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Abstract While the axiomatic system P is an important standard for plausible, nonmono-
tonic inferences from conditional knowledge bases, it is known to be too weak to solve
benchmark problems like Irrelevance or Subclass Inheritance. Ordinal conditional functions
provide a semantic base for system P and have often been used to design stronger inference
relations, like Pearl’s system Z, or c-representations. While each c-representation shows
excellent inference properties and handles particularly Irrelevance and Subclass Inheritance
properly, it is still an open problem which c-representation is the best. In this paper, we
consider the skeptical inference relation, called c-inference, that is obtained by taking all c-
representations of a given knowledge base into account. We study properties of c-inference
and show in particular that it preserves the properties of solving Irrelevance and Subclass
Inheritance. Based on a characterization of c-representations as solutions of a Constraint
Satisfaction Problem (CSP), we also model skeptical c-inference as a CSP and prove sound-
ness and completeness of the modelling, ensuring that constraint solvers can be used for
implementing c-inference.
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1 Introduction

Sets of conditionals of the form If A then normally B can serve as a knowledge base to a
reasoning agent. While such knowledge bases may contain all relevant rules for an agent,
they usually do not contain enough information to represent all plausible beliefs that a rea-
soning agent, operating based on this knowledge, should have. Thus, for a reasoning agent
it is essential to extend a knowledge base to what is called a complete epistemic state, con-
taining all beliefs necessary to answer arbitrary questions [21]. There are many ways to
represent the epistemic state of an agent obtained from a set of qualitative conditionals, e.g.
using probabilities [1], ε-semantics [31], big-stepped probabilities [3, 33], the system-of-
spheres semantics of Lewis [26], possibility theory [3, 17], or ordinal conditional functions
[34, 35]; for a formal comparison of different semantics of conditional knowledge and the
formal interrelationships and possible translations among them see e.g. [9].

Determining inductive inferences based on knowledge bases of conditional rules is an
important task in nonmonotonic reasoning. Here, calculi like Adams’ system P [1], the
rational closure of the knowledge base [27], probabilistic approaches like p-entailment [18],
reasoning under maximum entropy [30], or possibilistic inference methods [3, 17] have
been developed, as well as the inductive methods of Pearl’s system Z [20, 32] or c-
representations [22, 23]. The latter two rely on Spohn’s ordinal conditional functions [34,
35] for calculating inferences which means that the underlying preferential model [28]
always is set up upon a total preorder on the set of possible worlds. In this article, we define
a novel inductive inference relation, called c-inference, as a skeptical inference over the
(infinitely many) c-representations of a knowledge base. We show that this inference rela-
tion, even if set up upon a partial ordering of the worlds, exceeds system P and handles
important benchmarks of plausible reasoning, like the Drowning Problem or Irrelevance,
properly. We model the c-representations of a knowledge base R as a constraint satisfaction
problem (CSP), denoted by CR(R) (cf. [10]), and prove correctness and completeness of
this modelling. Since CR(R) is solvable if and only if R is consistent, this CSP modelling
additionally yields an alternative to the tolerance partitioning algorithm [20, 32] for check-
ing the consistency of R. We also show how c-inference can be realized by a CSP and prove
that every c-inference can be reduced to the solvability of a constraint satisfaction problem.
Hence, constraint solvers can be used for checking the consistency of a knowledge base
R, for computing c-representations for R, and for implementing c-inference in the context
of R.

This article revises and largely extends the conference paper [5]: We investigate skeptical
c-inference with respect to further general axioms put forward for nonmonotonic inference
from conditional knowledge bases representing sets of default rules. The constraint satis-
faction problems for c-representations and for c-inference are sharpened to CSPs over finite
domains, and we investigate the influence of reducing the size of the finite domains, thereby
simplifying the CSPs. We demonstrate, that in general, while still preserving soundness
and completeness of the modellings, there are different minimal upper bounds for the CSPs
modelling c-representations (up to equivalences) and modelling c-inference, respectively.

The rest of this paper is organized as follows: In Section 2 we recall the basics of
conditionals, ordinal conditional functions, plausible inference, system P, system Z and c-
representations as far as needed for the formal background of this paper. In Section 3, we
prove that the CSP CR(R) for c-representations of a knowledge base R is a correct and
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complete modelling of c-representations. Section 4 defines c-inference as skeptical infer-
ence relation over all c-representations of a knowledge base. We prove that c-inference not
only satisfies but exceeds system P, study c-inference with respect to general axioms for
nonmonotonic inference, and show that c-inference handles selected benchmarks properly.
A characterization of c-inference as a CSP along with a correctness and completeness theo-
rem is given in Section 5. In Section 6, CSPs over finite domains for c-representations and
for c-inference are developed. In Section 7 we give a brief overview of a system implement-
ing skeptical c-inference, along with other nonmonotonic inference relations. In Section 8,
we conclude and point out further work.

2 Conditionals, OCF, and plausible inference

Let Σ = {v1, ..., vm} be a finite propositional alphabet. From Σ we obtain the propositional
language L as the set of formulas of Σ closed under negation ¬, conjunction ∧, and dis-
junction ∨, as usual; for formulas A, B ∈ L, A ⇒ B denotes the material implication and
stands for ¬A ∨ B. For shorter formulas, we abbreviate conjunction by juxtaposition (i.e.,
AB stands for A ∧ B), and negation by overlining (i.e., A is equivalent to ¬A). A literal is
a propositional variable vi or a negated propositional variable vi . A conjunction that men-
tions every variable in Σ , is called a complete conjunction over Σ . Let Ω denote the set of
possible worlds over L; Ω will be taken here simply as the set of all propositional interpre-
tations over L and can be identified with the set of all complete conjunctions over �. For
ω ∈ Ω , ω |= A means that the propositional formula A ∈ L holds in the possible world ω.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then normally B”
and is a trivalent logical entity with the evaluation [14, 22]

(B | A)(ω) =
⎧
⎨

⎩

true iff ω |= AB (verification),
false iff ω |= AB (falsification),
undefined iff ω |= A (not applicable).

A knowledge base R = {(B1|A1), ..., (Bn|An)} is a finite set of conditionals. A condi-
tional (B | A) is tolerated by a set of conditionals R if there is a world ω ∈ Ω such that
ω |= AB and ω |= ∧n

i=1(Ai ⇒ Bi), i.e., if ω verifies (B | A) and does not falsify any
conditional in R.

An Ordinal Conditional Function (OCF, ranking function) [34, 35] is a function κ :
Ω → N0 ∪ {∞} that assigns to each world ω ∈ Ω an implausibility rank κ(ω), that is,
the higher κ(ω), the more surprising ω is. OCFs have to satisfy the normalization condition
that there has to be a world that is maximally plausible, i.e., the preimage of 0 cannot be
empty, formally κ−1(0) 	= ∅. The rank of a formula A is defined to be the rank of the least
surprising world that satisfies A, formally

κ(A) = min{κ(ω) | ω |= A}. (1)

The set of models of tautologies is the complete set of possible worlds, therefore the normal-
ization condition directly gives us κ(�) = 0. In accordance with general order-theoretical
conventions, we set κ(⊥) = ∞.

An OCF κ accepts a conditional (B | A) (denoted by κ |= (B | A)) if the verification
of the conditional is less surprising than its falsification, i.e., if κ(AB) < κ(AB). This
can also be understood as a nonmonotonic inference relation between the premise A and
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the conclusion B: We say that A κ-entails B (written A |∼ κB) if κ accepts the conditional
(B | A), formally

κ |= (B | A) iff κ(AB) < κ(AB) iff A |∼κB. (2)

Note that κ(AB) < κ(AB) is equivalent to κ(AB) − κ(A) > 0, giving us

κ |= (B | A) iff κ(AB) − κ(A) > 0. (3)

The acceptance relation in (2) is extended as usual to a set R of conditionals by defining
κ |= R if κ |= (B | A) for all (B | A) ∈ R. This is synonymous to saying that κ is
admissible with respect to R [20]. An OCF that is admissible with respect to R is called a
ranking model of R.

A knowledge base R is consistent if there exists a ranking model of R. Such an OCF
can be found if and only if in every non-empty subset R′ ⊆ R there is a conditional
(B|A) ∈ R′ that is tolerated by R′. This condition is equivalent to the existence of an
ordered partitioning (R0, ...,Rm) of R with the property that for every 0 � i � m every
conditional (B|A) ∈ Ri is tolerated by

⋃m
j=i Rj [20, 32].

Example 1 (Rbird) We illustrate the definitions and propositions in this article with the
well-known penguin example. Here, the variables in the alphabet Σ = {p, b, f } indi-
cate whether something is a bird (b) or not (b), can fly (f ) or not (f ) and whether
something is a penguin (p) or not (p) which results in the possible worlds Ω =
{pbf , pbf , pbf , pb f , pbf , pbf , pbf , pb f }. The knowledge base Rbird = {δ1, δ2, δ3, δ4}
consists of the four conditionals:

δ1 : (f | b) “If something is a bird, it usually can fly.”
δ2 : (f | p) “If something is a penguin, it usually cannot fly.”
δ3 : (f | pb) “If something is a penguin bird, it usually cannot fly.”
δ4 : (b | p) “If something is a penguin, it usually is a bird.”

This knowledge base is consistent: For R0 = {(f | b)} and R1 = Rbird\R0 we have the
ordered partitioning (R0,R1) such that every conditional in R0 is tolerated by R0 ∪R1 =
Rbird and every conditional in R1 is tolerated by R1. For instance, (f | b) is tolerated by
Rbird since there is, for example, the world pbf with pbf |= bf as well as pbf |= (p ⇒
f ) ∧ (pb ⇒ f ) ∧ (p ⇒ b). Table 1 shows an OCF κ that is a ranking model for Rbird; for
instance we have κ |= (f | b) since κ(bf ) = min{κ(pbf ), κ(pbf )} = min{2, 0} = 0 and
κ(bf ) = min{κ(pbf ), κ(pbf )} = min{1, 1} = 1 and therefore κ(bf ) < κ(bf ).

The following p-entailment is an established inference in the area of ranking functions.

Definition 1 (p-entailment [20]) Let R be a conditional knowledge base and let A,B be
formulas. A p-entails B in the context of R, written A |∼p

RB, if A |∼κB for all κ |= R.

P-entailment can be characterized as follows:

Table 1 Ranking model κ for the knowledge base Rbird in Example 1

ω p b f p b f p b f p b f p b f p b f p b f p b f

κ(ω) 2 1 2 2 0 1 0 0
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Proposition 1 ([16, 19, 20]) Let R be a conditional knowledge base and let A, B be for-
mulas. A p-entails B in the context of a knowledge base R, if and only if R ∪ {(B | A)} is
inconsistent.

Example 2 (Rbird, cont’d) We illustrate p-entailment with the running example. Here the
knowledge base Rbird p-entails, for instance, that non-flying penguins are birds, formally,
pf |∼p

Rb: Using Prop. 1, we observe that Rbird ∪ {(b | pf )} is inconsistent because every
world ω that verifies the conditional (b | pf ), i.e., ω |= pb f , violates (b | p), and every
world ω that verifies (b | p), i.e., ω |= pb, violates (b | pf ). Therefore, the conditional
(b | pf ) is neither tolerated by Rbird nor does it tolerate Rbird and hence Rbird∪{(b | pf )}
is inconsistent. Hence by Definition 1 we obtain pf |∼p

Rb.

Nonmonotonic inference relations are usually evaluated by means of properties. In par-
ticular, the axiom system P [1] provides an important standard for plausible, nonmonotonic
inferences. With |∼ being a generic nonmonotonic inference operator and A, B, C being
formulas in L, the six properties of system P are defined as follows:

(REF) Reflexivity for all A ∈ L it holds that A |∼A

(LLE) Left Logical Equivalence A ≡ B and B |∼ C imply A |∼ C

(RW) Right weakening B |= C and A |∼ B imply A |∼ C

(CM) Cautious Monotony A |∼B and A |∼C imply AB |∼ C

(CUT) A |∼B and AB |∼ C imply A |∼ C

(OR) A |∼ C and B |∼ C imply (A ∨ B) |∼ C

We refer to Dubois and Prade [15] for the relation between p-entailment and system P:

Proposition 2 ([15]) LetA,B be formulas and letR be a conditional knowledge base. Then
B follows from A in the context of R with the rules of system P if and only if A p-entails B

in the context ofR.

So, given a knowledge base R, system P inference is the same as p-entailment.
Two inference relations which are defined by specific OCFs obtained inductively from

a knowledge base R have received some attention: system Z and c-representations, or
the induced inference relations, respectively, both show excellent inference properties. We
recall both approaches briefly.

System Z [32] is based upon the ranking function κZ , which is the unique Pareto-minimal
OCF that accepts R. The system is set up by forming an ordered partition (R0, ...,Rm) of
R, where each Ri is the (with respect to set inclusion) maximal subset of

⋃m
j=i Rj that

is tolerated by
⋃m

j=i Rj . This partitioning is unique due to the maximality. The resulting

OCF κZ is defined by assigning to each world ω a rank of 1 plus the maximal index 1 �
i � m of the partition that contains conditionals falsified by ω or 0 if ω does not falsify
any conditional in R. Formally, for all (B | A) ∈ R and for Z(B | A) = i if and only if
(B | A) ∈ Ri , the OCF κZ is given by

κZ(ω) =
{

0 if ω does not falsify any conditional in R,

max{Z(B | A)|(B | A) ∈ R, ω |= AB} + 1 otherwise.
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Other than system Z, the approach of c-representations does not use the most severe falsifi-
cation of a conditional, but assigns an individual impact to each conditional and generates
the world ranks as a sum of impacts of falsified conditionals.

Definition 2 (c-representation [22, 23]) Let R be a knowledge base. A c-representation of
R is a ranking function κ constructed from integer impacts ηi ∈ N0 = {0, 1, 2, . . .} assigned
to each conditional (Bi | Ai) such that κ accepts R and is given by the following equation:

κ(ω) =
∑

1�i�n

ω|=AiBi

ηi (4)

The relationship between these two approaches of inductively generating or finding a
ranking model for a consistent knowledge base is well-researched. For instance, it has been
shown that the two approaches differ in their inferences and that, in general, neither is
contained in the other [24, 36].

Examples of system Z and c-representations are given in the following sections.

3 Soundness and completeness of a CSP modeling of c-representations

In [10], a modeling of c-representations as solutions of a constraint satisfaction problem
is proposed and employed for computing c-representations using constraint logic program-
ming. In this section, we first recall this modeling, and then prove its soundness and
completeness.

Definition 3 (CR(R) [10]) Let R = {(B1 | A1), . . . , (Bn | An)}. The constraint
satisfaction problem for c-representations of R, denoted by CR(R), on the constraint vari-
ables {η1, . . . , ηn} ranging over N is given by the conjunction of the constraints, for all
i ∈ {1, . . . , n}:

ηi � 0 (5)

ηi > min
ω|=AiBi

∑

j 	=i

ω|=Aj Bj

ηj − min
ω|=AiBi

∑

j 	=i

ω|=Aj Bj

(6)

A solution of CR(R) is an n-tuple (η1, . . . , ηn) of natural numbers. For a constraint sat-
isfaction problem CSP, the set of solutions is denoted by Sol(CSP). Thus, with Sol(CR(R))

we denote the set of all solutions of CR(R).

Example 3 (Rbird, cont’d) The verification/falsification behaviour of the conditionals in
Rbird from Example 1 is given in Table 2. Based on these evaluations, the constraints in
CR(Rbird) according to (6) are

η1 > min{η2 + η3, 0} − min{0, 0} = 0 (7)

η2 > min{η1, η4} − min{η3, η4} (8)

η3 > η1 − η2 (9)

η4 > min{η2 + η3, η1} − min{η2, 0} = min{η2 + η3, η1} (10)
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Table 2 Verification / falsification behavior of Rbird: (+) indicates verification, (−) falsification and an
empty cell non-applicability

pbf pbf pbf pb f pbf pbf pbf pb f

δ1 = (f |b) + − + −
δ2 = (f |p) − + − +
δ3 = (f |pb) − +
δ4 = (b|p) + + − −

because ηi � 0 for all 1 � i � n. The inequality (9) is equivalent to η2 + η3 > η1, which
together with (10) gives us η4 > η1, and we finally obtain

η1 > 0
η2 > η1 − min{η3, η4}
η3 > η1 − η2
η4 > η1.

(11)

Three possible solutions for this system (11) that also satisfy the constraint (5) are
→
η

(1) =
(1, 1, 1, 2),

→
η

(2) = (1, 2, 0, 2) and
→
η

(3) = (1, 0, 3, 2).

Proposition 3 (Soundness of CR(R)) For R = {(B1 | A1), . . . , (Bn | An)} let
→
η =

(η1, . . . , ηn) ∈ Sol(CR(R)). Then the function κ defined by the equation system given by
(4) is a c-representation that acceptsR.

Proof To show that the modeling given by the constraint satisfaction problem CR(R) is
sound, we have to show that every solution of the constraints given by Eqs. (5) and (6) is a
c-representation of R. We will use the techniques for showing c-representation properties
given in [22] to show that κ accepts R, i.e., for all (Bi |Ai) ∈ R

κ(AiBi) < κ(AiBi). (12)

Using the definition of ranks of formulas for each 1 � i � n, (12) gives us

min
ω|=AiBi

{κ(ω)} < min
ω|=AiBi

{κ(ω)}. (13)

We now use (4) and get

min
ω|=AiBi

{ ∑

1�j�n

ω|=Aj Bj

ηi

}
< min

ω|=AiBi

{ ∑

1�j�n

ω|=Aj Bj

ηi

︸ ︷︷ ︸
(a)

}
. (14)

In each line i, ηi is a summand of (a) and hence this summand can be extracted from the
minimum, yielding

min
ω|=AiBi

{ ∑

1�j�n

ω|=Aj Bj

ηi

}
< min

ω|=AiBi

{ ∑

1�j�n;i 	=j

ω|=Aj Bj

ηi

}
+ ηi. (15)
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We rearrange the inequality in (15) and get

ηi > min
ω|=AiBi

{ ∑

1�j�n

ω|=Aj Bj

ηi

︸ ︷︷ ︸
(b)

}
− min

ω|=AiBi

{ ∑

1�j�n;i 	=j

ω|=Aj Bj

ηi

}
. (16)

In the first minimum in (16), (Bi |Ai) is never falsified, so i can be removed from the range
of (b), which gives us

ηi > min
ω|=AiBi

{ ∑

1�j�n;i 	=j

ω|=Aj Bj

ηi

}
− min

ω|=AiBi

{ ∑

1�j�n;i 	=j

ω|=Aj Bj

ηi

}
(17)

which is (6). Therefore, every solution of CR(R) ensures that the resulting κ defined by (4)
in Definition 2 is a c-representation that accepts R.

Definition 4 (κ→
η
,O(CR(R))) For

→
η ∈ Sol(CR(R)) and κ as in (4), κ is the OCF induced

by
→
η and is denoted by κ→

η
. The set of all OCFs induced by the solutions of CR(R) is

denoted by O(CR(R)) = {κ→
η

| →
η ∈ Sol(CR(R))}.

Example 4 (Rbird, cont’d) Using (4) with the solutions for the CSP calculated in Example 3
gives us the OCFs shown in Table 3. All of these OCFs accept the knowlege base Rbird; for
→
η

(1) = (1, 1, 1, 2) we have, for instance,
κ→

η
(1) (bf ) = min{κ→

η
(1) (pbf ), κ→

η
(1) (pbf )} = 0

κ→
η

(1) (b) = min{κ→
η

(1) (pbf ), κ→
η

(1) (pbf ), κ→
η

(1) (pbf ), κ→
η

(1) (pbf )} = 0

κ→
η

(1) (bf ) = min{κ→
η

(1) (pbf ), κ→
η

(1) (pbf )} = 1

and hence

κ→
η

(1) (f |b) = κ→
η

(1) (bf ) − κ→
η

(1) (b) = 0 < 1 = κ→
η

(1) (bf ) − κ→
η

(1) (b) = κ→
η

(1) (f |b).

The other ranks for the verification and falsification, respectively, of the conditionals
with respect to these ranking functions are given in Table 4 from which we can see that each
of the three induced OCFs accepts Rbird.

Proposition 4 (Completeness of CR(R)) Let κ be a c-representation for a knowledge base

R = {(B1 | A1), . . . , (Bn | An)}, i.e., κ |= R. Then there is a vector
→
η ∈ Sol(CR(R))

such that κ = κ→
η
.

Table 3 Induced ranking functions for the solution vectors
→
η

(1) = (1, 1, 1, 2),
→
η

(2) = (1, 2, 0, 2), and
→
η

(3) = (1, 0, 3, 2) in the penguin example Rbird (cf. Examples 3 and 4)

ω pbf pbf pbf pb f pbf pbf pbf pb f

κ→
η

(1) (ω) 2 1 3 2 0 1 0 0

κ→
η

(2) (ω) 2 1 4 2 0 1 0 0

κ→
η

(3) (ω) 3 1 2 2 0 1 0 0
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Table 4 Acceptance of conditionals in the penguin example Rbird by the OCFs in Table 3. Note that
κ(B|A) = κ(AB) − κ(A) for all A,B ∈ L

κ→
η

(1) κ→
η

(2) κ→
η

(3)

verif. falsif. accpt? verif. falsif. accpt? verif. falsif. accpt?

(f | b) 0 < 1 � 0 < 1 � 0 < 1 �
(f | p) 0 < 1 � 0 < 1 � 0 < 1 �
(f | pb) 0 < 1 � 0 < 1 � 0 < 2 �
(b | p) 2 < 1 � 0 < 1 � 0 < 1 �

Proof A ranking function is a c-representation for R if and only if it is composed by (4)
and accepts R. For the proof of Proposition 3 we have shown that these two conditions are
equivalent to the impacts being chosen to satisfy (5) and (6). Therefore, for every c-repre-
sentation κ for R there is a vector

→
η ∈ Sol(CR(R)) such that κ = κ→

η
, as proposed.

It has been shown that there is a c-representation for a knowledge base R if and only if R
is consistent [22, 23]. The soundness and completeness results in Propositions 3 and 4 give
us that CR(R) is solvable if and only if there is a c-representation for R. This gives us an
additional criterion for the consistency of a knowledge base which we formalize as follows.

Corollary 1 (Consistency Criterion) A knowledge base R is consistent if and only if the
constraint satisfaction problem CR(R) has a solution.

Applying a constraint satisfaction solver, Corollary 1 gives us an implementable alterna-
tive to the tolerance test algorithm in [32].

4 Skeptical inference based on c-representations

Equation (2) defines an inference relation |∼ κ based on a single OCF κ . For a given knowl-
edge base R and two formulas A, B we will now introduce a novel skeptical inference
relation based on all c-representations.

Definition 5 (c-inference, |∼c
R) Let R be a knowledge base and let A, B be formulas. B is

a (skeptical) c-inference from A in the context of R, denoted by A |∼ c
RB, if A |∼ κB holds

for all c-representations κ for R.

We will show that skeptical c-inference is different from p-entailment, which is equiva-
lent to the skeptical inference relation obtained by considering all OCFs that accept R, and
that it is able to preserve high-quality inference properties that inference based on single
c-representations has.

Example 5 ( |∼c
R) Consider the three OCFs κ→

η
(1) , κ→

η
(2) , and κ→

η
(3) from Table 3 calculated

in Example 4 that are induced by the solutions
→
η

(1)
,

→
η

(2)
, and

→
η

(3)
of CR(Rbird) given

in Example 3. In Table 5, their acceptance properties with respect to some conditionals
that are not contained in Rbird are given. From the acceptance properties in Table 5, we
conclude that b is not a c-inference of pf in the context of Rbird, denoted by pf |�c

Rbird
b,

since we find that for all c-representations κ→
η

of Rbird the ranks of the respective worlds



256 C. Beierle et al.

Table 5 Acceptance properties for the ranking functions κ→
η

(1) , κ→
η

(2) , κ→
η

(3) (Table 3) that accept Rbird with

respect to three conditionals not contained in Rbird

κ→
η

(1) κ→
η

(2) κ→
η

(3)

verif. falsif. accpt. verif. falsif. accpt. verif. falsif. accpt.

(b | pf ) 0 < 1 � 0 < 2 � 1 > 0 �

(b | pf ) 1 > 0 � 2 > 0 � 0 < 1 �
(bf | p) 0 < 1 � 0 < 1 � 0 < 1 �

are κ→
η
(pbf ) = η2 + η3 and κ→

η
(pbf ) = η2 + η4, which with the solutions of Example 3

result in the following concrete ranks and relationships:

κ→
η

(1) (pbf ) = 2 < 3 = κ→
η

(1) (pbf )

κ→
η

(2) (pbf ) = 2 < 4 = κ→
η

(2) (pbf )

κ→
η

(3) (pbf ) = 3 < 2 = κ→
η

(3) (pbf )

So there are c-representations ofRbird, for instance κ→
η

(3) , with the property that κ→
η

(3) 	|= (b |
pf ). Likewise there are c-representations of Rbird, for instance κ→

η
(1) , with the property that

κ→
η

(2) 	|= (b | pf ), from which we obtain pf |�c
Rbird

b. Thus, by c-inference we can neither

infer that flying penguins are birds nor can we infer that flying penguins are not birds.
On the other hand, c-inference allows the plausible conclusion that flying birds are not

penguins, i.e., we have bf |∼c
Rbird

p. For a first illustration, to see that the conditional (p |
bf ) is accepted by the three OCFs given in Example 4, observe that κ→

η
(1) |= (p | bf )

since κ→
η

(1) (pbf ) = 0 < 2 = κ→
η

(1) (pbf ), κ→
η

(2) |= (p | bf ) since κ→
η

(2) (pbf ) = 0 <

2 = κ→
η

(2) (pbf ), and κ→
η

(3) |= (p | bf ) since κ→
η

(3) (pbf ) = 0 < 3 = κ→
η

(3) (pbf ). More

generally, the conditional (p | bf ) is accepted by all c-representations of Rbird since we
have κ→

η
(pbf ) = 0 and κ→

η
(pbf ) = η2 +η3, for every solution

→
η of the CSP because of (4)

and Table 2. From the system of inequalities (11) in Example 3 we obtain that η2 + η3 >

η1 > 0. Therefore κ→
η
(pbf ) < κ→

η
(pbf ) which implies κ→

η
|= (p | bf ) for all solutions

→
η ,

by which we obtain bf |∼c
Rbird

p using Definition 5.
Another c-inference of Rbird is that non-flying penguins are birds, i.e., we have

pf |∼c
Rbird

b: According to (4) and Table 2 we have κ(pbf ) = η1 and κ(pb f ) = η4. The

conditions (11) in Example 3 give us that η4 > η1 and therefore we have pf |∼ κb by (2)
for every c-repesentation κ of Rbird and hence pf |∼c

Rbird
b.

Thus, overall from this example we obtain that for Rbird we have, for instance,
pf |∼c

Rbird
b but neither pf |�c

Rbird
b nor pf |�c

Rbird
b.

Comparing Definition 5 to Definition 1, we find that c-inference is defined in full analogy
to p-entailment but with the set of OCF that accept R being restricted to c-representations of
R. An obvious question is what the exact relationship between c-inference and p-entailment
is, and which features of c-representations still hold for c-inference. First, we show that
c-inference satisfies system P but allows for additional inferences.
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Proposition 5 Let R be a knowledge base and let A, B be formulas. If B can be inferred
from A in the context of R using system P, then it can also be c-inferred from A in the
context ofR.

Proof By Definition 1, B can be p-entailed from A in the context of R if and only if the
conditional (B | A) is accepted by every OCF that accepts R. Naturally, if (B | A) is
accepted by all OCFs that accept R, then (B | A) is also accepted by every subset of
all OCFs that accept R. Since every c-representation accepts R, we obtain that if B is
p-entailed from A given R, then it is also c-inferred. Since p-entailment is equivalent to
system P inference (cf. Proposition 2) we conclude that every system P inference from R
can also be drawn using c-inference on R.

To show that c-inference allows for inferences beyond system P we consider the
following example.

Example 6 (R′
bird) We use the knowledge base

R′
bird = {δ1 : (f | b), δ4 : (b | p)}

which is a proper subset of Rbird from Example 1. For each impact vector
→
η = (η1, η4)

for R′
bird, we obtain the inequalities η1 > 0 and η4 > 0 by the verification/falsification

behavior from Table 6, implying
κ→

η
(pf ) = min{κ→

η
(pbf ), κ→

η
(pbf )} = min{0, η4} = 0

κ→
η
(pf ) = min{κ→

η
(pbf ), κ→

η
(pb f )} = min{η1, η4} > 0

and hence κ→
η
(pf ) < κ→

η
(pf ) for the OCF induced by

→
η . Thus, κ(pf ) < κ(pf ) for every c-

representation κ of R′
bird, giving us p |∼c

R′
bird

f . Note that this inference is reasonable with

respect to R′
bird, since R′

bird does not contain any information that can inhibit this chaining
of rules.

Proposition 6 There are knowledge bases R and propositions A, B such that B is
c-entailed, but not p-entailed, from A in the context ofR.

Proof R′
bird from Example 6 is an example for such a knowledge base. Here, we have

p |∼c
R′

bird
f . From Proposition 1 we obtain that if we had p |∼ p

R′
bird

f , then R′
bird ∪ {(f | p)}

would be inconsistent. This is not the case since R′
bird ∪ {(f | p)} is consistent (e.g., with

the tolerance partitioning ({(f | b)}, {(f | p), (b | p)})), which gives us that (f | p) is
c-entailed, but not p-entailed from R′

bird.

From these two propositions we conclude:

Corollary 2 Every system P entailment of a knowledge base R is also a c-inference of R;
the converse is not true in general.

Table 6 Verification/falsification behavior and abstract weights for R′
bird from Example 6 and the OCF

κ(η1,η4) induced by an impact vector (η1, η4)

p b f p b f p b f p b f p b f p b f p b f p b f

δ1 = (f | b) + − + −
δ4 = (b | p) + + − −
κ(η1,η4)(ω) 0 η1 η4 η4 0 η1 0 0
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Since Corollary 2 gives us that c-inference includes and extends system P inferences, c-
inference satisfies all properties included in system P. We here recall some major properties
that can be derived from system P and hence also hold for c-inference (A, B,C ∈ L):

(SCL) Supraclassicality A |= B implies A |∼ B [28]

states that the set of nonmonotonic inferences from a formula includes the classical
consequences of this formula; (SCL) follows from (REF) and (RW).

(DED) Deduction AB |∼C implies A |∼ (B ⇒ C) [12]

introduces the so-called “tough half of the deduction theorem” to nonmonotonic inference
relations; (DED) follows from (LLE), (OR), (SCL) and (RW).

(AND) A |∼B and A |∼ C implies A |∼ BC [25]

states that if from a formula φ two formulas can be inferred, the conjunction of both
formulas can also be inferred; (AND) is a consequence of (CM), (CUT) and (SCL).

If two conclusions of the same premise can be joined conjunctively using (AND), one
might ask whether this is also valid for two premises with the same conclusion. This
property is formalized by the following property which, however, cannot be derived in
system P:

(CI) Conjunctive Insistence A |∼C and B |∼C implies AB |∼ C [11]

Conjunctive insistence states that (like with (AND) in the conclusion) the conjunction of
two formulas that allow for an identical inference still allows for this inference.

The following proposition shows that also c-inference does not satisfy (CI) in general:

Proposition 7 There are knowledge bases such that c-inference violates (CI).

We give an example for such a knowledge base.

Example 7 We use the knowledge base

R = {δ1 : (ab ∨ ab ∨ c | �), δ2 : (c | �)}
with the verification/falsification behavior shown in Table 7. The system of inequalities (4)
for this knowledge base reduces to η1 > 0 and η2 > 0, and so for any solution vector

→
η ,

the ranks κ→
η
(ω) of the worlds are calculated as given in the last line in Table 7. Regardless

of the concrete values for η1 and η2 this gives us the following relations for κ = κ→
η

:

κ(abc) = 0 < η1 = κ(abc) (18)

κ(abc) = 0 < η2 = κ(abc) (19)

κ(abc) = 0 < η2 = κ(abc) (20)

Table 7 Verification/falsification and (generic) c-representation for R in Example 7

ω a b c a b c a b c a b c a b c a b c a b c a b c

Verifies δ2 δ1 δ1, δ2 δ1 δ1, δ2 δ1 δ2 δ1

Falsifies δ1 δ2 — δ2 — δ2 δ1 δ2

κ→
η
(ω) η1 η2 0 η2 0 η2 η1 η2
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Therefore

κ(abc) = min{κ(abc), κ(abc)} < min{κ(abc), κ(abc)}
︸ ︷︷ ︸

(21.a)

(21)

for all c-representations κ of R, where by the definition of the rank of formulas in (1),
(21.a) gives us κ(ac) < κ(ac).

Hence, with the definition of κ-entailment in (2), a |∼ κc for all c-representations κ of R
and therefore a |∼ c

Rc. Likewise, from Table 7 we obtain the following relations:

κ(abc) = 0 < η1 = κ(abc) (22)

κ(abc) = 0 < η2 = κ(abc) (23)

κ(abc) = 0 < η2 = κ(abc) (24)

Therefore

κ(abc) = min{κ(abc), κ(abc)} < min{κ(abc), κ(abc)}
︸ ︷︷ ︸

(25.b)

(25)

and with the same justification as above, (25.b) gives us b |∼ c
Rc. From Table 7 we further

obtain κ(abc) = η1 and κ(abc) = η2. The CSP CR(R) does not determine a relation
between η1 and η2, so solutions with η1 > η2, η1 = η2 or η1 < η2 are valid solutions and
therefore there are c-representations for R such that κ(abc) 	< κ(abc), giving us ab |� c

Rc

in contrast to the property (CI).

We have shown that c-inference exceeds system P. In the following we examine bench-
marks for plausible inference relations, namely Subclass Inheritance, Irrelevance, and Rule
Chaining, which we illustrate using the following modification of the running example.

Example 8 (R∗
bird) We extend the alphabet Σ = {p, b, f } of our running example knowl-

edge base Rbird from Example 1 with the variable w for having wings (w) or not (w), the
variable a for being airborne(a) or not (a), and the variable r for being red (r) or not (r) to
obtain the alphabet Σ∗ = {p, b, f ,w, a, r}. We use the knowledge base

R∗
bird = {

δ1 : (f | b), δ2 : (f | p), δ4 : (b | p), δ5 : (w | b), δ6 : (a | f )
}

where the conditional δ5 = (w | b) encodes the rule that birds usually have wings, and
the conditional δ6 = (a | f ) encodes the rule that flying things are usually airborne; the
other three conditionals δ1, δ2, δ4 are the same as in Rbird. The verification / falsification
behavior of the worlds for the knowledge base R∗

bird is given in Table 8. For each impact

vector
→
η = (η1, η2, η4, η5, η6) for R∗

bird, the constraints defined by (5) and (6) give us the
following system of inequations:

η1 > 0 (26)

η2 > min{η1, η4} (27)

η4 > min{η1, η2} (28)

η5 > 0 (29)

η6 > 0. (30)
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If we assume η1 � η2 then (28) would give us η4 > η2 which would imply that η1 < η4
by (27). But then, (27) would also require η1 < η2 in contradiction to the assumption.
Therefore, we conclude η1 	� η2 and hence η1 < η2, which gives us the inequalities

η1 > 0

η2 > η1

η4 > η1 (31)

η5 > 0

η6 > 0.

An inference relation suffers from the Drowning Problem [2, 32] if it does not allow
to infer properties of a superclass for a subclass that is exceptional with respect to another
property because the respective conditional is “drowned” by others. E.g., penguins are
exceptional birds with respect to flying but not with respect to having wings. So we would
reasonably expect that penguins have wings. However, system Z is known to suffer from
the Drowning Problem, as the following example shows.

Example 9 (Drowning Problem) System Z partitions the knowledge base R∗
bird of Exam-

ple 8 into (R0 = {δ1, δ5, δ6},R1 = {δ2, δ4}) which results in the ranking function κZ

given in Table 8 (rightmost columns). Here we have κZ(pw) = 1 = κZ(pw) and there-
fore we cannot infer whether penguins have wings: Every world ω with ω |= p falsifies a
conditional (cf. Table 8), and the minimal rank of every world satisfying p is 1. Since the
conditional (w | b) is in R0 and system Z always takes this maximal index of the partitions
containing conditionals falsified by ω, this conditional will never contribute to the rank of
any such world ω; its effect is “drowned” in the effects of the other conditionals.

The Drowning Problem distinguishes between inference relations that allow for Subclass
Inheritance only for non-exceptional subclasses (like System Z inference) and inference
relations that allow for subclass inheritance for exceptional subclasses (like inference with
minimal c-representations, cf. [24, 36]). Here we show that this property is preserved by
c-inference, the skeptical inference over all c-representations.

Observation 1 Skeptical c-inference does not suffer from the Drowning Problem in
Example 8.

Proof From the observations for c-representations of R∗
bird in Example 8 together with

Definition 2 we obtain, for each impact vector
→
η = (η1, η2, η4, η5, η6) for R∗

bird and the
correspondingly induced OCF κ→

η
,

κ→
η
(pw) = min{η2, η2 + η6, η1, η2 + η4, η2 + η4 + η6, η4}

= η1

according to (31) and

κ→
η
(pw) = min{η2 + η5

︸ ︷︷ ︸
>η1

, η2 + η5 + η6
︸ ︷︷ ︸

>η1

, η1 + η5
︸ ︷︷ ︸

>η1

, η2 + η4
︸ ︷︷ ︸

>η1

, η2 + η4 + η6
︸ ︷︷ ︸

>η1

, η4
︸︷︷︸
>η1

}.

This implies κ→
η
(pw) < κ→

η
(pw) for all impact vectors

→
η of R∗

bird, and therefore

κ(pw) < κ(pw) for all c-representations of R∗
bird and hence p |∼c

R∗
bird

w. That is, in



Properties of skeptical c-inference for conditional knowledge bases... 261

Table 8 Verification / falsification behavior of the worlds for the knowledge base R∗
bird (Example 8) and

ranking function κZ obtained from R∗
bird using System Z

ω Verifies Falsifies κZ ω Verifies Falsifies κZ

p b f w a r δ1, δ4, δ5, δ6 δ2 2 p b f w a r δ1, δ5, δ6 — 0

p b f w a r δ1, δ4, δ5, δ6 δ2 2 p b f w a r δ1, δ5, δ6 — 0

p b f w a r δ1, δ4, δ5 δ2, δ6 2 p b f w a r δ1, δ5 δ6 1

p b f w a r δ1, δ4, δ5 δ2, δ6 2 p b f w a r δ1, δ5 δ6 1

p b fw a r δ1, δ4, δ6 δ2, δ5 2 p b fw a r δ1, δ6 δ5 1

p b fw a r δ1, δ4, δ6 δ2, δ5 2 p b fw a r δ1, δ6 δ5 1

p b fw a r δ1, δ4 δ2, δ5, δ6 2 p b fw a r δ1 δ5, δ6 1

p b fw a r δ1, δ4 δ2, δ5, δ6 2 p b fw a r δ1 δ5, δ6 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4, δ5 δ1 1 p bf w a r δ5 δ1 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p bf w a r δ2, δ4 δ1, δ5 1 p bf w a r — δ1, δ5 1

p b f w a r δ6 δ2, δ4 2 p b f w a r δ6 — 0

p b f w a r δ6 δ2, δ4 2 p b f w ar δ6 — 0

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b f w a r — δ2, δ4, δ6 2 p b f w a r — δ6 1

p b fw a r δ6 δ2, δ4 2 p b fw a r δ6 — 0

p b fw a r δ6 δ2, δ4 2 p b fw a r δ6 — 0

p b fw a r — δ2, δ4, δ6 2 p b fw a r — δ6 1

p b fw a r — δ2, δ4, δ6 2 p b fw a r — δ6 1

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

p b f w a r δ2 δ4 2 p b f w a r — — 0

difference to system Z (see Example 9), using c-inference we can infer that penguins have
wings in the context of R∗

bird, even if they are exceptional birds with respect to flying.

It is straightforward to explain more generally why c-inference does not suffer from
a Drowning Problem. C-inference is the skeptical inference of all c-representations of a
knowledge base R. These OCFs are set up such that every rank of every world takes the
impact of every single conditional into account independently, i.e., a world that falsifies a
conditional is usually less plausible than a world that, ceteris paribus, does not falsify this
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conditional. If we presuppose that all ηi are strictly positive, then we can definitely exclude
the Drowning Problem; this means that in c-representations with strictly positive impacts,
no conditional can simply “drown” in a set of others.

But even if, as observed above, c-inference does not suffer from the Drowning Problem
in the usual examples, in general, this skeptical inference relation does not allow for rational
transitive inferences.

(RT) Rational Transitivity A |∼ B, B |∼C and A |�C implies A |∼ C [13]

Proposition 8 There are knowledge bases such that c-inference violates (RT).

We give an example for such a knowledge base.

Example 10 We illustrate that there are knowledge bases such that c-inference violates (RT)
with the knowledge base

R = {δ1 : (a|�), δ2 : (b|a), δ3 : (b ∨ c|a)}
whose verification/falsification behavior is shown in Table 9. The constraint satisfcation
problem CR(R) for R reduces to η1 > 0, η2 > 0, and η3 > 0, with no further constraints
on the impacts. So for all c-representations κ of R we have the inferences a |∼ c

Rb since
κ(ab) = η1 < η1 + η2 = κ(ab), b |∼ c

Rc since κ(bc) = 0 < min{η1, η3} = κ(bc), and
a |� c

Rc because κ(ac) = η1 = κ(ac). Because of this equality we also have a |� c
Rc in

contrast to (RT).

Overall from Observation 1 and Proposition 8 we obtain that using c-inference, it is pos-
sible to connect explicitly stated knowledge, but not any possible inferences in a (rational)
transitive way.

Another benchmark for plausible reasoning is Irrelevance. It is safe to assume that a
variable is not relevant for an inference based on a knowledge base if the variable does not
appear in any conditional of the knowledge base.

Proposition 9 (c-inference and Irrelevance) Variables that do not appear in the knowledge
base do not change the outcome of the inferences drawn with c-inference.

Proof Let Σ be a propositional alphabet and d ∈ Σ , and let R be a conditional knowledge
base where there is no conditional (Bi | Ai) ∈ R such that either d or d appears in the con-
junction AiBi . Let ω, ω′ be a pair of worlds such that ω = o∧d and ω′ = o∧d. Since neither
d nor d is a member of any conjunction AiBi of the conditionals (Bi | Ai) ∈ R, the sets of

Table 9 Verification/falsification and (generic) c-representation for R in Example 10

ω a b c a b c a b c a b c a b c a b c a b c a b c

Verifies δ2 δ2 — — δ1, δ3 δ1 δ1, δ3 δ1, δ3

Falsifies δ1 δ1 δ1, δ2 δ1, δ2 — δ3 — —

κ→
η
(ω) η1 η1 η1 + η2 η1 + η2 0 η3 0 0
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conditionals falsified by ω and by ω′, respectively, are identical. By Definition 2 this means
that κ(ω) = κ(ω′). This implies that for every two formulas A, B, which are composed from
the language of the alphabet Σ \{d}, and for every configuration ḋ of d, the conjunction AB

(respectively AB) falsifies a conditional (Bi | Ai) if and only if ABḋ (respectively ABḋ)
falsifies the conditional, and therefore κ(AB) = min{κ(ABd), κ(ABd)} = κ(ABḋ) and
also κ(AB) = min{κ(ABd), κ(AB d)} = κ(ABḋ). This means for all c-representations
κ of R, if κ(AB) < κ(AB), then also κ(ABḋ) < κ(ABḋ). Thus, if A |∼c

RB, then also
Aḋ |∼c

RB.

We illustrate the behavior of |∼c
R regarding variables that are not relevant using the

knowledge base R∗
bird from Example 8:

Example 11 (c-inference and Irrelevance) Table 8 gives us that the behavior of all worlds ω

for R∗
bird with ω |= r is, ceteris paribus, identical to the behavior of all worlds ω with ω |= r .

Thus, we conclude directly that for all fixed configurations ṗ, ḃ, ḟ , ẇ, ȧ of {p, b, f,w, a},
we have κ(ṗḃḟ ẇȧr) = κ(ṗḃḟ ẇȧr). This means that, for instance, since in the context of
R∗

bird we can infer that birds can fly (b |∼c
R∗

bird
f ), we can also infer that red birds can fly

(br |∼c
R∗

bird
f ).

Combining the conditionals in a knowledge base by Rule Chaining is a natural ele-
ment of plausible reasoning and is, e.g., the base of syllogisms. However, we know that
transitivity is not a general inference rule in nonmonotonic logics. But we would expect
that chaining rules yields plausible inferences as long as there is no reason to believe the
opposite.

Example 12 (c-inference and chaining rules) We use again the knowledge base R∗
bird from

Example 8. Given that we have (f | b) and (a | f ) in the knowledge base, and no interfer-
ence between b and a , we would expect that chaining these rules is reasonable and that we
can infer that birds are usually airborne. With Table 8 and (31) in Example 8 we obtain that
κ(ba) = min{η1, η6} > 0 = κ(ba) and hence b |∼c

R∗
bird

a, as supposed.

Note that Example 12 illustrates that c-inference does not rely on a total, but a partial
ordering of the impacts imposed by Eqs. (5) and (6) and therefore, via Definition 2, a partial
ordering of the worlds for drawing inferences. In the example, nothing can be derived about
the concrete values of η1 and η6 except that they are positive (see (31)). This is sufficient to
guarantee the considered skeptical inference.

5 Characterizing c-inference by a CSP

For a given OCF κ , the relation κ |= (B | A) can be checked by determining κ(AB) and
κ(AB) according to (2). For checking the skeptical c-inference relation A |∼c

RB the count-
ably infinite set of all c-representations for R has to be taken into account. In the previous
section, we showed that such a c-inference can not be reduced to the inconsistency of
R∪ {(B | A)} which is a consequence of Proposition 6. In the following, we will show that
the relation |∼c

R can be characterized by a constraint satisfaction problem, implying that
|∼c

R can be computed using a constraint-based approach.
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Definition 6 (CRR(B | A), ¬CRR(B | A)) Let R = {(B1 | A1), . . . , (Bn | An)} and
(B | A) be a conditional. The acceptance constraint for (B | A) with respect toR, denoted
by CRR(B | A), is the following constraint:

min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi < min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi (32)

Likewise, ¬CRR(B | A) denotes the negation of (32), i.e., it denotes the constraint:
min

ω|=AB

∑

1�i�n

ω|=AiBi

ηi � min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi (33)

Note that CRR(B | A) is a constraint on the constraint variables η1, . . . , ηn which are
used in the CSP CR(R), but it does not introduce any new variables not already occurring
in CR(R); this observation also holds for the constraint ¬CRR(B | A).

The following proposition shows that the skeptical c-inference relation |∼c
R can be

modeled by a CSP.

Proposition 10 (c-inference as a CSP) LetR = {(B1 | A1), . . . , (Bn | An)} be a consistent
knowledge base and A, B formulas.

Then the following holds:

A |∼c
RB iff CR(R) ∪ {¬CRR(B | A)} has no solution. (34)

Proof Assume that A |∼c
RB holds, i.e., κ |= (B | A) holds for all c-representations κ for R.

If CR(R)∪ {¬CRR(B | A)} were solvable with a solution
→
η = (η1, . . . , ηn) then κ→

η
|= R

according to Prop. 3 where
κ→

η
(ω) =

∑

1�i�n

ω|=AiBi

ηi (35)

due to (4). Furthermore, since
→
η also solves ¬CRR(B | A), (33) holds. Applying (35) to

(33) yields
min

ω|=AB
κ→

η
(ω) � min

ω|=AB

κ→
η
(ω) (36)

and further applying (1) to (36) yields

κ→
η
(AB) � κ→

η
(AB). (37)

Using (2), this implies
κ→

η
	|= (B | A), (38)

contradicting the assumption A |∼c
RB. Thus, CR(R) ∪ {¬CRR(B | A)} does not have a

solution.
For the other direction, we use contraposition and assume that A |�c

RB holds. Therefore,
since R is consistent, there is a c-representation κ with κ |= R and κ 	|= (B | A). According
to Prop. 4, there is a solution

→
η = (η1, . . . , ηn) ∈ Sol(CR(R)) such that κ = κ→

η
. From

κ→
η

	|= (B | A) we get the following:

κ→
η
(AB) � κ→

η
(AB) (39)

Applying (1) to (39) yields

min{κ→
η
(ω) | ω |= AB} � min{κ→

η
(ω) | ω |= AB} (40)
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and further applying (4) to (40) yields

min{
∑

1�i�n

ω|=AiBi

ηi | ω |= AB} � min{
∑

1�i�n

ω|=AiBi

ηi | ω |= AB} (41)

which is equivalent to (33). Thus, CR(R) ∪ {¬CRR(B | A)} has a solution, completing the
proof.

In Section 4 we already discussed that c-inference and p-entailment are defined in
analogy, but using the set of all c-representations of a knowledge base R rather than
the set of all OCFs that accept R when defining inference leads to the differences
shown above. While our CSP modeling of the inference closely resembles the char-
acterization of p-entailment given in Proposition 1, there is a major difference: while
the characterization in Proposition 1 tests whether an augmented knowledge base is
consistent, the characterization in Proposition 10 tests for the solvability of an augmen-
tation of the CSP specifying the c-representations of the knowledge base. If we compare
both approaches, Corollary 1 gives us that R ∪ (B | A) is consistent if and only if
CR(R ∪ (B | A)) has a solution, hence the nonexistence of a solution of CR(R ∪ (B |
A)) is, by Proposition 1, equivalent to the question whether the entailment A |∼p

RB

holds.
Since we have shown that c-inference A |∼c

RB is characterized by CR(R)∪ {¬CRR(B |
A)} not being solvable in Proposition 10, and that c-inference exceeds system P inference
in Corollary 2, we conclude:

Corollary 3 Let R be a conditional knowledge base and let A, B be formulas. If CR(R ∪
(B | A)) does not have a solution, then CR(R)∪{¬CRR(B | A)} does not have a solution;
the converse is not true in general.

6 Using constraints over finite domains

In this section, we will sharpen the CSPs for c-representations and for c-inference to CSPs
over finite domains. Note that if the knowledge base R is consistent, there are in general
infinitely many solution vectors in Sol(CR(R)), inducing an infinite set of c-representations
accepting R. Therefore, our finite domains approach will represent c-representations up
to inferential equivalence. In order to make this precise, we first introduce the following
notion.

Definition 7 (self-fulfilling) A conditional (B | A) with A |= B is called a self-fulfilling
conditional.

Thus, a conditional is self-fulfilling if it can not be falsified by any world. Examples of
self-fulfilling conditionals are (a ∨ b | a), (b | ab), and (� | a), but also the self-fulfilling
conditionals (a | ⊥) and (� | ⊥) that can be neither falsified nor verified by any world.
The next proposition elaborates how self-fulfilling conditionals in a consistent knowledge
base R influence the set of solution vectors in Sol(CR(R)) and the set of c-representations
being a model of R. Recall that O(CR(R)) is the set of OCFs induced by solutions of
Sol(CR(R)).
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Proposition 11 Let R = {(B1 | A1), . . . , (Bn | An)} be a consistent knowledge base, and
let κuni be the uniform OCF with κuni(ω) = 0 for all ω ∈ Ω .

1. IfR is empty, then:
Sol(CR(R)) = {()} (42)

O(CR(R)) = {κuni} (43)

2. IfR is non-empty and all conditionals inR are self-fulfilling, then:

|Sol(CR(R))| = ∞ (44)

O(CR(R)) = {κuni} (45)

3. If R is non-empty and R contains at least one conditional that is not self-fulfilling,
then:

|Sol(CR(R))| = ∞ (46)

|O(CR(R))| = ∞ (47)

4. If (Bi | Ai) ∈ R is self-fulfilling, then:

O(CR(R)) = O(CR(R \ {(Bi | Ai))}) (48)

Proof If R is empty, then (42) holds trivially as the empty vector is the only solution of
CR(R), and (43) holds since κ() = κuni due to (4).

For the rest of the proof, we will use the following observation:

If
→
η = (η1, . . . , ηn) ∈ Sol(CR(R)) and k ∈ N, k � 1,

then k · →
η = (k · η1, . . . , k · ηn) ∈ Sol(CR(R)). (49)

This observation holds since the inequations of CR(R) satisfied by
→
η are still satisfied

when they are all multiplied by k.
Thus, for non-empty R, Eqs. (44) and (46) hold provided that Sol(CR(R)) is not just a

singleton set containing the vector containing only 0, i.e., provided that Sol(CR(R)) 	= {→η 0}
where

→
η

0 = (0, . . . , 0). So let us assume that
→
η

0
was the only element in Sol(CR(R)). We

have κ→
η

0 = κuni according to (4). Together with the acceptance condition κ→
η

0(AiBi) <

κ→
η

0(AiBi) for the conditional (Bi | Ai), this implies κ→
η

0(AiBi) = 0 and κ→
η

0(AiBi) = ∞.

Thus, AiBi is satisfiable, while AiBi is unsatisfiable and therefore Ai |= Bi so that (Bi |
Ai) is self-fulfilling. For every self-fulfilling conditional (Bi | Ai) ∈ R, the inequation (6)
in CR(R) reduces to

ηi > min
ω|=AiBi

∑

j 	=i

ω|=Aj Bj

ηj − min∅ 0 (50)

since there is no ω with ω |= AiBi . Because AiBi is satisfiable and every ηj ∈ N, the first
minimization term in (50) yields a finite number, and since for the second minimization
term we have min∅ 0 = ∞, (50) further reduces to

ηi > −∞ (51)
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which in turn can be removed from CR(R) since it is implied by (5). Therefore, since all

conditionals in R are self-fulfilling if Sol(CR(R)) = {→η 0}, CR(R) is equivalent to the
simple set of equations

ηi � 0 (52)

for i ∈ {1, . . . , n}. Now for any i ∈ {1, . . . , n}, the vector (0, . . . , 1, . . . , 0) obtained from
→
η

0
by replacing the i-th component by 1, is another trivial solution of CR(R) as given

by (52), contradicting the assumption that
→
η

0
is the only element in Sol(CR(R)) and thus

completing the proof of (44) and (46).
The derivations above show that if all conditionals in R are self-fulfilling, CR(R) is

equivalent to the constraints given by (52); hence any vector
→
η = (t1, . . . , tn) ∈ N

n is a
solution of CR(R). For any such

→
η , we get κ→

η
= κuni due to (4) since no world falsifies

any conditional in R, implying (45).
For showing (47), let (Bi | Ai) ∈ R be a not self-fulfilling conditional. Then there is a

world ω falsifying (Bi | Ai), and for every
→
η ∈ Sol(CR(R)), we must have κ→

η
(ω) > 0.

For every k ∈ N, k > 1, the observation (49) implies κ
k·→η (ω) = k · κ→

η
(ω) 	= κ→

η
(ω). Thus,

there are infinitely many different OCFs in O(CR(R)), implying (47).
For showing (48), let (Bi | Ai) ∈ R be a self-fulfilling conditional. As shown above,

the constraint for ηi stemming from (6) in CR(R) reduces to simply ηi � 0. Since there is
no world falsifying (Bi | Ai), ηi does not occur in the constraints (6) for any of the other
ηj with i 	= j , nor in the equation (4) for any ω. Hence, for every

→
η = (η1, . . . , ηn) ∈

Sol(CR(R)), we have
→
η

′ = (η1, . . . , ηi−1, ηi+1, . . . , ηn) ∈ Sol(R \ {(Bi | Ai)}) and
κ→

η
(ω) = κ→

η
′(ω) for every ω ∈ Ω , implying (48) and completing the proof.

OCFs like κ→
η

and κ
k·→η as used in the proof of Proposition 11 are examples of ranking

functions that have identical inference behaviour.

Definition 8 (≡|∼ ) Two ranking functions κ, κ ′ are inferentially equivalent, denoted
by κ≡|∼ κ ′ if for all (B | A) it is the case that κ |= (B | A) if and only if
κ ′ |= (B | A).

For instance, we have κ→
η
≡|∼ κ

k·→η ; in general, two ranking functions are inferentially
equivalent if and only if they induce the same total preorder on worlds.

Proposition 12 (≡|∼ ) For ranking functions κ and κ ′, we have κ≡|∼ κ ′ if and only if for all
ω1, ω2 ∈ Ω it is the case that κ(ω1) � κ(ω2) iff κ ′(ω1) � κ ′(ω2).

Proof Assume κ(ω1) � κ(ω2) iff κ ′(ω1) � κ ′(ω2).

κ |= (B | A)

iff κ(AB) < κ(AB)

iff min{κ(ω) | ω |= AB} � min{κ(ω) | ω |= AB}
iff min{κ ′(ω) | ω |= AB} � min{κ ′(ω) | ω |= AB}
iff κ ′(AB) < κ ′(AB)

iff κ ′ |= (B | A)
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To show the other direction assume κ≡|∼ κ ′ and let ω1, ω2 ∈ Ω with ω1 	= ω2. The follow-
ing derivation exploits the fact that ω is logically equivalent to (ω ∨ ω′) ∧ ω for any two
worlds ω and ω′.

κ(ω1) < κ(ω2)

iff κ((ω1 ∨ ω2) ∧ ω1) < κ((ω1 ∨ ω2) ∧ ω1)

iff κ |= (ω1 | ω1 ∨ ω2)

iff κ ′ |= (ω1 | ω1 ∨ ω2)

iff κ ′((ω1 ∨ ω2) ∧ ω1) < κ ′((ω1 ∨ ω2) ∧ ω1)

iff κ ′(ω1) < κ ′(ω2)

Example 13 (Rbird, cont’d) Recall the knowledge base Rbird from Example 1. The

two impact vectors
→
η

(1) = (1, 1, 1, 2) and
→
η

(2) = (1, 2, 0, 2) given in Example 3
induce different ranking functions (given in Table 3) that are inferentially equivalent, i.e.
κ→

η
(1)≡|∼ κ→

η
(2) .

It is obvious that ≡|∼ is an equivalence relation on OCFs. For any set O of OCFs, the
set of equivalence classes induced by O will be denoted by O/≡|∼ . Although there are
in general both infinitely many solutions to CR(R) and infinitely many ranking functions
induced by them, the following observation trivially holds since the number of worlds is
finite.

Proposition 13 For any knowledge base R, the set of equivalence classes O(CR(R))/≡|∼
is finite.

While skeptical c-inference in the context of R is defined taking all c-representations
accepting R into account, we will now sharpen CR(R) by introducing an upper bound for
the impact values, yielding a finite domain (FD) constraint system.

Definition 9 (CRu(R)) Let R = {(B1 | A1), . . . , (Bn | An)} and u ∈ N. The finite domain
constraint satisfaction problem CRu(R) on the constraint variables {η1, . . . , ηn} ranging
over N is given by the conjunction of the constraints, for all i ∈ {1, . . . , n}:

ηi � 0 (53)

ηi > min
ω|=AiBi

∑

j 	=i

ω|=Aj Bj

ηj − min
ω|=AiBi

∑

j 	=i

ω|=Aj Bj

ηj (54)

ηi � u (55)

The notations and constructions introduced for CR(R) will tacitly be used also for
CRu(R), e.g., Sol(CRu(R)) and O(CRu(R)). In particular, we also define c-inference
with respect to a maximal impact value that can be viewed as a kind of resource-bounded
inference operation.

Definition 10 (c-inference under maximal impact value, |∼c,u
R ) Let R be a knowledge

base, u ∈ N, and let A, B be formulas. B is a (skeptical) c-inference from A in the con-
text of R under maximal impact value u, denoted by A |∼c,u

R B, if A |∼ κB holds for all
c-representations κ with κ ∈ O(CRu(R)).
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Proposition 14 ( |∼c,u
R ) Let R be a knowledge base, u, u′ ∈ N, and let A, B be formulas.

Then
A |∼c

RB implies A |∼c,u
R B

and for u′ � u

A |∼c,u′
R B implies A |∼c,u

R B.

Proof It suffices to show that for the respective set of c-representations to be taken into
account, the subset relationships

O(CRu(R)) ⊆ O(CRu′
(R)) ⊆ O(CR(R))

hold which is the case due to the definitions of CR(R) and CRu(R).

Thus, Proposition 14 shows that |∼c,u
R approximates c-inference |∼c

R. The following def-
inition introduces a criterion for a maximal impact value ensuring that |∼c,u

R fully realizes
skeptical c-inference. For an OCF κ , the definition uses the total preorder �κ on worlds
given by

ω1 �κ ω2 iff κ(ω1) � κ(ω2).

Definition 11 (regular, minimally regular) For a knowledge base R let û ∈ N be the
smallest number such that

∣
∣
∣{�κ | κ ∈ O(CRû(R))}

∣
∣
∣ = |{�κ | κ ∈ O(CR(R))}| . (56)

Then CRu(R) is called regular if u � û, and CRû(R) is minimally regular; we also say
that u is regular forR and û is minimally regular forR.

Every regular CRu(R) is a sound and complete modelling of the set of all c-
representations for R in the following sense:

Proposition 15 (Soundness and Completeness of CRu(R)) LetR be a knowledge base and
CRu(R) be a regular FD constraint system forR. Then:

– (Soundness) For every vector
→
η ∈ Sol(CRu(R)), the induced OCF κ→

η
is a c-

representation κ forR (i.e., κ→
η

|= R).

– (Completeness) For every c-representation κ for R (i.e., κ |= R), there is a vector
→
η

′ ∈ Sol(CRu(R)) such that κ≡|∼ κ→
η

′ .

Proof Soundness of CRu(R) immediately follows from the soundness of CR(R) (Prop. 3)
since Sol(CRu(R)) ⊆ Sol(CR(R)).

For showing completeness of CRu(R), let κ be a c-representation accepting R. Since
Sol(CRu(R)) ⊆ Sol(CR(R)), regularity of CRu(R) and completeness of CR(R) imply
that, since the inference relations induced by an OCF κ depend solely on �κ , the respec-
tive equivalence classes O(CRu(R))/≡|∼ and O(CR(R))/≡|∼ can be enumerated such that
O(CRu(R))/≡|∼ = {Ku

1 , . . . , Ku
r }, O(CR(R))/≡|∼ = {K1, . . . , Kr }, with Ku

i ⊆ Ki for

r =
∣
∣
∣{�κ | κ ∈ O(CRû(R))}

∣
∣
∣ = |{�κ | κ ∈ O(CR(R))}|
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and i = 1, . . . , r . Furthermore, completeness of CR(R) ensures that there is
→
η ∈

Sol(CR(R)) such that κ→
η

= κ . Hence, there is p ∈ {1, . . . , r} such that κ→
η

∈ Kp. Observ-

ing that Ku
p ⊆ Kp, we can choose

→
η

′ ∈ Sol(CRu(R)) such that κ→
η

′ ∈ Ku
p and thus

κ→
η

′≡|∼ κ→
η
≡|∼ κ , completing the proof.

An immediate consequence of Proposition 15 is that for every regular CRu(R), the
inference relation |∼c,u

R coincides with c-inference |∼c
R over all c-representations of R.

Proposition 16 LetR be a knowledge base, CRu(R) regular, and A, B be formulas. Then

A |∼c
RB iff A |∼c,u

R B.

Proof The ⇒ direction is an immediate consequence of the subset relationship
Sol(CRu(R)) ⊆ Sol(CR(R)). Regularity of CRu(R) ensures the ⇐ direction since for
each equivalence class Ki from the proof of Proposition 15, there is at least one solution of
CRu(R) inducing an OCF belonging to the corresponding equivalence class Ku

i .

In Section 5, we showed how c-inference can be modelled by a constraint satisfaction
problem. This modelling directly transfers to the finite domains case so that c-inference is
precisely captured by a constraint satisfaction problem over finite domains.

Proposition 17 (c-inference as a FD CSP) LetR be a consistent knowledge base, CRu(R)

regular, and A,B formulas. Then the following holds:

A |∼c
RB iff CRu(R) ∪ {¬CRR(B | A)} does not have a solution. (57)

Proof We can reuse the derivations used in the proof of Proposition 10 by employing
soundness and completeness of CRu(R) (Proposition 15) instead of the soundness and
completeness of CR(R) (Propositions 3 and 4).

Note that since ¬CRR(B | A) does not introduce any variables not already in the CSP
CRu(R) over finite domains, also CRu(R)∪ {¬CRR(B | A)} is a CSP over finite domains.
Thus, with a regular CRu(R) for a knowledge base R, we can immediately exploit the
techniques developed for finite domain constraint solvers, as they are available, e.g., in
constraint logic programming, for computing the inference relation A |∼c

RB induced by
c-representations (cf. [4, 10]).

According to Proposition 15, a regular CRu(R) captures every c-representation of R up
to ≡|∼ equivalence. When we are not interested in capturing all c-representations of R (up
to ≡|∼ equivalence), but aim at capturing c-inference instead, we can specify a maximal
impact value from this perspective in order to obtain a CSP over finite domains.

Definition 12 (sufficient CRu(R)) Let R be a knowledge base and let u ∈ N. Then
CRu(R) is called sufficient if for all formulas A, B we have

A |∼c
RB iff A |∼c,u

R B.

If CRu(R) is sufficient, we will also call u sufficient forR.

The next proposition states the relationship between a regular and a sufficient CRu(R).
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Proposition 18 (regular vs. sufficient) LetR be a consistent knowledge base and u ∈ N. If
CRu(R) is regular, then it is also sufficient; the converse is not true in general.

Proof If CRu(R) is regular, it is also sufficient according to Proposition 16.
For the other direction, it suffices to give a CRu(R) that is sufficient, but not regular.

Consider the alphabet Σ = {a, b} and the knowledge base R = {(a | �), (b | �)}. The
CSP CR2(R) is regular and has four solutions:

→
η

(1) = (1, 1)
→
η

(2) = (1, 2)
→
η

(3) = (2, 1)
→
η

(4) = (2, 2)

Note that
→
η

(4)
is a multiple of

→
η

(1)
; hence, the inference relations associated with the

ranking functions induced by these two solutions are inferentially equivalent. The induced
ranking functions for the four solutions of CR2(R) are given in Table 10. Obviously the

CSP CR1(R) only has
→
η

(1)
as a solution. Every inference that requires a different ranking

of the worlds ab and ab only holds when considering either κ→
η

(2) or κ→
η

(3) , but not when

taking κ→
η

(1) into account. Therefore these inferences do not hold under skeptical inference.

On the other hand, every inference that holds in κ→
η

(1) does also hold in κ→
η

(2) and κ→
η

(3) .

Therefore CR1(R) is sufficient but not regular.
A corresponding observation is that a sufficient CRu(R) is sound in the sense of Propo-

sition 15, but it is not complete since there might be a c-representation of R that is not
captured by any solution of CRu(R).

Corollary 4 LetR be a knowledge base and CRu(R) sufficient. Then the following holds:

– (Soundness) For every vector
→
η ∈ Sol(CRu(R)), the induced OCF κ→

η
is a c-

representation κ forR (i.e., κ→
η

|= R).
– (Non-Completeness) In general, there might be a c-representation κ forR such that for

all
→
η

′ ∈ Sol(CRu(R)) it is the case that κ 	≡|∼ κ→
η

′ .

Proof As in Proposition 15, soundness of CRu(R) immediately follows from the soundness
of CR(R) (Prop. 3) since Sol(CRu(R)) ⊆ Sol(CR(R)).

For showing that CRu(R) is not complete in general, consider again the knowledge base

R = {(a | �), (b | �)}. The only solution to CR1(R),
→
η

(1)
induces a ranking function that

is not inferentially equivalent to κ→
η

(2) (see again Table 10).

Note that the missing completeness of a sufficient CRu(R) does not prevent the exact
modeling of c-inference by the solutions of CRu(R), as was already pointed out in the proof
of Proposition 18.

Table 10 Ranking functions for
R = {(a | �), (b | �)} used in
the proof of Proposition 18

ω ab ab ab ab

κ→
η

(1) (ω) 0 1 1 2

κ→
η

(2) (ω) 0 2 1 3

κ→
η

(3) (ω) 0 1 2 3

κ→
η

(4) (ω) 0 2 2 4
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Example 14 (minimally regular) We expand the knowledge base R from the proof of
Proposition 18 systematically with one additional atom c and a conditional (c | �) to

R′ = {(a | �), (b | �), (c | �)}
over the alphabet Σ = {a, b, c}. Then CR4(R) is minimally regular, producing 31 inferen-
tially different c-representations. If we add just an additional atom d to Σ , the number of
possible worlds doubles, but the number of inferentially different c-representations stays at
31, because there is no conditional causing a preference of a world ȧḃċd over ȧḃċd or vice
versa. Extending the knowledge base to

R′′ = {(a | �), (b | �), (c | �), (d | �)}
now causes worlds ω with ω |= d to be preferred over worlds ω′ with ω′ |= d. CR10(R) is
now minimally regular, producing 1519 inferentially different c-representations.

Thus, while u = 4 is minimally regular for R′, adding the conditional (d | �) causes
u = 10 to be minimally regular for R′′. This effect is particularly strong here because there
are no interactions between the conditionals in R′ or in R′′, leading to various degrees
of freedom when ordering the possible worlds while still accepting every conditional in
the knowledge base. If we introduce some limited interactions between conditionals by
replacing (d | �) in R′′ with the conditional (d | a), creating

R′′′ = {(a | �), (b | �), (c | �), (d | a)} ,

the number of inferentially different c-representations is reduced from 1519 to 961.
However, u = 10 remains minimally regular for R′′′.

For a given knowledge base R it is still an open problem how to approximate or to
directly determine minimal values u such that CRu(R) is regular or sufficient, respectively.
All examples we have investigated so far suggest that u corresponding to the number of
conditionals in R, i.e. u = |R|, ensures that CRu(R) is sufficient; if this observation holds
generally it would imply that |∼c,u

R with u = |R| precisely models c-inference |∼c
R. This

observation is also supported by the investigation on minimally sufficient bounds carried out
in [7, 8], where for a sequence of simple knowledge bases Ri , generalizing the knowledge
bases R′ and R′′ from Example 14 and containing only conditional facts, u = |Ri | − 1 is
formally proven to be sufficient.

7 Implementation

In [4] the reasoning platform InfOCF is presented. InfOCF provides implementations
of OCF-based inference relations for propositional conditional knowledge bases. The user
can load knowledge bases from files, and several sets of OCFs (e.g., sets of minimal c-
representations [4]) can be calculated. Using these sets of models, the user can perform
skeptical, credulous, and weakly-skeptical [6] c-inference. For comparison, InfOCF also
implements system P [1] and system Z [20, 32] inference.

For experiments regarding regular and sufficient bounds for finite domain c-inference,
InfOCF allows for the specification of a maximal impact value that is taken into account
in solutions of the CSP generated for a loaded knowledge base.

Figure 1 shows the options for inference as well as some results of answered queries.
The option for the maximal impact labeled “Automatic” induces a heuristic calculation that
estimates the maximal impact needed for a regular CSP. This is done by calculating the
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Fig. 1 Part of the user interface of InfOCF implementing various OCF-based inference relations. The
queries on the right are answerd with respect to the knowledge base Rbird from Example 1. The options
selected on the left were selected for the last query. Note that system Z inference was not performed because
it was not selected and system P inference is inherently skeptical, hence it was only performed when skeptical
was selected

induced partial orders of all OCF solutions to a CSP with the number of conditionals as
the maximal impact as a starting point. The maximal impact is then increased systemati-
cally until no new partial orders are obtained from the new solutions. The option labeled
“Number of Conditionals” sets the maximal impact to the number of conditionals in the
currently loaded knowledge base. In all our experiments, we were able to show this value to
be sufficient, by calculating the acceptance of all syntactically different conditionals under
skeptical inference [7]. The third option allows for experimentation with a selected maximal
impact.

While the user interface of InfOCF is implemented in Java, the core component
modelling c-representations and c-inference is implemented using constraint logic program-
ming. For any knowledge base R and any query conditional (B | A), the constraint systems
CRu(R) (cf. (53)–(54)) and CRu(R) ∪ {¬CRR(B | A)} (cf. (57)) are transformed directly
into a high-level representation in SICStus Prolog1 using the SICStus Prolog library clp(fd)
[29] for constraint logic programming over finite domains; for details of the Prolog code we
refer to [4].

8 Conclusions and future work

We introduced the novel inference relation c-inference as the skeptical inference over all
c-representations of a given conditional knowledge base R. We proved that c-inference
exceeds the skeptical inference of all OCFs that accept R, the latter being equivalent to
Adams’ system P. In particular, we showed that c-inference shares important benchmark
properties with inference based on single c-representations, e.g., subclass inheritance for
exceptional subclasses (the “Drowning Problem”) and Irrelevance, and also allows for Rule
Chaining in a rational way. This is all the more remarkable because c-inference is based on
a partial preorder on worlds.

Based on a CSP modelling of c-representations, we also characterized c-inference as a
constraint satisfaction problem and proved its soundness and completeness, implying that
skeptical inference over infinitely many c-representations can be implemented by using a
constraint solver. We discussed sharpening the CSPs to finite domains, leading to CSPs that

1http://www.sics.se/isl/sicstuswww/site/index.html

http://www.sics.se/isl/sicstuswww/site/index.html
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might be easier to solve. Since there is a c-representation for a knowledge base if and only if
the knowledge base is consistent, the CSP modeling also provides an alternative consistency
test apart from the tolerance test [32]. Implementing the calculation of c-representations
using a constraint solver has been demonstrated successfully in [10], and in [4] an exten-
sion of this implementation to c-inference is proposed. Our current work includes extending
this implementation, further evaluating it empirically, and investigating the complexity of
this approach. Another aspect of further work concerns the open problems of approximat-
ing, determining and comparing minimal upper bounds for the finite domains in the used
CSPs.
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