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Abstract Influence diagrams provide a compact graphical representation of decision prob-
lems. Several algorithms for the quick computation of their associated expected utilities
are available in the literature. However, often they rely on a full quantification of both
probabilistic uncertainties and utility values. For problems where all random variables and
decision spaces are finite and discrete, here we develop a symbolic way to calculate the
expected utilities of influence diagrams that does not require a full numerical representa-
tion. Within this approach expected utilities correspond to families of polynomials. After
characterizing their polynomial structure, we develop an efficient symbolic algorithm for
the propagation of expected utilities through the diagram and provide an implementation of
this algorithm using a computer algebra system. We then characterize many of the standard
manipulations of influence diagrams as transformations of polynomials. We also generalize
the decision analytic framework of these diagrams by defining asymmetries as operations
over the expected utility polynomials.
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1 Introduction

Decision makers (DMs) are often required to choose in critical situations between a wide
range of different alternatives. They need to consider the mutual influence of quantifications
of different types of uncertainties, the relative values of competing objectives together with
the consequences of the decisions they will make. They can thus benefit from an intuitive
framework which draws together these uncertainties and values so as to better understand
and evaluate the full consequences of the assumptions they are making. To this end, a vari-
ety of graphical models have been developed. The most important of these are Bayesian
networks (BNs) [37, 44] and influence diagrams (IDs) [4, 26, 36], both of which provide an
intuitive qualitative representation of the elements of the DM’s problem together with rela-
tively fast computational tools for the calculation of, respectively, probabilities and expected
utilities (EUs) [27, 39, 44]. Although only the second class of models can be used to auto-
matically select an optimal course of action, i.e. an EU maximizing decision, both BNs and
IDs are invaluable decision support tools, enabling DMs to easily investigate the effect of
their inputs to an output of interest.

Most of the algorithms for the computation of probabilities and EUs rely on a full
specification of the model’s parameters. Furthermore, commonly available software almost
exclusively work numerically with complete elicitations. However, often in practice DMs
might not be confident about the precision of their specifications, nor have available all such
values. This may lead to non-robust decision making where the efficacy of decisions can
change under small perturbations of the model’s inputs. Symbolic approaches, not requir-
ing full elicitations of the parameters, have proven useful in performing these types of
input-output investigations, usually called sensitivity analyses, both in fully inferential and
decision making contexts [1, 2, 14, 35]. A variety of symbolic methods for both inference
and sensitivity analysis are now in place for BNs [10, 12]. However, the development of
symbolic techniques for EU computations in IDs has been largely neglected. An excep-
tion is a recent paper [6] where decision network polynomials are defined in the context
of Bayesian decision problems. These are piece-wise functions made of so-called pieces:
multilinear polynomials having as indeterminates both probability and utility parameters.
A new symbolic sensitivity technique is then developed in [6] based on differentiation and
difference operators.

In this paper, we focus on a large class of IDs called multiplicative influence diagrams
(MIDs), which include as a special case standard IDs equipped with additive utility fac-
torizations, and fully characterize the polynomial structure of the EU pieces (Section 3).
We then introduce a symbolic algorithm for their computation, based on simple matrix
operations (Section 4), and its implementation in the computer algebra system MapleTH1

(Appendix B). Because of the simplicity of the required operations, our algorithm is shown
to have computational times comparable to those of standard numerical evaluation software
for graphical models (Section 4.4). In contrast to standard software, which assumes an addi-
tive factorization between utility nodes, we also explicitly analyze cases when the more
general class of multiplicative utility functions might be necessary [29, 30, 44]. We con-
centrate our study on the class of multiplicative factorizations because this provides some
computational advantages over, for example, the more general class of multilinear utili-
ties [30], whilst allowing for enough flexibility to model the DM’s preferences in many real

1Maple is a trademark of Waterloo Maple Inc.
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cases [22, 29]. This factorization turns out to be particularly efficient since it leads to a
distributed propagation of EUs as shown in Proposition 1.

The symbolic definition of the ID’s probabilities and utilities in Section 3 provides an
elegant and efficient embellishment of the associated graphical representation of the deci-
sion problem, around which symbolic computations can then be carried out. In Sections 5
and 6 standard manipulations of IDs and asymmetries are characterised on this new poly-
nomial representation. Importantly we demonstrate that, whilst graphical representations of
asymmetries are rather more obscure than standard ID models, in our symbolic approach
the imposition of asymmetries greatly simplifies the polynomial representation of the prob-
lem. The example in Section 7 then outlines the insights our approach can give to DMs
through the comparison of different parameters’ specifications. Our symbolic approach has
the great advantage in such sensitivity studies that, by exploiting the known polynomial
expression of the problem, one can simply plug-in different numerical specifications and
instantaneously get the EU values. In standard numerical approaches on the other hand, the
evaluation algorithm needs to be run for each combination of parameters considered. This
can become quickly unfeasible even for rather small problems.

2 A review of symbolic approaches to decision making and support

Symbolic inference and decision support techniques have already been used for the anal-
ysis of BN models. A symbolic definition of probabilities in BNs in terms of multilinear
polynomials first appeared in [9]. Since then various inferential techniques have been devel-
oped [11, 18, 24]. Their most demonstrably useful application is in the process of validating
models through sensitivity analyses. Two main approaches are adopted in practice. The first
one is based on differentiation of the probability polynomials and is useful for the analy-
sis of global changes of probability distributions [13, 14]. The second one concerns local
changes studied via sensitivity functions [15, 23], which, because of the assumed multilin-
earity, are simple linear functions of the parameters of interest. Recently, symbolic methods
have been extended to asymmetric models [24, 33] where the associated polynomials might
not exhibit regular multilinear structures as for BNs.

Although it is known that EUs in IDs also have a multilinear structure [21], symbolic
methodologies for such models have not been studied consistently. Only recently the robust-
ness of decision models has been analysed from a symbolic viewpoint in [6]. For the i-th
available strategy, [6] defines the functions ui : X → R, where X is the parameter space,
representing the EU of the associated strategy and called EU piece. The decision network
polynomial is then defined as maxi=1,...,M ui(x), for M available strategies, and represents
the expected utility of the optimal strategy for the combination of parameters x.

However, no assumptions about the attributes of the problem entertaining various condi-
tional utility or additive/preferential independences are utilized in [6], where a utility value
is associated to each possible combination of decisions and realizations of random variables.
Such assumptions, often encountered in applied decision analyses, are commonly encoded
in a particular factorization of the utility function which then leads to fast and distributed
algorithm for the computation of expected utilities. Thus, without formally acknowledging
such independences a great amount of information about the preferences of the DM and
computational efficiency can be lost. Furthermore, no details on how to compute the func-
tions ui are given in [6]. In this paper we extend this symbolic framework by developing a
distributed symbolic procedure for the computation of the EU pieces for utilities chosen in
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the large class of multiplicative IDs [30, 44]. We further fully characterize symbolically the
functions ui of the decision problem. This enables the application of the proposed method-
ology to robustness studies where certain parameters are treated as unknown. In Section 7
via an example we show how to exploit our definition for informing a DM about the opti-
mization process. A full development of such symbolic optimization techniques is beyond
the scope of this paper.

Of course the solution and investigation of both generic decision problems and influence
diagrams can be performed outside of the full Bayesian symbolic paradigm and using uncer-
tainty calculi that relax the assumption of an exact and complete probability specification.
One of such proposals [8], is based on imprecise probabilities and consists of mapping the
evaluation of an ID into an inferential problem in credal networks [17], solved using mul-
tilinear programming [7]. The objective function of such an optimization problem can be
shown to be multilinear and to share many features with our polynomial representation of
EUs, although within a different domain. Because of the use of imprecise probabilities the
parameters of the decision problem can be specified only partially.

Symbolic evaluation methods have also been introduced for discrete and finite time deci-
sion Markov processes that do not require full parameters’ elicitations (e.g. [31]). As an ID
can always be cast as a Markov decision process, the evaluation methods originally designed
for general Markov processes can be straightforwardly applied to IDs. A different approach
is taken by the so called symbolic dynamic programming: for such a technique the sample
space does not need to be fully specified [38, 47]. Again these methods have the capabil-
ity of helping the DM to discover the most critical features of the decision problem where
accurate specification of inputs is most necessary.

The methods reviewed above propose to automate decision making in a variety of frame-
works and reasoning paradigms where DMs do not need to provide complete and/or exact
parameters’ specifications. These have proven to be successful and computationally effi-
cient, but EU maximization is still most commonly applied within a standard probabilistic
domain. Therefore, here we assume that the DM plans to behave as an EU maximizer and
we will henceforth work entirely within this most standard framework.

3 Symbolic representation of influence diagrams

In this paper, with the exception of Section 6, we consider those Bayesian decision problems
that can be represented by an ID and are usually called uniform (or symmetric) [32, 44].
Let n be a positive integer (n ∈ Z≥1) and D and V be a partition of [n] = {1, . . . , n}.
Let {Yi : i ∈ D} be a set of controlled (or decision)2 variables and {Yi : i ∈ V} a set of
non-controlled (or random) variables. As in standard ID representations, the set of decision
variables is assumed to be totally ordered and the union of {Yi : i ∈ V} and {Yi : i ∈ D}
to be totally ordered compatibly with a partial order on the random variables. Let � be the
chosen ordering relationship. The ordering on the Yi’s is reflected by their indices, that is if
Yi � Yj then i < j .

For i ∈ [n] and ri ∈ Z≥1, let [ri]0 = {0, . . . , ri − 1} and Yi take values in Yi = [ri]0.
For A ⊆ [n], let the vector YA = (Yi)i∈A take values in YA = ×i∈AYi and denote with yA

a generic instantiations of YA. Examples of this notation are: the vector Y[n] includes all the
variables, whilst YD and YV are the vectors of controlled and random variables respectively.

2With controlled variable we mean a variable set by the DM to take a particular value.
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3.1 Multiplicative influence diagrams

We consider the class of multiplicative IDs entertaining a multiplicative factorization over
the utility nodes U = (U1, . . . , Um)T (see e.g. [30, 44]). For i ∈ [m], Ui is a function onto
[0, 1] defined on a subspace YPi

of Y[n] where Pi ⊆ [n] is assumed non empty.

Definition 1 A multiplicative influence diagram (MID) G consists of three components:
a directed acyclic graph (DAG) with vertex (or node) set V (G) = Y[n] ∪ U , a transition
probability function related to the random variables YV and a multiplicative factorization
function related to the U nodes.

Example 1 Figure 1 presents an MID with n = 6, m = 3, D = {1, 4}, V = {2, 3, 5, 6} and
vertex set V (G) = {Y1, . . . , Y6, U1, . . . , U3}. There are two controlled variables, Y1 and Y4,
four random variables, Y2, Y3, Y5 and Y6, and three utility nodes, U1, U2 and U3. We adopt
the convention by which decision variables and random variables are respectively framed
with squares and circles. All variables are binary and take values in the spaces Yi = {0, 1},
i ∈ [6].

Next we describe the three components of an MID starting from its edge (or arc) set
E(G). For i ∈ [n], the parent set of Yi is the sub-vector of Y[n] indexed by �i ⊂ [i − 1].
For i ∈ [m], the parent set of Ui is the sub-vector YPi

of Y[n] where Pi ⊆ [n] is the non
empty set mentioned above and thus each utility node has at least one parent. Furthermore
any two Pi’s are assumed disjoint so that each component of Y[n] is parent of at most one
utility node. There are three types of edges in an MID:

1. those into U vertices: for i ∈ [m], Ui has no children and its parent set YPi
is described

above;
2. those into D vertices: for i ∈ D, the parent set of Yi consists of the variables, controlled

and non-controlled that are known when Yi is controlled;
3. those into V vertices: for i ∈ V, the parent set of Yi is such that Yi is conditionally

independent (with respect to the probability law in Definition 1) of the random variables
preceding it given its parents and for all instantiations of decisions preceding Yi .

Recalling that �i ⊂ [i − 1], Item (3) above can be formulated as Yi ⊥⊥ Y[i−1] | Y�i
, where

⊥⊥ denotes the extended conditional independence operator [19]. This means that standard
conditional independence, namely Yi ⊥⊥ Y[i−1]∩V | Y�i∩V, holds for all instantiations of
the decision variables Y[i−1]∩D preceding Yi . The transition probability function for the
random vector YV in Definition 1 is given in terms of probability density as the product of

Fig. 1 An MID consisting of two decision nodes, Y1 and Y4, four random nodes, Y2, Y3, Y5 and Y6, and
three utility nodes, U1, U2 and U3
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Pi(yi | y�i
) = P(Yi = yi | Y�i

= y�i
) for i ∈ V. Note that y�i

includes instantiations of
controlled variables as well as random variables.

Example 2 The edge set of the MID in Fig. 1 is such that no variable is observed before
controlling Y1, whilst Y1, Y2 and Y3 are observed before controlling Y4 since �4 = {1, 2, 3}.
Furthermore its DAG implies that Y5 ⊥⊥ Y1, Y2 | Y3, Y4 and Y6 ⊥⊥ Y1, Y2, Y3 | Y4, Y5. The
parent sets of the utility nodes are P1 = {3}, P2 = {5} and P3 = {4, 6}.

The third component of an MID is a utility function U defined over Y[n] as

U(y[n]) =
{ ∑

i∈[m] kiUi(yPi
), if h = 0,∑

I∈P0([m]) hnI −1 ∏
i∈I kiUi(yPi

), otherwise.
(1)

where ki ∈ (0, 1) is a criterion weight [30]; as mentioned above Ui is a function of the
random and decision variables in YPi

. It gives the contribution to the utility function of the
controlled and random variables in YPi

and it does so linearly if h = 0, i.e. the first case of
(1). It is worthwhile recalling that the YPi

’s are disjoint. In the second case of (1) h is the
unique non-zero solution not smaller than minus one to

1 + h =
∏

i∈[m]
(1 + hki). (2)

and P0(·) denotes the power set without the empty set, nI is the number of elements in the
set I . For h = 0, the multiplicative factorisation of an MID, U(y[n]), is a weighted sum
of the terms U(yPi

): thus coinciding with the class of commonly used additive factoriza-
tions [29]. Therefore the methodology we develop here applies to utility factorizations of
additive form, or additive IDs, as well. For h �= 0 the function U(y[n]) is a linear combina-
tion of all square free products of the Ui’s (excluding 1). The h balances the weight of the
interaction terms: the larger h is, the bigger is the impact of high order terms.

Example 3 The multiplicative utility factorization associated to the MID in Fig. 1, for h �= 0
and leaving the functions’ arguments implicit, can be written as

U = k1U1 + k2U2 + k3U3 + hk1k2U1U2 + hk1k3U1U3 + hk2k3U2U3 + h2k1k2k3U1U2U3.

This expression emphasizes the generality of multiplicative utilities, since an additive utility
is obtained by setting h = 0 and is the sum of the first three terms.

Item 1 above, describing the edges into the utility nodes, extends the total order over
Y[n] to V (G). Indeed for i, j ∈ [m], Ui succeeds Uj and i > j if there exists a parent
of Ui which succeeds all parents of Uj in the order � over Y[n]: formally, if there is a
k ∈ Pi such that for every l ∈ Pj , k > l. For i ∈ [m], let ji be the highest index of
Pi and J = {j1, . . . , jm}. The set J of the greatest parents of the utility nodes in � is
fundamental for the Algorithm 4.2 in Section 4.3 because it allows for the computation
of the least number of expected utilities by processing a Ui in the algorithm only when
strictly necessary. The MapleTH function CompJ in Appendix B.1 computes the set J for a
given MID. The totally ordered sequence of V (G) is called decision sequence (DS) of the
MID G and is denoted by S := (Y1, . . . , Yj1 , U1, Yj1+1, . . . , Yjm, Um). As in [3], we do
not introduce utility nodes only at the end of the DS. This enables us to base the choice
of optimal decisions, through the algorithm given below, only on the values of the relevant
attributes.
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Example 4 The DS of the MID in Fig. 1 is (Y1, Y2, Y3, U1, Y4, Y5, U2, Y6, U3) with j1 = 3,
j2 = 5, j3 = 6 and thus J = {3, 5, 6}.

3.2 Evaluation of MIDs

In this section we set the background for an efficient symbolic algorithm for evaluating an
MID, namely for computing the expected value of (1) for all possibile decisions yD ∈ YD

and identifying a sequence of optimal decisions that maximizes it. We do this by exploiting
the sequential structure of (1) which by linearity is transferred to its EU function. However,
this can be done only for MIDs in extensive form [42], namely those MIDs whose topology
is such that, for any index j ∈ D, only variables that are known at the time the DMmakes the
decision Yj have an index lower than j . This is because the evaluation will output optimal
decisions as functions of observed quantities only [44]. Extensive form is thus a property
referring to the edges into the decision variables of an MID.

Definition 2 An MID G is said to be in extensive form if Yi is a parent of Yj , j ∈ D, for
all i < j .

Example 5 The MID in Fig. 1 is in extensive form since �4 = {1, 2, 3}. If either the edge
(Y2, Y4) or (Y3, Y4) were deleted then the MID would not be in extensive form.

We first study MIDs in extensive form and only in Section 5 we consider manipulations
of non extensive MIDs which turn them into extensive form. Without loss of generality we
assume that any vertex corresponding to a variable in Y[n] has at least one child. Indeed,
random and controlled vertices with no children could simply be deleted from the graph
without changing the outcome of the evaluation [32]. In Example 5 the only vertices with
no children are utility nodes.

A typical way to evaluate an MID in extensive form is through a backward inductive
algorithm on the vertices of the DAG. We present a computationally efficient version of
this algorithm, which at each step only utilises the strictly necessary utility nodes. The
identification of the optimal policy is based on the computation of the functions Ūi(yBi

),
i ∈ [n], which are formally introduced in Proposition 1 and each of which depends only on
the variables in Y[n] that are strictly required for an MID evaluation. For i ∈ [n], the set

Bi =

⎧⎪⎪⎨
⎪⎪⎩

⋃
k≥i
k∈V

�k

⋃ ⋃
j≥i
j∈J

Pj

⎫⎪⎪⎬
⎪⎪⎭

\ {i, . . . , n},

defines the index sets of the subset of Y[n] which appear as arguments of Ūi . The function
CompBi in Appendix B.1 computes the Bi’s given the definition of an MID. Specifically
a set Bi includes only indices smaller than i that are either in the parent set of a random
variable Yk , k > i, following Yi in the DAG or in a set Pj such that Uj succeeds Yi in the
DS of the MID.

Example 6 For the MID in Fig. 1 the setB5 = {3, 4} sinceB5 = {�6∪�5∪P3∪P2}\{5, 6},
�6 = {4, 5}, �5 = {3, 4}, P3 = {4, 6} P2 = {5}, whilst B4 = {3} since B4 = {�5 ∪ �6 ∪
P2 ∪ P3} \ {4, 5, 6} = B5 \ {4}.
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Proposition 1 The optimal decision associated to an MID yields EU equal to Ū1(yB1)

obtained with a backward recursion as follows. For i ∈ [n] the function Ūi(yBi
) is defined

according to whether Yi is a decision or a random variable as

Ūi(yBi
) =

{
Ūi,D(yBi

), if i ∈ D,

Ūi,V(yBi
), if i ∈ V

and three cases are distinguished

1. for i = n either

Ūn,D(yBn) = max
Yn

kmUm(yPm) or

Ūn,V(yBn) =
∑

yn∈Yn

kmUm(yPm)Pn(yn | y�n) (3)

2. for i ∈ [n − 1], i ∈ J and i ∈ Pl , then either

Ūi,D(yBi
) = max

Yi

(
hklUl(yPl

)Ūi+1(yBi+1) + klUl(yPl
) + Ūi+1(yBi+1)

)
or

Ūi,V(yBi
) =

∑
yi∈Yi

(
hklUl(yPl

)Ūi+1(yBi+1) + klUl(yPl
)

+Ūi+1(yBi+1)
)
Pi(yi | y�i

), (4)

3. for i ∈ [n − 1] and i �∈ J either

Ūi,D(yBi
) = max

Yi

Ūi+1(yBi+1) or

Ūi,V(yBi
) =

∑
yi∈Yi

Ūi+1(yBi+1)Pi(yi | y�i
). (5)

All maxima and summations in Proposition 1 are over one Yi sample space only. For
example (3) consists of either a marginalization or a maximization over Yn since Yn is a
parent of Um by construction. The proof of Proposition 1 is in Appendix A.1. Since the
algorithm in Proposition 1 consists of a backward inductive routine, its complexity is at best
O(n exp(t)) as in standard dynamic programming evaluation of influence diagrams [46],
where n is the number of vertices and t is the so called treewidth of the ID [32].

Example 7 To illustrate Proposition 1, we follow the algorithm for the first three steps of
the evaluation of the MID in Fig. 1. Since the variable with the highest index, Y6, is random,
the backward induction procedure in Proposition 1 starts using the summation case of (3),
specifically

Ū6(yB6) = Ū6,V(y4, y5) =
∑

y6∈Y6

k3U3(y4, y6)P (y6 | y4, y5).

Next the algorithm considers another random variable, Y5. Since 5 is the highest (and only)
index in P2, the backward induction is based on the summation in (4), which in this case
equals

Ū5(yB5) =
∑

y5∈Y5

(
hk2U2(y5)Ū6(yB6) + k2U2(y5) + Ū6(yB6)

)
P(y5 | y3, y4).

The backward induction has now reached Y4, the first decision node. Although Y4 is an
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argument of a utility function, it is not the highest index in P3 and thus the algorithm uses
(5) as

Ū4(yB4) = Ū4,D(y3) = max
y4∈Y4

Ū5(yB5).

We now arrange the EUs, that describe the effectiveness of the available decisions, in a
vector as follows.

Definition 3 We define the EU vector Ūi , i ∈ [n], as
Ūi = (Ūi(yBi

))TyBi
∈YBi

. (6)

3.3 Polynomial structure of expected utility

Generalizing work in [9, 18], we introduce a symbolic representation of both the probabil-
ities and the utilities of an MID. For i ∈ V, j ∈ [m], y ∈ Yi , π ∈ Y�i

and σ ∈ YPj
, we

define the parameters

piyπ = P(Yi = y | Y�i
= π) and ψjσ = Uj (σ ).

The first index of piyπ and ψjσ refers to the random variable and utility vertex to which
the parameter is related, respectively. The second index of piyπ relates to the state of the
random variable, whilst the third one to the parents’ instantiation. The second index of ψjσ

corresponds to the instantiation of the arguments of the utility function Uj . We take the
indices within π and σ to be ordered from left to right in decreasing order, so that e.g. p6101
for the diagram of Fig. 1 corresponds to P(Y6 = 1 | Y5 = 0, Y4 = 1). The probability and
utility vectors are given by pi = (piyπ )Ty∈Yi ,π∈Y�i

and ψj = (ψjπ )Tπ∈YPj
, respectively.

Parameters are listed within pi and ψj according to a reverse lexicographic order over their
indices [16].3 In contrast to [6], we use different symbols for utilities and probabilities.
This is not only because these are formally different, but also because sensitivity methods
can be tailored for these two types of indeterminates separately [35].

Example 8 The symbolic parametrization of the MID in Fig. 1 is summarized in Table 1.
This is completed by the definition of the criterion weights ki and h as in (1)–(2). In
Appendix B.5 we report the symbolic definition of this MID using our MapleTH code.

Because probabilities sum to one, for each i and π one of the parameters piyπ can be
written as one minus the sum of the others. Another constraint is induced by (2) on the
criterion weights. However, unless otherwise indicated, we take all the parameters to be
unconstrained. Any unmodelled constraint can be added subsequently when investigating
the geometric features of the admissible domains [35], i.e. regions of the parameters’ space
over which the preferred strategy does not change.

In the above parametrization, Ūi consists of a vector of polynomials expressed in the
unknown quantities pijπ , ψjσ , ki and h, whose characteristics are specified in Theorem 1.

Theorem 1 For an MID G and i ∈ [n], let ci = ∏
j∈Bi

rj , Ul be the first utility node
following Yi in the DS of G and, for l ≤ j ≤ m, wij be the number of random nodes

3Let α, β ∈ Z
n. We say that α precedes β in reverse lexicographic order if the right-most non zero entry of

α − β is positive.
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Table 1 Parameterization
associated to the MID in Fig. 1 p2 = (p211, p201, p210, p200)

T

p3 = (p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000)
T

p5 = (p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000)
T

p6 = (p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000)
T

ψ1 = (ψ11, ψ10)
T, ψ2 = (ψ21, ψ20)

T, ψ3 = (ψ311, ψ301, ψ310, ψ300)
T

between Yi and Uj (including Yi) in the DS of G. Then Ūi is a vector of dimension ci whose
entries are polynomials including, for a = l, . . . , m and b = l, . . . , a, riba monomials miba

of degree diba , where

riba =
(

a − l

b − l

) ja∏
j=i

rj , diba = (b − l)+ 2(b − l + 1)+wia, miba = hb−lm′
iba, (7)

with m′
iba a square-free monomial of degree 2(b − l + 1) + wia .

The proof of Theorem 1 is given in Appendix A.2. Equation (7) defines the structure of
the polynomials Ūi of the EU. Specifically, a polynomial is specified once its coefficients
and its support (i.e. monomials which form the polynomial) are known. By structure of a
polynomial we mean the number of monomials in its support and the number of monomials
having a certain degree (sum of exponents). An algorithm for computing the polynomials
in Theorem 1 is presented in Section 4, whose operations utilise the polynomial structure of
EUs. If the MID has one decision node only, then the entries of the EU vector correspond
to the pieces defined in [6].

Example 9 For the MID of Fig. 1 the polynomial structure of the entries of Ū5 can be
constructed as follows. From B5 = {3, 4} it follows that c5 = 4. Thus, Ū5 is a column
vector of dimension 4. From U2 ≡ Ul it follows that

r522 = 2, r523 = 4, r533 = 4, d522 = 3, d523 = 4, d533 = 7,

using the fact that w52 = 1 and w53 = 2. All monomials are square-free because the index b

of riba in Theorem 1 is either equal to l or l+1. Each entry of Ū5 is a square free polynomial
of degree seven consisting of ten monomials: two of degree 3, four of degree 4 and four of
degree 7.

Since additive utility factorizations can be seen as special cases of multiplicative ones by
setting h = 0, it follows that the EU polynomials of an additive ID are square-free.

Corollary 1 In the notation of Theorem 1, the EU Ūi , i ∈ [n], of an additive IDG is a vector
of dimension ci whose entries are square free polynomials of degree wim + 2 including, for
a = l, . . . , m, ria monomials of degree wia + 2, where ria = ∏ja

j=i rj .

Proof This follows directly from Theorem 1, since an additive factorization can be derived
by setting nI − 1, the exponent of h in (1), equal to zero. This corresponds to fixing b = l

in Theorem 1.

So far we have assumed that the DM has not provided any numerical specification of
the uncertainties and the values involved in the decision problem. This occurs for example
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if the system is defined through sample distributions of data from different experiments,
where probabilities are only known with uncertainty. But in practice sometimes the DM is
able to elicit the numerical values of some parameters. These numerical values can then
simply be substituted to the corresponding probability and utility parameters in the system
of polynomials constructed in Theorem 1 employing e.g. a computer algebra system. In
such a case the degree of the polynomials and possibly the number of their monomials can
decrease dramatically. We present in Section 7 different plausible numerical specifications
of the parameters associated with the MID in Fig. 1, and investigate how the outputs of the
MID differ for the different quantifications.

4 The symbolic algorithm

In this section we develop an algorithm based on three operations which exploit the poly-
nomial structure of EUs and use only linear algebra calculus. The MapleTH code for their
implementation is reported in Appendix B.3.4 In contrast to other probabilistic symbolic
algorithms (e.g. [10]), our procedure sequentially computes only monomials that are part of
the EU polynomials and is thus much more efficient.

4.1 A new algebra for MIDs

We need to introduce two procedures entailing a change of dimension of probability, utility
and EU vectors, named EUDuplicationPsi and EUDuplicationP. These are required in
order to multiply parameters associated to compatible instantiations only, i.e. if the common
conditioning variables associated to the parameters are instantiated to the same value.

Example 10 In Algorithm 4.2 we will need to compute the Schur (or element-wise) product
◦ between the probability vector p6 and the utility vector ψ3. However, as specified in
Table 1, p6 has length 8, whilst ψ3 has length 4. This is because Y5 is a parent of Y6 but not
an argument of U3. EUDuplicationPsi will then be needed to transform ψ3 to

(ψ311, ψ301, ψ311, ψ301, ψ310, ψ300, ψ310, ψ300) ,

so that p6 ◦ ψ3 equals to

(ψ311p6111, ψ301p6011, ψ311p6101, ψ301p6001,

ψ310p6110, ψ300p6010, ψ310p6100, ψ300p6000) .

The above vector then only includes entries associated to compatible instantiations.

For conciseness, we detail here only the EUDuplicationPsi procedure and refer to
Appendix B.2 for the code of both procedures. The steps of EUDuplicationPsi are shown
in Algorithm 4.1. For a vector ψ , let ψs,t be the subvector of ψ including the entries from
s · (t −1)+1 to s · t , for suitable s, t ∈ Z≥1. For i ∈ [n−1] and j ∈ [m], the procedure takes
7 elements as input: an EU Ūi+1; the utility vector associated to the utility node preceding
Yi+1, ψj ; their dimensions, ci+1 and bj ; the sets Bi+1 and Pj ; the dimensions of all the
probability vectors of the MID, r = (r1, . . . , rn)

T.

4Some inputs of the MapleTH functions in Appendix B.3 are different from those used in this section which
are chosen to illustrate the procedure as concisely as possible.
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For all indices smaller than i and not in Bi+1 ∩ Pj , Algorithm 4.1 computes a posi-
tive integer number wk equal to the product of the dimension of the probability vectors
with index bigger than k belonging to Bi+1 ∪ Pj . The index k is either in Bi+1 or in
Pj . When k ∈ Bi+1, each block of wk rows of ψj is consecutively duplicated rk − 1
times.

The first of the three operations we introduce is EUMultiSum, which computes
a weighted multilinear sum between a utility vector and an EU. In the algorithm
of Section 4.3, an EUMultiSum operation is associated to every utility vertex of
the MID. This operation is required to formally assess the impact of a utility ver-
tex to the overall EU and corresponds to a symbolic version of the sums in (4).
Let P = {P1, . . . , Pm}.

Definition 4 (EUMultiSum) For i ∈ [n], let Ūi+1 be an EU vector andψj the utility vector
of node Uj , j ∈ [m], succeeding Yi in the DS. The EUMultiSum, +EU , between Ūi+1 and
ψj is defined as

1. Ū ′
i+1, ψ

′
j ←−EUDuplicationPsi(Ūi+1, ψj , Bi+1, Pj , r , ci+1, bj );

2. h · kj · (Ū ′
i+1 ◦ ψ ′

j ) + kj · ψ ′
j + Ū ′

i+1, where ◦ and · denote respectively the Schur
(or element-wise) and the scalar products.

The second operation, EUMarginalization is applied to any random vertex of the
MID. This operation is the symbolic equivalent of marginalizations (sums)

∑
yi∈Yi

in
Proposition 1, often called variable elimination in the literature [39].

Definition 5 (EUMarginalization) For i ∈ V, let Ūi+1 be an EU vector and pi a
probability vector. The EUMarginalization, �EU , between Ūi+1 and pi is defined as

1. Ū ′
i+1, p

′
i ←−EUDuplicationP(Ūi+1, pi , �i , P , r , Bi+1, J);
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2. Ii,V × (Ū ′
i+1 ◦ p′

i ), where × is the standard matrix product and Ii,V is a matrix with
ci+1si/ri ∈ Z≥1

5 rows and ci+1si columns defined as

Ii,V = ( (
1 0 · · · 0 ) (

0 1 · · · 0 ) · · · (
0 0 · · · 1 ) )T

where 1 and 0 denote row vectors of dimension ri with all entries equal to one and zero
respectively and si = ∏

k∈{�i\Bi+1} rk .

The last operation is a selection of a decision policy yi ∈ Yi in Ūi+1, i ∈ D, for every
element of Y�(i).

Definition 6 (EUMaximization) For i ∈ D, let Ūi+1 be an EU vector. An
EUMaximization over Yi , maxEU

Yi
, is defined by the following steps:

1. select a y∗
i (π) ∈ Yi , for π ∈ Y�(i);

2. Ii,D × Ūi+1, where Ii,D is a matrix with ci+1/ri ∈ Z≥1 rows and ci+1 columns defined
as

Ii,D = ( (
ey∗

i (1) 0 · · · 0 ) (
0 ey∗

i (2) · · · 0 ) · · · (
0 0 · · · ey∗

i (ci+1/ri )

) )T
where ey∗

i (π), π ∈ [ci+1/ri], is a row vector of dimension ri whose entries are all zero
but the one in position y∗

i (π), which is equal to one.

Using the terminology of [2] and [25], EUMaximization finds its natural application in
open-loop analyses, where one policy only is under scrutiny. In this case, the DM can simply
fix the decision of interest and EUMaximization drops the polynomials associated to non-
selected policies.6 Nevertheless, in closed-loop analyses, where policies can vary, and in
standard evaluation methods the first item of Definition 6 is critical for EUMaximization.
It is not within the scope of this paper to present a methodology to identify EU maximizing
decisions. However, within our symbolic approach polynomial optimization and semi-
algebraic methods can be used to guide the optimization process [5]. In Section 7 we present
an example of the insights that the symbolic definition gives during the maximization step
of an evaluation.

Since all our operations simply consists of standard and matrix products, the complexity
of the algorithm for the symbolic computation of EUs we introduce below can be deduced
by establishing the number of multiplications associated to each EU-operation. Formally,
an EUMultiSum consists of

nsumi = ci+1si(2 + mi+1) + 1

multiplications, where mi+1 is the number of monomials in each entry of Ūi+1, ci+1 is the
dimension of ūi+1 and si is given in Definition 5. An EUMarginalization consists of

n
marg
i = ci+1simi+1 + (ci+1si)

2/ri

multiplications (without considering the sparsity of the matrix Ii,V), where ri is the size of
the sample space of Yi . Exploiting the structure of the matrix Ii,D, an EUMaximization can
be coded so that it does not perform any multiplication.

5This is so since ci+1 = riai+1, for an ai+1 ∈ Z≥1.
6The MapleTH function EUMaximization in Appendix B.3 currently calls a subfunction Maximize, which
randomly picks decisions. However, this can be modified to take into account a fixed policy given as input.
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Therefore the EUMultiSum and EUMarginalization operations have complexity
O(nsumi ) and O(n

marg
i ) respectively.

4.2 Polynomial interpretation of the operations

Each of the above three operations changes the EU vectors and their entries in a specific
way we formalize in Proposition 2.

Proposition 2 For i ∈ [n−1], let Ūi+1 be an EU vector whose entries have the polynomial
structure of (7) and let Uj be the vertex preceding Yi+1 in the DS. Then in the notation of
Theorem 1

– maxEU
Yi

Ūi+1 has dimension ci+1/ri ∈ Z≥1 and its entries do not change polynomial
structure;

– Ūi+1 +EU ψj has dimension ci+1ti , where ti = ∏
k∈{Pj \Bi+1} rk , and each of its

entries consists of r(i+1)ba monomials of degree d(i+1)ba , r(i+1)ba monomials of degree
d(i+1)ba + 3 and one monomial of degree 2;

– Ūi+1�
EUpi has dimension ci+1si/ri , where si = ∏

k∈{�i\Bi+1} rk , and each of its
entries consists of rir(i+1)ba monomials of degree d(i+1)ba + 1.

This result directly follows from the definition of the above three operations. An
illustration of Proposition 2 is given in Example 11 below.

4.3 An algorithm for the computation of an MID’s expected utilities

The algorithm for the computation of an MID’s EUs is given in Algorithm 4.2. It receives
as input the DS of the MID, S, the sets J, V and D, and the vectors p = (p1, . . . , pn)

T,
ψ = (ψ1, . . . , ψm)T and k = (k1, . . . , km, h)T. The algorithm corresponds to a symbolic
version of the backward induction procedure working over the elements of the DS explicated
in Proposition 1. At each inductive step, a utility vertex is considered together with the
variable that precedes it in the DS.

In line (1) the EU Ūn+1 is initialized to (0), namely a vector of dimension one including
a zero. Lines (2) and (3) index a reverse loop over the indices of the variables and the utility
vertices respectively (starting from n and m). If the current index corresponds to a variable
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preceding a utility vertex in the DS (line 4), then the algorithm jumps to lines (5)-(7). Oth-
erwise it jumps to lines (8)-(10). In the former case, the algorithm computes, depending on
whether or not the variable is controlled (line 5), either an EUMaximization over Yk (line
6) or an EUMarginalization (line 7) with pk , jointly to an EUMultiSum with ψl . In the
other case, EUMaximization and EUMarginalization operations are performed without
EUMultiSum. The MapleTH function SymbolicExpectedUtility in Appendix B.4 is an
implementation of Algorithm 4.2.

Example 11 For the MID in Fig. 1 the SymbolicExpectedUtility function first consid-
ers the random vertex Y6 which precedes the utility vertex U3 and therefore first calls the
EUMultiSum function. For this MID

P3 = {4, 6}, t6 = 4, �6 = {4, 5}, s6 = 2.

Thus, first Ū7 is replicated four times (since t6 = 4) via EUDuplicationPsi and

Ū7 +EU ψ3 = (
k3ψ11 k3ψ01 k3ψ10 k3ψ00

)T
. (8)

Then, the rhs of (8) is duplicated via EUDuplicationP (as s6 = 2) and

Ū6 = I6,V × Ū ′
6 ◦ p6 = (

k3ψ31jp61ij + k3ψ30jp60ij
)T
i,j=0,1 , (9)

where Ū ′
6 is equal to the duplicated version of the rhs of (8). The vector Ū6 has dimension

four and its entries include two monomials of degree 3. Since the random vertex Y5 is the
unique parent of U2 the SymbolicExpectedUtility function follows the same steps as
before. EUMultiSum is called and

Ū ′
5 � Ū6 +EU ψ2 = (h · Ū6 + 1) · k2 ◦ (

ψ21 ψ20 ψ21 ψ20
)T + Ū6. (10)

The polynomial Ū ′
5 is the sum of two monomials of degree 3 inherited from Ū6, of two

monomials of degree 6 (from the first term on the rhs of (10)) and one monomial of degree 2
(from the last term on the rhs of (10)). Its dimension is equal to four since c6 = 4 and s5 = 0
(i.e. no EUDuplicationPsi is required). Thus, EUMultiSum manipulates the EU vector
according to Proposition 2. The EUMarginalization function computes Ū5 = I5,V ×
(( Ū ′

5 Ū ′
5 )T ◦p5). Each entry of Ū5 has twice the number of monomials of the entries of Ū ′

5
and each monomial of Ū5 has degree d + 1, where d is the degree of each monomial of Ū ′

5
(whose entries are homogeneous polynomials). These vectors also have the same dimension
since t5 = 2 and r5 = 2. Thus, this EUMarginalization changes the EU vector according
to Proposition 2. The entry Ū5(y3, y4), with y3, y4 = 0, 1, of this EU can be shown to be
equal to the sum of the terms in Table 2.

The algorithm then considers the controlled variable Y4. Since 4 �∈ J, Y4 is not the
argument of a utility function with the highest index and therefore the algorithm calls the
EUMaximization function. Suppose the DM decides to fix Y4 = 1 when Y3 = 1 and
Y4 = 0 when Y3 = 0. Then EUMaximization returns Ū4 = I4,D × Ū5, where I4,D is a
2 × 4 matrix with ones in positions (1, 1) and (2, 4) and zeros otherwise. Proposition 2 is

Table 2 The utility funtion Ū5 is the sum of the three polynomials in this table

k2(ψ21p51y4y3 + ψ20p50y4y3 )

k3(ψ31y4p611y4 + ψ30y4p601y4 )p51y4y3 + k3(ψ31y4p610y4 + ψ30y4p600y4 )p50y4y3

hk2k3((ψ31y4p610y4 + ψ30y4p600y4 )ψ20p50y4y3 + (ψ31y4p611y4 + ψ30y4p601y4 )ψ21p51y4y3 )
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respected since the entries of Ū4 have the same polynomial structure of those of Ū5 and Ū4
has dimension 2.

The SymbolicExpectedUtility function then applies in sequence the operations
defined in Section 4.1. For the MID in Fig. 1 this sequentially computes the following
quantities, assuming the DM fixed Y1 = 1

Ū ′
3 = h · k1 · Ū4 ◦ ψ1 + Ū4 + k1 · ψ1, Ū3 = I3,V ×

((
Ū ′
3 Ū ′

3 Ū ′
3 Ū ′

3

)T ◦ p3

)
,

Ū2 = I2,V × (
Ū3 ◦ p2

)
, Ū1 = (

1 0
) × Ū2.

The overall complexity of the algorithm can be formally deduced by counting the number
of multiplications it involves. Given the number of such products for each of our EUopera-
tions, the overall number of operations of Algorithm 4.2 is the sum of the multiplications of
its operations and will depend on the topology of the ID network. Formally, letting

ntot =
∑
i∈[n]

(
1i∈V n

marg
i + 1i∈J nsumi

)
,

where 1 denotes the indicator function, the overall complexity of our algorithm is O(ntot).

4.4 Simulation study

To empirically investigate the complexity of the symbolic algorithm in Section 4.3, we per-
form a simulation study comprising of 5 IDs, whose features are summarized in Table 3
all with binary variables. We first produced a full symbolic definition of utilities and prob-
abilities and then run our symbolic algorithm for both multiplicative and additive utility
factorizations in MapleTH . This gives as output the EU vectors Ūi associated to every ran-
dom and decision nodes of the IDs. We also built the same networks using the GeNIe
Modeler software of “BayesFusion, LLC” (freely available for academics at http://www.
bayesfusion.com), which embeds numerical evaluation techniques for IDs. After building
the networks in GeNIe, we specified numerical values for the probabilities and utilities and
then ran the evaluation algorithm. It is important to highlight that GeNIe considers only
additive factorizations between utility nodes.

The results of the study are summarized in Table 4. Whilst the memory allocated in
MapleTH is almost identical for IDs with multiplicative and additive utility factorizations, the
computation time as well as the number of monomials is much larger for MIDs. Comparing
the computation times of GeNIe with those in MapleTH , we notice that whilst these are of the
same magnitude for smaller IDs, for larger networks GeNIe appears to become significantly

Table 3 Summaries of the IDs considered in the simulation study: Net. - ID identifier; Free par. - number
of free parameters; # V - number of random nodes; # D - number of decision nodes; m - number of utility
nodes; # E(G)∗ - number of edges without those into decision nodes; Avg. indegree - average number of
edges directed into vertices (without decision nodes)

Net. Free par. # V # D m # E(G)∗ Avg. indegree

A 44 4 2 3 10 1.556

B 96 6 5 5 23 1.875

C 192 9 6 6 33 2.286

D 252 13 7 8 46 2.429

E 356 17 8 9 62 2.412

http://www.bayesfusion.com
http://www.bayesfusion.com
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Table 4 Complexity summaries
of the symbolic algorithms in
MapleTH and of the numerical
algorithms in GeNIe: Mem. All. -
memory allocation; Time -
computation time; # Mon. -
number of monomials of the final
EU vectors Ū1

Multiplicative Additive GeNIe

Net. Mem. All. Time # Mon. Mem. All. Time # Mon. Time

A 116KiB 3ms 84 114KiB 2ms 28 9.5ms

B 0.95MiB 36ms 1426 0.94MiB 29ms 138 13ms

C 1.05MiB 59ms 17810 1.04MiB 36ms 650 30ms

D 1.25MiB 1.45s 1590674 1.23MiB 82ms 17034 3.6s

E 1.41MiB 38.5s > 109 1.38MiB 355ms 148106 81.2s

slower. However we underline that the two softwares produce different outputs: expected
utility vectors with polynomial entries in MapleTH and numerical evaluation of the ID in
GeNIe.

Although the efficiency of the symbolic algorithms highly depends on the size of the
network, the simulation study in this section shows that even with the current capabilities
of general-purpose computer algebra softwares symbolic techniques in decision making
problems of medium/large scale are usefully applicable. In particular for IDs embedding
additive factorizations, computation times increase at a slower pace than in the other cases
(GeNIe and MIDs) and could thus be efficiently implemented in much larger domains than
those presented here. However, it is uncommon to perform sensitivity studies over networks
much larger than those investigated here. We refer a discussion of the handling of massive
networks in our symbolic framework to Section 8.

5 Modifying the topology of the MID

Algorithm 4.2 works under the assumption that the MID is in extensive form whose impor-
tance was discussed in Section 3.2. It has been recognized that typically a DM will build an
MID so that variables and decisions are ordered in the way they actually happen and this
might not correspond to the order in which variables are observed. Thus, MIDs often are not
in extensive form. But it is always possible to transform an MID into one in extensive form,
although this might entail the loss of conditional independence structure. In Section 5.1 we
consider two of the most common operations that can do this: edge reversal and barren node
elimination.

In practice DMs often also include in the MID variables that subsequently turn out not
to be strictly necessary for identifying an optimal policy. DMs are able to provide proba-
bilistic judgements for conditional probability tables associated to an MID with variables
describing the way they understand the unfolding of events. However their understanding
usually includes variables that are redundant for the evaluation of the MID. In Section 5.2
we describe the polynomial interpretation of a criterion introduced in [42, 43] to identify a
subgraph of the original MID whose associated optimal decision rule is the same as the one
of the original MID.

5.1 Rules to transform an MID in extensive form

The two operations of arc reversal and barren node removal are often used in combination
by first reversing the direction of some edges of the MID and then removing vertices that,
consequently to the reversals, becomes barren, i.e. have no children [39].
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Example 12 The MID on the left of Fig. 2 is a non-extensive variant of the MID in Fig. 1
not including the edge (Y2, Y4). The MID in the centre of Fig. 2 is obtained by the reversal
of the edge (Y2, Y3) and the MID on the right of Fig. 2 is the network in extensive form
obtained by deleting the barren node Y2.

First we introduce a terminology to characterize a special pair of parent/child as in [11]
for which edge reversals are simpler [36]. It is not the purpose of this paper to identify an
optimal sequence of edge reversals, i.e. one yielding a simplified MID with the least number
of vertices and edges. Instead we can use algorithms already devised for standard IDs to
perform diagram transformations [40] by arc reversal and barren node removals. We say
that Yi is the father of Yj and Yj its son if the edge set of the MID includes (Yi, Yj ) and
there is no other path starting at Yi and terminating at Yj that connects them.

Example 13 For the MIDs in Fig. 2, both Y4 and Y5 are parents of Y6, but only Y5 is its
father since there is the path (Y4, Y5, Y6). Notice that a vertex can have only one father but
more than one son.

Proposition 3 The evaluation of an MID G provides the same optimal policy as the MID
G′ obtained by implementing any of the following manipulations:

– Arc Reversal: for i, j ∈ V, if Yi is the father of Yj in G reverse the arc (Yi, Yj ) into
(Yj , Yi) and change the edge set as

E(G′) = E(G) \ {(Yi, Yj )} ∪ {(Yk, Yi) : k ∈ {�j ∪ j} \ i} ∪ {(Yk, Yj ) : k ∈ �i},
– Barren Node Removal: for i ∈ V, remove the vertex Yi if this has no children and

transform the diagram according to the following rules:

V (G′) = V (G) \ {Yi}, E(G′) = E(G) \ {
(Yk, Yi) : k ∈ �i

}
.

Arc reversal and barren node removal change the symbolic parametrization of the
MID according to Proposition 4. After an arc reversal, the diagram G′ includes the
edge (Yj , Yi) where i < j . Algorithm 4.2, and similarly the MapleTH function
SymbolicExpectedUtility, works through a backward induction over the indices of the
variables and, by construction, always either marginalize or maximize a vertex before its
parents. It cannot therefore be applied straightforwardly to the diagram G′. We define here
the adjusted Algorithm 4.2 which takes into account the reversal of an arc by, roughly
speaking, switching the order in which the variables associated to the reversed edge are
marginalized during the procedure. Specifically, in the adjusted Algorithm 4.2 a marginal-
ization operation is performed over Yi at the n − j + 1 backward inductive step, whilst for
Yj this happens at the n − i + 1 step. Therefore Ū ′

j is the EU associated to G′ after the

Fig. 2 Example of a sequence of manipulations of a non extensive form MID
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marginalization of Yi and Ū ′
i is the EU after the marginalization of Yj . Note that under this

operation the sets J and Bi , i ∈ [n], might change: we respectively call J′ and B ′
i the ones

associated to G′.

Proposition 4 Under the conditions of Proposition 3, let p′
iyπ and �′

i be a parameter and
a parent set associated to the diagram G′ resulting from arc reversal and barren node
removal:

– for i, j ∈ V, if �′
i and �′

j are the parent sets of Yi and Yj after the reversal of the edge
(Yi, Yj ), then the parametrization associated to G′ is

p′
iyiπ

′
i
= pjyj πj

piyiπi∑
yi∈Yi

pjyj πj
piyiπi

, p′
jyj π ′

j
=

∑
yi∈Yi

pjyj πj
piyiπi

,

for πi ∈ Y�i
, πj ∈ Y�j

, π ′
i ∈ Y�′

i
, π ′

j ∈ Y�′
j
, yi ∈ Yi and yj ∈ Yj ;

– for i, j ∈ V, assume that after the reversal of the edges (Yi, Yj ), for every children Yj

of Yi , Yi is now a barren node and let �j\i = �j \ {i}. Then
– in the new parametrization p′

i is deleted;
– in the old parametrization pi is deleted and pjyj πj\i0 = · · · = pjyj πj\i ri−1,

for yj ∈ Yj , πj\i ∈ Y�j\i , where the fourth index of pjyj πj\i i , i ∈ [ri−1],
refers to the instantiation of Yi .

The proof of this proposition is reported in Appendix A.3.

Example 14 Reversing the edge (Y2, Y3) in the MID on the left of Fig. 2, by Proposition 4
we obtain:

p′
3y3y1 = p3y31y1p21y1 + p3y30y1p20y1 , p′

2y2y3y1 = p3y3y2y1p2y2y1

p3y31y1p21y1 + p3y30y1p20y1
.

for y1, y2, y3 ∈ {0, 1}. Proposition 4 also specifies that the deletion of the vertex Y2 as on
the right of Fig. 2 simply corresponds to cancelling the vectors p2 and p′

2 and setting p3y31y1
equal to p3y30y1 for any y1, y3 ∈ {0, 1}.

Note that arc reversals, just as posterior probabilities in symbolic inferences, transform
EUs into rational functions of multilinear polynomials. However, Proposition 4 suggests a
straightforward model’s reparametrization, which maps EUs back to polynomial functions.
In addition, Proposition 4 shows that manipulations of the diagram change the polynomial
structure of the EUs under the new parametrization p′ that we formally study in Lemmas 1
and 2 below. We assume here for simplicity that i �∈ Pj , j ∈ [m]. There is no loss of
generality in this assumptions since arguments of utility functions cannot be deleted from
the diagram without changing the result of the evaluation.

Lemma 1 Under the assumptions of Proposition 4 and in the notation of Theorem 1, sup-
pose we reverse the arc (Yi, Yj ) in an MID G. Let x be the smallest index in �i ∪ �j .
Evaluating G using the adjusted Algorithm 4.2 the following holds:
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1. if j �∈ J, then

– the entries of Ū ′
j have rirjba/rj ∈ Z≥1

7 monomials of degree djba; for i < k <

j , the entries of Ū ′
k can have different polynomial structure from the ones of Ūk

according to Proposition 2;
– the vectors Ū ′

k , x < k ≤ j , have dimension ck = ∏
s∈Ck\{k,...,n} rs where Ck =

Bk ∪ {l : (Yl, Yi) or (Yl, Yj ) ∈ E(G′)};
2. if j ∈ J ∩ J

′, then

– the entries of Ū ′
j have rir(j+1)ba monomials of degree d(j+1)ba + 1 and, for i <

k < j , the entries of Ū ′
k have a different polynomial structure from the ones of Ūk

according to Proposition 2;
– for x < k < j , Ū ′

k has dimension ak = ∏
s∈{Ak\{k,...,n}} rs , with Ak = Ck ∪ Pjj

;

3. if j �∈ J
′, suppose j ∈ Pt and s is the second highest index in Pt , then

– for s < k ≤ j , the entries of Ū ′
k have the polynomial structure specified in point 2

and dimension ak;
– i < k ≤ s, the entries of Ū ′

k have the polynomial structure specified in point 1 and
dimension ck .

– for x < k ≤ i, Ū ′
k has dimension ck and the polynomial structure of its entries

does not change;

The proof of this lemma is provided in Appendix A.4.
We next consider how a barren node removal changes the EU vectors.

Lemma 2 In the notation of Lemma 1, let Yz be the child of Yi in G with the highest index
and remove the barren node Yi in G′. Then

– for i < k ≤ z, Ū ′
k has ck/ri entries whose polynomial structure does not change;

– for k ≤ i, Ū ′
k has dimension ck and its entries have rkba/ri monomials of degree dkba −

1.

The proof of this lemma is provided in Appendix A.4.

Example 15 After the reversal of the edge (Y2, Y3) from the network on the left of Fig. 2,
the polynomial structure of the EUs associated to the original and manipulated diagrams
is reported in Table 5 by Ūi and Ū r

i respectively. Since Y3 is the only argument of U1

we are in Item (2) of Lemma 1. The EU Ū r
3 is obtained running the adjusted Algo-

rithm 4.2 over the graph in the centre of Fig. 2 after the marginalization of Y2. This can
be noted to change according to Lemma 1, by comparing its structure to the one of Ū4.
Furthermore, Ū r

2 and Ū r
1 have the same polynomial structures as Ū2 and Ū1. The last

3 columns of the Table 5 show the polynomial structure of the EUs Ūb
3 associated to

the MID on the right of Fig. 2 which does not include Y2. According to Lemma 1, Ūb
3

has the same polynomial structure of Ū3 and for each row of the table, the number of
monomials with degree d in Ūb

1 is half the number of monomials of Ū1 having degree
d + 1.

7This is so since rjba = r ′rj for some r ′ ∈ Z≥1.



Symbolic computation of expected utilities in influence diagrams 293

Table 5 Polynomial structure of the EUs for the original MID, Ūj , for the one after the reversal of the arc
(Y2, Y3), Ū r

j and for the one after the removal of the barren node Y2, Ūb
j . The symbol # corresponds to the

number of monomials, d. to the degree and s.f. to whether or not they are square free

Ū2 ≡ Ū1 Ū3 Ū4 Ū r
3 Ū r

2 ≡ Ū r
1 Ū b

3 ≡ Ūb
1

# d. s.f. # d. s.f. # d. s.f. # d. s.f. # d. s.f. # d. s.f.

4 4 3 2 3 3 2 3 3 4 4 3 4 4 3 2 3 3

8 5 3 4 4 3 4 4 3 8 5 3 8 5 3 4 4 3

16 6 3 8 5 3 4 7 3 8 8 3 16 6 3 8 5 3

8 8 3 4 7 3 8 8 3 4 7 3

32 9 3 16 8 3 32 9 3 16 8 3

16 12 7 8 11 7 16 12 7 8 11 7

5.2 The sufficiency principle

After an MID has been transformed in extensive form according to the rules in Section 5.1,
further manipulations can be applied to simplify its evaluation, such as the sufficiency prin-
ciple, which mirrors the concept of sufficiency in statistics and is based on the concept of
d-separation for DAGs [37] formally defined below.

We first introduce a few concepts from graph theory. The moralized graph GM of the
MID G is a graph with the same vertex set of G. Its directed edges include the directed
edges of G and an undirected edge between any two vertices which are not joined by an
edge inG but which are parents of the same child in Yi , i ∈ V. The skeleton ofGM , S(GM),
is a graph with the same vertex set of GM and an undirected edge between any two vertices
(Yi, Yj ) ∈ V (GM) if and only if there is a directed or undirected edge between Yi and Yj in
GM .

Definition 7 For any three disjoint subvectors YA, YB, YC ∈ V (GM), YA is d-separated
from YC by YB in the moralized graph GM of an MID G if and only if any path from any
vertex Ya ∈ YA to any vertex Yc ∈ YC passes through a vertex Yb ∈ YB in its skeleton
S(GM).

Proposition 5 Let j ∈ D, i ∈ V ∩ �j and Chi be the index set of the children of Yi . Then
if Yi is d-separated from {Uk, for k s.t. i ≤ jk} by {Yk : k ∈ {�j \ i}} ∪ {Yk : k ∈ D} in the
MID G, the sufficiency principle guarantees that the evaluation of the graph G′ provides
the same optimal policy as G, where G′ is such that V (G′) = V (G) \ {Yi} and E(G′) is
equal to

E(G) \ {(Yi, Yj ) : j ∈ Chi} \ {(Yk, Yi) : k ∈ �i} ∪ {(Yk, Yj ) : j ∈ Chi, k ∈ �i}.

The sufficiency principle can be equally stated for a vector of variables [42, 43]. How-
ever, we can simply apply the criterion in Proposition 5 for each variable of the vector and
obtain the same result.

Example 16 The MID in Fig. 1 is already moralized. Any path from Y2 into Ui , i ∈ [3],
goes through both Y3 and Y4. By Proposition 5, we can delete Y2 and the modified diagram
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is given on the right of Fig. 2. This happens to be equal to the diagram resulting from the
reversal of the arc (Y2, Y3) and the deletion of Y2.

We now formalize how this principle changes our parametrization.

Proposition 6 Let i, j, k ∈ V and G be an MID. Let Yi be a vertex removed after the
application of the sufficiency principle to G and G′ the obtained MID. Assume Yi to be the
father of Yk and a parent (not the father) of Yj in G and let �′

k be the parent set of a vertex
Yk in G′. Then the reparametrization of the MID with graph G′ is

p′
kykπ

′
k

=
∑

yi∈Yi

pkykπk
piyiπi

,

p′
jyj π ′

j
=

∑
yj ∈Yj

pjyj πj

∏
l∈�j \[i−1]

∑
Y�l∩�k∩�i

plylπl
piyiπi∑

yi∈Yi

∏
l∈�j \[i−1]

∑
Y�l∩�k∩�i

plylπl
piyiπi

The proof of this proposition is provided in Appendix A.5. Again, this new parame-
trization p′ implies a change in the EU vectors.

Lemma 3 Assume the vertex Yi is removed using the sufficiency principle and that Yj is
the child of Yi with the highest index. Under the notation of Theorem 1 the EU vectors in G′
are such that

1. for k < i, the entries of Ū ′
k have rkba/ri monomials of degree dkba − 1, whilst for k > i

their structure does not change.
2. for k ≤ j , Ūk has now dimension

∏
s∈Ck

rs , where Ck = Bk ∪ �i \ {k, . . . , n}, whilst
for k > j its dimension does not change.

Proof Item 1 of Lemma 3 is a straightforward consequence of Proposition 2, since the
deletion of the vertex Yi entails one less EUMarginalization during Algorithm 4.2. Item 2
of Lemma 3 follows from the fact that the sets Bk and Ck only affect the dimension of the
EU vectors.

Since the application of the sufficiency principle to the diagram of Fig. 1 provides the
same output network as the one obtained from the reversal of the edge (Y2, Y3) and the
removal of Y2, an illustration of these results can be found in Table 5.

6 Asymmetric decision problems

The new symbolic representation of decision problems we introduce here enables us to
concisely express a large amount of information that might not be apparent from an ID.
Different types of extra information, often consisting of asymmetries of various kinds, have
been explicitly modelled in graphical extensions of the ID model [3, 4, 20, 28, 41] and
are found in the descriptions of many applied decision problems. Although providing a
framework for the evaluation of more general decision problems, many of these extensions
lose the intuitiveness and the simplicity associated with IDs. Within our symbolic approach
we are able to elegantly and concisely characterize asymmetric decision problems through
manipulations of the polynomials representing the ID’s EU as we show next.
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Asymmetries can be categorized in three classes. If the possible outcomes or decision
options of a variable vary depending on the past, the asymmetry is called functional. If the
very occurrence of a variable depends on the past, the asymmetry is said to be structural.
Order asymmetries are present if {Yi : i ∈ D} is not totally ordered. In this section we only
deal with functional asymmetries. Heuristically, for a functional asymmetry the observation
of yA, A ⊂ [n], restricts the space YB associated to a vector YB , such that A ∩ B = ∅. This
new space, Y ′

B say, is a subspace of YB .
In Theorem 2 we characterize an asymmetry between two chance nodes and, depending

on the stage of the evaluation, this may entail setting equal to zero monomials in either
some or all the rows of the EU vector. We present the result for elementary asymmetries
of the following form: if Yi = yi then Yj �= yj . Composite asymmetries are unions of
simple asymmetries and the features of the EU vectors in more general cases can be deduced
through a sequential application of Theorem 2.

Theorem 2 Let G be an MID, Yi and Yj be two random variables with j > i, Ux be the
utility node following Yj in the DS. Assume the asymmetry Yi = yi ⇒ Yj �= yj holds and
that k and z are the highest indices such that j ∈ Bk and i ∈ Bz and assume k > j . Then

– for j < t ≤ z, Ūt has
∏

s∈Bt\{i∪j} rs rows with no monomials;

– for i < t ≤ j , Ūt has
∏

s∈Bt\{i} rs rows with polynomials all with a different structure.
Specifically, these consists, in the notation of Theorem 1, of stba monomials of degree
dtba , where, for a = x, . . . , m and b = l, . . . , a,

stba =
((

a − x

b − l

)
− 1

) ja∏
s=t

rs/rj ;

– for t ≤ i, each row of Ūt has in the notation of Theorem 1, ftba monomials of degree
dtba , where for a = x, . . . , m and b = l, . . . , a

ftba =
((

a − x

b − l

)
− 1

) ja∏
s=t

rs/(rj · ri).

The proof of this theorem is provided in Appendix A.6. Corollary 2 gives a character-
ization of simple asymmetries between any two variables, whether they are controlled or
non-controlled. This follows from Theorem 2 since controlled variables can be thought of
as a special case of random ones.

Corollary 2 In the notation of Theorem 1 and under the assumptions of Theorem 2, with
the difference that Yi and Yj are two variables, controlled or non-controlled, we have that

– for j < t ≤ z, each row of Ūt has
∏

s∈Bt\{i∪j} rs rows with no monomials;

– for i < t ≤ j , Ūt has at most
∏

s∈Bt\{i} rs rows with polynomials all with a different
structure. Specifically, these consists of between stba and rtba monomials of degree dtba ,
for a = x, . . . , m and b = l, . . . , a;

– for t ≤ i, some rows of Ūt have a number of monomials of degree dtba between ftba

and rtba , for a = x, . . . , m and b = l, . . . , a.

Example 17 (Example 4 continued) Assume that the DM believes the decision problem is
characterized by three composite asymmetries:
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– if Y1 was fixed to 1, then Y4 = 1 cannot be chosen;
– if either Y2 or Y3 were observed to be equal to 1 then Y5 = 1;
– if Y4 = 1 then both Y5 and Y6 are equal to 1.

A graphical representation of these asymmetries is given in Fig. 3, in the form of a
sequential influence diagram [28]. Asymmetries are represented as labels on new dashed
arcs. If the asymmetry is composite, then vertices can be grouped through a dashed ellipse
and dashed arcs can either start or finish by the side of these ellipses. Although this general-
ization of the MID in Fig. 1 graphically captures the asymmetries, most of its transparency
is now lost. Instead asymmetries have the opposite effect on our polynomial representation
of MIDs by greatly simplifying the structure of the EUs.

In this asymmetric framework the first row of Ū6 corresponds to k3ψ311p6111, whilst its
second row is empty. This is because according to Theorem 2 the monomial k3ψ301p6011 in
(9) is cancelled by the asymmetry Y4 = 1 ⇒ Y6 = 1, k3ψ311p6101 by Y4 = 1 ⇒ Y5 = 1
and k3ψ301p6001 by both asymmetries. The imposition of asymmetries further reduces from
ten to three the number of monomials in Ū5 which becomes

k3ψ311p6111p511i + k2ψ21p511i + hk2k3ψ311ψ21p6111p511i , i = 0, 1.

Suppose the DM decided to fix Y4 = 0 if Y3 = 1 and Y4 = 1 if Y3 = 0. The entry of Ū3 for
which Y2 = 1 and Y1 = 1 can be written as the sum of the terms

(k2ψ21 + k3ψ311p6111(1 + kk2ψ21))p5110p3011 + k1(ψ10p3011 + ψ11p3111)

kk1k3ψ11p5101p3111((1 + k2ψ21)(ψ300p6010 + ψ310p6110)).

This polynomial consists of only nine monomials. This compared with the number of mono-
mials in the symmetric case, 42 (see Table 5), means that even in this small problem the
number of monomials is decreased by over three quarters.

So the example above illustrates that under asymmetries the polynomial representation is
simpler than standard methods but still able to inform decision centres about the necessary
parameters to elicit. A more extensive discussion of the advantages of symbolic approaches
in asymmetric contexts, although fully inferential ones, can be found in [24]. Finally it is

Fig. 3 Representation of the asymmetric version of the MID of Fig. 1 through a sequential influence diagram
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possible to develop a variant of Algorithm 4.2 which explicitly takes into account the asym-
metries of the problem during the computation of the EU vectors. Note that this approach
would be computationally more efficient, since this would require the computation of a
smaller number of monomials/polynomials.

7 An example

In this section we study the polynomial features of the EUs associated to the MID in Fig 1.
We focus on the selection of the decision variable Y4 and consider two different scenarios
in which the DM provides two different sets of information of the relevant parameters. In
the first scenario the elicitation is complete, i.e. for each parameter the DM delivers the
unique numerical value specified in the left hand side of Table 6. The second scenario com-
bines unique probability specifications, symbolic parameters and qualitative information.
Specifically the DM does not elicit p5111, p6001, p6010, p6011 and ψ301, because e.g. there
is strong uncertainty related to their values, specifies the two relationships p5111 = p6011
and p6001 = p6010 and assigns specific values to the remaining parameters as indicated in
Table 6.

In the first scenario, using any standard propagation algorithm or by simply substituting
the appropriate numerical values from Table 6 into the EU polynomial Ū5(y4, y3) from
Table 2, the DMwould be suggested to choose Y4 = 1 if Y3 = 0 and Y4 = 0 if Y3 = 1, since

Ū5(1, 0) = 0.4465, Ū5(0, 0) = 0.4460 and Ū5(1, 1) = 0.3074, Ū5(0, 1) = 0.3755.

In an automated decision making process the DM might overlook the small difference in
EU values when Y3 = 0, which already suggests that small changes in parameters’ values
may lead to different preferred policies.

A symbolic study of EUs in the partial elicitation case of the second scenario can pro-
vide insights on why the DM’s decision making may not be robust. Substituting the partial
numeric specification in Table 6 into the polynomial from Table 2 yields

Ū5(y4, y3) = 0.2p50y4y3 + 0.4
(
ψ31y4p611y4 + ψ30y4p601y4

)
p51y4y3

+ 0.472
(
ψ31y4p610y4 + ψ30y4p600y4

)
p50y4y3

Table 6 Complete and partial specification of the parameters associated toMID in Fig. 1 for the optimization
step over Y4. By the sum-to-one condition p6001 = p6010 is equivalent to p6101 = p6110

Parameters’ specifications

Complete Partial

p6111 = 0.3, p5110 = 0.2, ψ311 = 0, k3 = 0.4 p6100 = 0.3 ψ311 = 0, ψ21 = 0, k3 = 0.4,

p6110 = 0.2, p5101 = 0.9, ψ310 = 0.4, k2 = 0.2 p5110 = 0.2, ψ310 = 0.4 ψ20 = 1, k2 = 0.2,

p6101 = 0.2, p5100 = 0.6, ψ301 = 0.8, k1 = 0.2 p5101 = 0.9, ψ300 = 1, k1 = 0.2,

p6100 = 0.3, p5111 = 0.7, ψ300 = 1, h = 0.9 p5100 = 0.6, h = 0.9

ψ21 = 0, ψ20 = 1, p5111 = 1 − p6111, p6001 = p6010,
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Fig. 4 Admissible domains, expressed in the unknowns ψ301, p6001 and p5111, for the combinations of
parameters leading to a preferred decision Y4 = 0 (coloured regions) and Y4 = 1 (white regions) for the MID
in Fig. 1 given the partial numeric specification in Table 6

which is further specialised in

Ū5(1, 1) = 0.2(1 − p5111) + 0.4ψ301p
2
5111 + 0.472ψ301p6001(1 − p5111)

Ū5(0, 1) = 0.100976 + 0.6192p6001

Ū5(1, 0) = 0.16 + 0.08ψ301p5111 + 0.3776p6001

Ū5(0, 0) = 0.233984 + 0.6192p6001

Under the partial specification scenario, the admissible domains when Y3 = 1, namely
argmax{Ū5(1, 1), Ū5(0, 1)}, are reported on the left hand side of Fig. 4 and the associated
indifference surface is defined by the equation Ū5(1, 1) = Ū5(0, 1). The right hand side of
Fig. 4 shows the admissible domains when Y3 = 0. For Y3 = 1, the combination of values
elicited by the DM is well inside the colored region, whilst for Y3 = 0 it is very closed
to the indifference surface defined by the points where the DM is indifferent between the
two policies. The indifference surface for Y3 = 0 is very smooth and regular since the
associated variety is defined by a simple multilinear polynomial. Conversely, the surface
for Y3 = 1 exhibits more interesting features since the associated variety is defined by a
quadratic function.

Additional information about the DM’s decision problem can be gained by investigating
the admissible domains defined by two parameters only, when the third one is fixed to the
value chosen in the complete elicitation scenario. In Fig. 5 we report the regions for Y3 = 0.
The admissible domains are very “smooth” and the indifference surfaces are all monotonic
functions. In all the plots the complete elicitation point is very close to the indifference curve
and thus small perturbations of the parameters can lead to a different preferred policy. Much
more robust is the DM’s potential decision in the case Y3 = 1, since all the complete elic-
itation points are well inside the admissible domains (reported in Fig. 6). Note how in this
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Fig. 5 Admissible domains for
subsets of 2 elements of the
parameter space for Y3 = 0,
fixing the third to the value of the
complete elicitation (colored for
Y4 = 0 and white for Y4 = 1)
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Fig. 6 Admissible domains for
subsets of 2 elements of the
parameter space for Y3 = 1,
fixing the third to the value of the
complete elicitation (colored for
Y4 = 0 and white for Y4 = 1)
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case the admissible domains have a much more complex geometry, due to the polynomial
structure of the indifference surface variety. We highlight a few points from this example:

– the geometry of the admissible regions has provided insights on the decision making
process. In much more complex problems, tools of algebraic geometry [16] can still be
used to guide DMs and to uncover even more surprising features;

– although other approaches allow for non exact probability specifications, our symbolic
characterization provides a straightforward platform to input qualitative information, e.g.
equality of two parameters, which entails a simple reparametrization of the problem;

– the symbolic approach is particularly efficient for this type of sensitivity studies since a
DM can simply plug-in different combinations of values for the unknowns and instan-
taneously observe the results. In full numerical domains, the propagation of EUs would
need to performed for each combination of values and this can become computationally
very expensive;

– if, after robustness studies as the one in this example, the DM is still not convinced
about a preferred course of action, our algorithm can be adapted to run separately for
each admissible domain back to the root of the MID. In this way it would then output
the admissible regions for each multivariate available policy together with its defining
polynomial;

– the identification of the admissible domains consists of the solution of a system of poly-
nomial inequalities. We are currently investigating these domains using semi-algebraic
methods [5];

– all these methods are especially informative in asymmetric domains, since differ-
ent policies can be associated to polynomial having very different properties. This is
because, as shown in Theorem 2, in contast to standard MIDs, different policies can be
associated with very differently structured polynomials.

8 Discussion

With this work we have developed symbolic methods - currently being successfully applied
to the analysis of probabilistic graphical models - to study MIDs. We have defined a com-
plete toolkit to deal with standard operations for MIDs from a symbolic point of view, such
as the computations of EUs, possible manipulations of the diagram and asymmetries. Whilst
in open-loop analyses our symbolic definition finds its natural application, in closed-loop
analyses the EU-Maximization operation becomes critical. In some specific cases, as illus-
trated through the example in Section 7, partial parameters’ elicitations will allow the DM
to perform such step. In more general cases we still need to formalize such maximization
techniques for example by adopting semi-algebraic methods which have already proved
successful in other applications [5]. We expect these to be particularly useful in asymmetric
domains, since different polynomial structures can inform even more deeply the DM about
the structure of the decision space.

We here provide a full report of an implementation of our methodology within an accessi-
ble computer algebra system. Of course when addressing very large problems generic tools
can have difficulties handling the number of unknown variables that need to be stored in
the computer memory and computations may become infeasible. However, there are ways
around this memory problem. For example by imposing certain conditions on the model
- formally discussed in [34] - computations can then be distributed. This can dramatically
reduce complexity and make calculations again feasible albeit with the necessary addition
of further software - designed for the particular application - which intelligently merges
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together the outputs of the different contributing distributed components of the system: see
also [45]. The simulations carried out in Section 4.4 and the example in Section 7 showed
that the methodology and algorithm presented in this paper are competitive and allow for
the analysis of more general classes of models than traditional methods. Implementations
based on specialised programs rather than on a general purpose software like MapleTH will
enable the analysis of more complex MIDs.

Also in the case the variables take values in continuous spaces, EU exhibits a similar
polynomial representation to the one discussed in this paper for discrete variables. In the
continuous case the unknown quantities of the polynomials are low order moments. Exam-
ples of these polynomials are presented in [34]. Just as in the discrete case, the manipulations
of the diagrams for policies with continuous variables and their associated asymmetries can
be described as operations over the polynomials. A full study of the symbolic representation
of EUs in a continuous domain will be reported in future work.

Appendix A Proofs

A.1 Proof of proposition 1

We develop the proof via backward induction over the random and decision vertices of the
MID, starting from Yn. Define, for i ∈ [n],

Ûi =
∫
Y[n]V

i−1

max
Y[n]D

i−1

∑
I∈P0([m])

hnI −1
∏
i∈I

kiUi(yPi
)f

(
y[n]V

i−1
| y[i−1]

)
dy[n]V

i−1
,

where [n]Vi−1 = [n] \ [i − 1] ∩ V, [n]Di−1 = [n] \ [i − 1] ∩ D and �[n]V
i−1

= ∪j∈[n]V
i−1

�j .

The quantity Ûi corresponds to an overall EU score after having marginalized/maximized
Yi, . . . , Yn.

The DM’s preferences are a function of Yn only through kmUm(yPm), since by construc-
tion n = jm ∈ J. Therefore this quantity can be either maximized or marginalized as in (3)
to compute Ūn(yBn). Note that Bn includes only the indices of the variables Ūn formally
depends on, since Bn = Pm \ {n}, if n ∈ D, whilst Bn = Pm ∪ �n \ {n}, if n ∈ V. Then

Ûn =
∑

I∈P0([m])
hnI −1

∏
i∈I

(
1{i �=n}

[
kiUi(yPi

)
] + 1{i=n}

[
Ūi(yBi

)
])

.

Now consider Yn−1. If n − 1 �∈ J, then Ûn is a function of Yn−1 only through Ūn. Therefore
maximization and marginalization steps can be computed as in (5) to compute Ūn−1(yBn−1).
Again Bn−1 includes the indices of the variables Ūn−1 formally depends on, since Bn−1 =
Pm \ {n, n−1}, if n, n−1 ∈ D, Bn−1 = Pm ∪ �n ∪ �n−1 \ {n, n−1}, if n, n−1 ∈ V,
Bn−1 = Pm ∪ �n−1 \ {n, n−1}, if n ∈ D and n−1 ∈ V, Bn−1 = Pm ∪ �n \ {n, n−1}, if
n ∈ V and n−1 ∈ D. Then

Ûn−1 =
∑

I∈P0([m])
hnI −1

∏
i∈I

(1{i �=n}kiUi(yPi
) + 1{i=n}Ūi−1(yBi−1)).
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Conversely, if n − 1 ∈ J, Ûn is potentially a function of Yn−1 through both Um−1(yPm−1)

and Ūn(yBn) and note that Ûn can be written in this case as

Ûn =
∑

I∈P0([m−2])
hnI −1

∏
i∈I

kiUi(yPi
) + U ′

m−1 +
⎛
⎝ ∑

i∈P0([m−2])
hni−1

∏
i∈I

kiUi(yPi
)

⎞
⎠U ′

m−1,

where

U ′
m−1 = hkm−1Um−1(yPm−1)Ūn(yBn) + km−1Um−1(yPm−1) + Ūn(yBn).

Therefore optimization and marginalization steps can be performed over U ′
m−1 as specified

in the two (4) respectively. Then note that Ûn−1 can be written as

Ûn−1 =
∑

I∈P0([m−2])
hnI −1

∏
i∈I

kiUi(yPi
) + Ūn−1(·) +

⎛
⎝ ∑

i∈P0([m−2])
hni−1

∏
i∈I

kiUi(yPi
)

⎞
⎠ Ūn−1(·)

=
∑

I∈P0([m−1])
hnI −1

∏
i∈I

(1{i �=n−1}kiUi(yPi
) + 1{i=n−1}Ūi(yBi

)).

Now for a j ∈ [n−2] and assuming with no loss of generality that k is the index of a
utility vertex such that jk−1 < j ≤ jk , we have that

Ûj =
∑

I∈P0([k])
hnI −1

∏
i∈I

(1{i �=j}kiUi(yPi
) + 1{i=j}Ūi(yBi

)).

Therefore at the following step, when considering Yj−1, we can proceed as done with Yn−1

by maximization and marginalization in (4)–(5) to compute Ûj−1. Thus at the conclusion
of the procedure, Ū1 yields the EU of the optimal decision.

A.2 Proof of theorem 1

For a subset I ∈ P0([m]), let jI be the index of the variable appearing before the utility
vertex with index UmaxI

in the decision sequence. Let Ci,I = {z ∈ V : i ≤ z ≤ jI } and
recall that l is the index of the first utility node following Yi in the DS. The EU function
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of (3)–(5) can be (less intuitively) written as Ūi(yBi
) = ∑

I∈P0({l,...,m}) Ūi,I (yBi
), where

Ūi,I (yBi
) is defined as

Ūi,I (yBi
) =

∑
I∈P0({l,...,m})

hnI −1
∏
s∈I

ksUs(yPs )
∑

yCi,I
∈YCi,I

∏
j∈Ci,I

P (yj |y�j
). (11)

The EU therefore depends on the power set of the indices of the utility vertices subsequent
to Yi in the decision sequence. We can note that for any I, J ∈ P({l, . . . , m}) such that
#I = #J and UmaxI

= UmaxJ
, Ūi,I (yBi

) and Ūi,J (yBi
) have the same polynomial structure

since Ci,I = Ci,J . Now for a = l, . . . , m and b = l, . . . , a, by the properties of binomial
coefficients,

(
a−l
b−l

)
counts the number of elements I ∈ P0({l, . . . , m}) having #I = b− l+1

and including a. Thus riba in (7) counts the correct number of monomials having a certain
degree since YCi,I

= ×t∈Ci,I
Yt . Further note that considering each combination of b and a

in the ranges specified above, we count each element of P0({l, . . . , m}).
By having a closer look at diba in (7) it is easy to deduce the corresponding degree of

these monomials. The first term of diba , (b − l), computes the degree associated to the
criterion weight h, since b − l = nI − 1 and the second term, 2(b − l + 1), computes the
degree associated to the product between the criterion weights ks and the utilities Us(yPs )

for s ∈ Ci,I . The last term wia corresponds to the degree deriving from the probabilistic
part of (11), which is equal to the number of non-controlled vertices between Yi and YjmaxI
(both included).

Since the set Bi includes the arguments of Ūi(yBi
) and Y = ×i∈[n]Yi , (6) guarantees

that the dimension of the EU vector is
∏

t∈Bi
rt .

A.3 Proof of proposition 4

After the reversal of the arc (Yi, Yj ) into (Yj , Yi), the new parent sets of these two variables
are �′

j = {�j ∪�i \i} and �′
i = {j ∪�i ∪�j \i}. Call �j\i = {�j \i}. It then follows that

piyiπ
′
i

= P(yi | y�′
i
) = P(yi | y�j\i , y�i

, yj ) = P(yj | y�j\i , y�i
, yi)P (yi | y�j\i , y�i

)

P (yj | y�j\i , y�i
)

= P(yj | y�j
)P (yi | y�i

)

P (yj | y�j\i , y�i
)

= P(yj | y�j
)P (yi | y�i

)∑
yi∈Yi

P (yj | yi, y�j\i )P (yi | y�i
)

= pjyj πj
piyiπi∑

yi∈Yi
pjyj πj

piyiπi

,

and

p′
jyj π ′

j
= P(yj | y�′

j
) = P(yj | y�j\i , y�i

) =
∑

yi∈Yi

P (yj | y�j
)P (yi | y�i

)

=
∑

yi∈Yi

pjyj πj
piyiπi

.

The proof of the barren node removal easily follows from the fact that the vertex is not
included anymore in the MID.

A.4 Proof of lemma 1 and 2

We first consider the arc reversal and the change of dimension of the vectors. If j �∈ J the
sets Bk that are affected by the arc reversal are only the ones such that k ∈ �i ∪ �j and the
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set B ′
k simply takes into account the presence of the additional edges in G′. If j ∈ J

′ then
the sets Bk affected by the arc reversal are the ones such that k ∈ �i ∪ �j ∪ Pjj

and the
set B ′′

k additionally takes into account that the indices in Pjj
are included only before the

EUMarginalization between Ūi+1 and pj . The final case is if j �∈ J
′, which can be seen as

a combination of the previous two cases.
Now consider the polynomial structure of the entries after an arc reversal. If j �∈ J,

then the adjusted Algorithm 4.2 simply computes an EUMarginalization between Ūj+1 and
pi instead of pj . Therefore the entries of Ūj have r ′

jba = rir(j+1)ba/rj monomials of

degree d(j+1)ba and, until the adjusted algorithm computes Ūi , the change in the structure
is propagated through the ‘EUOperations’. If j ∈ J

′ ∩ J, then instead of an EUMultiSum
and a EUMarginalization, now the algorithm only computes an EU-Marginalization and, as
before, the change is propagated until Ūi . As in the previous paragraph, the last case can be
seen as combination of the previous two situations.

Consider now the deletion of the barren node Yi . The set Bz is the one with the highest
index which includes i in G. Thus, for i < k ≤ z, i ∈ Bk and Ūk is conditional on
Yi = yi . The deletion of this vertex therefore implies that the dimension of the vector
becomes c′

k/ri . For k ≤ i, Algorithm 4.2 now performs one EUMarginalization less and,
from Proposition 4.2, we deduce that Ū ′

k has now rkba/ri monomials of degree dkba − 1.

A.5 Proof of proposition 6

Let �k\i = �k \ {i}. If Yi is parent of Yk we have that

p′
kykπ

′
k

= P(yk | y�′
k
) = P(yk | y�i

, y�k\i ) =
∑

yi∈Yi

P (yk | y�k
, y�i

)P (yi | y�k\i , y�i
)(12)

=
∑

yi∈Yi

P (yk | y�k
)P (yi | y�i

) =
∑

yi∈Yi

pkykπk
piyiπi

If Yi is a parent but not the parent of Yj , then P(yi | y�j\i , y�i
) as in (12) can be written as

P(yi | y�j\i , y�i
) = P(yi | y�j \[i−1], y�j ∩[i−1], y�i

)

= P(y�j \[i−1] | yi, y�j ∩[i−1], y�i
)P (yi | y�i

)∑
yi∈Yi

P (y�j \[i−1] | yi, y�j ∩[i−1], y�i
)P (yi | y�i

)

=
∏

l∈�j \[i−1]
∑

Y�i∩�j ∩�l
P (yl | y�l

)P (yi | y�i
)∑

yi∈Yi

∏
l∈�j \[i−1]

∑
Y�i∩�j ∩�l

P (yl | y�l
)P (yi | y�i

)
,

A.6 Proof of theorem 2

For i, j, k, l ∈ V and s, t ∈ [m], an asymmetry Yi = yi ⇒ Yj = yj implies that any mono-
mials that include terms of the form pkykπk

, ψsπs , pkykπk
plylπl

, ψtπt ψsπs and pkykπk
ψsπs

entailing both instantiations yi and yj are associated to a non possible combination of
events, with yk ∈ Yk , πk ∈ Y�k

, yl ∈ Yl , πl ∈ Y�l
, πt ∈ YPt and πs ∈ YPs . Thus these

monomials have to be set equal to zero.
For j < t ≤ z, Ūt has an associated set Bt which includes both i and j and consequently∏

s∈Bt\{i∪j} rs rows of the vector corresponds to the conditioning on Yi = yi and Yj = yj .
Therefore all the monomials in those rows have to be set equal to zero.
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For i < t ≤ j , the index i is in the set Bt , whilst the variable Yj has been already
EUMarginalized. Thus, there are only

∏
s∈Bt\{i} rs rows conditional on the event Yi = yi . In

those rows only some of the monomials are associated to the event Yj = yj . Specifically, the
ones implying Yj = yj can only be multiplying a term including aψxPx from a utility vertex

Ux subsequent to Yj in the MID DS. We can deduce that there are
∏ja

s=t rs/rj monomials
of degree dtba that include the case Yj = yj in such entries of Ūt , for a = x, . . . , m and
b = l, . . . , a (using the notation of Theorem 1).

Lastly, if t ≤ i, then the set Bt does not include i and j , which have been both
EUMarginalized. Thus monomials including a combination of the events Yj = yj and
Yi = yi appears in each row of Ūt . Similarly as before, we can deduce that there are∏ja

s=t rs/(ri · rj ) monomials of degree dtba , a = x, . . . , m, b = l, . . . , a, implying the event
Yi = yi ∧ Yj = yj .

Appendix B Maple code

B.1 Initialization functions

### Required Packages ###

with(ArrayTools): with(LinearAlgebra):

### Computation of the highest index in each parent set of a utility

node ###

# Inputs: PiU::table, parent sets of utility nodes; m::integer, num.

utility nodes

# Output: J::list

CompJ := proc(PiU,m) local i,j:

for j to m do J[j] := max(PiU[J]) end do:

return convert(J,list): end proc:

### Computation of the indices of the argument of the EU at step i ###

# Inputs: PiU::table; PiV::table, parent sets of random nodes;

i::integer;

# n::integer, number of random nodes; J::list

# Output: Bi[i]::set

CompBi := proc(PiU,PiV,i,n,J) local Bi,part,j:

Bi[i], part := {},{}:
for j from i to n do

part := part union {j}:
if member(j,V) then Bi[i] := Bi[i] union PiV[j] end if:

if member(j,J,’l’) then Bi[i] := Bi[i] union PiU[l] end if:

end do:

Bi[i] := Bi[i] minus part:

return Bi[i]:

end proc:
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### Initialization of an MID ###

# Inputs: p::table, probability vectors; psi::table, utility vectors;
PiV::table;

# PiU::table; n::integer; m::integer

# Outputs: J::list; Bi::list; u::table, EU vectors

Initialize := proc(p, psi, PiV, PiU, n, m) local J, i, Bi, u:

J := CompJ(PiU, m):

for i to n do Bi[i] := CompBi(PiU, PiV, i, n, J) end do:

Bi[n+1], u[n+1] := {}, []:
return J, Bi, u:
end proc:

### Identification of an optimal policy (at random) ###

# Inputs: r::table; i::integer, index of the decision variable,

# t::integer, number of random draws

#Outputs: maxi::vector, optimal decisions

Maximize := proc(r, i, t) local maxi, l:

maxi := Vector(t, 0):

for l to t do maxi[l] := RandomTools[Generate](integer(range = 1 ..

r[i])) end do:

return maxi:
end proc:

B.2 EU duplications

### EUDuplication of a utility vector and an EU vector ###

# Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table;

# r::table, size of the decision and sample spaces; Bi::table; J::list

# Outputs: utemp::list, EUDuplicated version of u;

# psitemp::list, EUDuplicated version of psi

EUDuplicationPsi := proc(u, psi, j, PiV, PiU, r, Bi, J)

local i, uprime, psip, psit, utemp, x, sx, y, l, z:

i := max(PiU[j]):

uprime, psip, psit, utemp := [], [], psi[j], u[i+1]:

for x from max(Bi[i+1], PiU[j]) by -1 to 1 do

if member(x, (PiU[j] union Bi[i+1]) minus (PiU[j] intersect Bi[i+1]))

then sx := 1:
for y from x+1 to max(Bi[i+1], PiU[j]) do
if member(y, union(Bi[i+1], PiU[j])) then sx := sx*r[y] end if
end do:

if member(x, Bi[i+1]) then for l to Size(psit)[2]/sx do for z to r[x] do
psip := [op(psip),op(convert(convert(psit,list)[(l-1)*sx+1..l*sx],list))]

end do end do:

psit, psip := psip, []:
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elif member(x, PiU[j]) then for l to Size(utemp)[2]/sx do for z to

r[x] do

uprime:=[op(uprime),op(convert(convert(utemp,list)[(l-1)*sx+1..l*sx],

list))] end do end do:

utemp, uprime := uprime, []:

end if end if end do:
return utemp, psit:

end proc:

### EUDuplication of a probability vector and an EU vector ###

# Inputs: u::table; p::table; i::integer; PiV::table; PiU::table;

r::table; Bi::table; J::list

# Outputs: utemp::list, EUDuplicated version of u;

# ptemp::list, EUDuplicated version of p

EUDuplicationP := proc (u, p, i, PiV, PiU, r, Bi, J)

local uprime, pprime, ptemp, utemp, x, sx, y, l, z, Uni:

uprime, pprime, ptemp, utemp := [], [], p[i], u[i+1]:

if member(i, J) then member(i, J, ’j’);

Uni := (Bi[i+1] union PiV[i]) union PiU[j]:

for x from max(Uni) by -1 to 1 do

if member(x, Uni minus ((Bi[i+1] union PiU[j]) intersect (PiV[i]

union i))) then sx := 1;

for y from x+1 to max(Uni) do if member(y, Uni) then

sx := sx*r[y] end if end do;

if member(x, union(Bi[i+1], PiU[j])) then

for l to Size(ptemp)[2]/sx do for z to r[x] do

pprime:=[op(pprime),op(convert(convert(ptemp,Array)[(l-1)*sx+1..l*sx],

list))]

end do end do:

ptemp, pprime := pprime, []:

elif member(x, PiV[i]) then for l to Size(utemp)[2]/sx do

for z to r[x] do uprime:=[op(uprime),op(convert(convert(utemp,Array)
[(l-1)*sx+1..l*sx],list))]

end do end do:

utemp, uprime := uprime, []:

end if end if end do:

else for x from max(Bi[i+1], PiV[i]) by -1 to 1 do

if member(x,(Bi[i+1] union PiV[i])minus(Bi[i+1] intersect (PiV[i]

union i))) then sx := 1;
for y from x+1 to max(Bi[i+1],PiV[i]) do if member(y,Bi[i+1] union
PiV[i]) then sx := sx*r[y]
end if end do:
if member(x, Bi[i+1]) then for l to Size(ptemp)[2]/sx do for z to

r[x] do

pprime:=[op(pprime),op(convert(convert(ptemp,Array)[(l-1)*sx+1..l*sx],

list))]

end do end do:
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ptemp, pprime := pprime, []:

elif member(x, PiV[i]) then for l to Size(utemp)[2]/sx do for z to

r[x] do
uprime:=[op(uprime),op(convert(convert(utemp,Array)[(l-1)*sx+1..l*sx],

list))]

end do end do;

utemp, uprime := uprime, []:

end if end if end do end if:

utemp, ptemp := convert(utemp,Array), convert(ptemp,Array):

return utemp,ptemp: end proc:

B.3 EU operations

### EuMultiSum between an EU vector and a utility vector ###

# Inputs: u::table; psi::table; j::integer; PiV::table; PiU::table;

# r::table; Bi::table; J::list

# Outputs: ut::list, EU vector after an EUMultiSum

EUMultiSum := proc(u, psi, j, PiV, PiU, r, Bi, J) local i, uprime,

psip, ut; i := max(PiU[j]);

if j = Size(convert(PiU, list), 2) then ut := k[j]* psi[j]:

else uprime, psip := EUDuplicationPsi(u, psi, j, PiV, PiU, r, Bi, J);

ut := h* k[j]* psip* uprime + uprime + k[j]* psip end if:

return ut:

end proc:

### EUMarginalization over a sample space ###

# Inputs: u::table; p::table; i::integer; PiV::table; PiU::table;

r::table; Bi::table; J::list

# Outputs: ut::list, EU vector after EUMarginalization

EUMarginalization := proc (u, p, i, PiV, PiU, r, Bi, J)

local uprime, pprime, ut, cols, l, k:

uprime, pprime := EUDuplicationP(u, p, i, PiV, PiU, r, Bi, J): cols

:= Size(pprime)[2]:

ut := convert(ZeroVector(cols/r[i]), Array):

for l to (cols/r[i]) do for k to r[i] do ut[l] := ut[l]+

pprime[r[i]*(l-1)+k]*uprime[r[i]*(l-1)+k]:

end do end do:

return ut:

end proc:

### EUMaximization over a decision space ###

# Inputs: u::table; i::integer; r::table

# Outputs: u[i]::list, EU vector after

EUMaximization
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EUMaximization := proc(u, i, r) local opt,l ;

opt := Maximize(r, i, Size(u[i+1])[2]/r[i]);

u[i] := Array([seq(0,l in 1..Size(opt)[1])]):

for l to Size(opt)[1] do

u[i][l] := convert(u[i+1],Array)[r[i]*(l-1)+opt[l]] end do;

return u[i]:

end proc:

B.4 The symbolic algorithm

### Symbolic evaluation algorithm for an MID ###

# Inputs: p::table; psi::table; PiV::table; PiU::table; n::integer;

m::integer;

# De::set, index set of the decision variables;

# V::set, index set of the random variables; r::table

# Output: eu::table, EU vectors;

SymbolicExpectedUtility := proc(p, psi, PiV, PiU, n, m, De, V, r)

local J, Bi, utemp, i, j, eu;

J, Bi, eu := Initialize(p, psi, PiV, PiU, n, m);

j := m;

for i from n by -1 to 1 do if j = 0 then if member(i, De) then eu[i]

:= EUMaximization(eu, i, r)

else eu[i] := EUMarginalization(eu, p, i, PiV, PiU, r, Bi, J) end if;

else if J[j] = i then if member(i, De) then

utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMaximization(utemp, i, r)

else
utemp[i+1] := EUMultiSum(eu, psi, j, PiV, PiU, r, Bi, J);

eu[i] := EUMarginalization(utemp, p, i, PiV, PiU, r, Bi, J)

end if;
j := j-1

else if member(i, De) then eu[i] := EUMaximization(eu, i, r)
else eu[i] := EUMarginalization(eu, p, i, PiV, PiU, r, Bi, J) end if
end if end if end do;
return eu:
end proc:

B.5 Implementation of the example

Consider the MID in Fig. 1 with n = 6 variables (decision or random nodes) and m = 3
utility nodes.
### Definition of the MID ###

# number of variables and utility nodes

n := 6: m := 3:

# V contains the indices of random nodes and De those of the decision

nodes V := 2, 3, 5, 6: De := 1, 4:

# Conditional probabilities
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p[6] := [p6111, p6011, p6101, p6001, p6110, p6010, p6100, p6000]:

p[5] := [p5111, p5011, p5101, p5001, p5110, p5010, p5100, p5000]:

p[3] := [p3111, p3011, p3101, p3001, p3110, p3010, p3100, p3000]:

p[2] := [p211, p201, p210, p200]:

# Utility parameters

psi[1] := [psi11, psi10]:

psi[2] := [psi21, psi20]:

psi[3] := [psi311, psi301, psi310, psi300]:

# Parents of random nodes

PiV[2] := 1: PiV[3] := 1, 2: PiV[5] := 3, 4: PiV[6] := 4, 5:

# Parents of utility nodes

PiU[1] := 3: PiU[2] := 5: PiU[3] := 4, 6:

# Number of levels of the variables

r[1] := 2: r[2] := 2: r[3] := 2: r[4] := 2: r[5] := 2: r[6] := 2:

### Computation of the EU vectors ###

eu := SymbolicExpectedUtility(p, psi, PiV, PiU, n, m, De, V, r):

Example of the output of eu[1]:
[((k[1]*psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*

(p6010*psi300*k[3]+p6110*psi310*k[3])+k[3]*psi300*p6010

+k[3]*psi310*p6110)*p5101+(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]

+p6100*psi310*k[3])+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)+

(k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]+p6110*psi310*k[3])

+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)*p3110+

(k[1]*psi10+h*k[1]*psi10*((k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]

+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3010)*p210+

((k[1]*psi11+h*k[1]*psi11*((k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]

+p6110*psi310*k[3])+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)+

(k[2]*psi21+h*k[2]*psi21*(p6010*psi300*k[3]+p6110*psi310*k[3])

+k[3]*psi300*p6010+k[3]*psi310*p6110)*p5101+

(k[2]*psi20+h*k[2]*psi20*(p6000*psi300*k[3]+p6100*psi310*k[3])

+k[3]*psi300*p6000+k[3]*psi310*p6100)*p5001)*p3100+

(k[1]*psi10+h*k[1]*psi10*((k[2]*psi21+h*k[2]*psi21*

(p6011*psi301*k[3]+p6111*psi311*k[3])+k[3]*psi301*p6011+k[3]

psi311*p6111)*p5110+ (k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+

p6101*psi311*k[3]) +k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)+

(k[2]*psi21+h*k[2]*psi21*(p6011*psi301*k[3]+p6111*psi311*k[3])

+k[3]*psi301*p6011+k[3]*psi311*p6111)*p5110+



312 M. Leonelli et al.

(k[2]*psi20+h*k[2]*psi20*(p6001*psi301*k[3]+p6101*psi311*k[3])

+k[3]*psi301*p6001+k[3]*psi311*p6101)*p5010)*p3000)*p200]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bhattacharjya, D., Shachter, R.D.: Sensitivity Analysis in Decision Circuits. In: Proceedings of the 24th
Conf. Uncertainty in Artif. Intel, pp. 34–42 (2008)

2. Bhattacharjya, D., Shachter, R.D.: Three New Sensitivity Analysis Methods for Influence Diagrams. In:
Proc. 26Th Conf. Uncertainty in Artif. Intel., pp. 56–64 (2010)

3. Bhattacharjya, D., Shachter, R.D.: Formulating asymmetric decision problems as decision circuits.
Decis. Anal. 9, 138–145 (2012)
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