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Abstract Engineers widely use Gaussian process regression framework to construct surro-
gate models aimed to replace computationally expensive physical models while exploring
design space. Thanks to Gaussian process properties we can use both samples generated by a
high fidelity function (an expensive and accurate representation of a physical phenomenon)
and a low fidelity function (a cheap and coarse approximation of the same physical phe-
nomenon) while constructing a surrogate model. However, if samples sizes are more than
few thousands of points, computational costs of the Gaussian process regression become
prohibitive both in case of learning and in case of prediction calculation. We propose two
approaches to circumvent this computational burden: one approach is based on the Nyström
approximation of sample covariance matrices and another is based on an intelligent usage
of a blackbox that can evaluate a low fidelity function on the fly at any point of a design
space. We examine performance of the proposed approaches using a number of artificial
and real problems, including engineering optimization of a rotating disk shape.
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1 Introduction

Computational modeling is widely adopted in various branches of engineering [62]. The
aim of the computational modeling is to replace costly field experiments with evaluations
of a less costly computational code. While wide adoption of the mathematical modeling
significantly reduces time and costs required to perform a design process in the industrial
engineering, in many cases it still requires several days and HPC resources to perform an
experiment [31].

Nowadays engineers often construct surrogate models to replace expensive computa-
tional models with cheap but sufficiently accurate approximations [14, 31, 35]. An engineer
generates a sample of points, evaluate values of a high fidelity computational code (a high
fidelity function) at these points, and then use the generated sample and machinery of
regression analysis to construct a surrogate model.

Gaussian process regression is an attractive framework for construction of nonlinear
regression models [31, 54] with a number of guaranteed theoretical properties [24, 61].
Constructed model can be used to speed-up evaluations [2, 36, 57], for surrogate-based
optimization [31, 46], uncertainty quantification [42], sensitivity analysis [16–18] and adap-
tive design of experiments [19]. Maturity of this approach is further confirmed not only
by numerous applications but also by availability of software packages that are dedica-
ted to surrogate modeling and include Gaussian process regression-based approaches [1, 8,
10, 35].

Nice property of Gaussian process regression is an ability to treat variable fidelity data
[23, 26, 30, 37, 43, 52]: one can construct a surrogate model of a high fidelity function using
data both from high and low fidelity sources (e.g., high fidelity evaluations can be obtained
using a computational code with a fine mesh, and low fidelity evaluations can be obtained
using the same computational code with a coarser mesh). Recent results provide theoretical
analysis of obtained models [67, 69] and of parameters estimates [24]. Gaussian process
based variable fidelity modeling shares many common ideas with multi-output Gaussian
process regression [4, 12, 25, 40].

For data with no specific structure we need O(n2) memory to store a surrogate model
andO(n3) operations to construct it. Due to this computational complexity usually not more
than a few thousands of points are used when training Gaussian Process regression. In the
variable fidelity scenario samples are often large, as one evaluation of a low fidelity function
is usually significantly cheaper than one evaluation of a high fidelity function.

Currently there are several ways to reduce memory and computational requirements for
Gaussian process regression. Nyström approximation [27] is a popular approach to per-
form large sample Gaussian process regression inference [32, 53, 59]. The idea is to select
a subsample of a full sample for which we can still perform Gaussian process regression
inference, and then approximate the full sample covariance matrix and its inverse by some
combination of the covariance matrix for the selected subsample and the cross-covariance
matrix between points from the selected subsample and from the full sample. Bayesian
approximate inference provides an alternative fast estimate of the full sample likelihood
that is then optimized to estimate model parameters [39, 60]. Another popular approach
with thoroughly investigated theoretical properties is a covariance tapering [33, 55]: we set
a covariance between points equal to zero in case a distance between them is above some
threshold, so in such a way we obtain sparse covariance matrices, and we can efficiently
process them with appropriate routines. Hierarchical models also can alleviate the computa-
tional burden, as they split the sample into separate subsamples. However, in this case exact
inference is possible also only if we make some specific assumptions about their covariance
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structure [7, 50, 56]. In addition, fast exact inference is possible if training data has some
specific structure: for example, in [9, 13] authors describe an exact inference scheme to
construct Gaussian process regression in case of samples with a Cartesian product structure.
However, as far as we know there are no approaches to large scale variable fidelity Gaussian
process regression in case of data without any specific structure.

Another issue with Gaussian process regression is its bad extrapolation properties: the
model prediction at a new point is a weighted sum of function values at the available training
points with weights defined by covariances between these points [54]; i.e., the prediction
can be determined only locally near the training points, and we need to be careful with test
points that are far away from the training sample.

We propose two approaches that mitigate the sample size limitation and improve extrap-
olation properties of variable fidelity Gaussian process regression. The first approach adopts
the Nyström approximation and relies on the results obtained for single fidelity data in the
Sparse Gaussian process regression framework [32, 44]. The second approach uses a low
fidelity function blackbox that provides low fidelity function evaluations on the fly: we
improve prediction of a surrogate model at a new point using the low fidelity function value
at this point. While for heuristic models it is a common practice to incorporate a low fidelity
function blackbox in this way [3, 45, 58, 63, 64], Gaussian process regression doesn’t sup-
port its direct usage. As we are able to evaluate a low fidelity function at any point of a
design space, we avoid using a large sample to cover the whole design space. Instead, we
just need to obtain a low fidelity sample that is sufficient for accurate estimation of Gaussian
process regression model parameters.

We investigate computational complexity and compare accuracies of the proposed
approaches using real and artificial data. The real problem at hand is an optimization
of a rotating disk in an aircraft engine. The disk shape optimization problem remains
challenging and often involves usage of surrogate modeling of maximal stress and radial
displacement of the disk [29, 41]. We compare four approaches to construct surrogate mod-
els: Gaussian process regression, Gaussian process regression for variable fidelity data,
and approaches presented in this paper — sparse Gaussian process regression for variable
fidelity data and Gaussian process regression for variable fidelity data with an available low
fidelity function blackbox.

The paper contains the following sections:

– Section 2 describes the Gaussian process regression framework;
– Section 3 outlines the variable fidelity Gaussian process regression framework;
– Section 4 proposes an approach to construct sparse Gaussian process regression for

variable fidelity data;
– Section 5 describes our approach to variable fidelity Gaussian process regression with

a low fidelity function blackbox;
– Section 6 provides results of computational experiments for both real and artificial data;
– Conclusions and directions for future research are given in Section 7.

In Appendix we provide proofs of some technical statements and details on low and high
fidelity models for the rotating disk problem.

2 Gaussian process regression for single fidelity data

We consider a training sample D = (X, y) = {xi , yi = y(xi )}ni=1, where a point x ∈ X ⊆
R

d and a function value y(x) ∈ R. We assume that y(x) = f (x) + ε, where f (x) is a
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realization of Gaussian process, and ε is a Gaussian white noise with a variance σ 2. The
goal is to construct a surrogate model for the target function f (x).

The Gaussian process f (x) is defined by its mean and covariance function

k(x, x′) = cov(f (x), f (x′)) = E (f (x) − E(f (x)))
(
f (x′) − E(f (x′))

)
.

Without loss of generality we assume the mean value to be zero. We also assume that the
covariance function belongs to some parametric family {kθ (x, x′), θ ∈ � ⊆ R

p}; i.e.,
k(x, x′) = kθ (x, x′) for some θ ∈ �. Thus y(x) is also a Gaussian process [54] with zero
mean and the covariance function cov(y(x), y(x′)) = kθ (x, x′)+σ 2δ(x−x′), where δ(x−x′)
is the Kronecker delta. The multivariate squared exponential covariance function [54]

kθ (x, x′) = θ20 exp

(

−
d∑

k=1

θ2k (xk − x′
k)

2

)

is widely used in applications.
The covariance function parameters θ and the variance σ 2 fully specify the data model.

We use the Maximum Likelihood Estimation (MLE) of θ and σ 2 [11, 54] to fit the model;
i.e., we maximize the logarithm of the training sample likelihood

logp(y|X, θ , σ 2) = −1

2

(
n log 2π + log |K| + yT K−1y

)
→ max

θ ,σ 2
, (1)

where K = {kθ (xi , xj ) + σ 2δ(xi − xj )}ni,j=1 is the matrix of covariances between values

y(X) from the training sample and |K| is its determinant. Here σ 2 plays the role of a reg-
ularization parameter for the kernel matrix {kθ (xi , xj )}ni,j=1, being a matrix of covariances
between the values f (X). The recent theoretical paper [24] and the experimental papers [6,
65, 68] state that under general assumptions MLE parameters estimates θ̂ are accurate even
if the sample size is limited and the model is misspecified.

Using estimates of θ and σ 2 we can calculate the posterior mean and the covariances
of y(x) at new points playing, respectively, the role of a prediction and its uncertainty. The
posterior mean E(y(X∗)|y(X)) at the new points X∗ = {x∗

i }n
∗

i=1 has the form

ŷ(X∗) = K(X∗,X) · K−1y, (2)

where K(X∗,X) = {kθ (x∗
i , xj )}i=1,...,n∗,j=1,...,n are the covariances between the values

y(X∗) and y(X). The posterior covariance matrix V (X∗) = E
[
(y(X∗)−Ey(X∗))T (y(X∗)−

Ey(X∗)) | y(X)
]
has the form

V
(
X∗) = K(X∗,X∗) − K(X∗,X) · K−1 · K(X,X∗), (3)

where K(X∗,X∗) = {kθ (x∗
i , x

∗
j ) + σ 2δ(x∗

i − x∗
j )}n

∗
i,j=1 is the matrix of covariances between

the values y(X∗).
Maximum likelihood estimation of a Gaussian process regression model sometimes pro-

vides degenerate results — a phenomenon closely connected to overfitting [48, 51, 65, 68].
To regularize the problem and avoid inversion of large ill-conditioned matrices, one can
impose a prior distribution on a Gaussian process regression model and then use Bayesian
MAP (Maximum A Posteriory) estimates [11, 20, 23]. In particular in this paper we adopted
the approach described in [20]: we impose prior distributions on all parameters of the
covariance function and additional hyperprior distributions on parameters of the prior dis-
tributions. Experiments confirm that such approach allows to avoid ill-conditioned and
degenerate cases, that can occur even more often when processing variable fidelity data.
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3 Variable fidelity Gaussian process regression

Now we consider the case of variable fidelity data: we have a sample of low fidelity func-
tion evaluations Dl = (Xl , yl ) = {

xl
i , yl(xl

i )
}nl

i=1 and a sample of high fidelity function

evaluations Dh = (Xh, yh) = {
xh
i , yh(xh

i )
}nh

i=1 with xl
i , x

h
i ∈ R

d , yl(x), yh(x) ∈ R. The
low fidelity function yl(x) and the high fidelity function yh(x) model the same physical
phenomenon but with different fidelities.

Using samples of low and high fidelity functions values our aim is to construct a surro-
gate model ŷh(x) ≈ yh(x) of the high fidelity function; moreover, we also would like to
provide a corresponding uncertainty estimate [15, 21].

In this paper we consider a well-known variable fidelity data model (co-kriging) [30]:

yl(x) = fl(x) + εl, yh(x) = ρyl(x) + yd(x),

where yd(x) = fd(x) + εd . Here fl(x), fd(x) are realizations of independent Gaussian
processes with zero means and covariance functions kl(x, x′) and kd(x, x′), respectively, and
εl , εd are Gaussian white noise processes with variances σ 2

l and σ 2
d , respectively. We also

set X =
(
Xl

Xh

)
, y =

(
yl

yh

)
. Then the posterior mean of high-fidelity values at new points

has the form
ŷh(X∗) = K(X∗,X) · K−1y, (4)

where
K(X∗,X) = (

ρKl (X∗,Xl ) ρ2Kl (X∗,Xh) + Kd(X∗,Xh)
)
,

K(X,X) =
(

Kl (Xl ,Xl ) ρKl (Xl ,Xh)

ρKl (Xh,Xl ) ρ2Kl (Xh,Xh) + Kd(Xh,Xh)

)
,

Kl (Xa,Xb), Kd(Xa,Xb) are matrices of pairwise covariances between yl(x) and yd(x) and
points from some samples Xa and Xb, respectively. The posterior covariance matrix has the
form

V
(
X∗) = ρ2Kl (X∗,X∗) + Kd(X∗,X∗) − K(X∗,X) · K−1 · (

K(X∗,X)
)T

. (5)

To estimate covariance function parameters and noise variances for the Gaussian
processes fl(x) and fd(x) we use the following general approach [30]:

1. Estimate parameters of the covariance function kl(x, x′) by MLE with a sample D =
Dl , see Section 2.

2. Calculate posterior mean values ŷl(x) of the Gaussian process yl(x) for x ∈ Xh,
3. Estimate parameters of the covariance function kd(x, x′), defining the Gaussian process

yd(x), and ρ by maximizing likelihood (1) with D = Ddiff = (Xh, yd = yh −ρŷl (Xh))

and k(x, x′) = kd(x, x′).

As we have a big enough sample of low fidelity data, we assume that we can get accurate
estimates of parameters of the covariance function kl(x, x), so we don’t need to refine these
estimates using high fidelity data.

4 Sparse Gaussian process regression

To perform inference for a variable fidelity Gaussian process regression we have to invert
the sample covariance matrix of size n×n, where n = nh+nl . This operation has complexity
O(n3), so for samples containing more than several thousands of points we cannot construct
a Gaussian process regression in a reasonable time.
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In order to construct a Gaussian process regression in case of large sample sizes we
propose to use an approximation to the exact inference. The Nyström approximation [22,
32] of all involved positive definite matrices K(X∗,X), K and K(X∗,X∗) allows one to
construct such approximation. As a basic building block of the approximation we use the
Cholesky decomposition in the form similar to [32]. This approach provides guarantees of
improved numerical stability and requires reasonable amount of computations.

Let us select from the initial sample a subsample X1 =
(
X1

l

X1
h

)
, y1 =

(
yl (X1

l )

yh(X1
h)

)
of base

points with a small enough size n1 = n1h + n1l so we can perform the exact inference for
it. The simplest, rather robust and efficient way is to perform selection without repetitions
among points from the initial samples with a probability to select a point being proportional
to the corresponding self-covariance value.

Hence, by definition,

K11 =
(
Kl (X1

l ,X
1
l ) ρKl (X1

l ,X
1
h)

ρKl (X1
h,X

1
l ) ρ2Kl (X1

h,X
1
h) + Kd(X1

h,X
1
h)

)
,

K1 =
(
Kl (X1

l ,Xl ) ρKl (X1
l ,Xh)

ρKl (X1
h,Xl ) ρ2Kl (X1

h,Xh) + Kd(X1
h,Xh)

)
,

K∗
1 = (

ρKl (X∗,X1
l ) ρ2Kl (X∗,X1

h) + Kd(X∗,X1
h)

)

for some new pointsX∗ = {x∗
i }n

∗
i=1 and so we get the Nyström approximation of the matrices

K(X∗,X), K and K(X∗,X∗), respectively:

K̂(X∗,X) = K∗
1K

−1
11 K1, K̂ = (K1)

T K−1
11 K1, K̂(X∗,X∗) = K∗

1K
−1
11 (K∗

1)
T .

We set

R =
⎛

⎝
1
σl
Inl

0

0 1√
ρ2σ 2

l +σ 2
d

Inh

⎞

⎠ ,

where Ik is an identity matrix of size k, C1 = RK1 and V = C1V
−T
11 , V11 is the Cholesky

decomposition of K11.

Theorem 1 For the posterior mean and the posterior covariance matrix the following
Nystrom approximations hold

ŷNA
h (X∗) = K∗

1V
−1
11 (In1 + VT V)−1VT Ry, (6)

V
NA

(
X∗) = K∗

1V
−1
11 (In1 + VT V)−1V−T

11 K∗
1
T + (ρ2σ 2

l + σ 2
d )In∗ . (7)

Note that there are other ways to apply the Nyström approximation to the posterior
covariance matrix, but these alternatives either lead to inaccurate approximations or have
low numerical stability [32].

Theorem 2 Computational complexities of the posterior mean and the posterior covari-
ance matrix calculations at one point using (6) and (7) are equal to O(nn21).

Proofs of these theorems are provided in Appendix A.
Note that as we use the Nyström approach and select base points at random from the

initial sample we can get the following estimate of the approximation accuracy by directly
applying results from [44].
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Theorem 3 With probability 1 − δ it holds that:

‖K(X∗,X∗) − K̂(X∗,X∗)‖2
‖K(X∗,X∗)‖2 ≤ ‖K(X∗,X∗) − K̂n1(X

∗,X∗)‖2
‖K(X∗,X∗)‖2 + 	,

‖K(X∗,X) − K̂(X∗,X)‖2
‖K(X∗,X)‖2 ≤ ‖K(X∗,X) − K̂n1(X

∗,X)‖2
‖K(X∗,X)‖2 + 	,

where 	 is of order O
(

1√
n

)
O

(√
log 1

δ

)
, ‖ · ‖2 is l2 matrix norm, and K̂n1(X

∗,X∗) is the
best approximation with respect to l2 matrix norm, having rank n1.

5 Variable Fidelity Gaussian process regression with a low fidelity
function blackbox

Suppose that we have a blackbox for the low fidelity function yl(x) that estimates the low
fidelity function value at any point from the design space X ⊆ R

d on the fly. Let us assume
that we have already constructed a Variable fidelity Gaussian process surrogate model and
can calculate predictions using (4) and (5). We can not use a huge sample of low fidelity
function values due to the high computational cost of the Gaussian process regression.
Instead, in order to improve the prediction accuracy we can update the posterior mean and
the posterior variance of yh(x) at the new point x with the low fidelity function value yl(x)
at this point, calculated by the blackbox.

Let us describe a computationally efficient procedure to calculate the update. We set

kl (x,X) =
(

Kl (x,Xl )

ρKl (x,Xh)

)
,

where x is the new point. For a sample with the additional point x we get the expanded
covariance matrix:

Kexp =
(
K kl

kT
l kl(x, x)

)
.

Suppose we know Cholesky factors L and L−1 of the initial training sample covariance
matrix K and its inverse K−1, respectively. To perform computations efficiently, we update
these Cholesky factors and then update the posterior mean and the posterior variance values
for the expanded sample.

For the matrix Kn ∈ R
n×n and its Cholesky decomposition using a standard approach

(see Appendix B) we can get the updated Cholesky decomposition of the expanded matrix
Kn+1 ∈ R

(n+1)×(n+1) in O(n2) steps if the initial matrix Kn is located in the upper left
corner of the new matrix Kn+1. To update the inverse of the Cholesky decomposition we
also need O(n2) operations, as the expanded Cholesky factor is lower triangular and differs
from the initial Cholesky factor only in the last row. Therefore, we can calculate the matrix
K−1

exp in O(n2) operations.
An expanded vector of covariances between the new point x and the initial training

sample has the form

kexp =
⎛

⎝
ρKl (x,Xl )

ρ2Kl (x,Xh) + Kd(x,Xh)

ρkl(x, x)

⎞

⎠ .
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We set yexp = (
yT , yl(x)

)T
, where yl(x) is calculated by the blackbox. Then updated

expressions for the posterior mean and the posterior variance are:

ŷ
exp
h (x) = kexpK−1

expyexp, (8)

Vexp (x) = ρ2Kl (x, x) + Kd(x, x) − kT
expK

−1
expkexp. (9)

As the Cholesky factor for the updated model differs only in the last row we calculate (8)
and (9) in O(n2) operations.

The total computational complexity is the sum of computational complexities of the
Cholesky decomposition update and the posterior mean and variance recalculation, so for a
Variable fidelity Gaussian process regression with a blackbox, representing the low fidelity
function, the following theorem holds true.

Theorem 4 Suppose we know Cholesky factors L and L−1 of the initial training sample
covariance matrix K and its inverse K−1, respectively. Then we can calculate the posterior
mean ŷ

exp
h (x) via (8) and the variance Vexp (x) via (9) in O(n2) operations, where n =

nl + nh.

As we add only one point to the initial training sample, we expect that estimates of
parameters of the Gaussian process regression model do not change significantly. While
in some cases it can be reasonable to add many points, this issue raises a complex ques-
tion on how and when we should re-estimate Gaussian process parameters as we add more
points. Using blackbox for the low fidelity function we can get significantly more accurate
approximation with a small additional computational cost.

6 Numerical experiments

We compare four approaches for a surrogate model construction, listed below:

– GP — Gaussian Process Regression using only high fidelity data;
– VFGP — Variable Fidelity Gaussian Process Regression using both high and low

fidelity data;
– SVFGP — Sparse VFGP, which is a version of VFGP for the case of large training

samples, introduced in Section 4;
– BB VFGP — VFGP with a low fidelity function realized by a black box, introduced

in Section 5. In experiments we use the same design of experiments as in the case of
VFGP, while for a surrogate model update for each new point we use a low fidelity
function value at this point.

To estimate parameters of SVFGP we use a randomly selected subsample, while we
use the full sample to perform approximate inference. In experiments we always use the
multivariate squared exponential covariance function, see [54].

We measure accuracy of surrogate models by RRMS (relative root mean square) error
estimated by either the cross-validation procedure [38] or using a separate test sample not
involved in model training process. RRMS error typically lies between 0 and 1. RRMS error
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for an accurate model is close to 0, while RRMS error for an inaccurate model is close to or
greater than 1. In case of a one-dimensional output and a test sample Dtest = {xtesti , ytest

i =
fh(xtesti )}nt

i=1 the RRMS error of a surrogate model ŷ(x) is equal to

RRMS(Dtest, ŷ) =
√∑nt

i=1(ŷh(xtesti ) − ytest
i )2

∑nt

i=1(y − ytest
i )2

,

where y = 1
nt

∑nt

i=1 ytest
i .

In this section we assess presented approaches using several surrogate modeling prob-
lems: two artificial problems and a real problem of surrogate modeling and optimization of
a rotating disk from an aircraft engine. We want to validate whether our approaches fit into
requirements described in Introduction Section 1: we examine model construction times and
accuracy of surrogate models intended to solve problems of extrapolation and interpolation.

6.1 Toy problem

Here we consider the well-known test problem [30] to construct a variable fidelity surro-
gate model. Data is generated by the following high fidelity yh(x) and low fidelity yl(x)

functions:

yh(x) = (6x − 2)2 sin(12x − 4),

yl(x) = 0.5yh(x) + 10(x − 1).

As the problem is simple and so large samples are not required we do not perform
comparison with SVFGP in this subsection.

In order to evaluate accuracy of various algorithms we use the following procedure:

– Generate a high fidelity sample of size nh ≤ 100 with points uniformly distributed in
[0, 1]. We consider nh = 6, 15 and 30,

– Generate a low fidelity sample with points from the high fidelity sample and additional
(100 − nh) points uniformly distributed in [0, 1],

– Construct surrogate models using GP, VFGP and BB VFGP methods and estimate their
accuracies on the test sample consisting of 1000 high fidelity function values.

RRMS errors, provided in Table 1, are averaged over 50 runs for each considered value
of nh. We see that using the low fidelity function blackbox we can significantly improve
accuracy for all considered values of nh.

Table 1 Toy problem
nh 6 15 30

GP 0.7102 0.0159 3.83e − 04

VFGP 0.3036 7.42e − 04 1.38e − 04

BB VFGP 0.1610 6.90e − 07 1.67e − 07RRMS errors for various high
fidelity training sample sizes nh
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6.2 Artificial problem in case of large samples

To benchmark proposed approaches we use artificial test functions with multiple local pecu-
liarities and input dimension d = 6, so we really need a rather big sample to get an accurate
surrogate model. As the high fidelity function yh(x) and the low fidelity function yl(x) we
consider

yh(x) = 20 +
d∑

i=1

(x2
i − 10 cos(2πxi)) + εh, x ∈ [0, 1]d ,

yl(x) = yh(x) + 0.2
d∑

i=1

(xi + 1)2 + εl, x ∈ [0, 1]d .

The high fidelity function is corrupted by the Gaussian white noise εh with variance 0.001,
and the low fidelity function is corrupted by the Gaussian white noise εl with variance 0.002.
We generate points in [0, 1]d using Latin Hypercube Sampling [49]. To test extrapolation
properties we limit the training sample points to the region with the range [0, 0.5] instead
of [0, 1] for one of 6 input variables. The high fidelity sample size is nh = 100 and the size
of the subsample for SVFGP is n1l = 1000 in all experiments.

Results are averaged over 5 runs for each considered value of nl . In Table 2 for VFGP,
SVFGP, and BB VFGP approaches we provide RRMS values in the extrapolation and inter-
polation regimes, as well as training times. One can see that RRMS errors of SVFGP are
comparable with RRMS errors of VFGP for the same sample size, while the training time
of SVFGP is tremendously smaller when the sample size is equal to 5000, and for SVFGP
the training time increases only slightly when the sample size increases. For BB VFGP the

Table 2 Surrogate modeling for
large samples of artificial data nl 1000 3000 5000

RRMS errors in case of the interpolation regime

VFGP 0.0502 0.0170 0.0058

SVFGP 0.0502 0.0305 0.0260

BB VFGP 0.0010 0.00029 0.00017

RRMS errors in case of the extrapolation regime

VFGP 0.3636 0.1351 0.1028

SVFGP 0.3636 0.3281 0.3586

BB VFGP 0.000998 0.00113 0.00034

The training time in seconds,

Ubuntu PC, Intel-Core i7, 16 Gb RAM

VFGP 30.46 852.70 7283.27

SVFGP 30.46 33.42 37.50

BB VFGP 30.38 842.97 7672.60
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training time in this experiment coincides with that of VFGP, while in case of 1000 training
points we get better results with BB VFGP than in case of 5000 training points and VFGP.
Also we can see that in the extrapolation regime we get significantly better results with BB
VFGP.

6.3 Rotating disk problem

6.3.1 Rotating disk model description

A high speed rotating risk is an important part of an aircraft engine (see Fig. 1a). Three
parameters define performance characteristics of the disk: the mass of the disk, the maximal
radial displacement umax, the maximal stress smax [5, 9, 47]. It is easy to calculate mass of
the disk, as we know all geometrical parameters of the disk, while surrogate modeling of the
maximal radial displacement and the maximal stress is needed since these characteristics
are computationally expensive [41, 47]. So the focus here is on modeling the maximal radial
displacement and the maximal stress.

Fig. 1 Rotating disk problem
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Used parametrization of the rotating disk geometry consists of 8 parameters: the radii
ri , i = 1, . . . , 6, which control where the thickness of the rotating disk changes, and the
values t1, t3, t5, which control the corresponding changes in thickness. In the considered
surrogate modeling problem we fix the radii r4, r5 and the thickness t3 of the rotating disk,
so the input dimension for the surrogate model is 6. The geometry and the parametrization
of the rotating disk are shown in Fig. 1b.

There are two available solvers for umax and smax calculation. The low fidelity function
is realized by the Ordinary Differential Equations (ODE) solver based on a simple Runge–
Kutta’s method. The high fidelity function is realized by the Finite Element Model (FEM)
solver. A single evaluation of the low fidelity function takes ∼ 0.01 seconds, and a single
evaluation of the high fidelity function takes ∼ 300 seconds. More detailed comparison of
the solvers is provided in Appendix C.

6.3.2 Surrogate model accuracy

In this section we compare our approaches SVFGP (Sparse variable fidelity Gaussian pro-
cesses) and BB VFGP (Blackbox variable fidelity Gaussian processes) with GP based only
on high fidelity data and VFGP baseline methods.

We use the Latin Hypercube approach to sample points. The low fidelity training sample
size is equal to 1000, the high fidelity training sample size nh is 20, 40, 60, and 80 in
different experiments. To estimate accuracy of the high fidelity function prediction we run
the cross-validation procedure, applied to 140 high fidelity data points (these points contain
nh points used for training of surrogate models). For each fixed sample size nh we generate
5 splits of the data into training and test samples to estimate means and standard deviations.
For SVFGP, we use nl = 5000 low fidelity points in total, and randomly select n1l = 1000
points from them to use as base points.

The results are given in Table 3 for umax and smax outputs: VFGP outperforms GP, and
both SVFGP and BB VFGP outperform VFGP in terms of RRMS error. Therefore, we
should decide which one to use, SVFGP or BB VFGP, by taking into account whether the
blackbox for the low fidelity function is available, or whether one uses the surrogate model
in extrapolation regime, etc.

Table 3 RRMS errors (with standard deviations) for the developed approaches

nh 20 40 60 80

Output umax

GP 0.287 ± 0.039 0.143 ± 0.031 0.082 ± 0.020 0.095 ± 0.023

VFGP 0.212 ± 0.075 0.088 ± 0.009 0.064 ± 0.007 0.068 ± 0.006

SVFGP 0.125 ± 0.029 0.074 ± 0.016 0.041 ± 0.007 0.047 ± 0.011

BB VFGP 0.123 ± 0.019 0.053 ± 0.008 0.030 ± 0.007 0.034 ± 0.006

Output smax

GP 0.505 ± 0.10 0.367 ± 0.15 0.251 ± 0.049 0.196 ± 0.014

VFGP 0.363 ± 0.07 0.261 ± 0.06 0.193 ± 0.011 0.123 ± 0.043

SFGP 0.190 ± 0.06 0.122 ± 0.06 0.119 ± 0.015 0.088 ± 0.027

BB VFGP 0.158 ± 0.03 0.162 ± 0.03 0.137 ± 0.024 0.078 ± 0.020
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6.4 Optimization of the rotating disk shape

The problem is to optimize the shape of the rotating disk:

m, umax → min
r1,...,r6,t1,t3,t5

,

umax ≤ 0.3, smax ≤ 600,

10 ≤ r1 ≤ 110, 120 ≤ r2 ≤ 140,

150 ≤ r3 ≤ 168, 170 ≤ r4 ≤ 200,

4 ≤ t1 ≤ 50, 4 ≤ t3 ≤ 50,

r5 = 210, r6 = 230, t5 = 32. (10)

This problem has multiple objectives, and we are looking for a Pareto frontier, not a single
solution.

Single optimization run can be described as follows:

– Generate an initial high fidelity sample Dh with 30 points using the Latin Hypercube
sampling;

– Construct surrogate models using GP, VFGP, SVFGP and BB VFGP approaches using
the generated high fidelity sample Dh and a low fidelity sample Dl of size 1000 for GP,
VFGP and BB VFGP and of size 5000 for SVFGP;

– Solve multiobjective optimization problem (10) using the constructed surrogate models
as the target functions and the constraints;

– Using the high fidelity solver calculate true values at Pareto frontiers, constructed on
the previous step, to estimate quality of the models.

Due to properties of the used multiobjective optimization algorithm, sizes of the Pareto
frontiers can slightly differ for different optimization runs, with an average size of a Pareto
frontier equal approximately to 30 points [28]. So we need about 50 − 60 runs of the high
fidelity function to solve this optimization problem (30 high fidelity function evaluations to
generate the initial sample and 20 − 30 high fidelity function evaluations to calculate the
true values at the constructed Pareto frontier).

Fig. 2 Pareto frontiers obtained by optimizing surrogate models constructed with GP, VFGP, SVFGP and
BB VFGP approaches along with the reference Pareto frontier
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Table 4 Optimization results for different surrogate models along with minimal values for different
optimization objectives

Objective GP VFGP SVFGP BB VFGP

m 16.62 15.69 15.09 15.63

0.8m + 0.2umax 73.65 70.74 70.71 68.10

0.6m + 0.4umax 125.10 117.37 116.21 112.55

0.4m + 0.6umax 176.55 163.89 161.18 156.99

0.2m + 0.8umax 228.00 210.33 206.12 201.44

umax 279.44 256.77 251.05 245.89

Proportion of the feasible points 0.54 0.57 0.55 0.75

Alsowe indicate proportion of feasible points in a final Pareto frontier. The best values are indicated in bold font

In order to recover a reference Pareto frontier we constructed an accurate surrogate model
using 5000 high fidelity evaluations on a uniform design over the whole design space and
additional sampling in a region where points of the Pareto frontier are located. So instead
of using the high fidelity solver during optimization runs we used this surrogate model.

Examples of the obtained Pareto frontiers for a single optimization run is provided in
Fig. 2. In these runs SVFGP and BB VFGP work better than GP and VFGP.

Results of optimization are given in Table 4. We compare minimum values of different
weighted sums of the two target variables m and umax averaged over 10 optimization runs
for different initial samples. We obtain the best value of the mass m output using SVFGP
algorithm and the best value of umax using BB VFGP algorithm while optimizations based
on GP and VFGP work worse. Also, with BB VFGP we produce significantly larger amount
of feasible points compared to GP, VFGP and SVFGP, which typically leads to better Pareto
frontier coverage with a similar number of high fidelity solver runs.

7 Conclusions

We presented two new approaches to variable fidelity surrogate modeling, which allow
one to perform large sample inference for Variable Fidelity Gaussian process regression:
the first approach approximates a full sample covariance matrix and its inverse; the sec-
ond approach uses a low fidelity black box to update a surrogate model with a low fidelity
function value at a point where one wants to estimate a high fidelity function, thus making
usage of large low fidelity samples unnecessary. Using developed approaches we can per-
form large sample inference for variable fidelity Gaussian process regression and construct
more accurate surrogate models. Our assessment of the proposed approaches by comparing
them with state-of-the art methods demonstrate that we improve both accuracy of surrogate
models and their training time.

Future directions of our research on surrogate modeling for variable fidelity data include
theoretical investigation and assessing of numerical stability of the proposed approaches,
their adaptation for the case of arbitrary number of fidelities in data [66], surrogate based
optimization and adaptive design of experiments.

Acknowledgements We thank Dmitry Khominich from DATADVANCE llc for making the solvers for the
rotating disk problem available.
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Appendix A: Proof of technical statements

In this section we provide proofs of statements from Section 4.

Proof of Statement 1 For the posterior mean we get:
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We use the same approach to derive an equation for the posterior variance:
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Proof of Statement 2 First of all we have to calculate the matrices V11 and V = RK1V
−T
11 .

The matrix V11 is of size n1 × n1, so we need O(n31) to get its inverse. To calculate K1V
−T
11

we need O(n21n) operations. Finally, as R is a diagonal matrix, we use O(n1n) operations
to get V.

In case n∗ = 1 to get the posterior mean we have to calculateV11(In1 +VT V)−1VT y. We
use O(n21n) operations to calculate VT V, to invert In1 +VT V we need O(n31) operations, to
calculate V11(In1 + VT V)−1VT one uses extra O(n21n) operations, and finally to calculate
the posterior mean we need additional O(n1n) operations. Consequently, to calculate the
posterior mean we use O(n21n) operations.

In the same way in order to calculate V11(In1 + VT V)−1V−1
11 we need O(n21n) opera-

tions to calculate (In1 + VT V)−1 and additional O(n31) operations to get the final matrix.
Consequently, in order to calculate the posterior variance we use O(n21n) operations.

Finally, we need O(n21n) operations to compute the required matrices, and O(n21n) to
obtain the posterior mean and the posterior variance from these precomputed matrices. So,
the total computational complexity is O(n21n).

Appendix B: Update of the Cholesky decomposition for BB VFGP
technique

In this appendix we provide an algorithm used to update the Cholesky decomposition of the
sample covariance matrix if we expand the sample with an additional point. The problem
is to evaluate the Cholesky factor L′ for an expanded matrix K ′ if we know the Cholesky
factor L of the matrix K , where K ′ and K are positive definite matrices such that

K ′ =
(

K kT

k k(n+1)(n+1)

)
. (11)
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We will use well-known formulas [34]. Let K ∈ R
n×n, then K ′ ∈ R

(n+1)×(n+1). So the
upper left block of the matrix L′ (of size n × n) coincides with L, elements of the last row
are zeros except the last element. Elements of the last column are:

L′
i(n+1) = 1

Lii
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⎝K ′
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j=1
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A lower right element of the matrix L′ is
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√√
√
√K ′
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n∑

j=1

L2
j (n+1). (12)

So, we can obtain all elements of the last column by solving a system of linear equations.
It can be the case that due to numerical errors we get a negative value under the root in

(12). In this case a small positive value can be assigned to L′
(n+1)(n+1).

Therefore if we have the inverse L−1 of the Cholesky decomposition of K , then for the
expanded matrix K ′ the inverse of its Cholesky decomposition is:

L′−1 =
⎛

⎝
L−1 −L−1L′

1:n,n+1
L′

(n+1)(n+1)

0 1
L′

(n+1)(n+1)

⎞

⎠ ,

where L′
1:n,n+1 is the last column of the matrix L′ without the last element.

Appendix C: Rotating disk problem: comparison of low and high fidelity
models

We consider two solvers for calculation of umax and smax. The low fidelity function is
calculated using the Ordinary Differential Equations (ODE) solver based on a simple
Runge–Kutta’s method. The high fidelity function is calculated using the Finite Element
Model (FEM).

To compare the solvers we draw scatter plots of their values and also plot slices of the
corresponding functions. We generate a random sample of points in a specified design space
box. Then we calculate low and high fidelity function values and draw the low fidelity
function values versus the high fidelity function values at the same points. The scatter plots
are provided in Fig. 3: the difference between values increases significantly when these
values increase.
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Fig. 3 Comparison of high and low fidelity solvers via scatter plots

For the central point of the design space box with r1 = 0.06, r2 = 0.13, r3 = 0.16, r4 =
0.185, t1 = 0.027, t3 = 0.027 we construct one-dimensional slices by varying a single input
variable in specified bounds. Slices for different input variables for umax and for smax are
given in Fig. 4. In case of umax the high and low fidelity functions demonstrate the same
behavior, and the low fidelity function models the high fidelity function rather accurately.
For smax the high and low fidelity functions are sometimes different: their behaviors differ
for a slice along r1 input variable, and local maxima differ for a slice along t3 input variable.

Fig. 4 Comparison of high and low fidelity solvers via slices
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