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1 Introduction

Dependence logic was introduced by Viinédnen in 2007 [34]. It extends first-order logic
with dependence atomic formulas (dependence atoms) =(X, y) with the meaning that the
value of the variable y is functionally determined by the values of the variables X. The notion
of dependence has real meaning only in plurals. Thus, in contrast to the usual Tarskian
semantics, in dependence logic, the satisfaction of formulas is defined not via single assign-
ments but via sets of assignments. Such sets are called feams and the semantics is called
team semantics. In this article, we take a further step of replacing structures and teams by
their multiset analogues. Multiteams have been considered in some earlier works [21, 22,
36] but so far no systematic study of the subject in the team semantics context has appeared.
In the temporal logic setting (in the context of computation tree logic) multiteam seman-
tics has been introduced and studied recently [30]. In this article we define the so-called lax
and strict multiteam semantics and study properties of various logics under these semantics.
Moreover, we show how the shift from sets to multisets naturally gives rise to probabilistic
and approximate versions of dependence logic.

The idea of team semantics goes back to Hodges [20] whose aim was to define com-
positional semantics for independence-friendly logic [19]. The introduction of dependence
logic and its many variants has manifested that team semantics is a very interesting and ver-
satile semantical framework. In fact, team semantics has natural propositional, modal, and
temporal variants. The study of modal dependence logic was initiated by Vidninen [35] in
2008. Shortly after, extended modal dependence logic was introduced by Ebbing et al. [5]
and modal independence logic by Kontinen et al. [29]. In purely propositional context the
study was initiated by Yang and Viédnédnen [40] and further studied, e.g., by Hannula et al.
[17]. One of the most important developments in the area of team semantics was the intro-
duction of independence logic by Gridel and Vidninen [12] in which dependence atoms of
dependence logic are replaced by independence atoms ¥ Lz 7. The natural meaning of the
independence atom y | ; 7 is that, when the value of X is fixed, knowing the value of Z does
not tell us anything new about the value of y. Soon after the introduction of independence
logic Galliani [7] showed that independence atoms can be further analysed, and alternatively
expressed, in terms of inclusion and exclusion atoms. The inclusion atom X C y expresses
that each value taken by X in a team X appears also as a value of y in X. The meaning of
the exclusion atom x| is that X and y have no common values in X.

Independence, inclusion, and exclusion atoms have very interesting computational prop-
erties in the team semantics setting. For example, in lax semantics inclusion atoms give
rise to a variant of dependence logic that corresponds to the complexity class P over finite
ordered structures [9]. On the other hand, under strict team semantics inclusion logic cap-
tures the complexity class NP [8, 14]. In the context of two-variable logics, the complexity
of the satisfiability and validity problems of several team based logics have been studied
in [26, 27]. The complexity theoretic aspects of propositional, modal, and first-order logics
with team semantics have been studied extensively during the past few years; see the survey
of Durand et al. [4] and the references therein.

A team X over variables xp, ..., x,, can be viewed as a database table with x1, ..., x, as
its attributes. Under this interpretation, dependence, inclusion, exclusion, and independence
atoms correspond exactly to functional, inclusion, exclusion, and embedded multivalued
dependencies, respectively. These dependencies have been studied extensively in database
theory. The close connection between team semantics and database theory has already led to
fruitful interactions between these areas [15, 16, 28]. It is worth noting that multiset seman-
tics (also known as bag semantics) is widely used in databases [1, 24, 31]. On the other hand,
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independence atoms, embedded multivalued dependencies, and the notion of conditional
independence YL1Z |X in statistics have very interesting connections, see, e.g., [13, 38]. In
this article we establish that, in the multiteam semantics setting, independence atoms can be
naturally interpreted exactly as conditional statistical independence. Probabilistic versions
of dependence logic have been previously studied by Galliani and Mann [6, 10].

In practise dependencies such as functional dependence do not hold absolutely but with
a small margin of error. In order to logically model such scenarios, Viidnédnen introduced
approximate dependence atoms [36]. The corresponding approximate functional dependen-
cies have been studied in the context of data mining [23]. In this article we define a general
approximation operator which, in particular, can be used to express approximate depen-
dence atoms. In the last section of the article, we study the computational aspects of logics
extended by the approximation operator.

Previous work on multisets in team semantics The idea of generalising team semantics
by the use of multisets has been discussed in several articles. Hyttinen et al. [22] study
multiteams and their generalisations called quantum teams. Quantum teams are used to give
semantics to a propositional logic called quantum team logic, that can be used for the logical
analysis of phenomena in quantum physics. Moreover Hyttinen et al. [21] define a notion
of a measure team and measure team logic. The latter is a logic for making inferences about
probabilities of first-order formulas in measure teams. Furthermore Krebs et al. introduced
team semantics with multisets for the temporal logic CTL [30]. Finally the fact that under
multiteam semantics approximate dependence atoms have the locality property (compare to
Proposition 37) is discussed by Viidnidnen [36].

Organisation This article is organised as follows. Section 2 briefly discusses the basic
concepts and definitions. The generalisation of team semantics to multisets is presented in
Section 3. Section 4 defines the approximation operators, and in Section 5 the complexity-
theoretic aspects of logics with the approximation operators are studied.

2 Preliminaries

We assume familiarity with standard notions in computational complexity theory and logic.
We will make use of the complexity classes NP and P. For an introduction to this topic, we
refer to the excellent textbook of Papadimitriou [33].

2.1 Team Semantics

Vocabularies t are finite sets of relation symbols with prescribed arities. For each R € 7,
letar(R) € Z denote the arity of R. A t-structure is a tuple A = (A, (R*)g,er), Where A
is a set and each R?l is an ar (R;)-ary relation on A (i.e., RiQl - A“"(R")). We use 2, B, etc.
to denote t-structures and A, B, etc. to denote the corresponding domains. In this article we
restrict attention to finite structures.

Let D be a finite set of first-order variables and A be a nonempty set. A functions: D —
A is called an assignment. The set D is the domain of s, and the set A the codomain of s. For
a variable x and a € A, the assignment s(a/x): DU{x} — A is obtained from s as follows:

a ify=nunx,
s(y) otherwise.

s(a/x)(y) = {
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A team is a finite set of assignments with a common domain and codomain. Let X be a
team, A a finite set, and F: X — P(A)\{} a function. We denote by X[A /x] the modified
team {s(a/x) | s € X,a € A}, and by X[F/x] the team {s(a/x) | s € X,a € F(s)}. Let 2
be a t-structure and X a team with codomain A, then we say that X is a team of 2L.

Let 7 be a set of relation symbols. The syntax of first-order logic FO(7) is given by the
following grammar, where R € T, X is a tuple of variables, and x and y are variables. Note
that in the definition the scope of negation is restricted to atomic formulas.

¢ 1= x=y|x#y|RRX) |-RE) | (@A) |(pVe)]|Ixeg|Vxe.

Let X, y be tuples of variables and ¢ a formula. We write Var(p) for the set of variables
that occur in ¢, and Var(x) for the set of variables listed in X. We also write Xy for the
concatenation of X and y, X N ¥ for any tuple listing the variables in Var(X) N Var(y), and
X\ y for any tuple listing the variables in Var(X) \ Var(y). For an assignment s, we write
s(X) to denote the sequence (s x1)y .0, s(x,,)).

Next, we define the lax and strict team semantics of first-order logic. It is worth not-
ing that the disjunction has a non-classical interpretation. The classical disjunction of team
semantics A Ex ¢ Q¥ & A Ex ¢ or A =x ¥ does not correspond to the classi-
cal disjunction of first-order logic. E.g., @ does not satisfy the law of the excluded middle
and consequently is sometimes referred to as the intuitionistic disjunction. In turn, the
non-classical disjunction of team semantics does correspond to the classical disjunction of
ordinary first-order logic; extensions of first-order logic in team semantics are conservative
extensions of ordinary first-order logic.

Definition 1 (Lax team semantics) Let 2 be a t-structure and X a team of 2. The
satisfaction relation =y for first-order logic is defined as follows:

AExx=y < VseX:sx)=s(y)

AExx £y < VseX:sx)#s(y)

Ay REF) < VseX:s@) eR

Ay “RE) ©VseX:s@X) ¢ R

A=y (YA ©AEx yandA =x 0

AEx (Wve) <Ay yandA =z 0 forsomeY,Z C Xs.t.YUZ =X
A E=x Vxyr & A =xa/x ¥

A E=x Ixy & A E=x[F/x] ¥ holds for some F: X — P(A) \ {9}.

The so-called strict team semantics is obtained from the previous definition by adding
the following two requirements.

(i) Disjunction: Y N Z = @.
(i) Existential quantification: F(s) is singleton for all s € X.

For a model 2( and a sentence ¢ (i.e., a formula with no free variables), the satisfaction
relation = is defined as:

AEgif A =g o,

where {{} denotes the singleton team of empty assignment.
Team semantics enables extending first-order logic with various dependency notions.
The following dependency atoms were introduced in [7, 12, 34].

@ Springer



Approximation and dependence via multiteam semantics... 301

Definition 2 (Dependency atoms) Let 2 be a model and X a team of 21. If X, ¥ are variable
sequences, then =(X, ¥) is a dependence atom with the satisfaction relation:

A =x =&, y)ifforall s, s’ € X s.t. s(¥) = s'(¥), it holds that s(3) = s'(¥).

If X, y are variable sequences of the same length, then X C y is an inclusion atom with
the satisfaction relation:

A =x ¥ C yifforalls € X there exists s’ € X such that s(X) = s'(y).

If X, y, 7 are variable sequences, then y 1 ;7 is a conditional independence atom with the
satisfaction relation:

A =x yLzZifforalls, s’ € X such that s(¥) = s'(¥) there exists s” € X
such that s (X) = s(¥),s"(¥) = s(¥), and s”(Z) = s'@).

Note that in the previous definition it is allowed that some or all of the vectors of variables
have length 0. For example, 2l |=x =(@, X) (written often as 2 =x =(X) in the literature)
holds if and only if Vs € X : s(X) = ¢ holds for some fixed tuple ¢, and 2 =y y_13Z holds
always if either of the vectors y or Z is of length .

We write FO for first-order logic, and given a set of atoms C, we write FO(C) (omitting
the set parentheses of C) for the logic obtained by adding the atoms of C to FO. Here we
denote dependence atoms by =(-), inclusion atoms by <, and conditional independence
atoms by L. (the atoms introduced later will be denoted similarly). For instance, FO(=(-))
denotes dependence logic.

Often in literature dependence atoms are defined such that y is a single variable, i.e., the
widely used form is =(X, y). The definition above yields the strongest form of functional
dependence. Moreover the atom =(X, y) can be equivalently rewritten as a conjunction of
dependence atoms of type =(x, y).

3 Multiteam semantics

In this section we generalise team semantics with the concept of multisets. Multisets and
multiteam semantics can be used, e.g., in applications to database theory to model reason-
ing with databases with duplicates. In practise, for a multitude of reasons, the existence of
duplicates in databases is very common. Again as previously noted, we restrict attention to
finite sets and finite multisets.

In Section 3.1, the basics of multiteam semantics are given. In Section 3.2, we intro-
duce probabilistic versions of inclusion and independence atoms, and in Section 3.3 the
fundamental properties locality, flatness, and union closure are discussed in the multiteam
setting. In Sections 3.4 and 3.5, nonprobabilistic dependency notions in multiteam setting
and probabilistic dependency notions in team semantics setting are studied, respectively.

3.1 Foundations

In the following definition, occurrences of “zero multiplicities” are allowed for notational
convenience.

Definition 3 (Multiset) A multiset is a pair (A, m) where Aisasetand m: A — Nisa
(multiplicity) function. The function m determines the multiplicities of the elements in the
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multiset (A, m). A multiset (X, m) is a multiteam if the underlying set X is a team. The
domain (or the codomain) of the multiteam (X, m) is the domain (codomain) of the team X.

For each multiset (A, m), we define the canonical set representative [(A, m)]cser Of
(A, m) as follows:

(A, m)]eser == {(a.i) |a € A, 0<i<ma)}

We say that (A, m) is finite whenever [(A, m)]cse; 1s finite. We say that a multiset (A, m)
is a submultiset of a multiset (B, n), and write (A, m) C (B, n), if and only if [(A, m)]cset <
[(B, n)]cset- Furthermore, we define that (A, m) = (B, n) if and only if both (A, m) C
(B,n) and (B, n) C (A, m) hold.

The disjoint union (A, m) & (B, n) of (A, m) and (B, n) is the multiset (C, k), where
C:= AU B and k : C — N is the function defined as follows:

m(s) +n(s) ifs € Aands € B,
k(s) == § m(s) ifse Aands ¢ B,
n(s) ifs Z Aands € B.

We write |(A, m)| to denote the size of the multiset (A, m), i.e., [(A, m)| ;==Y ., m(a).
The set of non-empty submultisets of a multiset (A, m) is the set

PH((A,m)) :={(C,1) | (C,]) € (A, m)s.tl(c) > 1 foreachc € C}\ {(4, D)}.

Let (X, m) be a multiteam, (A, n) be a finite multiset, and F: [(X, m)]eset = P1((A, 1))
be a function. We denote by (X, m)[(A, n)/x] the modified multiteam defined as

W { @, me) - n@) |,

seX acA

By (X, m)[F/x] we denote the multiteam defined as

W W [6em. i) 1B.0=Fs).beB).

seX 1<i<m(s)

Example 4 Figure 1 depicts a canonical set of a team (X, m) with domain {x, y} and
codomain A = {«, B}. Observe that (X, m) is a multiteam where X = {s, ¢, u} and
m: X — N is a multiplicity function such that m(s) = 2, m(t) = 1, and m(u) = 1.
Note that s and ¢ agree on y but disagree on x. Figure 1 also depicts the canonical set of
(X, m)[F/x] where F is defined as follows:

F((s, 1)) = (A, n), F((s,2)) = (A, n),
F(@. 1) = (A.,n), F((u, 1)) = {B}. n).

where n is a multiplicity function such that n(«) = 2 and n(8) = 1. The assignments s; and
s arise from (s, 1), (s, 2), and (¢, 1); the assignment u; arises from (u, 1). Furthermore,
note that [(X, m)[F/x]]cset \ {(u#1, 1)} is the canonical set of (X \ {u}, m)[(A, n)/x].

A t-multistructure is a tuple 2 = ((A, m), (R?l)R[ET) where (A, m) is a non-empty
multiset and, for each R; € t, R?[ is an ar(R;)-ary relation over the set {a € A | m(a) > 1}.
A multiteam (X, m) over 2 is a multiteam with codomain A.

Next we define lax multiteam semantics for first-order logic.
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Fig. 1 A set [(X, m)]cser and its
assgociated [(Xf m)[l';/)c]]Cset for [(X, m)]cset [(X, m)[F/x]]cset
function F' of Example 4 y Y x
(5,1) a « (51,1) o «
(,2) a « (51,2) a «
t1) o B (s1,3) a «
(u,1) B « (s1,4) a «
(51,5) a «
(51,6) o «
(s2,1) o B
(s2,2) o B
(527 3) g B
(ulv 1) B B

Definition 5 (Lax multiteam semantics) Let 2 be a t-multistructure, (A, n) the domain of
2, and (X, m) a multiteam over 2(. The satisfaction relation |=(x ) is defined as follows:

AExmx=y < VseX:ifm(s)>1thens(x)=s(y)
AExmx#y ©VseX: ifm(s)>1thens(x) # s(y)
AE=xm RE) & VseX: ifm(s) > 1thens(¥) € R*
AExm ~RE) < VseX:ifm(s)>1thens(¥) ¢ R¥
Ab=xm W A0) & A E=xm ¥ and A = m) 0
AE=xm WV & AE=wp ¥ and A =z ¢ 6 for some multisets
Y, k), (Z,0) C (X,m)s.t.(X,m) C (Y, k)W (Z,10).
A Ewm VX¥ & AExmiAn/x ¥
A =x,my Ixy < A =x,m)[F/x] ¥ holds for some function
F:[(X,m)leset = PT((A, m)).

The so-called strict multiteam semantics is obtained from the previous definition by
adding the following two requirements.

(i) Disjunction: (Y, k) W (Z,1) = (X, m).
(i) Existential quantification: for all s € X and 0 < i < m(s), F((s,i)) = (B,n) for
some singleton B = {b} and n(b) = 1.

In most parts of this paper, the choice of semantics (strict or lax) for existential quan-
tifiers and disjunctions does not have any effect. Thus, if not explicitly mentioned, all the
results hereafter work for both strict and lax semantics. Note also that the multiset nature of
domains of multistructures manifest itself only in the truth conditions of the quantifiers.

As demonstrated by the following proposition, the multiteam semantics and team seman-
tics for first-order logic coincide when the multisets in multistructures and multiteams are
essentially sets. Furthermore the semantical clauses of lax (strict, resp.) multiteam seman-
tics collapse to the semantical clauses of lax (strict, resp.) team semantics. The proof of the
proposition is self-evident.

Proposition 6 Let 2 be a multistructure with domain (A, 1), and (X, 1) a multiteam over
A, where I denotes the constant 1 function, i.e., 1(a) = 1(s) = 1 foralla € Aand s € X.
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Define 6 := (A, (R Rer). Then for every ¢ € FO it holds that

2 f=x.1) ¢ if and only ifB =x ¢.

We point out that multiteam semantics is reminiscent of the bag semantics in relational
databases. For instance, the disjoint union of multiteams and the restriction of a multi-
team (introduced in Section 3.3) align with the union and projection operators of the bag
relational algebra [32]. Similarly, the query containment problem in bag semantics is for-
mulated using a notion of bag containment that is analogous to the containment relation of
multiteams.

It is well known that bag semantics, although being relevant for database practise where
duplicates are tolerated for computational reasons, renders the query containment problem
difficult. Already for conjunctive queries this problem becomes, from being NP-complete
in set semantics, 1'[5 -hard with decidability remaining an open problem when considering
bag semantics instead [2].

Similar increase in complexity should be anticipated for multiteam semantics, although
the vantage point here is somewhat different from that of bag semantics as the focus is not
on queries over but on properties of multisets of relations.

3.2 Probabilistic dependency notions
Next we generalise inclusion and conditional independence atoms to multiteams by intro-
ducing their probabilistic versions. For a multiteam (X, m) of codomain A, a tuple of
variables X from Dom(X), and @ € APl we denote by (X, m)z—z the multiteam (X, n)
where n agrees with m on all assignments s € X with s(¥) = d, and otherwise n maps s
to 0.
Definition 7 Let %[ be a multistructure with domain (A, n), and (X, m) a multiteam over
2. If X, y are variable sequences of the same length, then X < y is a probabilistic inclusion
atom with the following semantics:
A = xm X < 31X mzms] < [(X, m)sg| foralls: Var(x) — A.

It is worth noting that for finite multiteams A |=(x ) X < y implies that

(X, m)z=si)| = (X, m)y=s)| foralls: Var(x) — A.
Otherwise, the inequality below would be rendered strict:

(X, m)| = s var@—al (X, m)z=s@)| < Zs: var(®)—al(X, m)j=s@)| = (X, m)|.

If X, y, 7 are variable sequences, then y 1L ; 7 is a probabilistic conditional independence
atom with the satisfaction relation defined as

AE=xm ¥y LsZ

if for all s: Var(xyz) — A it holds that

(X, m)z5=s@p| - 1(X, m)zz=szz)| = (X, m)z5z=s@3)| - (X, m)z=s@)|- (1)
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We call atoms of the form X Ly y probabilistic marginal independence atoms, written
as the shorthand X 1L y. Note that we obtain the following satisfaction relation for X 1L y:

A =x,m x L yifforall s: Var(Xy) — A, 2)
[(X, m)z=s@)| - (X, m)3=s)|
[(X, m)|

= (X, m)z5=siy) |-

Multiteams (X, m) induce a natural probability distribution p over the assignments of X.
Namely, we define p: X — [0, 1] such that

p(s) = )

The probability that a tuple of (random) variables X takes value a, written Pr(X = a), is

then
> pGs).

s(X)=a
It is now easy to see that A |=(x,m) ¥ LL3 Z if and only if, for all abe,
Pr(y =b,Z =X =a) = Pr(y = b|X = a) Pr(Z = &|¥ = a),

that is, the probability of ¥ = b is independent of the probability of z = ¢, given ¥ = 4.
Analogously, a probabilistic inclusion atom X < y indicates that Pr(X = @) = Pr(y = a) for
all values a, and a probabilistic independence atom of the form X Il X that Pr(x = a) = 1
for some value a. Note that such atoms have been studied in the literature under the name
of constancy atoms [7].

Example 8 Strict and lax multiteam semantics give rise to different interpretations of mul-
titeams. Consider the formula ¢ := 3xy where ¥ := y < x A x 1L y and the question
whether a given multiteam (X, m) satisfies ¢.

In the strict semantics framework, it is natural to perceive (X, m) as a table in which each
s € X occurs m(s) many times and the values for x are missing. For instance, (X, m) may
store incomplete discrete information about events of an experiment. Then (X, m) satisfies
¢ if and only if the missing values of x can be filled in such a way that ¥ holds. In the strict
semantics setting, however, satisfaction of a formula is sensitive to the actual multiplicities
of assignments, not only their proportions in the multiteam. Figure 2 represents two multi-
teams (X, m) and (X, n) where X = {s1, s} with s;: y — i, m(s;) = i,and n(s;) = 3 - i.
Then (X, m) falsifies ¢, since y < x enforces two occurrences of x = 1 and one occurrence
of x = 2, in which case x 1L y cannot hold. On the other hand, (X, n) satisfies ¢, since
(X, n)[F/x], depicted in Fig. 2, satisfies .

In the lax semantics framework, it is more natural to identify (X, m) with its induced
probability distribution p obtained from (3) (see Fig. 3), for satisfaction by (X, m) is more
often invariant of the multiplicities m (s) depending only on the ratios p(s). In our example
case (X,m) and (X, n) share the same distribution and both satisfy ¢. For both multi-
teams, satisfaction of ¢ is verified by taking a constant function G that maps everything to
({1, 2}, £), where ¢ is a multiplicity function that associates 1 and 2 with multiplicities 1 and
2, respectively.
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Fig. 2 Representations of (X, m) (X,n) (X,n)[F/x]
multiteams (X, m), (X, n), and

(X, n)[F/x] with “missing y T y =* y =

information” s1 1 s1 1 5’1 1 1

sg 2 s1 1 s 1 2

sg 2 s1 1 s 1 2

so 2 sh 2 1

so 2 sh 2 1

so 2 sy 2 2

s2 2 sy 2 2

s2 2 sy 2 2

s2 2 2 2

3.3 Basic properties

The set of free variables of a formula ¢ € FO(C), denoted by Fr(¢), is defined in the
obvious manner as in first-order logic. In particular, we define

Fr(x € ) = Fr(X <)) :=Fr(=(*, y)) := (X, )}
Fr(y 1z Z) == Fr(yLzZ) := {¥, 5,2}

For V C Dom(X), we define (X, m) [ V := (X [ V, n), where

n(s) = Z m(s’).

s'eX,
s'V=s

We briefly recollect from the literature of team semantics the definitions and results
of the basic properties locality, union closure, and flatness. For an overview on the struc-
tural properties in team semantics and multiteam semantics setting, see Figs. 4 and 5,
respectively.

Definition 9 Let £ be a logic under team semantics, ¢ be a formula, X, Y be teams, and V
be a set of variables such that Fr(¢) C V C Dom(X).
Then L is

— localif 2 =x ¢ if and only if 2 =x v @,

— union closed if A =x ¢ and 2 =y ¢ implies 2 E=xuy ¢, and
— flatif A =x @ if and only if % |=(;; ¢ forall s € X.

(X, m) and (X, n) (X, m)[G/xz] and (X, n)[G/z]

y  p(sq) y =z p(sq)

s1 1 1/3 s; 1 1 1/9
ss 2 2/3 s’}’ 12 2/9
$ho2 1 2/9

s 2 2 49

Fig. 3 Representations of multiteams (X, m), (X, n), (X, m)[G/x], and (X, n)[G/x] using the induced
probability distribution from (3)
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property logic lax  strict
locality FO(=(+))

FO(C, L¢), FO(C), FO(Le)
flatness FO

FO(:('))v Fo(g)v FO(J—C)
union closure  FO

FO(S)

FO(=(")), FO(Lc)

S ENENENEN
X X NX N X N

Fig. 4 Structural properties overview in team setting

Proposition 10 Under lax team semantics

- FO(S, =(), Lo) is local [7, 34],
—  FO(Q) is union closed [7], and
—  FO s flat [34].

Under strict semantics

—  FO(=(")) is local [34],
—  FO is union closed, and
—  FO s flat [7].

Note above that union closure follows from flatness. It is now easy to show that the
logics having the above properties are maximal with respect to the used atoms C, =(-), L.
The only nontrivial case is to show that under strict semantics FO(C) is not union closed.
The analogous result was recently established for propositional inclusion logic in [18]. The
following example, a modification of [18, Example 4], shows that under strict semantics
FO(Q) is not union closed.

Example 11 Let P be a unary proposition symbol and consider a model 2l of vocabulary
{P} and domain {a, b} such that PY = {a}. Assignments s1, 53, and s3 are depicted in
Fig. 6. Define ¢ := (P(x) Ax € 2) V (P(y) Ay C 7). Note that under strict semantics
A Iz{sl,sz} @ and 2 ':{xz,u} @ but 2A V:{S],SQ,Q} Q.

Observe that under strict feam semantics FO(C) does not satisfy locality [7], whereas we
will see that (Proposition 13), by moving to multiteam semantics, locality can be regained

property logic lax  strict
locality FO(<, 1Le,=(), C, Lo)
flatness FO

FO(C)7 0 7é CC {S1 e, :()7 G, LC}
weak flatness  FO(=(+))
FO(=(-), S, Lc), FO(S), FO(Le)
FO(LLc), FO(<)
union closure  FO(<L, Q)
FO(1L¢), FO(=(-)), FOL¢)

X AX NAX QK
X AX X AX N

Fig. 5 Structural properties overview in multiteam setting
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Fig. 6 Illustration of

assignments sy, 52, and s3 for x ) z
Example 11

P S1 a b b

S92 a a a

S3 b a b

for both semantics. Consequently, the shift from teams to multiteams fixes a problematic
property of strict team semantics.

Definition 12 (Locality) Let £ be some logic, 2 be a multistructure, (X, m) be a multiteam,
and V be a set of variables such that Fr(p) € V C Dom(X). We say L is local (in the
multiteam setting) if for all ¢ € £ the equivalence 2 f=(x,m) ¢ < A E=(x,m)1v ¢ holds.

The following result holds by easy structural induction.

Proposition 13 Under lax and strict multiteam semantics, FO(<, 1L.,=(-), C, L¢) is
local.

Example 14 Let us illustrate why locality fails for strict team semantics whereas it holds for
its multiteam variant. Consider a disjunction ¢ := x € y V y C z. The team X from Fig. 7
clearly satisfies ¢ according to the strict team semantics. However, the formula is not true
over X [ {x, y, z} which merges two assignments from X into one. In multiteam semantics,
strict or lax, such collapses do not happen, since the definition of restriction in multiteam
setting preserves multiplicities. The restriction of a multiteam thus bears resemblance to the
marginalisation of a probability distribution where probabilities are preserved analogously.

The flatness property translates also to the multiteam setting. Recall that over teams this
property indicates that for checking the satisfaction of a formula it suffices to consult only
the singleton subsets of teams.

Definition 15 (Flatness) We say that a formula ¢ is flat (in multiteam setting) if for all
multistructures 2 and for all multiteams (X, m) it holds that

A FEaxme & VseX: A Fsyn @

where 1 is the constant fuction that maps everything to 1. A logic is called flat if every
formula of this logic is flat.

It is easy to prove that, analogous to the team semantics setting, the logic FO(C), C C {<,
A, =(), S, L}, is flat (in the multiteam setting) only when C = @. It turns out that by

Fig.7 _AteamX and its X X | {$7y7 Z}

restriction to variables x, y, z for

Example 14 x Y z v x Yy z
1 0 3 O 1 0 3
0 1 2 1 0 1 2
0 1 2 2 3 2 1
3 2 1 3
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weakening the concept of flatness an interesting property of multiteams emerges. We call a
formula weakly flat if it is insensitive to multiplicatives other than O and 1.

Definition 16 (Weak flatness) We say that a formula ¢ is weakly flat if for all multistruc-
tures 2 and for all multiteams (X, m) it holds that

AExme < AExn @

where n agrees with m on all s with m(s) = 0, and otherwise maps all s to 1. The multiteam
(X, n) is then called the weak flattening of (X, m). A logic is called weakly flat if every
formula of this logic is weakly flat.

Intuitively, the flatness property precludes the possibility of expressing any dependencies
(standard or probabilistic), whilst the weak flatness precludes only the possiblity of express-
ing probabilistic dependencies. An example of this is the following proposition which can
be proved by structural induction (see also Fig. 5).

Proposition 17 Under lax multiteam semantics, FO(=(-), C, 1) is weakly flat.
Under strict multiteam semantics, FO(=(-)) is weakly flat.

On the other hand, under strict multiteam semantics, the logics FO(L.) and FO(C) are
not weakly flat as illustrated in Examples 18 and 19. Likewise, probabilistic dependencies
do not satisfy weak flatness as shown in Example 20. Thus the logics FO(LL.) and FO(<)
are weakly flat in neither strict nor lax multiteam semantics. Also consequently, neither the
atom _LL . nor < can be expressed in FO(=(-), <, L).

Example 18 The multiteam (X, m), illustrated in Fig. 8, satisfies (x C z) V (y C z) in strict
semantics but its weak flattening (X, n) does not.

Example 19 The multiteam (Y, m), illustrated in Fig. 9, satisfies (x Lx’) V (y_Ly’) in strict
semantics but its weak flattening (Y, n) does not.

Example 20 The multiteam (Z, m), illustrated in Fig. 10, does not satisfy x 1L y but its
weak flattening (Z, n) does. Likewise (Z, m) does not satisfy x < y but its weak flattening
(Z, n) does.

Definition 21 (Union closure) A formula ¢ is called union closed (in the multiteam setting)
if for all multistructures A and all multiteams (X, m), (Y, n): if A l=(x,m) ¢ and A =v.n) @,
then 2l =z n) @, where (Z, h) = (X, m) W (Y, n). A logic is called union closed if all its
formulas are union closed.

(X, m) (X, n)
z oy oz ms;) x oy oz n(s;p)
s1 0 0 1 2 s1 0 0 1 1
so2 1 2 0 1 s 1 2 0 1
s3 2 1 0 1 s3 2 1 O 1

Fig. 8 Assignments for teams in Example 18
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(Y, m) (Y,n)
z 2y oy m(s;) z 2y oy n(s)
S1 1 1 1 1 2 S1 1 1 1 1 1
S9 1 0 2 2 1 S9 1 0 2 2 1
S3 0 1 3 3 1 S3 0 1 3 3 1
S4 0 0 4 4 1 S4 0 0 4 4 1
S5 2 2 1 0 1 S5 2 2 1 0 1
S6 3 3 0 1 1 S6 3 3 0 1 1
S7 4 4 0 0 1 S7 4 4 0 0 1

Fig. 9 Assignments for teams in Example 19

It is easy to show, by induction on the structure of formulas, that FO(<, C) satisfies
union closure.

Proposition 22 Under lax and strict multiteam semantics, FO(<, C) is union closed.

It is trivial to establish that none of the atoms L., =(-), L. is in general union closed as
singleton multiteams always satisfy these atoms.

3.4 Database and probabilistic dependencies

One can also study the usual dependency notions of database theory in the multiteam
semantics setting.

Definition 23 Let 2 be a multistructure with domain (A, n), (X, m) a multiteam over 2,

and ¢ of the form =(%, ), X C ¥, or y_L;Z. Then the satisfaction relation }=(x ) is defined
as follows:

AExm e & AT Ex+ o,

where X is the team {s € X | m(s) > 1} and A7 is the first-order structure with domain
{s € A | n(s) > 1} obtained from %l in the obvious manner.

First we notice that the known translation of dependence atoms to independence atoms
(see Grédel et al. [12]) works also in the probabilistic case.

Proposition 24 Let 2 be a multistructure, (X, m) a multiteam over 2, and X,y tuples of
variables. Then A E=xx.my ¥ Lz ¥ & A Exm =G, ).

Fig. 10 Multiteams (Z, m) and (Z,m) (Z,n)
(Z, n) for Example 20
z oy m(s;) z oy n(s)
so 0 0 1 so 0 0 1
S1 0 1 2 Ss1 0 1 1
S2 1 0 1 S92 1 0 1
s3 1 1 1 S3 1 1 1
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Proof From the truth definition we obtain that

AE=xmy Lz y & foralls: Var(Xy) — A with (X, m)z5-5:5) # ¥, 4)

(X, m)z5=s@y)| = (X, m)z=swm)l.
The result then follows since 2 =(x, m) =(X, y) if and only if the right-hand side of (4)
holds. For this, first note that the right-hand side of (4) fails if and only if there is a function
s: Var(Xy) — A with(X, m)zy=siy) 7# ¥ such that [(X, m)z5—scp| < (X, m)z=swm)l-
This holds if and only if there exists two distinct functions s, s”: Var(Xy) — A withs(X) =
s'(X) and(X, m)z5=4z5) # 0 # (X, m)z5=y 5)- O

Note that the restriction of Proposition 24 to marginal independence states that
2 ':(X,m) YAUx & oA ':(X,m) :(})

It is left open whether one can define inclusion or conditional independence atoms in
FO(LL., <). However, it can be show that over constant multiplicity functions conditional
independence atoms ¢ coincide with their probabilistic counterparts whenever Var(p) =
Dom(X). To this end, let us first prove the following simple lemma. This lemma entails
that any probabilistic independence atom can be expressed as a conjunction of y 1L 3 Z and
v 13 ¥ where X, ¥, Z, ¥ are pairwise disjoint sequences of variables.

Note that by TA we denote the team of all assignments Var(X) — A.

Lemma 25 Let 2 be a multistructure and (X, m) a multiteam over 2. Then

Q) AExmyliz < le(x,m)(g\fﬂ-iz\f), . o
(i) AbExm YLz & AkExm G\ZLzZ\Y)A(FNZ Lz ¥yNI).

Proof Item (i) The truth definition in (1) is symmetric, and hence it suffices to show that
A Exm ¥x 1Lz 7 < A Ex.m ¥ Lz 7 whenever x is listed in X. This follows since

*I¥ZA = *YZA | and the equation in (1) remains the same after removing x.

Item (i)  First show that 2 =(x,m) ¥ ALz Zimplies 2 =(x,m) (¥ NZ ALz ¥ N Z). For this,
it suffices to show that 2 |=(x ) yu L3 Z implies A =(x.m) ¥ ALz Z, for u not listed in
Xyz. This follows since for all s € YA,

(X, m)zz=sG)| - (X, m)z5=sG7)|
= [(X, m)zzi=5Gz)| - Baeal(X, m)z5u=sG5)al
= Zgea(|(X, m)zz=siz)| - (X, m)z5u=s@5)al)
= Zgea(|(X, m)z=s@ | - (X, M)352u=sG52)al)
= [(X, m)z=s@ | - Tacal(X, M)357u=sG32)al
= (X, m)z=s@)| - |(X, m)z53=5@32)|>
where in the third equation we apply the assumption that 2 =(x ) ya Lz Z.
For the claim it now suffices to show that A Ex,m Y liz & A Ewxm
(¥ \Z 1z 2\ ¥) whenever A =(x,m) (¥ NZ ALz y NZ). This follows directly from the
truth definition since by (4) for all s YA with (X, m) =50 = 0:

(X, m)zs=sio)| = (X, m)z=s@|s
forv :=xNy. O
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If X, y, Z are pairwise disjoint, then y 1l ; 7 corresponds to the generalised embedded
multivalued dependency X —o— y | 7 that is defined over extended relational data mod-
els (i.e., relational data models equipped with a multiplicity function) using semantics that
coincide with that of Definition 7 [37, 38]. It was shown by Wong [37] that the generalised
multivalued dependency X —o— ¥ holds in an extended relational data model if and only if
the underlying relational model satisfies the multivalued dependency X —» y. This is stated
in the following theorem reformulated into the framework of this article.

Theorem 26 [37] Let 2 be a multistructure, X a team over 2, and y 1L ; 7 a probabilistic
conditional independence atom such that Var(y 13z 7) = Dom(X) and X, y, Z are pair-
wise disjoint. Let 1 denote the constant function that maps all assignments of X to 1. Then
A=yl Z & AEx YLz

Using Lemma 25 the restriction that X, y, 7 are disjoint can be now removed.

Proposition 27 Let 2 be a multistructure, X a team over 2, and y 1.z 7 a probabilis-
tic conditional independence atom such that Var(y 13z 7) = Dom(X). Then 2 E=x.1
y ;7 e Ak yLlsz

Proof First note that by Proposition 24 and Lemma 25, y 1L ; 7 is equivalent in multiteam
semantics to (¥ \ XZ 1Lz Z \ Xy) A=(X, yNZ). Moreover, it is known that in team semantics
yL137 is equivalent to (¥ \ ¥ZLzZ \ Xy) A =(X, ¥y N Z) [12]. Hence the claim follows by
Theorem 26. O

Note that y 1l ; 7 implies ¥1 37 also over arbitrary multiplicity functions, since non-
emptiness of (X, m)z5—sxy) and (X, m)zz—s(z) implies non-emptiness of (X, m)z37=¢357)
by the truth definition in (1). The converse however does not hold; the multiteam (Y, m)
depicted in Fig. 11 satisfies x_Ly but violates x 1L y.

3.5 Probabilistic notions in team semantics

In this section we examine probabilistic independence and inclusion logic in the team
semantics setting. We restrict attention to lax semantics. Note that all the models considered
in this section are usual first-order structures.

Satisfaction of probabilistic atoms in team semantics setting is defined by adding a
constant multiplicity function.

Definition 28 Let 2 be a model, X be a team over 2, and ¢ be a probabilistic atom of the
form y 1l 3 7 or X < ¥. Then the satisfaction relation =y is defined as follows:

AEx e oA E=Ex @,

where 1 is the constant function that maps all assignments of X to 1.

Fig. 11 A multiteam (Y, m) (Y,m)

satisfying x_Ly but violating

x Ay z y  ms)
S0 0 0 2
s 0 1 1
s2 1 0 1
S3 1 1 1
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The next theorem shows that, since probabilistic inclusion and independence atoms are
expressible (in the team semantics setting) in FO(_L.) relative to teams of fixed domain,
their addition does not increase the expressive power of FO(_L).

Theorem 29 Let ¢ € FO(<, 1., =(), C, L) be a sentence. Then there exists a sentence
¢’ € FO(L.) such that for all models 2 the equivalence 2 = ¢ < 2l = ¢’ holds.

Proof First note that inclusion and dependence atoms can be expressed in FO(L.) [7,
12]. Also it is easy to see that one can construct existential second-order logic sentences
that capture probabilistic inclusion and conditional independence atoms over teams of fixed
domain. Namely, for all ¢ of the form y 1L ; Z or X < y and all V 2 Fr(g), there exists an
ESO sentence ¢*(R), where R is a k-ary relation symbol for k = |Var(¢)|, such that for all
A and X with Dom(X) =V,

AEx ¢ & (A Rel(X)) = ¢™(R),

where Rel(X) = {(s(x1),...,s(xx)) | s € X}. All ESO-definable properties of teams
translate into FO(_L.) [7], and hence the formula ¢’ can be constructed from ¢ by replacing
each probabilistic atom with a correct FO(_L.)-translation. O

Note that probabilistic inclusion atoms are not closed under (set) unions in team
semantics, and hence they cannot be expressed in FO(C) as shown in the following example.

Example 30 Let 2 be a first-order structure with domain {0, 1,2}, and the following
three assignments given s := {(x,0), (y, 1), (z,0)}, s’ := {(x, 1), (y,0), (z, 1)}, and
s = {(x,0), (y, 1), (z,2)}. Define X := {s,s'}and Y := {s',5"}. Now 2 =x x < y,
Ay x <y, butA Exuy x <.

4 Approximate operators

Next, we define an existential and a universal approximate operator which allows one to
state truth of formulas not with respect to the full team but with respect to a ratio of the
team. The main motivator for this approach is the important application in database theory
to be able to model the truth of properties in databases that may contain some faulty data.
Moreover, in practise, duplicates occur frequently in databases for a multitude of reasons.
Thus the study of database dependencies, such as inclusion dependencies and foreign key
constraints, in combination with approximate operators is an important topic as it explains
inherent properties of a given dataset. In this section we consider multiteam semantics.

Definition 31 Let 2 be a multistructure, and (X, m) a multiteam over 2, and p € [0, 1] a
rational number.

AE=@m (Pl © 3, n) CX,m), |(Y,n)| = p-[(X,m)|: A=y @,

A E=wxm [ple © VX, n) CX,m),|(Y,n)| = p-|(X,m)]: A =y.n ¢

The notion of an approximate dependence atom =, (-), introduced by Viininen [36], can
be now seen as a special instantiation of the existential approximate operator: =j_, (¥, y) is
equivalent to the formula {p) =(X, y). The difference to Viiniinen’s proposal is the scope
of approximation which is now extended to arbitrary formulae.
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In the following we observe that distributivity does not hold in general with respect to
(p)-

Proposition 32 [t is not true that (p)(¢ vV ) = (p)e V (p)¥.

Proof Let 2 be the multistructure over the empty vocabulary with the domain ({0, 1, 2}, 1),
where 1 is the constant 1 multiplicity function. Then 2l =x 1) (%)(x =yVvx =72
but A ey, (3)(x = y) vV (3)(x = z), where (X, 1) is the multiteam depicted in the
Fig. 12. O

The next simple observation states the distributivity of [p] with respect to conjunction
A, as well as the merger of two (p)-operators and two [g ]-operators, respectively.

Observation 33 The following equivalences hold:

L. [plle A¥) =[ple AlplY,
2. (pUq)p) =(p-q)e,
3. [pldgle) =1p-qle.

The next two examples show that both downward closure and union closure are violated
by the approximate operator.

Example 34 Let 2l be the multistructure over the empty vocabulary with domain
({0, 1, 2}, 1), where 1 is the constant 1 multiplicity function. Then 2 =(x 1) (%)(x =y)

but A K&y 1) (%)(X =y), where (Y, 1) C (X, 1) are the multiteams depicted in the Fig. 12.

Example 35 Let 2 be the multistructure over the empty vocabulary with domain ({0, 1}, 1),
where 1 is the constant 1 multiplicity function. The multiteams (Z, m), (Z, n), (Z, k), (Z, £)
are depicted in the Fig. 12. Now A =z k) [%](x <y and A =z [%](x < y). However
A F=zn) x <y and thus A =z ) [%](x < y), even though (Z, k)W (Z,]) = (Z, m).

Proposition 36 Let L be a logic and ¢ € L a formula. Then {p) preserves union closure
(whereas [ p] does not), i.e., (p)¢ is union closed whenever ¢ is.

(X, 1) (Y, 1)
z oy oz 1(s;) z oy oz 1(s;)
S1 0 0 1 1 S92 0 1 0 1
S2 0 1 0 1 S3 0 1 2 1
s 0 1 2 1
(Zv )
z oy m(s;) n(si) k(si) £(ss)
S1 0 1 1 0 1 0
S2 1 0 1 1 1 0
S3 0 0 1 1 0 1

Fig. 12 Assignments for multiteams in Examples 34 and 35
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Proof Let 2l be a multistructure and X, Y be multiteams of 2. Assume that 2 =x (p)e and
2A =y (p)e where ¢ is closed under unions. Then there are multiteams X’ € X and Y’ C Y
such that | X’| > p|X]|, |Y’'| > p|Y|, and both 2 =x ¢ and 2 =y ¢. Hence, 2 =xwy @
by union closure, and since | X' W Y'| = |X'| +|Y'| > p|X| + p|Y| = p(IX| + |Y]) =
p|X W Y], it follows that A =xwy (p)e. O

Yet locality holds for this logic as witnessed by the following proposition. The proof is
by induction.

Proposition 37 (Locality) Let 2 be a multistructure, (X, m) a multiteam, and V be a set of
variables such that Fr(p) C V € Dom(X). Then, for all p € FO((p), [p], <, 1L¢,=(), G,
L), the equivalence A |=(x my ¢ < A Ex,m)v ¢ holds.

5 On the complexity of approximate dependence logic

In the following we study the computational complexity of model checking in dependence
logic enriched with the operator (p). The results hold under both team and multiteam seman-
tics. To simplify notation we work with team semantics in this section. Analogously to [3],
our results can be seen as a first step towards a systematic classification of the syntactic
fragments of approximate dependence logic for which data complexity of model-checking
is tractable/intractable.

We first define the model checking problem in the context of team semantics. We con-
sider only Boolean queries, that is we define the model checking problem for a logic L as
follows: given a model 2, a team X of 2, and a formula ¢ of £, decide whether 2 =y ¢
holds. There are three parameters to this problem: the model 2, the team X, and the for-
mula ¢. Depending on which of these parameters are fixed, a different variant of the model
checking problem arises. Here we consider two of these variants: the variant with a fixed
formula (this is called data complexity), and a variant in which nothing is fixed (this is called
combined complexity).

The following two theorems reveal that already very simple formulas of approximate
dependence logic witness the NP-completeness of the data complexity of the logic.

Theorem 38 Model checking for (%)(:(x, y) A =(u, v)) is NP-complete.

Proof For the lower bound we give a polynomial many-one reduction from 3SAT inspired
by a similar proof of Jarmo Kontinen [25]. Start with a formula ¢ = AL, \/33=1 £; j where
£;,j is the jth literal in the ith clause, i.e., either a variable x (said of parity 0) or its negation
—x (of parity 1). In the following we will construct a tuple (X, ) from ¢ such that ¢ €
3SAT if and only if 2l =x 1. Here 2 is the model over the empty vocabulary such that the
domain of 2 is the codomain of X. First we define the team X to be the set

X ={(i, j, x, p) | in the ith clause the jth literal is the variable x with parity p},

where (i, j, x, p) denotes the assignment mapping the variables clause, literal, variable,
parity to i, j, x, p, respectively. Technically the team X can be seen as an encoding of the
given formula. For instance the formula ¢ = (x1 vV —x3 V x3) A (—x1 V —x2 V —x3) would
yield the team

X ={(,1,x1,0),(1,2,x2, 1), (1,3,x3,0), (2, I, x1, D(2, 2, x2, 1), (2,3, x3, D}.
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The formula v is defined as
1
(g)(:(clause, literal) A =(variable, parity)).

Then intuitively speaking i states that one has to decide for each clause a satisfying
literal and do this consistently, i.e., the corresponding assignment has to be consistent. At
first, one selects exactly one-third of the elements in X such that for each clause a literal is
chosen (i.e., clause will determine the value of literal). Then the parity of each variable is
consistently chosen (i.e., variable will determine the value of parity). We will next formally
prove that ¢ € 3SAT if and only if 2 =x .

We first show that ¢ € 3SAT = 2 =x . Thus assume that ¢ € 3SAT. Let 6 be an
assignment such that 6 = ¢. For each 1 < k < m, let i} € {1, 2, 3} be a number such that
the literal £ ;, in the kth clause of v is satisfied by 0, i.e., 6 = €x ;.. Let I := {iy, ..., ix}.
In the following we will show that 2l =x ¥ holds. Define

X' :={(k, j,v,p) € X | j =ir}. Clearly |X'| = %|X|.

Moreover it is easy to cheque that for any two (j, i, v, p), (j/,i’,v', p’) € X’

(a) j = j impliesi = i’ (the clause determines the literal) and
(b) v = implies p = p’ (the variable determines the parity).

Hence from (a) is it follows that 24 |=x/ =(clause, literal) and from (b) it follows that
2 Ex =(variable, parity). Since | X'| = %IXI, we obtain 2 =y .

Now turn to the direction 2{ =x ¥ = ¢ € 3SAT and assume that 2l =x . Thus
there exists a team X’ € X such that | X'| > %|X| is true and also it holds that 2 =y
=(clause, literal) A =(variable, parity). Since 2 =y =(clause, literal) we have that

Gsisv, p), (', i, v, p') € X" andj = j" implyi =i'. 3)
Analogously, since 2 =x =(variable, parity) we have that
(J.i v, p). (i, p') € X andv = v" implyp = p’. (6)

From (1) we can deduce that | X'| < %|X|. Since | X'| > %|X|, we obtain that | X'| = %|X|.
This together with (2) ensures that

for each clause j of v there exits some i, v, p such that (j, i, v, p) € X'. @)

It is now easy to construct from X’ an assignment 6 such that 6 = ¢.
Define
() = { 1 if (j,i,v,0) € X' for some j,i € N,
’ 0 if (j,i,v,1) € X' forsome j,i € N.
From (2) it follows that 0 is well-defined, whereas (1) and (3) ensure that every clause of
¢ is satisfied by 6. Hence we have ¢ € 3SAT.
For the NP upper bound, first observe that we can simply guess a subset X’ of X
such that |X'| > %|X |. Then we just have to cheque whether 2 =y, =(clause, literal) A

=(variable, parity) holds. This can be clearly done in polynomial time. O

The next theorem shows that NP-hard properties can be defined using very simple for-
mulas even if the operator (p) is restricted to appear only in front of dependence atoms. It
is worth noting that the data complexity of formulas addressed in Theorem 39 without the
operator (p) is in NL by the results of [25].

Theorem 39 Model checking for =(x,y) v ((17—0) =(x, y) A =(u, v)) is NP-complete.
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Proof The upper bound is established analogously to the proof of Theorem 38.

Now we turn to the lower bound. Here we will reduce from 3SAT through Max-2Sat,
a well-known NP-hard optimisation problem whose decision variant is NP-complete. The
problem asks given a 2CNF-formula ¢ and a number k € N, if at least k of the clauses of ¢
can be simultaneously satisfied [11]. Garey et al. describe a reduction f from 3SAT to the
decision variant of Max-2Sat such that ¢ € 3SAT if and only if at least % of the clauses of
f (¢) can be satisfied.

We will exploit this known reduction in the following way. The team X is constructed in
the same way as in the proof of Theorem 38. The formula then is

7
=(clause, literal) v (=(clause, literal) A <E) =(variable, parity)).

Let us briefly sketch the proof as it is quite similar to the one of Theorem 38. The first v
just “removes” the not needed half of the literals in the clauses. Then =(clause, literal) takes
care of that in each clause exactly one literal is chosen whereas (17—0) =(variable, parity)
allows us to get down to the fraction of clauses which have to be satisfied, hence have
to obey the dependence atom stating that the remaining variables have to be consistently
chosen, i.e., variable determines parity. O

Currently the (p) operator is defined with respect to some value of p € [0, 1]. We saw
that it depicts the behaviour of a ratio. Yet we want to shortly discuss a different approach
for this setting. Instead, we define (p) for values of p € N hence p is now a natural number
with the following meaning. A team X satisfies a formula (p)g if there exists ateam ¥ C X
of size > p such that Y = g—similarly for [p] the meaning would be that every team
Y C X of size > p satisfies ¢.

Sticking to this approach would allow one to state a similar result as for Theorem 38 and
Theorem 39 but now for combined complexity as follows. Here one would just explicitly
state the number of rows to be removed from the team, i.e., setting p to m in the constructed
formula in the proof of Theorem 38. Regarding Theorem 39 in this setting the formula f (¢)
increases the number of clauses by factor 10 and therefore requires to set p to 17—0 -10-m =
7 - m where m is the number of clauses of the given 3CNF formula ¢.

Remark 40 The lower bounds of Theorems 38 and 39 transfer directly to the multiteam
setting. For the upper bounds, it might matter how the multiplicity functions of multiteams
are encoded. However, if the multiplicities are encoded in any reasonable way, such as in
unary or binary, then also the upper bounds of Theorems 38 and 39 transfer to the multiteam
setting. In the unary case they transfer immediately; instead of guessing subsets of the team,
we may directly guess subsets of the canonical set representative. In the binary case, for
example, a subset of a multiteam (A, m) can be guessed by guessing, for each a € A, a
binary number smaller than m(a). The NP upper bound then follows, since addition and
comparison of binary numbers can be done in polynomial time.

6 Conclusion and future issues
To the best of the authors’ knowledge, this article is the first serious approach to defining

team semantics with respect to multisets for first-order dependence logic. We also initi-
ate the study of probabilistic analogues of independence and inclusion logic. Additionally
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the paper provides a first step into the study of a general approximation operator in the
team semantics framework. We show several foundational properties of these newly defined
formalisms and present some first computational complexity results for dependence logic
with the approximation operator. We show that the introduction of the approximate operator
enables us to encode NP-hard properties into the model checking problem (data complex-
ity) of this logic even with only two dependence atoms, a single approximate operator, and
a single conjunction. It is an interesting open question to study the computational properties
of the analogously defined approximate inclusion logic.

It is often argued that, in team semantics setting, the strict semantics for disjunction is not
natural for the failure of locality. In strict multiteam semantics, however, locality is regained.
In team semantics setting, the lax disjunction ¢ V ¢ is equivalent with ¢ if and only if ¢
union closed (with respect to set unions). The disjunction of lax multiteam semantics has a
similar, but weaker, property: for multisets (X, m) and (Y, n), we call the set

{((XUY, 1) |Vse XUY :n(s),m(s) <t(s) <n(s) +m(s)}

the set of weak unions of (X, m) and (Y, n). In the multiteam setting, the lax disjunction
¢ V @ is equivalent with ¢ if and only if ¢ is union closed with respect to weak unions.
However, in multiteam setting, unions of multiteams are most naturally defined by using
disjoint unions. In fact, in multiteam semantics, the strict disjunction ¢ V ¢ is equivalent
with ¢ if and only if ¢ is union closed with respect to disjoint unions. This suggests that the
combination of strict disjunctions and lax existential quantifiers deserves to be studied as a
possible candidate for a base of probabilistic logics in multiteam setting.

Heretofore a broad field around intuitionistic logic has developed. Intuitionistic logic
can be seen as classical propositional logic without the law of excluded middle. One of the
main concepts here is the intuitionistic implication — . In the setting of team semantics it is
defined as follows. Let 2( be a structure and X be a team. Then 2( =x ¢ — ¥ is true if and
only if for all subsets X’ C X it holds that 2 =y’ ¢ implies 20 =x/ ¥. The intuitionistic
implication has been studied in the context of dependence logic, see, e.g., the work of Yang
[39]. An approximate variant of this operator in our setting will yield a nice resemblance to
the [ p] operator. The slight and quite natural adjustment of intuitionistic implication to our
setting is then: A =x ¢ — , ¥ if and only if for all subsets X’ C X with |[X'| > p-|X] (and
p € [0, 11N Q) it holds that A =x+ ¢ implies that 2 =x 1. The operator [p] can now be
expressed with the help of the intuitionistic approximate implication. One can easily verify
that [p]e is equivalent to T —, ¢.

In this article we have considered approximation in the context of multiteam semantics
when restricted to the finite. However our definitions can be generalised in a straightforward
manner to deal with arbitrary cardinalities.
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