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Abstract This paper presents a novel online object tracking algorithm with sparse rep-
resentation for learning effective appearance models under a particle filtering framework.
Compared with the state-of-the-art �1 sparse tracker, which simply assumes that the image
pixels are corrupted by independent Gaussian noise, our proposed method is based on infor-
mation theoretical Learning and is much less sensitive to corruptions; it achieves this by
assigning small weights to occluded pixels and outliers. The most appealing aspect of this
approach is that it can yield robust estimations without using the trivial templates adopted
by the previous sparse tracker. By using a weighted linear least squares with non-negativity
constraints at each iteration, a sparse representation of the target candidate is learned; to fur-
ther improve the tracking performance, target templates are dynamically updated to capture
appearance changes. In our template update mechanism, the similarity between the tem-
plates and the target candidates is measured by the earth movers’ distance(EMD). Using the
largest open benchmark for visual tracking, we empirically compare two ensemble methods
constructed from six state-of-the-art trackers, against the individual trackers. The proposed
tracking algorithm runs in real-time, and using challenging sequences performs favorably
in terms of efficiency, accuracy and robustness against state-of-the-art algorithms.
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1 Introduction

Real-time object tracking is an important task in many visual applications including surveil-
lance, augmented reality, medical imaging and driver assistance. Despite significant progress
in recent decades, the problem continues to present challenges; it must deal with appearance
variations caused by numerous factors including scale, illumination, occlusions, cluttered
backgrounds, pose variations, and camera motion.

A tracker generally comprises of three blocks: An image representation that reflects the
characteristics of an object’s appearance; an effective 2D appearance model that incorpo-
rates new information and evaluates the likelihood of a tracking candidate belonging to an
object class during tracking; and a search strategy for finding the most likely states in the
current frame. Target tracking in the presence of noise and outliers is critically challenging
mainly due to the unpredictable nature of errors caused by occlusions, non-Gaussian noise,
and large outliers. The corruption may affect any part of the target, and therefore cannot be
ignored or treated as minor noise.

Recently, sparse representation has attracted considerable attention in the field of com-
puter vision. Wright et al. [20] proposed a sparse representation classifier for robust face
recognition, where an �1-regularized optimization procedure is adopted to obtain a sparse
linear representation solution. The solution has been shown to give state-of-the-art robust-
ness against various disturbances, and particularly occlusions. Some recent research has
also focused on using sparse representation for visual tracking [16, 19, 25, 26]. These
trackers yield the sparse representation of the target candidate using a dictionary that can
be updated gradually; the trackers have demonstrated promising results in various track-
ing environments, but at the expense of high computational cost largely resulting from �1
minimization.

Although sparse representation is able to select the most representative templates for
each target candidate, it is still not robust enough for contiguous occlusion during visual
tracking. Information theoretic learning [17] is a local similarity measure that makes two
arbitrary random variables as correlated as possible under the maximum correntropy crite-
rion. Those pixels corresponding to occlusions and outliers in a target candidate will make
small contributions to the correntropy between the templates and the target candidate; more
emphasis will be given to those pixels corresponding to pixels of the same class as the target
candidate. The noise can therefore be handled uniformly within the correntropy framework.
By developing a half-quadratic optimization technique and approximately maximizing the
objective function in an alternating way, the complex optimization problem is reduced to
the learning of a sparse representation, through a weighted linear least squares problem with
a non-negativity constraint at each iteration. This can improve recognition accuracy, while
the computational cost is much lower than the sparse representation classifier algorithms.

Taking information theoretic learning into account [17], we present an effective appear-
ance model for visual tracking, which has been developed based on the maximum
correntropy criterion, along with the �1 norm penalty. The model is much less sensitive to
outliers and can handle occlusion and outliers in a tracked target.

Building on this, the tracking model uses the particle filtering framework. To further
improve robustness of our tracker, we dynamically update the target templates and keep the
representative templates during the tracking procedure; the template weights are adjusted
using the coefficients in the sparse representation. To the best of our knowledge, our pro-
posed method is the first one to combine the maximum correntropy criterion with sparse
representation for visual tracking. The learned templates allow for different appearances of
the tracked object.
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The key contributions of our work are summarized as follows: 1) Our information the-
oretic learning based visual tracker (ITLT) is effective and sparse for the situations where
the tracking target is corrupted by outliers and non-Gaussian noise. In contrast to Euclidean
distance, our algorithm adapts a Gaussian kernel function in a principled way. It can
automatically detect occlusions and cluttered background, shows robust performance.

2) The earth mover’s distance (EMD) is adopted to measure the similarity between a tem-
plate and tracking result, and compares two images using their color histograms. Templates
of the image sequences ‘DavidIndoor’ are shown in Fig. 1.

The remainder of this paper is organized as follows: In the next section, we review the
current state of the art tracking algorithms related to ITLT; in Section 3, we propose ITLT
followed by an efficient dictionary update method; the qualitative and quantitative results
of numerous experiments and performance evaluations are presented in Section 4. finally,
we conclude this paper with remarks on potential future work in Section 5.

2 Related work and motivation

There is a large body of existing research in the field of visual tracking, and an exhaustive
discussion of this topic go beyond the scope of this paper. We would refer interested readers
to the referenced survey paper [22], and benchmark [21] for a more thorough view. In this
section, we briefly review some representative work relating to online object tracking, with
emphasis on algorithms that operate directly on grayscale images.

Generally, visual tracking algorithms can be categorized as either generative [1, 6, 8, 16,
18] or discriminative [3, 5, 7, 9, 10], based on their appearance models. Generative methods
are centered around a search for the regions that are most similar to the tracked targets, and
mainly concentrate on accurately fitting data from the object class. Comaniciu et al. [8] used
a histogram computed from a circular region, which was weighted by a spatially smooth
isotropic kernel to represent the static template. The tracker embeds the spatially weighted
color histogram into a mean shift-based tracking framework and maximizes the appearance
similarity iteratively by comparing the histograms of the object and the target candidates.
Adam et al [1] constructed a patch-division visual representation with a histogram-based
feature description for object tracking; by considering the geometric relationship between
patches, it is capable of capturing the spatial layout information.

Subspace representation aims at adapting appearance variations within a low-
dimensional subspace, based on the core desire for dimensionality reduction and feature
extraction. Black et. al [6] trained an off-line subspace model to represent the object of inter-
est for tracking. In [18], an incremental subspace model (IVT) is used to capture variations
in object appearance; the likelihood of a candidate sample belonging to the object class,
is often determined by the residual between the candidates and its reconstructed. While
the IVT method is effective in handling appearance change caused by illumination varia-
tion and pose angle variation, it is not robust with partial occlusion and background clutter.
Noisy or misaligned samples are likely to degrade the subspace basis, thereby causing these
algorithms to gradually drift away from the target objects.

Fig. 1 Learned templates for faceocc1 sequence. The learned templates cover different appearances of the
tracked object
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Motivated by the work in [20], sparse representation methods have been used to represent
the target, by using a set of target and trivial templates to handle partial occlusion, illumina-
tion change and pose variation in visual tracking; the target templates are used to describe
the object class to be tracked and trivial templates are used to deal with occlusions and out-
liers. The likelihood of target candidates is determined by the target templates reconstruction
error. Even with further improvements, the �1 tracker is computationally expensive. The
�1 sparse tracker assumes that the image is corrupted by Gaussian noise, and can not
be robust enough for contiguous occlusion, thereby limiting its application in real-time
scenarios.

Discriminative methods treat object tracking as a binary classification problem within a
local image region, and aim to separate the target object from the background. The process
of discriminative methods comprises two key stages: First, in a fixed frame the positive and
negative samples are selected to update the online classifiers; Next, in successive frames
the target candidates are sampled by the motion model, and the candidate that has highest
score in the trained classifier is considered the tracking result. Many sophisticated machine
learning technologies were introduced in this framework, and selection of image features
plays an important role in the performance of the classification. Collins et al. [7] use the
variance ratio of two classes to select discriminative color features for object tracking.
Avidan [3] extends a support vector machine classifier within the optical flow framework
for object tracking; the tracker aim to learn margin-based discriminative support vector
machine (SVM) classifiers for maximizing interclass separability. In [4] and [9], a strong
classifier is constructed by selecting several of the most discriminative base classifiers from
the Haar-like feature pool. The drawback of this single-instance visual representation is
to rely heavily on exact object localization, without which tracking performance may be
greatly degraded due to the suboptimal training sample selection. Babenko et al. [5] apply
online multiple instance boosting to gain a strong ensemble classifier for object tracking.
The tracker representing an object by image patches bag and passing the ambiguity of the
samples on to the learning algorithm, can achieve robust tracking results. Unlike existing
methods based on classification, Hare et al. [11] proposed an online kernelized structured
output SVM for robust tracking, which brings benefits in terms of generalization and robust-
ness to noise; it also shows superior performance compared to state-of-the-art trackers.
Furthermore, [12] proposed a fast and robust tracking algorithm that used a circulant ker-
nel matrix structure in the SVM classifier, which can be efficiently computed by the fast
Fourier transform. Zhang K [24] adopted a sparse measurement matrix to compress samples
and extract the features for the appearance model; the tracking task is then formulated as a
binary classification, using a naive Bayes classifier with online updates in the compressed
domain.

3 Preliminaries

This section presents some preliminary information regarding the information theoretic
learning and particle filtering used in ITLT.

3.1 Particle filtering

The Bayesian approach offers a systematic way of combining prior knowledge of target
positions, modeling assumptions, and observation information, to visual tracking [2]. The
novel algorithm for a dynamic system can process received data sequentially rather than as
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a batch, so that it is unnecessary to store the complete data set, or to reprocess existing data
if a new measurement becomes available.

Particle filtering is a Bayesian sequential importance sampling method for estimating
the posterior distribution of state variables that characterize a dynamic system. MCMC and
online Bayesian methods are adopted to handle the high dimensional complex integral and
online processing problems, respectively. Particles are weighted based on a likelihood score,
and then propagates these weighted particles according to a motion model. Over the last
few years, particle filters have proven to be powerful tools for object tracking, and consist
of two steps: Prediction and update. Let xt denote the state variables describing the affine
parameters of the target at time t ; according to the Chapman-Kolmogorov equation, the
predicting distribution of xt given all available observations up to time t − 1, is recursively
computed as

p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (1)

The state vector is updated per Bayesian theorem after the observation yt is available

p(xt |y1:t ) = p(yt |xt )p(xt |y1:t−1)

p(yt |y1:t−1)
(2)

where p(yt |xt ) denotes the observation likelihood. In particle filtering, the underlying
posterior p(xt |y1:t ) distribution is approximated by a finite set of N samples{xi

t }i=1,...,N
with important weights wi

t . The samples xi
t are drawn from an importance density

q(xt |x1:t−1, y1:t ), and the weight update equation can then be shown to be

wi
t = wi

t−1

p
(
yt |xi

t

)
p

(
xi
t |xi

t−1

)
q(xt |x1:t−1, y1:t )

(3)

To avoid the degeneracy phenomenon, the particles are resampled to generate a set of
equally weighted particles per their important weights. For the calculating convenience, we
choose the importance density to be the motion model

q(xt |x1:t−1, y1:t ) = p(xt |xt−1) (4)

The weights then become the observation likelihood p(yt |xt )

3.2 Information theoretic learning

The mean square error (MSE) is probably the most widely methodology for quantifying how
similar two random variables are. Novel solutions fromMSE rely heavily on the Gaussianity
and linearity assumptions. Information theoretic learning (ITL) extracts more information
from the data for adaptation under the condition of preserving the nonparametric nature of
correlation learning and MSE adaptation; this yields solutions that are more accurate than
MSE in non-Gaussian and non-linear signal processing.

Inspired by ITL, Liu et al. [14, 15, 23] recently extended the correlation function for
random processes with correntropy to simply estimate directly from statistical samples. The
kernel trick is adopted to nonlinearly map the input space to a higher dimensional feature
space, and has been shown to obtain robust analysis and efficiently handle non-Gaussian
noise and large outliers.

For adaptive systems, the correntropy for any two vectors A = (a1, . . . , am), B =
(b1, . . . , bm) is as follows:

max
θ

1

m

m∑
j=1

g(ej ) (5)
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where the error defined as ej = aj − bj , j = 1, . . . , m, g(x) = exp(− x2

2σ 2 ) is a nonlinear
Gaussian kernel function, and θ is the parameter in the criterion to be specified later.

3.3 The �1 tracker

The location of a target object in a t-th frame can be represented by the six affine trans-
formation parameters xt = (α

(1)
t , α

(2)
t , α

(3)
t , α

(4)
t , xt , yt ), where (α

(1)
t , α

(2)
t , α

(3)
t , α

(4)
t ) are

the deformation parameters, and (xt , yt ) denote the translation of the object along the x, y

coordinates at time t .
To develop a tracker for generic applications, the state transition equation of the object is

modeled by Brownian motion. Each parameter in xt is modeled independently by a normal
distribution around its counterpart in xt−1, and thus the motion between consecutive frames
is itself an affine transformation. Explicitly,

p(xt |xt−1) = N (xt ; xt−1, σ ) (6)

where σ is a diagonal covariance matrix whose elements are the corresponding variances
of affine parameters. The variances of affine parameters are different and do not change
over time. There is a tradeoff between the number of particles needing to be drawn and
how well particle filters approximate the posterior distribution; with larger values in the
diagonal covariance matrix σ and more particles, it is possible to track the object with higher
precision at the price of increased computation.

The particles xi
t , i = 1, . . . , N are found using the particle filter motion model, with

each represented by an affine parameter. By applying an affine transformation using xi
t as

parameters, the i-th target candidate I i
t = (y1, . . . , ym)T is cropped from the current frame,

and normalized to have the same size as the templates.
In visual tracking, the subspace can be treated as spanned by a set of templates obtained

from the previous frame, which consists of n target templates; we denote these as

T = [t1, . . . , tn] ∈ Rd×n (7)

ti ∈ Rd are column vectors formed by stacking template image columns, tij is the j th entry
of ti .

For sparse coding of the target candidate, �1 tracker solves the following optimization
problem:

min‖ [
T E

]
c − I i

t ‖22 + λ‖c‖1, s.t.c � 0 (8)

Where cT = [a V ], E denotes the identity matrix of size m × m, is used to describe
the trivial templates, a indicates the corresponding coefficients, V is the coefficients of
trivial templates, and ‖ · ‖1 and ‖ · ‖2 denote the �1 and �2 norms, respectively. To solve the
above optimization problem, the particle with smallest reconstruction error is chosen as the
tracking result.

4 Information theoretic learning tracker

4.1 Sparse representation of a tracked target

It is assumed that the global appearance of an object under a different illumination and view-
point, lies approximately in a low-dimensional subspace span. In tracking, such a subspace
can be treated as spanned by a set of templates T .
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Thus, we can represent a target candidate I i
t by template set T

Iit ≈ Tβ = β1t1 + β2t2 + . . . + βntn =
(

n∑
i=1

ti1βi, . . . ,

n∑
i=1

timβi

)T

(9)

where β = (β1, β2, . . . , βn)
T is called a target coefficient vector.

We wish to find a sparse coding vector a = (a1, . . . , an)
T such that Ta becomes as

correlated to Iit = (y1, . . . , ym)T ∈ R as possible under the maximum correntropy criterion.

a = max
β

m∑
j=1

g

(
yj −

n∑
i=1

tij βi

)
− λ

n∑
i=1

βi (10)

This not only greatly reduces the complexity of the model, but also achieves significantly
better performance. To address the computational problem, we first impose nonnegativity
constraints on the variables in the correntropy, and then utilize the half-quadratic and EM
method to solve the optimization problem (10).

The positive vector a is actually playing as a clustering indicator, because each entry
ai reflects the importance of sample ti in reconstructing the target candidate I i

t . Hence, it
should be expected that more weight would be assigned to the samples of the same class
label I i

t , while weights of the others should be small or zero in an optimal case. Thus, a
can also be sparse even λ is set to zero. When λ > 0, ITLT can yield a sparser solution and
further improve the recognition accuracy.

After finding the sparse solution to (10), we find the likelihood of each target candi-
date. The likelihood of candidate targets p(I i

t |xi
t ) reflects the similarity between a target

candidate and the target templates, and is governed by the correlation between the target
candidate and its reconstructed image, based on the information theoretic learning model.

That is the maximal nonlinear difference between the target candidate and its reconstruc-
tion.

l(I i
t ) = p(I i

t |xi
t ) =

m∑
j=1

g

(
yj −

n∑
i=1

tijai

)
(11)

The �1 tracker is different, in that assumes that the image pixels are corrupted by inde-
pendent Gaussian noise. Our robust appearance model considers the effects of occlusion and
motion blur, which treat individual pixels of the representation differently, and give more
emphasis to those pixels corresponding to pixels of the same class as the target candidate.
To capture the appearance variation, our generative appearance model is updated with the
tracking result per our mechanism, which updates at each frame.

It should be noted that our object appearance model is different from that used to target
templates and trivial templates [16]; in our system, it is unnecessary to include the trivial
templates in the templates. The nonlinear kernel function is adopted to assign little weight
to the corrupted pixels, and it is this mechanism that can adaptively handle the challenges of
a complex environment. Intuitively, only the atoms in target templates which are the same
class as the good target candidate will be activated. Similarly, the coefficients corresponding
to the atoms that are different with the good target candidate tend to be zero.

The main steps of our algorithm are summarized in Algorithm 1.

4.2 Template Update

In practice, object appearance remains the same only for a period of time, after which the
template is no longer able to capture the variation in the object appearance.
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Algorithm 1 Information learning theory visual tracking

Input: The t-th image frame, and a matrix of dynamic templates parameter T , nT is the
number of templates.
Initialize: Uniformly initialize the weight w to 1/nT , and the variances of affine parameters
ε.

1: Draw particles according to the dynamical model from the particle filter.

xi
t ← xi

t−1 + ε (12)

2: Warp the image with the particle xi
t , and obtain the candidate image patch Iit

3: Solve the information theoretic learning for each I i
t

4: p
(
Iit |xi

t

) = ∑m
j=1g

(
yj − ∑n

i=1tijai

)
5: Update the sample weight wi

t ← p
(
Iit |xi

t

)
6: Find the current target Iresult

t which has the largest likelihood
7: Update the templates

Output: Tracking result, and the corresponding parameter to Iresult
t

4.2.1 Mechanism to detect corruption

We devise a mechanism to detect the degree of pixel corruption, and dynamically update
templates T to address the issue. First, we extracted the weight image of the tracking result.
The larger the value of the entry, the more it contributes to the correntropy-base objective
function. A fixed constant u is set to judge whether the pixels are occluded; we then count
the number of the occluded pixels Nocclusion in the weight images which are less than u, and
compute the ratio η of the number of occlusion map pixels and the number of target pixels

η = Nocclusion

Npixel

(13)

Two thresholds w1 and w2 are then used to describe the degree of corruption of the image
patch. If η < w1, the tracking result is directly used to update the template set. If w1 < η <

w2, it indicates that the target is partially occluded. We then replace the occluded pixels with
corresponding parts of the average observationμ, and use this recovered sample for updates.
Otherwise if η > w2, it means that a significant part of the target object is occluded, and
the templates will not be updated.

4.3 Reducing computation time

The computation load of the proposed algorithm is calculated with the coefficients, using
the half-quadratic optimization technique. There are n linear variables corresponding to
the number of templates, and m auxiliary variables to the dimension of the template in
half-quadratic optimization. In ITLT, it is unnessary to include the trivial template in the
dictionary, so the sparse representation computation is extremely large when compared to
information theoretic learning; in contrast, all of the m auxiliary variables are updated at
each iteration. Thus, ITLT can efficiently estimate them auxiliary variables in half-quadratic
optimization. The �1 minimization treats m + n equally. When the dimension m is large,
the computation cost of sparse representation classifiers will increase rapidly and become
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Algorithm 2 Template update

Input: I result
t , β is the newly chosen tracking result and its sparse code,threshold parameter

τ, η.
1. if η > w2
break
Otherwise
2. w = {wi ← ‖ti‖2, i = 1, 2, . . . , nT } is the weight vector of current templates.
3. update weights according to the coefficients of target templates ai , wi ← wi ∗ exp(ai )

4. i0 ← arg min
1≤i≤n

βi

5. if EMD
(
I result
t , tm

)
< τ,m = arg max

1≤i≤n
βi && η < w1

ti0 ← λy + (1 − λ)ti0
else
ti0 ← λy + (1 − λ)ti0
end

6. wi0 ← median(w)

7. Normalize w such that sum(w) = 1
end
Output: new template T

extremely expensive. Hence, ITLT is much more efficient than the �1 tracker and achieves
more favorable results in terms of center location error and overlap rate.

5 Experiment

We evaluate ITLT to validate its effectiveness against six state-of-the-art algorithms, namely
IVT [18], �1 [16], FragTrack [1], MILTrack [5], VTD [13], and PN. For the comparison,
either the binaries or source codes provided by the authors, with the same initialization and
parameter settings were used to generate the comparative results. These sequences involve
most challenging situations in visual object tracking, such as heavy occlusions, large pose
variations, and drastic illumination changes, as well as low foreground or background con-
trast. For the trackers involving randomness, we repeat the experiments 10 times on each
sequence and report the averaged results.

5.1 Experimental setup

ITLT is implemented in MATLAB, which runs at 2 frames per second on a Pentium 2.0
GHz Dual Core PC, with 3 GB of memory. Table 1 lists the evaluated image sequences;
only gray scale information is used for the experiments. The parameters are fixed for all
presented sequences. All parameters are set by hand tuning, using some prior knowledge.

The number of target templates used is 40, which is a trade-off between computational
efficiency and effectiveness of modeling fast target appearance changes. For particle filter-
ing, 600 particles were used, and the variance σ of observation probability was set to 0.5.
Initially, we select the first target template manually from the first frame. The remaining
target templates are created by moving a few pixels in four possible directions, at the cor-
ner points of the first template in the first frame. All target templates are normalized and
weighted uniformly. The overview of ITLT for robust appearance model are shown in Fig. 2.
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Table 1 Evaluated video clip
Video Clip Frames Challenging factors

Car4 659 illumination variation, scale change

David Indoor 462 illumination variation ,

scale change,out-plane rotation

Occlusion 1 898 partial occlusion

Occlusion 2 819 occlusion

in-plane rotation,out-plane rotation

Stone 593 partial occlusion,background clutter

Singer 321 illumination variation,scale change

5.2 Qualitative comparison

Pose and illumination change In the Car4 sequences, the tracked vehicles are moving
on an open road, and the target undergoes drastic illumination changes as it passes beneath a
bridge and under trees. Since the target is a rigid object, its shape and scale does not change
greatly. Some samples of the final tracking results are shown in Fig. 3a; the frame indices
are 1, 150, 200, 249, 548 and 659. Generative methods like IVT, and �1 tracker perform
well for this sequence. From Fig. 3a, we can see that our tracker is capable of constantly
tracking the car, even if the illumination changes drastically.

For the DavidIndoor sequence shown in Fig. 3b, the appearance changes gradually due
to illumination, pose and scale variation when the person shown walks out of a dark meeting
room; out-of-plane rotation also occurs in some frames. Our tracker, IVT, VTD and TLD
algorithms can accurately locate the true target without great offset on this sequence. The
IVT method uses a PCA-based appearance model that has been shown to accurately account
for appearance change caused by illumination variation. The VTD method performs well,
due to the use of multiple observation models constructed from different features. The TLD
approach also works well, because it maintains a detector that uses Haar-like features during
tracking. Our tracker uses the templates updated by subspace learning, and can efficiently
capture the variation in the tracked object.

Fig. 2 Overview of our tracker for robust appearance model. a A target candidate cropped from current
with book occlusion. b The reconstructed image by a learned sparse linear combination of all of the training
images. c The reconstructed error. d The weight image learned by our appearance model. The entry with
blue color has a small value, while the entry with red color has a large value. The larger the value of the
entry, the more it contributes to the correntropy-based objective function. Due to the occlusion caused by the
book,the pixels under the mouth are assigned small weights, which means that they are estimated as noise. e
The sparse coefficients computed by our approach. The red coefficients correspond to the template with the
similar appearance as target candidate
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Fig. 3 Qualitative evaluation:object appearance change drastically due to large variation of lighting, pose,
scale. a Car4. b Davidindoor. c Singer
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Fig. 4 Qualitative evaluation: object appearance change drastically due to large variation of occlusion,
clutter background, lighting. a faceocc1. b faceocc2. c stone
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In the Singer1 sequence shown in Fig. 3c, the singer progressively undergoes large pose
and illumination changes. The MIL methods perform well on this sequence with lower
tracking errors than other methods. The IVT, and l1 methods do not perform well on this
sequence because they use holistic features that are less effective for large scale pose vari-
ations. The features used in the proposed algorithms are similar to generalized Haar-like
features, which have been shown to be robust to pose and orientation change.

Occlusion and pose variation The target objects are partially occluded in the faceocc1
and faceocc2 sequences, and six representative frames are shown in Fig. 4a and b. Most
tracking methods do not performwell when the objects are heavily occluded. In the faceocc1
sequence, our tracker, FragTrack and the �1 tracker perform better, as shown in Fig. 4a;
this is because these methods take partial occlusion into account. The IVT tracker drifts
to the un-occluded face region. For the faceocc2 sequence, the FragTrack method per-
forms poorly since it does not handle appearance change caused by pose and occlusion.
Although the MIL is able to track the target object, it is unable to estimate the in-plane
rotation due to its design. By assigning smaller weights to the pixels around the occlu-
sions, our tracker performs best, particularly when partial occlusion or in-plane rotation
occurs.

Background clutter In the Stone sequence, the target objects undergo fast movement in
cluttered backgrounds; additionally, the target and surrounding background are similar to
the target object. The �1 and Fragtracker perform well because the surrounding background
is similar to the target object. The IVT fails after an abrupt motion occurs, and the PN tracker
drifts gradually. Both the MIL and our proposed algorithm are able to track the right objects
accurately; in the case of our algorithm, the result of its robust mechanism for addressing
occlusions and outliers. The proposed algorithm also adapts better to change of rotation.

5.3 Quantitative comparison

Two common performance metrics for quantitative comparison are used to evaluate the
proposed algorithm with 6 state-of-the-art trackers. Gray scale videos are used. The first
metric is the success rate which is defined in the PASCAL VOC challenge as score=
area(ROIT

⋂
ROIG)

area(ROIT

⋃
ROIG)

, whereROIT is the tracking bounding box andROIG is the ground truth
bounding box. If the score is larger than 0.5 in one frame, the tracking result is considered a

Table 2 Average center location error (pixels)

Video Clip MIL Frag PN VTD IVT L1 Ours

car4 60 180 13 13 3 5 6

davidindoor 14 75 9 11 6 10 5

faceocc1 31 8 13 8 7 7 7

faceocc2 12 14 15 11 10 10 9

stone 33 68 9 33 4 20 7

singer1 15 21 33 4 8 4 6

Average 27.5 61 15.3 13.3 6.3 9.3 6.7
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Table 3 Overlap rate tracking methods

Video Clip MIL Frag PN VTD IVT L1 Ours

car4 0.30 0.20 0.64 0.67 0.82 0.78 0.87

davidindoor 0.41 0.18 0.60 0.56 0.68 0.54 0.79

faceocc1 0.60 0.82 0.68 0.79 0.84 0.86 0.94

faceocc2 0.71 0.65 0.50 0.60 0.53 0.70 0.88

stone 0.34 0.15 0.38 0.38 0.62 0.31 0.78

singer1 0.36 0.35 0.41 0.76 0.61 0.72 0.88

Average 0.45 0.39 0.54 0.63 0.68 0.65 0.86

success. The other metric is the center location error, which is defined as the Euclidean dis-
tance between the central locations of the tracked objects, and the manually labeled ground
truth.

Tables 2 and 3 show the tracking performance of our method with the 6 other meth-
ods. We note that the TLD tracker does not report a tracking result when the drift problem
occurs and the target object is redetected. Thus, we only report center location errors for
the sequences in which the TLD method does not lose track of target objects. The pro-
posed tracker performs favorably against the state-of-the-art algorithms, achieving best or
second-best performance in most sequences using both evaluation criteria. Figure 5 some
shows center error tracking results for different trackers. The center location error of our
tracker is much smaller than those of the other trackers, and as shown in Table 4, our tracker
achieves higher success rates than the others. This demonstrates the advantage of our proposed
algorithm. Results showing the overlap rate for different trackers are shown in Fig. 6.
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Fig. 5 Tracking results of the center error. The figure shows center error for six video clips we tested on.
Our algorithm is compared with six state-of-the-art methods: IVT, �1 tracker, FragTrack, MILTrack, VTD
and PN methods. a car4. b davidindoor. c faceocc1. d faceocc2. e singer. f stone
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Table 4 Success rate of tracking

MIL Frag PN VTD IVT L1 Ours

car4 0.24 0.23 0.88 0.93 0.99 0.99 0.96

davidindoor 0.18 0.05 0.71 0.74 0.90 0.59 0.97

faceocc1 0.78 0.99 0.78 0.99 1 1 0.97

faceocc2 0.90 0.87 0.51 0.68 0.52 0.92 0.94

stone 0.32 0.18 0.11 0.43 0.87 0.37 0.92

singer1 0.26 0.27 0.45 0.95 0.62 0.97 0.95

Average 0.45 0.43 0.57 0.79 0.82 0.81 0.95

5.4 Discussion

The experiments demonstrate the robust tracking performance of our algorithm. We note
that sparsity, and robustness to occlusions and outliers, is the prime characteristic of
information theoretic learning. The robust tracking performance of our algorithm can be
attributed to several factors. One of these is that our information theoretic learning model
can adaptively assign weight to the pixels; the pixels around the occlusion and outlier are
assigned small weights, which means that they are estimated as noise. With fixed poses, the
appearance of an object under different illumination conditions can be accurately approxi-
mated by a low dimensional subspace. In addition, we have devised a mechanism to detect
corruption and update template; this can capture the variation of the target object, and
efficiently improve the visual tracking performance.
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Fig. 6 Tracking results of the overlap rate. The figure shows overlap rates for six video clips we tested on.
Our algorithm is compared with six state-of-the-art methods: IVT, �1 tracker, FragTrack, MILTrack, VTD
and PN methods. a car4. b davidindoor. c faceocc1. d faceocc2. e singer. f stone
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6 Conclusions and future work

In this paper, we proposed a robust tracking algorithm with a dynamic online updated sparse
dictionary, which can adapt to occlusions and outliers. The target appearance is modeled
using a sparse representation based on an information theoretic learning model. The natu-
ral combination of a dynamic basis and adaptive assignment of weights to different pixels
provides a robust sparse appearance model for tracking. To our knowledge, this is the first
time that occlusions and outliers have been solved simultaneously, and experimental results
demonstrate the effectiveness of the method. In the future, we will extend our representa-
tion scheme for other visual problems, including object recognition; we will also develop
other maximum correntropy criterion methods using the proposed model.
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