where each scenario is a possible realization of the random
variable r with probability pr(s) = 0.25.

Consider the assignment A1 : 〈x = 0, y = 0〉. The expression max(2.0, 1 − 0) is equal
to 1. So, 1 ≤ r is satisfied in two out of the four scenarios. Hence, the policy tree in which
decision variables take the values in assignment A1 is not a satisfying policy tree. Indeed
the satisfaction probability of each assignment is shown in Fig. 2.

Based on Fig. 2 and Definition 1, value 1 in the domain of x is GAC and so are all values
in the domain of y whereas value 0 in the domain of x is inconsistent.

In other words, a value v in the domain of x ∈ Xh is GAC iff there exists an assignment
A in which x = v and T A

h is a satisfying policy tree. A chance constraint h is GAC iff
every value in the domain of every variable in Xh is GAC. A SCSP is GAC iff every chance
constraint is GAC.
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Fig. 2 The true mean of
assignments of h wrt to
βh = 0.75

Note that the above consistency definition for chance constraints assumes that all the
random variables in Sh have discrete finite support. If at least one random variable in Sh

has an infinite support, then �h would become an infinite set of scenarios and therefore, for
any assignment A, the corresponding policy tree T A

h would have an infinite number of arcs.
Indeed, the sum that tests whether a value v is GAC or not would be an infinite sum. So,
how to proceed, in such a situation, is a core question that this paper tries to address.

Inspired by the concept of (αc, ϑ)-solutions proposed in [12], we introduce the notion of
(αc, ϑ)-consistency for infinite chance constraints of single-stage SCSPs.

Due to the infinite number of scenarios that we are required to consider , it becomes
practically impossible to establish whether or not a value v is GAC. An alternate solution
would be to establish whether a value v is consistent, with confidence αc, and error threshold
ϑ . By having the parameter αc, we control how confident we want to be in our judgment;
whereas ϑ controls the level of error we are willing to tolerate. Thus, we are now ready to
introduce the novel definition of (αc, ϑ)-consistency as follows.

Definition 2 Given an infinite chance constraint h. A value v in the domain of x ∈ Xh is
(αc, ϑ)-GAC iff there exists an assignment A in which x = v and, with confidence level αc,

∑

s∈�h

Bs
h · pr(s) ≥ βh − ϑ

Note that in 100αc% of the times, a value v that is truly consistent is detected as so
according to this definition with tolerated error ϑ .

Example 2 Consider the following infinite chance constraint involving two binary decision
variables (x and y) and a random variable r with infinite support:

h : pr{C(x, y, r)} ≥ βh

The policy tree associated with h comprises an infinite number of scenarios where each
scenario is a possible realization of the random variable r . It is impossible, for a given
assignment A, to find a satisfying policy tree in which decision variables take values in A

or show that none exists since we need to compute an infinite sum as stated in Definition 1.
Suppose, nevertheless, that somehow we know the true mean of each assignment as shown
in Fig. 3.

Based on Fig. 3 and Definition 1, value 0 in the domain of x and value 1 in the domain
of y are GAC whereas value 1 in the domain of x and value 0 in the domain of y are
inconsistent. Note, however, that it is impossible in general to know the true mean of each
assignment since the policy tree is infinite. Therefore, what Definition 2 proposes is to be
able to infer, with confidence probability αc and an error threshold ϑ , whether value v is
consistent or not. I.e., there exists an assignment A in which x = v that — with confidence
probability αc — verifies the sum expression in Definition 2. Another way to express what
it means for a value to be (αc, ϑ)-GAC is as follows. Suppose we generate a sampled policy
tree for h in which the arcs take sampled values from the random variable using some
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Fig. 3 The true mean of
assignments of h wrt to βh = 0.5

sampling strategy2. Now, value v is (αc, ϑ)-GAC iff there exists a satisfying policy tree to
the sampled infinite chance constraint h in which decision variables take the values in A

and, with probability αc, is truly a satisfying policy tree to the infinite chance constraint h.

Now consider two values v and w in the domain of x ∈ Xh. Suppose v is (αc, ϑ)-
GAC and w is also (αc, ϑ)-GAC. So, there exists a satisfying policy tree (Pv) to a sampled
infinite chance constraint h in which decision variables take the values in some assignment
A (in which x = v) and with probability αc is truly a satisfying policy tree to the infinite
chance constraint h. Similarly, there exists a satisfying policy tree (Pw) to a sampled infinite
chance constraint h in which decision variables take the values in some assignment B (in
which x = w) and with probability αc is truly a satisfying policy tree to the infinite chance
constraint h. However, the confidence probability of simultaneously having Pv and Pw as
truly satisfying policy trees with respects to the infinite chance constraint h is reduced to
αc · αc. Thus, v and w are not simultaneously (αc, ϑ)-GAC, since the errors accumulate;
they are only guaranteed to be (α2

c , ϑ)-GAC.
Therefore, in our case, we need to worry about multiple statements since our definition

of (αc, ϑ)-consistency is probabilistic in nature. Thus, for an infinite chance constraint we
propose the following novel definition:

Definition 3 An infinite chance constraint h is (αc, ϑ)-GAC iff simultaneously every value
in the domain of every variable in Xh is (αc, ϑ)-GAC.

Similarly, when we consider a SCSP composed of multiple infinite chance constraints,
we propose the following definition:

Definition 4 An infinite SCSP is (αc, ϑ)-GAC iff simultaneously every infinite chance
constraint is (αc, ϑ)-GAC

The new statistical consistency is inspired by (αc, ϑ)-solutions but is fundamentally different
in two aspects: (1) It is a local consistency roperty as opposed to the concept of (αc, ϑ)-solution
which is a global property of the solution. Thus, one can reason about each infinite chance
constraint independently in order to make a global inference; and (2) such a statistical con-
sistency notion can pave the way for a new generation of search algorithms that reason
directly about infinite SCSPs instead of relying on reformulating the infinite SCSP into an
approximate finite SCSP to be solved using the techniques developed for finite SCSPs.

4 Statistical inference rules via confidence intervals

For the rest of this section, we suppose we are given a chance constraint h : pr{C} ≥ βh

over an infinite set of scenarios �h, a specific assignment A in which x = v, a confidence

2To be discussed later.
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level αc, and an error threshold ϑ . Our goal is to answer the question of whether or not v is
(αc, ϑ)-consistent with respect to assignment A only. Recall that a value v in the domain of
x ∈ Xh is consistent iff there exists an assignment A in which x = v and

∑

s∈�h

Bs
h · pr(s) ≥ βh

Without loss of generality, assume that the probability of each scenario s, pr(s), is the
same. Then, the left hand side of the equation becomes:

∑
s∈�h

Bs
h

|�h| = μ

Which can be viewed as the proportion of 1’s (i.e., Bs
h = 1) in an infinite sequence of

zeros and ones. This proportion p, where p = μ, is indeed unknown. But, how can we
estimate such an unknown quantity?

Let us consider the following statistical experiment Y = (Y1, Y2, . . . , Yn) consisting of
n repeated trials. In each trial we select a random scenario from �h using a sampling strat-
egy like simple random sampling with replacement. Each trial Yi of the experiment has two
possible outcomes labeled ”success” when Bs

h = 1, ”failure” otherwise. The probability of
success μ is the same for each trial (but unknown), and the trials are independent and iden-
tically distributed. Such an experiment is known as the binomial experiment [10]. Thus, the
satisfaction probability (μ) can be estimated by repeatedly observing the behavior of the
random variable in a sequence of Bernoulli trials. An exact confidence interval (CI ) associ-
ated with the binomial distribution can be constructed from the observed data of a specific
number of trials in such a way that it covers μ with a certain confidence level α. There
are several ways to compute a CI for a binomial distribution [1, 5, 16]. But, as in [12, 13]
we opt for the exact Clopper-Pearson CI [5] because this method uses the Binomial distri-
bution in order to build the interval from the observed data, rather than an approximation.
Furthermore, given a confidence probability, an important property of CIs — related to the
estimation of the ”success” probability associated with a Bernoulli trial — is the ability to
mathematically derive the minimum number of samples that should be observed in order to
produce a confidence interval of a given width.

Now, given a scenario sample S ⊆ �h of size n generated as described above, let the

sample mean κ be
∑

s∈S Bs
h

n
. Let us consider the binomial proportion CI [κ − ϑ

2 , κ + ϑ
2 ],

constructed using sample S, with confidence level αc and width being ϑ . We will discuss
later how to compute the sample size needed to guarantee such a CI with confidence level
αc and width ϑ . Thus, μ is covered by CI in αc% of the times.

Let min = κ − ϑ
2 and max = κ + ϑ

2 . Recall that value v is (αc, ϑ)-consistent iff,
with confidence level αc, we have μ ≥ βh − ϑ . We are now ready to make the following
observations.

Observation 1 If βh < min, then it is also true that βh − ϑ < min. Since μ is covered by
the CI [κ − ϑ

2 , κ + ϑ
2 ] with coverage probability αc and in the worst case (when μ = min)

we still have μ ≥ βh − ϑ , then v is (αc, ϑ)-consistent in this case.

Observation 2 If βh ∈ [min, max], then βh − ϑ ≤ min since min = max − ϑ . This
means that μ ≥ βh − ϑ in αc% of the times because the coverage probability of μ by CI is
αc. Thus, v is (αc, ϑ)-consistent in this case as well.
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Fig. 4 The ”clear accept” case

So, based on Observation 1 and Observation 2, when βh ≤ max and the width of the CI
is ϑ , we can safely classify v as being (αc, ϑ)-consistent. See Fig. 4 for an illustration.

Theorem 1 For any chance constraint h, for any assignment A in which x = v, for any ϑ ,
and for any αc, for all values of βh ≤ κ + ϑ

2 , using a CI [κ − ϑ
2 , κ + ϑ

2 ] one can properly
classify v as being (αc, ϑ)-consistent.

Proof Follows immediately from Observation 1 and Observation 2

Our third observation is as follows:

Observation 3 If βh > max + ϑ , then it is also true that βh − ϑ > max. Thus, since μ

is covered by the CI [κ − ϑ
2 , κ + ϑ

2 ] with coverage probability αc and even in the worst
case when μ = max, we still have μ < βh − ϑ , one can properly classify v as being
(αc, ϑ)-inconsistent in this case. See Fig. 5 for an illustration.

Theorem 2 For any chance constraint h, for any assignment A in which x = v, for any ϑ ,
and for any αc, for all values of βh > κ + 3ϑ

2 , using a CI [κ − ϑ
2 , κ + ϑ

2 ] one can properly
classify v as being (αc, ϑ)-inconsistent.

Proof Follows immediately from Observation 3

Finally, we identify the case where we fail to make an inference with confidence
probability at least αc:

Observation 4 If max < βh ≤ max + ϑ , then βh − ϑ ∈]κ − ϑ
2 , κ + ϑ

2 ]. Since, with
coverage probability αc, μ is covered by [κ − ϑ

2 , κ + ϑ
2 ], it is impossible in this case to

make a correct classification with probability αc because we can either have μ ≥ βh − ϑ

or μ < βh − ϑ . This is the critical case in which we fail to make a correct inference with
probability αc or higher. See Fig. 6 for an illustration.

Fig. 5 The ”clear reject” case
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Fig. 6 The critical case

In fact, the following theorem shows that there exists always a situation in which we are
unable to make a correct inference.

Theorem 3 For any chance constraint h, for any assignment A in which x = v, for any ϑ ,
and for any αc, there exists always a value for βh such that it is impossible, using the CI
approach, to firmly decide whether or not (αc, ϑ)-consistent.

Proof Follows immediately from Observation 4 by setting βh ∈]κ + ϑ
2 , κ + 3ϑ

2 ]
In this critical case, one possible way to solve the problem is to either: (1) classify v

as being (αc, ϑ)-consistent while it may be inconsistent (increase the chances of type II
errors); or (2) classify v as being (αc, ϑ)-inconsistent while it may be consistent (increase
the chances of type I errors). However, this approach makes the inference not completely
sound. So is there a better way to remedy this situation?

In fact, in the critical case one might still guarantee a sound inference but at the cost of
increasing ϑ . Indeed, we can classify v as being (αc, 2 · ϑ)-consistent as explained in the
following Observation:

Observation 5 If max < βh ≤ max + ϑ , then βh − 2ϑ ≤ κ − ϑ
2 . Since, with coverage

probability αc, μ is covered by [κ − ϑ
2 , κ + ϑ

2 ], then we can correctly classify v as (αc, 2 ·
ϑ)-consistent.

Theorem 4 For any chance constraint h, for any assignment A in which x = v, for any ϑ ,
and for any αc, for all values of max < βh ≤ max + ϑ , using a CI [κ − ϑ

2 , κ + ϑ
2 ] one can

properly classify v as being (αc, 2 · ϑ)-consistent.

Proof Follows immediately from Observation 5

Thus, a sound inference method based on CIs is as follows:

Step 1: Find a large enough sample size n and construct a Clopper-Pearson CI [κ −
ϑ
2 , κ + ϑ

2 ] so that its coverage probability is αc;
Step 2: We have three mutually exclusive cases:

Consistent: If βh ≤ κ + ϑ
2 , then classify v as (αc, ϑ)-consistent;

Inconsistent: If βh > κ + 3ϑ
2 , then classify v as (αc, ϑ)-inconsistent;

Critical: If βh ∈]κ + ϑ
2 , κ + 3ϑ

2 ], then classify v as (αc, 2 · ϑ)-consistent.

The above inference algorithm is able to make a sound statistical inference which guar-
antees a value v being correctly classified with confidence αc and an error threshold varying
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between ϑ and 2 · ϑ . So, if we wish to always guarantee an (αc, ϑ)-consistency level, we
reset the value ϑ to ϑ

2 instead.
We are still left with the problem of computing a sample size n that is large enough

to guarantee a CI of width ϑ or less. The solution we propose is to start with an initial
theoretical sample size, say n1 computed as per Definition 2 in [12], which we restate
here:

Definition 5 ([12]) n1 is computed as the minimum value for which

max(pβh

ub − βh, βh − p
βh

lb ) ≤ ϑ,

where p
βh

lb and p
βh

ub are the single-sided Clopper-Pearson confidence interval bounds for a
confidence probability αc, and round(βhn) “successes” in n trials; round() approximates
the value to the nearest integer.

If the CI’s width is still larger than ϑ in practice, we increase the sample size by one and
keep doing so untill we reach a sample size, say nk > n1, after k iterations in which the
width is ϑ or smaller.

The inference algorithm is computationally efficient. The first step is the one that con-
sumes most of the computation since the second one takes a constant time. Now let us
consider the first step and assume we start with an initial theoretical sample size n1 —
computed in constant time — and compute the large enough sample size nk in k iterations
where k = nk − n1. In each iteration t , after we generate a sample of size t (in order O(t)-
time) we compute a CI and check its width in constant time. Thus, each step is in O(nk)

in the worst-case. So overall and since we have k iterations this step is in O(k · nk). Since
the initial theoretical sample size n1 is not that far off from the large enough sample size
nk (as will be shown in the experiments section), this step in practice is quite efficient.
Thus, our inference method is indeed a suitable light-weight one that can be used effectively
to achieve the long-term goal of designing and implementing a new breed of constraint
solvers: statistical constraint solvers. These solvers would have the following novel key
features:

1. Infinite SCSPs are directly modeled and solved as such instead of being reformulated
into finite SCSPs to be solved using traditional constraint solvers designed to handle
deterministic CSPs;

2. A new library of infinite chance constraint types each with its own dedicated statistical
propagator. Each propagator would enforces some form of statistical consistency, say
(αc, ϑ)-consistency locally by relying an inference methods like the one we propose in
this paper;

Fig. 7 Sample size
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Fig. 8 The correct classification
rate (CCR) for μ = 0.5,
αc = 0.95, and ϑ = 0.01

3. Integrating statistical components that would allow for sampling and building CIs such
as the R system which is an environment within which many classical and modern
statistical techniques have been implemented.

4. A tree search algorithm that solves directly the infinite SCSPs by removing inconsistent
values deduced using the statistical propagators at each node of the search tree.

Such statistical constraint solvers do not exist currently. The novel notion of statistical
consistency, alongside the statistical inference method presented in this paper, represent the
first step toward the larger goal of designing and implementing such statistical constraint
solvers in the future.

5 Validating the approach based on confidence intervals

To implement our inference method, we mainly used the R language and environment for
statistical computing and graphics [11]. It is a an environment which was developed at Bell
Laboratories by John Chambers and colleagues. R is an environment within which many
classical and modern statistical techniques have been implemented. To test our method, we
set our true mean μ to 0.5 of a Bernoulli trial. We vary βh to take values in

{0.48, 0.49, 0.5, 0.51, 0.52, 0.53}
and

ϑ ∈ {0.01, 0.009, 0.008, 0.007, 0.005, 0.001}.
For each configuration 〈βh, αc, ϑ〉 we run 1000 experiments and record the number of

times c we classify value v as (αc, ϑ)-consistent and the number of times f we classify v as
(αc, ϑ)-inconsistent. Now, if the true mean μ is greater than or equal to βh −ϑ , we compute
the Correct Classification Rate (CCR) of our method as

c

c + f
= c

1000

Note that, f
f +c

represents the ratio of wrong classification in this case. This is the ratio of
type I errors since we are rejecting a consistent value v. If, however, the true mean μ is
strictly smaller than βh − ϑ , then CCR is computed as

f

c + f
= f

1000

Fig. 9 The correct classification
rate (CCR) for μ = 0.5,
αc = 0.95, and ϑ = 0.009
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Fig. 10 The correct
classification rate (CCR) for
μ = 0.5, αc = 0.95, and
ϑ = 0.008

Note that, c
f +c

represents the ratio of wrong classification in this case. This is the ratio of
type II errors since we are accepting an inconsistent value v.

Indeed, CCR is the most important indicator of whether or not the confidence interval
approach is effective in correctly classifying (αc, ϑ)-consistent values or not.

In Fig. 7, we show the theoretical sample size n needed for different values of ϑ to
guarantee a 0.95 confidence level as per Definition 2 in [12]. We also show the sample size
dynamically found that guarantees the desired width of the CI. We notice that, in practice,
the sample size which is large enough to achieve the desired CI width is larger than the
theoretical one found as per Definition 2 in [12]; but not by more than 42% on average.

In Figs. 8, 9, 10, 11, 12, and 13, we present the results of our experiments when αc = 0.95
for various values of μ, βh, and ϑ . When for a given βh, and ϑ we are in the critical case
(i.e., βh ∈]κ + ϑ

2 , κ + 3ϑ
2 ]), we annotate that in the corresponding row in the table of results

as ”critical case”.

– Figs. 8, 9, 10, and 11 do represent situations in which we experience the three cases:
”Consistent”, ”Inconsistent”, and ”Critical”. The results are inline with the theory, and
we do achieve a 95% or above CCR in all cases of ”Consistent” and ”Inconsistent”.

– Figs. 12 and 13 do represent situations in which we experience only the two cases:
”Consistent” and ”Inconsistent”. The results are inline with the theory and we do
achieve a 95% or above CCR in all cases of ”Consistent” and ”Inconsistent”.

– As the error threshold value ϑ gets smaller, the sample size required by our method, and
computed dynamically, increases significantly. As a positive consequence, however, the
width of the CIs get smaller; and hence we avoid being in the ”Critical” case.

In summary, the experimental results confirm that the proposed method does achieve
indeed a 95% CCR or above as expected in theory and does so by guaranteeing an error
threshold of no more than 2 · ϑ (in critical case) or ϑ otherwise.

6 Enforcing (αc, ϑ)-consistency

So far, we have restricted our analysis to just one assignment A in which x = v of a
single infinite chance constraint. With respect to this assignment, we looked at how to infer
whether value v is (αc, ϑ)-consistent or not. In this section, we consider a single-stage
infinite SCSP and use it to showcase how it would be solved directly. Our method is based
on the techniques presented in this paper rather than on reformulation, done by all other

Fig. 11 The correct
classification rate (CCR) for
μ = 0.5, αc = 0.95, and
ϑ = 0.007
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Fig. 12 The correct
classification rate (CCR) for
μ = 0.5, αc = 0.95, and
ϑ = 0.005

existing methods in the literature. We also point out to possible challenges and drawbacks
of the proposed method.

In particular, we consider the question of how to make a single infinite chance constraint
(αc, ϑ)-GAC, and also how to make a whole infinite SCSP (αc, ϑ)-GAC. This would sim-
ulate the process of constraint propagation that would be performed if we had a statistical
constraint solver that directly solves an infinite SCSP.

The approach we have presented in the previous sections treats each value v separately
wrt to a given assignment A. It is indeed able to detect whether each value is (αc, ϑ)-
consistent wrt a given assignment. But, if each value is (αc, ϑ)-consistent, how about all
values considered simultaneously in an infinite chance constraint, in more than one infinite
chance constraint, and in the whole problem?

Recall that an infinite chance constraint h is (αc, ϑ)-GAC iff simultaneously every value
in the domain of every variable inXh is (αc, ϑ)-GAC. Let us consider the cross product of all
the domains of the decision variables in Xh, i.e. our assignment space for chance constraint
h denoted by A. Using, the approach outlined in the previous section, for each value v in
the domain of every decision variable x ∈ Xh, one of these two outcomes is possible:

– There exists an assignment A ∈ A for which value v is (αc, ϑ)-consistent;
– For every assignment A ∈ A, value v is (αc, ϑ)-inconsistent.

A naive approach is to simply consider each value separately and if it is (αc, ϑ)-
inconsistent, we prune it. But, the problem is that errors will accumulate. Overall, we may
not achieve a confidence level of αc when we consider multiple inferences. Let us illustrate
this situation by the following experiment. Consider the single-stage infinite SCSP shown in
Fig. 14 where we have three binary decision variables, and two continuous random variables
r1 and r2, and three infinite chance constraints.

Assume that β1 = β2 = β3 = 0.5, ϑ = 0.01, and αc = 0.95. Assume further that, for
each chance constraint, we know the true mean for each assignment. Hence, we are able
to precisely know whether or not a certain assignment satisfies the chance constraint. In
Fig. 15, we show the consistent and inconsistent assignments for chance constraint h1.

Based on Fig. 15, value 0 in the domain of x and value 1 in the domain of y are truly
consistent; but value 1 in the domain of x and value 0 in the domain of y are truly inconsis-
tent. Similarly we set the consistent and inconsistent assignments for h2 and h3 so that for
h2 value 1 in the domain of y and value 0 in the domain of z are truly consistent, but value

Fig. 13 The correct
classification rate (CCR) for
μ = 0.5, αc = 0.95, and
ϑ = 0.001
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Fig. 14 A single-stage SCSP

0 in the domain of y and value 1 in the domain of z are truly inconsistent, and for h3 value
0 in the domain of x and value 0 in the domain of z are truly consistent, but value 1 in the
domain of x and value 1 in the domain of z are truly inconsistent.

Therefore, any sound algorithm that enforces (αc, ϑ)-consistency should simultaneously
prune 1 from the domain of x, value 0 from the domain of y, and value 1 from the domain
of z in αc% of the times while allowing an error threshold of ϑ . But, if we enforce (αc, ϑ)-
consistency for each value independently, what is the overall CCR achieved for one chance
constraint (namely h1), two chance constraints (say h1 and h2 simultaneously), and the
whole problem (namely h1, h2, and h3 simultaneously)?

Our experimental setup is as follows. We run 1000 experiments where each experiment
is as follows:

1. For each assignment Ai ∈ {A1, . . . , A12}, since αc = 0.95 and ϑ = 0.01, we generate
an independent sample of size n = 390003.

2. For each value v in the domain of every decision variable (x, y, and z), if, for any
assignment Ai in which v appears, our method in the previous section classifies v as
(αc, ϑ)-inconsistent, we prune v from the domain of the decision variable.

3. The overall number of correct classification is updated as follows:

Correct classification wrt to h1: we increment the number of correct classification
wrt to h1 by one if we simultaneously prune value 1 from the domain of x and value
0 from the domain of y.

Correct classification wrt to h1 and h2: we increment the number of correct classifi-
cation wrt to h1 and h2 by one if we simultaneously prune value 1 from the domain
of x, value 0 from the domain of y, and value 1 from the domain of z.

Correct classification wrt to h1, h2, and h3: we increment the number of correct clas-
sification wrt to h1, h2, and h3 by one if we simultaneously prune value 1 from the
domain of x, value 0 from the domain of y, and value 1 from the domain of z. Note
that this case is different from the previous case because in the previous case, only

3Determined from the previous experiments
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Fig. 15 Consistent and inconsistent assignments in h1 wrt to β1 = 0.5 and ϑ = 0.01

assignments of h1 and h2 are used to make the inference; whereas, in this case, all
assignments are used in the inference process.

Finally, the CCR wrt to h1 is the total number of correct classification wrt to h1 divided
by 1000. Similarly, we compute the CCR wrt h1 and h2 and the CCR wrt h1, h2, and h3.

The results of the experiments are shown in Fig. 16. Like expected, as |A| increases, so
does the probability of misclassifying values. So, how to cure this problem? A conservative
approach is to apply the Bonferoni correction to increase the individual confidence level [6].

Indeed, if we wish to achieve an overall confidence level of 0.95, the adjusted individual
confidence level with 10 assignments— using the Bonferroni correction—would be 0.995.
Thus, we need to compute our sample size for this adjusted confidence level. In practice,
however, it seems that by slightly increasing our sample size for an individual value, we
reduce the errors significantly and hence improve the overall confidence level. The reasons
are: (1) the Clopper-Pearson CI is a conservative one and achieves a higher confidence level
in practice; and (2) since we insist on computing CI’s whose width is no larger than ϑ , we
end up using a sample size larger than needed to achieve a confidence level αc, and hence in
practice we do achieve a higher confidence level in practice. Furthermore, since there is very
little computational cost for using a higher sample size in our method, it is still practical to
do so. For instance, in the previous experiments where for each value we maintain (αc, ϑ)-
consistency for αc = 0.95 and ϑ = 0.01, the sample size found and used by our method
was n = 39000; but if we increase it to n = 50000, we get the results shown in Fig. 17,
where the desired CCR is achieved in all cases.

7 Related works

Confidence-based reasoning (CBR) was originally introduced in [14] and further devel-
oped in [12] which proposes novel concepts and techniques that can be employed to find
approximate solutions that feature given statistical properties. In [3, 4, 7, 15] the authors
used sampling in order to reduce the number of scenarios considered for a given SCSP and
produce a solution within a reasonable time, but with no guarantees of the statistical prop-
erties of the approximate solutions found. In stochastic programming, the Sample Average
Approximation (SAA) method in [9]. SSA is a Monte Carlo simulation-based approach to
stochastic discrete optimization problem which reformulates the problem by replacing the
actual distribution of random variables in the problem by an empirical distribution obtained

Fig. 16 The correct classification rate (CCR) for μ = 0.5, αc = 0.95, and ϑ = 0.001
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Fig. 17 CCR for multiple chance constraints in practice with increased sample size

via sampling. The reformulated problem is then solved and the procedure is repeated multi-
ple times until a given termination criterion is satisfied. As pointed out by [12], the concepts
of confidence-based reasoning ((α, ϑ)-solution and (α, ϑ)-solution set) are novel and differ
from those of SAA in which one can not fix any a priori tolerated error threshold ϑ . Fur-
thermore, while CBR is based on the exact Clopper-Pearson confidence interval, SAA uses
conservative bounds such as Chernoff’s or Hoeffding’s inequalities. In addition, determin-
ing the sample size using the CBR approach (Definition 2 in [12]) is independent of the
number of assignments in the feasible region.

All these methods, however, reformulate the problem via sampling in order to find an
approximate solution. All these methods, in order to solve the sampled SCSP, rely on the
whole policy tree of the entire sampled SCSP. In fact the policy tree comprises a number of
scenarios that is exponential in the size of random variable domains. Hence, as the size of
the policy tree grows larger, all these methods face a scalability problem (mainly memory
usage one) and thus hindering the application of these methods to solve large-scale SCSPs
[12]. This paper proposes the first step toward a completely novel and orthogonal approach
toward solving infinite SCSPs by showing how to lift the local inference methods— the core
component of most constraint solvers — from finite to infinite chance constraints. Thus,
opening the doors toward implementing statistical constraint solvers that would directly
solve infinite SCSPs instead of relying on reformulation. The statistical inference methods
proposed here are local, i.e., each statistical propagator associated with each infinite chance
constraint would use them to reason locally using only samples of random variables within
its scope. Hence, the size of the ”local” policy tree — constructed from the samples—
would not face any memory problems due to: (1) the size of the ”local” policy tree being
much smaller than the size of the whole policy tree since it only depends on the random
variables within the scope of the individual infinite chance constraint, as opposed to all
random variables within the SCSP; and (2) since these methods are local, we apply them
one by one through the propagation process at each node of the search tree and, after the
inference is performed, the memory is freed up.

8 Conclusion

Sound and complete reasoning about infinite chance constraints in the presence of random
variables with infinite support sets requires considering an infinite set of scenarios which
in turn is impossible in practice. In this paper, inspired by the concept of (αc, ϑ)-solutions
proposed in [12], we introduce , for the first time, the notion of statistical consistency and
in particular (αc, ϑ)-consistency for infinite chance constraints for single-stage SCSPs in
which at least one random variable has an infinite support. This statistical consistency is
based on two key parameters αc and ϑ in order to relax the completeness and precision of
such an inference in practice. With αc, the definition sets a level of confidence about the
inference one wishes to achieve from a subset of scenarios, i.e., from incomplete informa-
tion about the scenarios whereas the ϑ parameter sets a margin of error that can be tolerated
while making such an inference. Another important property of (αc, ϑ)-consistency is that
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the two parameters are to be set by the decision-maker depending on the problem at hand,
thus making it a flexible notion that may be adjusted based on the particular needs of the
decision maker.

We proposed a statistical inference method that uses confidence intervals for enforcing
(αc, ϑ)-consistency. Our empirical study confirms and validates our theoretical properties of
the proposed method. Finally, we have demonstrated for the first time how to directly solve
a whole infinite SCSP without reformulation. This highlights the possibility and potential
of using the proposed notions and statistical inference methods in order to be able to design
and implement new families of statistical constraint solvers that reason directly about and
solve infinite SCSPs.

In future, we plan to: (1) further study how to better determine the appropriate sample
size needed to enforce (αc, ϑ)-GAC; (2) implement a statistical constraint solver that would
directly solve infinite SCSPs; and (3) solve few benchmark problems and compare our
approach against SAA and CBR to be able to properly assess the value of such an approach.
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