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Abstract The paper considers general machine learning models, where knowledge transfer
is positioned as the main method to improve their convergence properties. Previous research
was focused on mechanisms of knowledge transfer in the context of SVM framework; the
paper shows that this mechanism is applicable to neural network framework as well. The
paper describes several general approaches for knowledge transfer in both SVM and ANN
frameworks and illustrates algorithmic implementations and performance of one of these
approaches for several synthetic examples.
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1 Introduction

The classical machine learning paradigm considers the following simple scheme: given a
set of training examples, find, in a given set of functions, the one that approximates the
unknown decision rule in the best possible way. In such a paradigm, Teacher does not play
an important role (it only supplies classification labels). However, in human learning, the
role of Teacher is much more sophisticated: along with labels of examples, Teacher provides
students with explanations, comments, comparisons, metaphors, and so on.

This paper considers the model of learning that includes the so-called Intelligent Teacher,
who supplies Student with intelligent (privileged) information during training session. This
privileged information exists for almost any learning problem and this information can sig-
nificantly accelerate the learning process. In the learning paradigm called Learning Using
Privileged Information (LUPI), Intelligent Teacher provides additional (privileged) infor-
mation x∗ about training example x at the training stage (when Teacher interacts with
Student). The important point in this paradigm is that privileged information is not avail-
able at the test stage (when Student operates without supervision of Teacher). LUPI was
initially introduced in [15, 16]; subsequent work targeted various implementation issues of
this paradigm [10] and its applications to a wide range of problems [2, 6, 11, 12, 19].

Formally, the classical paradigm of machine learning is described as follows: given a set
of iid pairs (training data)

(x1, y1), . . . , (x�, y�), xi ∈ X, yi ∈ {−1, +1}, (1)

generated according to a fixed but unknown probability measure P(x, y) = P(y | x)P (x),
find, in a given set of indicator functions f (x, α), α ∈ �, the function y = f (x, α∗) that
minimizes the probability of incorrect classifications (incorrect values of y ∈ {−1, +1}).
In this model, each vector xi ∈ X is a description of an example generated according to
an unknown generator P(x) of random vectors xi , and yi ∈ {−1, +1} is its classification
defined by Teacher according to an unknown conditional probability P(y | x). The goal
is to find the function y = f (x, α∗) that guarantees the smallest probability of incorrect
classifications. That is, the goal is to find the function which minimizes the risk functional

R(α) = 1

2

∫
|y − f (x, α)|dP (x, y) (2)

in the given set of indicator functions f (x, α), α ∈ � when the probability measure
P(x, y) = P(y | x)P (x) is unknown but training data (1) are given.

The LUPI paradigm describes a more complex model: given a set of iid triplets

(x1, x
∗
1 , y1), . . . , (x�, x

∗
� , y�), xi ∈ X, x∗

i ∈ X∗, yi ∈ {−1, +1}, (3)

generated according to a fixed but unknown probability measure P(x, x∗, y) = P(x∗, y |
x)P (x), find, in a given set of indicator functions f (x, α), α ∈ �, the function y =
f (x, α∗) that guarantees the smallest probability of incorrect classifications (2). In this
model, each vector xi ∈ X is a description of an example generated according to an
unknown generator P(x) of random vectors xi , and Intelligent Teacher generates both its
label yi ∈ {−1, +1} and the privileged information x∗

i using some unknown conditional
probability function P(x∗

i , yi | xi).
In the LUPI paradigm, we have exactly the same goal of minimizing (2) as in the classical

paradigm, i.e., to find the best classification function in the admissible set. However, during
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the training stage, we have more information, i.e., we have triplets (x, x∗, y) instead of pairs
(x, y) as in the classical paradigm. The additional information x∗ ∈ X∗ belongs to space
X∗ which is, generally speaking, different from X.

The paper is organized in the following way. In Section 2, we outline general models
of information theory and their relation to models of learning. In Section 3, we explain
how privileged information can significantly accelerate the rate of learning (i.e., acceler-
ate the convergence) when the notion of classical learning model is expanded appropriately
to incorporate privileged information. In Section 4, we argue that structures in the space
of privileged information reflect more fundamental properties of learning and thus can
potentially improve the performance of learning methods even further; we also outline a
general knowledge transfer approach for realization of that improvement. In Section 5, we
present specific algorithms implementing that framework for SVM and neural networks
[4, 8] and illustrate their properties and performance on synthetic examples. We conclude
with Section 6, in which we summarize our results and outline potential next steps in this
research.

2 Brute force and intelligent models

In this section, we show how the general setting of machine learning problems justifies the
introduction of the concept of privileged information.

According to [7, p. 53], there exist three categories of integer numbers.

1. Ordinary numbers: those numbers n that we use in our everyday life. For simplicity,
let these numbers be between 1 and one million.

2. Large numbers: those numbers N that are between one million and 2n (where n

belongs to the category of ordinary numbers).
3. Huge numbers: those numbers H that are greater than 2N = 22

n
(where N belongs to

the category of large numbers).

Kolmogorov argued that the ordinary integers n correspond to the number of items we
can handle realistically, say the number of examples in a learning problem. We cannot real-
istically handle large numbers (say large number of examples in a learning problem), but we
can still treat them efficiently in our theoretical reasoning using mathematics (say, select one
element from a sample using mathematical methods); however, huge numbers are beyond
our reach. In this paper, we describe methods that potentially might operate in huge sets of
functions. In contrast to methods based on mathematical models and suitable for large num-
bers (which we call “brute force” methods), these methods include intelligent agents and
thus can be viewed as “intelligent methods”.

Basic Shannon model Suppose that our goal is to find one function among large number
N of different functions by making ordinary number of queries that return the reply “yes” or
“no” (thus providing one bit of information). Theoretically, we can find the desired function
among N functions by making n queries, where n = log2 N (for simplicity, we assume that
N is an integer power of 2). Indeed, we can split the set of N functions into two subsets
and make query to which subset the desired function belongs: to the first one (reply +1)
or to the second one (reply −1). After obtaining the reply from the query, we can remove
the subset which does not contain the desired function, split the remaining part into two
subsets, and continue in the same fashion, removing half of the remaining functions after
each reply. So after n = log2 N queries we will find the desired function. It is easy to see
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that one cannot guarantee that it is possible to find the desired function by making less
than

n = log2 N = lnN

ln 2
(4)

queries. This also means that one cannot find one function from the set of huge number
H = 2N of functions: this would require to make too many (namely N ) queries, which is
unrealistic.

Basic model using language of learning theory Let us repeat this reasoning for pattern
recognition model. Suppose that our set y = f (x, αt ), t = 1, . . . , N is a finite set of binary
functions in x ∈ Rn. That is, f (x, αt ) ∈ {−1, +1}. Suppose that we can construct such
vector x1 ∈ Rn that half of the functions take value f (x1, α

∗
t1
) = +1 and another half take

value f (x1, αt1) = −1. Then the query for the label of vector x1 provides the first element
of training data (x1, y1). As before, we remove half of the functions for which the query
reply was −y1 and continue this process. After collecting at most n = lnN/ ln 2 elements
of training examples, we obtain the desired function.

2.1 First modification of the learning model

To find the function in the framework of basic model requires solving a difficult problem:
on any step of the procedure, to find a vector xi that splits the remaining set of functions
into two equal parts (suppose that such a vector exists). To simplify our model, consider
the situation where vectors x are results of random iid trial with a fixed (but unknown)
probability measure p(x), and for any x we can query for its label y. After each query, we
remove those functions for which the query reply was −y on x (they could comprise less
than half of the current set of functions). The main problem for this model is to determine
how many queries about labels one has to make1 to find the function that is ε-close to the
desired one with probability 1 − η (recall that the desired function is any function among
those that do not make errors, and ε-closeness is defined with respect to measure p(x), as
in (2)). The answer to this problem constitutes a special case of the VC theory [13, 14]: the
number of the required queries is at most

� = lnN − ln η

ε
. (5)

This expression differs from bound (4) by a constant: (ε)−1 instead of (ln 2)−1. After this
number of queries, any function in the remaining set is ε-close to the desired one. This
bound cannot be improved.

2.2 Second modification of the basic model

So far, we considered the situation when the set of N functions includes the one that does
not makes errors. Now we relax this assumption: any function in our set of N functions can
make errors. Our problem is to find the function than provides the smallest probability of
error with respect to probability measure p(x).

Now we cannot use the method for choosing the desired function defined in the first
model: removing from the consideration the functions from the set that disagree with clas-
sification of query. We will use another (a more general) algorithm which selects such

1In other words, how large should be the number � of training examples (x1, y1), . . . , (x�, y�).
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function among N of them that make the smallest number of disagreements with the query
reply (i.e., minimizes the empirical loss) on the training set

(x1, y1), . . . , (x�, y�).

In order to guarantee that we will select an ε-close function to the best in the set of N

elements with probability 1 − η, one has to make at most

� = lnN − ln η

ε2

queries. Again, in this modification, the main term lnN remains the same but constant (ε)−2

is different from the constant in (5). This bound cannot be improved.

2.3 Third modification (VC model)

Consider now the set of functions f (x, α), α ∈ � with infinite number of elements. Gen-
erally speaking, in this situation one cannot guarantee that it is possible to obtain a good
approximation even if we have a large number of training examples. Recall that in the more
simple situation with a set that contains finite but huge number of functions H = 22

n
, one

needs 2n examples, which is far beyond our reach. Nevertheless, if our infinite set of func-
tions has finite VC dimension V Cdim, then ε-close solution can be found with probability
1 − η using at most � queries, where � satisfies the equation

� = (V Cdim) ln � − ln η

ε

if the desired function does not make errors; otherwise, if errors are allowed, � satisfies the
equation

� = (V Cdim) ln � − ln η

ε2
.

Note that this bound matches the form of bound (5), where the value of VC dimension
multiplied by ln � replaces the logarithm of the number of functions in the set. This bound
cannot be improved. Note that these formulas correspond to those in Chapter 3 of [13] for
sufficiently large �.

The finiteness of the VC dimension of the set of functions defines the necessary and
sufficient conditions of learnability (consistency) of empirical risk minimization method.
This means that VC dimension characterizes not just the quantity of elements of the set: it
also characterizes something else, namely, the measure of diversity of the set of functions:
the set of functions must not be too diverse.

The structural risk minimization principle that uses structure on the nested subsets of
functions with finite VC dimension (defined on the sets of functions the closure of which
can have infinite VC dimension) guarantees convergence of risk to the best possible risk for
this structure [13, 14].

To summarize, we have outlined the best bounds for general machine learning models
and stated that they cannot be improved. To put it differently, in order to improve these
bounds, the models themselves will have to be changed. The specific model change that we
are concerned with in this paper is provided by the notion of privileged information, which
is described and explored in the subsequent sections.
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3 Privileged information as learning acceleration

The learning models described in the previous section can be solved by different methods.
In particular, SVM algorithms with universal kernels (i.e., capable of approximating any
continuous function with arbitrary precision) realize structural risk minimization method
and thus are universally consistent. This means that the VC theory completely solves the
problem of learning from examples providing not only the necessary and sufficient condi-
tions of learnability but also an effective practical algorithm for machine learning. The rate
described by this theory cannot be improved essentially (without additional information).

The intriguing question in VC theory was why the number of examples one needs to
construct ε-close hyperplane in separable case (when training data can be separated without
errors) and unseparable case (when training data cannot be separated without errors) vary
so much in their corresponding constants (ε−1 and ε−2).

This effect can be explained and leveraged within the LUPI framework [15, 16]. In that
framework, Intelligent Teacher supplies Student with triplets

(x1, x
∗, y1), . . . , (x�, x

∗
� , y�)

where xi ∈ X∗, whereas, in the classical setting of the problem, Student uses training pairs

(x1, y1), . . . , (x�, y�)

where vector xi ∈ X is generated by the generator of random events p(x) and Teacher
supplies Student with the label yi ∈ {−1, +1}. In contrast to classical setting, in the LUPI
paradigm, Intelligent Teacher supplies Student with triplets (xi, x

∗
i , yi) where vector x∗

i ∈
X∗ and label y are generated by conditional probability p(x∗, y | x). Formally, by providing
both vector x∗ ∈ X∗ and label yi for any example xi , Intelligent Teacher can supply Student
with more than one bit of information, so the rate of convergence can be greater.

Indeed, as was shown in [15, 16], an SVM-based approach in LUPI can improve the
constant from ε−2 to ε−1. The recent papers [17, 18] introduced more important approaches
in LUPI that could be potentially used for further improvement of convergence. Although
those approaches were set within the SVM context, they are quite general, and we will show
further that they are applicable for neural networks as well.

In order to use such mechanisms effectively, Intelligent Teacher has to possess some
knowledge that can describe physical model of events better than x. In the subsequent
sections, we describe these ideas in greater detail.

4 Privileged information and knowledge transfer

Let us suppose that Intelligent Teacher has some knowledge about the solution of a spe-
cific pattern recognition problem and would like to transfer this knowledge to Student. For
example, Teacher can reliably recognize cancer in biopsy images (in a pixel space X) and
would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distinguishes can-
cer (f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the pixel space X.
Unfortunately, Teacher does not know this function explicitly (it only exists as a neural net
in Teacher’s brain), so how can Teacher transfer this construction to Student? Below, we
describe a possible mechanism for solving this problem; we call this mechanism knowledge
transfer.
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Suppose that Teacher believes in some theoretical model on which the knowledge of
Teacher is based. For cancer model, he or she believes that it is a result of uncontrolled
multiplication of the cancer cells (cells of type B) which replace normal cells (cells of type
A). Looking at a biopsy image, Teacher tries to generate privileged information that reflects
his or her belief in development of such a process; Teacher can describe the image as:

Aggressive proliferation of cells of type B into cells of typeA.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher uses a specialized language that is appropriate for description x∗
i

of cancer development employing the model he believes in. Using this language, Teacher
supplies Student with privileged information x∗

i for the image xi by generating training
triplets

(x1, x
∗
1 , y1), . . . , (x�, x

∗
� , y�). (6)

The first two elements of these triplets are descriptions of an image in two languages: in
language X (vectors xi in pixel space), and in language X∗ (vectors x∗

i in the space of
privileged information), developed for Teacher’s understanding of cancer model.

Note that the language of pixel space is universal (it can be used for description of many
different visual objects; for example, in the pixel space, one can distinguish between male
and female faces), while the language used for describing privileged information is very
specialized: it reflects just a model of cancer development. This has an important conse-
quence: the set of admissible functions in the general space X has to be rich (has large VC
dimension), while the set of admissible functions in the specialized space X∗ may be not
rich (has small VC dimension).

One can consider two related pattern recognition problems using triplets (6):

1. The problem of constructing a rule y = f (x) for classification of biopsy in the pixel
space X using data

(x1, y1), . . . , (x�, y�). (7)

2. The problem of constructing a rule y = f ∗(x∗) for classification of biopsy in the space
X∗ using data

(x∗
1 , y1), . . . , (x

∗
� , y�). (8)

Suppose that languageX∗ is so good that it allows to create a rule y = f ∗
� (x∗) that classifies

vectors x∗ corresponding to vectors x with higher accuracy.
Since the VC dimension of the admissible rules in the specialized space X∗ is much

smaller than the VC dimension of the admissible rules in the universal space X and since
the number of examples � is the same in both cases, the bounds on error rate for the rule
y = f ∗

� (x∗) in X∗ will be better2 than those for the rule y = f�(x) in X. That is, generally
speaking, the classification rule y = f ∗

� (x∗) will be more accurate than classification rule
y = f�(x).

2According to VC theory, the guaranteed bound on accuracy of the chosen rule depends only on two factors:
frequency of errors on the training set and VC dimension of the admissible set of functions.
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As a result, the following question of “knowledge transfer” arises: how one can use the
knowledge of the rule y = f ∗

� (x∗) in space X∗ to improve the accuracy of the desired rule
y = f�(x) in spaceX?We now address this question when both problems (7)–(8) are solved
with neural networks.

Consider three elements of knowledge representation used in Artificial Intelligence [1]:

1. Fundamental elements of knowledge.
2. Frames (fragments) of the knowledge.
3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge a limited number of elements (functions)
in X∗ that can approximate well the classification rule y = f ∗

� (x∗); then knowledge transfer
is about approximation of those fundamental elements. We now illustrate this concept for
SVMs and neural networks.

4.1 Knowledge transfer for SVM

In order to describe methods of knowledge transfer for SVM, consider the following three-
level structure:

1. Level IX: the input vectors x = (x1, . . . , xn) ∈ X.
2. Level IZ: the result of transformation of the vectors x into vectors z =

(K(x1, x), . . . , K(x�, x)) ∈ Z, where K is the kernel function [14] for SVM.
3. Level IY : the linear threshold indicator function 3 y = θ(aT z(x) − b) in space Z.

Thus the structures of SVM rules in spaces X and X∗ can be described as

X :
(
IX −→ IZ −→ IY

)
and X∗ :

(
IX∗ −→ IZ∗ −→ IY ∗)

.

To transfer the knowledge about the rule

y = f (x∗, α∗
� ) − b∗ =

�∑
i=1

α∗
i K∗(x∗

i , x∗) − b∗

in space X∗ to the rule

y = f (x, α�) − b =
�∑

i=1

αiK(xi, x) − b

obtained in space X, one can use several strategies. Below we consider three of them.

1. A-mapping of privileged information: X∗ −→ X. In this scheme, the goal is to trans-
fer information that exists in level IX∗

of SVM in spaceX∗ to level IX of SVM in space
X. In order to do this, one maps vectors x ∈ X into vectors x∗ ∈ X∗ by transforming
space X obtaining vectors x = Ax and then constructs SVM in the transform space X.
Scheme (A) of information transfer can be thus described as

(A):
(
IX∗ −→ IX

)
−→ IZ −→ IY

3Neural Network with one hidden layer has the same structure; as SVM, it is a universal learning machine.
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In this scheme, in order to find the transformation Ax of vectors x = (x1, . . . , xn)T ∈
X into vectors Ax = (φ1(x), . . . , φm(x))T that minimizes the functional

R(A) = min
A

∫
|x∗ − Ax|2p(x∗, x)dx∗dx,

we look for the minimum

R(φ) =
n∑

k=1

min
φk

∫
(x∗k − φk(x))2p(x∗k, x)dx∗kdx,

where p(x∗k | x) is the marginal conditional probability of coordinate x∗k given vector
x, and m functions φk(x) are defined by m regressions

φk(x) =
∫

x∗kp(x∗k | x)dx∗k, k = 1, . . . , m.

We construct approximations to functions φk(x), k = 1, . . . , m by solving m

regression estimation problems based on data

(x∗k
1 , x1), . . . , (x

∗k
� , x�)), k = 1, . . . , m.

In order to find these approximations, we Structural Risk Minimization principle [14]
in the set of functions that belong to the Reproducing Kernel Hilbert Space (RKHS)
associated with some kernel, that is, by minimizing the regularized functional

R(φk) = min
φk

�∑
i=1

(x∗k
i − φk(xi))

2 + γ < φk(x), φk(x) >, k = 1, . . . , m.

The obtained approximations to the regressions φ1(x), . . . , φm(x) define our transfor-
mation. In this scheme, we first transform the input space X = AX and then train SVM
in the transformed space.

2. B-mapping of privileged information: Z∗ −→ X. In this scheme, the goal is to trans-
fer information that exists in level IZ∗

of SVM in spaceX∗ to level IX of SVM in space
X. In order do this, one maps vectors x ∈ X to vectors z∗ ∈ Z∗ by transforming space
X and obtaining vectors x = Bx ∈ X and then constructs SVM in the transformed
input space. Scheme (B) of information transfer can be thus described as

(B):
(
IX∗ −→ IZ∗)

,−→ IX −→ IZ −→ IY (9)

or, in its simplified form, as

(B’):
(
IX∗ −→ IZ∗) −→ IX −→ IY . (10)

The transformation of input space in this scheme is based on solving the fol-
lowing t regression estimation problems (t is the dimension of vector z∗ =
(K(x∗

1 , x
∗), . . . , K(x∗

t , x∗)T ), i.e., the number of support vectors in SVM solution for
space X∗): given data

(K(x∗
k , x∗

1 ), x1), . . . , (K(x∗
k , x∗

� ), x�), k = 1, . . . , t,

find the regression functions

φk(x) =
∫

K(x∗
k , x∗)p(x∗ | x)dx∗, k = 1, . . . , t.

As already desrcibed above for A-mapping, one can find such approximation in the
RKHS associated with some kernel function. The obtained approximations φ1(x),
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. . . , φm(x) define our transformation: in general scheme (9), we construct SVM rule in
the transformed space; in simplified scheme (10), we construct linear SVM rule in the
transformed space X.

3. C-mapping of privileged information: IZ∗ −→ IZ . In this scheme, the goal is to
transfer information that exists in the level IZ∗

of SVM in space X∗ to the level IZ of
SVM in space X. In order to do this, one maps t-dimensional vectors z ∈ Z (t is the
number of support vectors of the SVM rule obtained in space X) into t∗-dimensional
vectors z∗ ∈ Z∗ (t∗ is the number of support vectors of the SVM rule obtained in space
X∗) constructing vectors of the form z = Cz ∈ Z. Every coordinate k in Z space
defines similarity K(xk, x) between support vector xk and vector x ∈ X, while every
coordinate k∗ in Z∗ space defines similarity K∗(x∗

k , x∗) between support vector x∗
k and

vector x∗ ∈ X∗, where x and x∗ are connected through p(x∗ | x). Scheme (C) of
information transfer can be described as

(C):
(
IX∗ −→ IZ∗) −→

(
IX −→ IZ

)
−→ IY .

Our goal is to approximate the similarity function K∗(x∗
k , x∗), k = 1, . . . , t∗ between

support vector x∗
k of SVM solution in space X∗ and vector x∗ ∈ X∗ using t similarity

functions K(x1, x), . . . , K(xt , x) defined by SVM solution in space X for the pairs
(x, x∗) generated by p(x∗ | x).

Let x1, . . . , xt be the support vectors of SVM solution in space X and let x∗
1 , . . . , x

∗
t∗

be the support vectors of SVM solution in space X∗, where t and t∗ are the numbers of
support vectors in SVM solutions obtained in spaces X and X∗, respectively. The SVM
rule of the space X has the form

f (x, α) =
t∑

i=1

αiK(xi, x) + b,

and SVM rule in space X∗ has the form

f ∗(x∗, α∗) =
t∗∑

i=1

α∗
i K∗(x∗

i , x∗) + b∗.

In order to achieve our goal, we approximate the functions K∗(x∗
k , x∗), k = 1, . . . , t∗

with the regression functions

φk(x) =
∫

K(x∗
k , x∗)p(x∗ | x)dx∗, k = 1, . . . , t∗.

For each k = 1, . . . , t∗, we construct the approximation to φk(x) by using the data

(K∗(x∗
k , x∗

1 ), z1), . . . , (K
∗(x∗

k , x∗
� ), z�), k = 1, . . . , t∗,

where zi = (K(x1, xi), . . . , K(xt , xi)) ∈ Z is t-dimensional vector. Let space Z =
(φ1(x), . . . , φt (x)) be the result of transformation of space Z. After that, we construct
linear SVM in space Z.

One can construct many different schemes of knowledge transformation from space X∗
to space X (as well as schemes of combining knowledge existing in both spaces) based on
described approaches.

In particular, in all three described mappings A–C, one may also concatenate the con-
structed knowledge transferred features with those already available from spaceX and solve
SVM on this augmented set; constructed knowledge transferred features could be subject
to feature selection in order to improve the classification performance; for C-mapping, one
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could construct regression functions only to those functions K∗(x∗
i , x∗) that correspond to

“significant” weights αi ; if linear regression functions are used for C-mapping, their positive
versions could be explored as more relevant, etc. Note that C-mapping requires executing
two versions of SVM: one for standard space, and one for privileged one.

4.2 Knowledge transfer in neural networks

Knowledge transfer in Neural Networks is analogous to the one used for knowledge trans-
fer in SVMs. As in the case of SVM described above, one constructs and trains two neural
networks: one network in space X and another network in space X∗. To simplify the nota-
tions, we assume that both networks have the same architecture containing s layers. Let
input vector x ∈ X define the first layer IX(0) of neural network in space X; this vector
is transferred into vector z1 ∈ Z(1) in the next layer of the trained network, and layers
IZ(k), k = 2, ...., s − 1 provide subsequent transformations zk ∈ Z(k). As in SVM, the
last layer is the linear indicator function y = θ((as, zs)−b) (or its sigmoid approximation).
The structure of Neural Network in space X is

X : IZ(0) −→ IZ(1) −→ · · · −→ IY . (11)

and the structure of Neural Network in space X∗ is

X∗ : IZ∗
(0) −→ IZ∗

(1) −→ · · · −→ IY . (12)

The simple scheme of knowledge transfer from network (12) in space X∗ to network (11)
in space X can be described as follows: information accumulated into first k layers of
network (12) trained in space X∗ is transferred into m-th layer of network (11) in space X:(

IZ∗
(0) → · · · → IZ∗

(k)
)

→
(
IZ(0) → · · · → IZ(m)

)
→ I (m + 1) → · · · → IY ,

which forms the operator z(k) = Az(m) that transforms vectors z(m) from neural network
in space X into vectors z∗(k) of neural network in space X∗.

The new neural network contains three parts:

1. The first part of the network contains first m layers of trained network in space X; we
denote itN (0,m). This network performs transformation z(m) = N (0,m)x(0).

2. The second part of the network contains operator A that transforms vectors z(m) in
vectors z(k) = Az(m).

3. The third part of the networks is the part of the network in space X∗ starting from level
(k + 1), free parameters of which have to be learned; we denote it N ∗(k, s). Vectors
z(k) are the input of this part of network, and classifiers are the output.

The scheme of such combined networks is

A {N (0, m)} −→ N ∗(k, s),

where N (0,m) is fixed (does not have free parameters), while N ∗(k, s) contains free
parameters. Therefore operatorA transforms knowledge about neural network in X∗.

In order to find this operator based on two trained networks, one uses the same tech-
niques of regression estimation as in the case of SVM. Let z∗(k) = (z∗1(k)...., z∗s∗

(k))

be vectors produced on the level IZ∗
(k) by the network trained in space X∗, and let

z(m) = (z1(m)...., zs(m)) be vectors produced on the level IZ(k) by the network trained in
space X.

Consider pairs
(x1, x

∗
1 ), . . . , (x�.x

∗
� )
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from the training triplets (3). Let

z1(m), . . . , z�(m)

be vectors produced by m-th layer of neural networks (11) corresponding to vectors x and
let

z∗
1(k), . . . , z∗

�(k)

be vectors
z∗
i (k) = (z∗1

1 (k), . . . , z∗s∗
(k))

produced by k-th layer of neural networks (12) corresponding to vectors x∗. In order to
construct mapping operatorA as in SVM case, we estimate s∗ regression functions x∗t (k) =
φt (x(m)) using data

(x∗t
1 , x1(m)), . . . , (x∗t

� , x�(m)), t = 1, . . . , s∗.

Therefore operatorA transforms vectors x(m) into vectors

Ax(m) = (φ1(x(m), . . . , φs∗(x(m)).

For neural network that contains more than one hidden layer, one can transfer knowl-
edge from network in X∗ using more than one operator Aj , j = 1, . . . , p by sequentially
constructing several transformations between different layers of network in X∗.

5 Knowledge transfer with A-mapping and C-mapping of privileged
information

In the previous section, we described three key approaches for mapping of privileged infor-
mation for knowledge transfer. In this section, we present scalable algorithms for two of
them, namely A-mapping and C-mapping, based on multivariate regressions of privileged
features as functions of decision variables; we also illustrate the algorithms’ performance
and their properties on several examples.

We start with A-mapping and assume again that we are given a set of iid triplets

(x1, x
∗
1 , y1), . . . , (x�, x

∗
� , y�), xi ∈ X = Rn, x∗

i ∈ X∗ = Rm, yi ∈ {−1, +1}, (13)

generated according to a fixed but unknown probability measure P(x, x∗, y). Our training
dataset consists of � decision vectors x1, . . ., x� from n-dimensional decision space X = Rn

and corresponding � privileged vectors x∗
1 , . . ., x∗

� from m-dimensional privileged space
X∗ = Rm.

Specifically, for each j = 1, 2, . . . , m, do the following: using n-dimensional vectors
x1, x2, . . . , x� as explanatory variables and corresponding scalar values (x∗

1 )
j , (x∗

2 )
j , . . . ,

(x∗
� )j as response variables, construct a (linear or nonlinear) regression function ϕj so that

ϕj (x
1
1 , x

2
1 , . . . , x

n
1 ) = z

j

1 ≈ (x∗
1 )

j

ϕj (x
1
2 , x

2
2 , . . . , x

n
2 ) = z

j

2 ≈ (x∗
2 )

j

. . . . . . . . . . . . . . . . . . . . . . . .

ϕj (x
1
� , x2

� , . . . , xn
� ) = z

j

� ≈ (x∗
� )j

for pairs (x1, x
∗
1 ), . . . , (x�, x

∗
� ) from (13).
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Various types of regression could be used for that purpose; in this paper, we use two of
them: (1) linear ridge regression, and (2) nonlinear kernel regression, which is constructed
as an approximation of the regressed values with linear combination of radial basis functions
(where parameters are selected using 2-fold cross-validation).

In the next step, we create, following the previously described framework of knowledge
transfer, the modified training dataset, consisting of the set with m-dimensional regression-
based replacements of privileged vectors. As a result, our modified training data will form
the matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1(x
1
1 , . . . , x

n
1 ) · · · ϕm(x1

1 , . . . , x
n
1 ) y1

ϕ1(x
1
2 , . . . , x

n
2 ) · · · ϕm(x1

2 , . . . , x
n
2 ) y2

· · · · · · · · · · · ·
ϕ1(x

1
� , . . . , xn

� ) · · · ϕm(x1
� , . . . , xn

� ) y�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

However, in real applications, it is also possible not to discard the decision training data
from X, but, instead, concatenate m-dimensional regression-based replacements of privi-
leged vectors with the decision data. As a result, our modified training data will form the
matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x1
1 · · · xn

1 ϕ1(x
1
1 , . . . , x

n
1 ) · · · ϕm(x1

1 , . . . , x
n
1 ) y1

x1
2 · · · xn

2 ϕ1(x
1
2 , . . . , x

n
2 ) · · · ϕm(x1

2 , . . . , x
n
2 ) y2

· · · · · · · · · · · · · · · · · · · · ·
x1
� · · · xn

� ϕ1(x
1
� , . . . , xn

� ) · · · ϕm(x1
� , . . . , xn

� ) y�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

After that, we train an SVM or a neural network on the modified set of set of (n + m)-
dimensional vectors and construct the corresponding classification decision function F ,
which, when applied to any (n+m)-dimensional vectorZ, produces the classification output
Y = F (Z), where Y ∈ {−1, +1}.

The designed classification decision algorithm F can now be applied to any standard
vector x from n-dimensional space Rn in following manner. First, we construct m scalar
values

z1 = ϕ1(x), z2 = ϕ2(x), . . . , zm = ϕm(x).

using already constructed (during training) m regressions ϕ1, ϕ2, . . . , ϕm. Then, we con-
struct (n + m)-dimensional vector Z by concatenating these m scalar values with
n-dimensional vector X:

Z = (x1 x2 . . . xn z1 z2 . . . zm)

Finally, we apply the classification decision algorithm F (either SVM or ANN) to the con-
structed (n + m)-dimensional vector Z and obtain the classification label Y = F (Z), where
Y ∈ {−1, +1}; this label Y is the desired classification of standard n-dimensional vector x.

In order to illustrate this version of knowledge transfer LUPI, we explored the synthetic
dataset derived from dataset “Parkinsons” in [9]. Since none of 22 features of “Parkinsons”
dataset is privileged, we created several artificial scenarios emulating the presence of privi-
leged information in that dataset. Specifically, we ordered “Parkinsons” features according
to the values of their mutual information (with first features having the lowest mutual infor-
mation, while the last features having the largest one). Then, for several values of parameter
k, we treated the last k features as privileged ones, while first 22 − k features being treated
as decision ones. Since our ordering was based on mutual information, these experiments
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corresponded to privileged spaces of various dimensions and various relevance levels for
classification. For each considered value of k, we generated 20 pairs of training and test
subsets, containing, respectively 75 % and 25 % of elements of the “Parkinsons” dataset.
For each of these pairs, we considered the following four types of classification scenarios
for both SVM (with RBF kernel) and ANN algorithms:

1. SVM and ANN on 22 − k decision features;
2. Knowledge transfer LUPI (linear) based on constructing k multiple linear regressions

from 22− k decision features to each of k privileged ones, replacing the corresponding
values in privileged vectors with their regressed approximations, and then training SVM
and ANN on the augmented dataset consisting of 22 features;

3. Knowledge transfer LUPI (non-linear) based on constructing k non-linear (in the class
of RBF functions) regressions from 22−k decision features to each of k privileged ones,
replacing the corresponding values in privileged vectors with their regressed approxi-
mations, and then training SVM and ANN on the augmented dataset consisting of 22
features;

4. SVM and ANN on all 22 features.

For each scenario, the algorithms were trained in the following way:
SVM. Two parameters for RBF kernels, namely SVM penalty parameter C and RBF kernel
parameter γ , were selected using 6-fold cross-validation error rate over the two-dimensional
grid of both parameters C and γ . In that grid, log2(C) ranged of from −5 to +5 with
step 0.5, and log2(γ ) ranged +6 to −6 with step 0.5 (thus the whole grid consisted of
21 × 25 = 525 pairs of tested parameters C and γ ).
ANN. Neural networks were trained using MathworksTM Matlab Neural Network
ToolboxTM with the same default parameters [3] such as using hyperbolic tangent sigmoid
as activation function, applying Levenberg-Marquardt backpropagation training algorithm
and selecting the ratio for training:validation:test as 70:15:15 for early stopping on cross-
entropy, etc. For each N -dimensional input, the architecture of ANN was selected [5] with
several hidden layers (from one to five) with the number of neurons in it ranging from 5 to
100 (a separate ANN was trained for each of these architecture choices final architecture
was then selected based on the best performance). Note that we do not claim that these par-
ticular architecture choices for SVM and ANN are optimal; our point is to demonstrate the
significant potential of LUPI improvement with different classification methods, whether
these methods are optimal or not.

The averaged (over 20 realizations) error rates for these scenarios are shown in Table 1
(for SVM) and in Table 2 (for ANN). The collected results show that performance of SVM
(and its LUPI modifications) is better than that of ANN (and its LUPI modifications). They
also show that both linear and nonlinear versions of Knowledge Transfer LUPI improve the
performance of SVM and ANN on decision inputs (often significantly, in relative terms)
in all of the considered scenarios. Note that both versions are just examples of knowledge
transfer and other mappings (especially if relevant domain knowledge is available) could be
leveraged.

Numerically, the error rates of LUPI are between the corresponding SVM or ANN con-
structed on decision features and on all features. In other words, if the error rate of the
algorithm on decision features is B, while the error rate of the algorithm on all features is
C, the error rate A of LUPI satisfies the bounds C < A < B. So one can evaluate the effi-
ciency of LUPI approach by computing the metric (B − A)/(B − C), which describes how
much of the performance gap B −C can be recovered by LUPI. For SVM, this metric varies
between 12 % and 78 %; for ANN, this metric varies between 16 % and 67 %. Generally,
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Table 1 Performance of SVM and LUPI on modified “Parkinsons” example (A-mapping)

k SVM on LUPI LUPI SVM on LUPI gain LUPI gain

decision features (linear) (nonlinear) all features (linear) (nonlinear)

12 13.26 % 9.18 % 11.32 % 6.63 % 61.55 % 29.25 %

11 13.52 % 10.66 % 12.70 % 6.63 % 41.49 % 11.85 %

10 13.16 % 10.00 % 12.19 % 6.63 % 48.45 % 14.85 %

9 12.70 % 8.67 % 10.76 % 6.63 % 66.41 % 31.95 %

8 12.81 % 8.52 % 10.76 % 6.63 % 69.44 % 33.07 %

7 14.49 % 11.07 % 13.16 % 6.63 % 43.51 % 16.88 %

6 13.78 % 11.17 % 12.35 % 6.63 % 36.43 % 20.01 %

5 10.56 % 8.98 % 9.49 % 6.63 % 40.27 % 27.28 %

4 11.22 % 10.36 % 10.10 % 6.63 % 18.88 % 24.42 %

3 12.04 % 9.59 % 9.44 % 6.63 % 45.28 % 48.13 %

2 8.47 % 7.55 % 7.04 % 6.63 % 49.99 % 77.76 %

in realistic examples, the typical value for this LUPI efficiency metric is in the ballpark of
35 %. Also note that if the gap B − C is small compared to C, it means that the privileged
information is not particularly relevant; in that case, it is likely hopeless to apply LUPI any-
way: there is little space for improvement for that. It is probably safe to start looking for
LUPI solution if the gap B − C is at least 1.5 − 2 times larger than C.

We have also implemented C-mapping for SVM for the already described datasets using
the same setting as for A-mapping, with the following modifications instead of construct-
ing regressions to privileged features, we constructed (positive linear or nonlinear kernel)
regressions to functions K∗(x∗

i , x∗) with subsequent selection of top 40 or them, in terms
of their relevance to the label, as was determined by RandomForest method.

Table 2 Performance of ANN and LUPI on modified “Parkinsons” example (A-mapping)

k ANN on LUPI LUPI ANn on LUPI gain LUPI gain

decision features (linear) (nonlinear) all features (linear) (nonlinear)

12 19.49 % 16.43 % 15.46 % 8.01 % 26.66 % 35.11 %

11 19.44 % 15.20 % 15.56 % 8.01 % 37.05 % 33.93 %

10 21.33 % 14.64 % 15.66 % 8.01 % 50.18 % 42.52 %

9 20.66 % 12.70 % 13.72 % 8.01 % 62.90 % 54.83 %

8 20.26 % 12.04 % 13.98 % 8.01 % 67.08 % 51.25 %

7 18.57 % 13.01 % 15.05 % 8.01 % 52.65 % 33.33 %

6 20.20 % 13.83 % 13.93 % 8.01 % 52.29 % 51.45 %

5 16.84 % 11.63 % 11.27 % 8.01 % 58.96 % 63.00 %

4 17.35 % 12.45 % 12.50 % 8.01 % 52.46 % 51.91 %

3 12.14 % 11.48 % 11.48 % 8.01 % 16.05 % 16.05 %

2 10.97 % 10.25 % 10.25 % 8.01 % 24.13 % 24.15 %
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Table 3 Performance of SVM and LUPI on modified “Parkinsons” example (C-mapping)

k SVM on LUPI LUPI SVM on LUPI gain LUPI gain

decision features (linear) (nonlinear) all features (linear) (nonlinear)

12 13.26 % 9.59 % 9.59 % 6.63 % 53.35 % 55.35 %

11 13.52 % 9.79 % 10.10 % 6.63 % 54.14 % 49.64 %

10 13.16 % 11.22 % 9.79 % 6.63 % 29.71 % 51.61 %

9 12.70 % 10.30 % 10.51 % 6.63 % 39.54 % 36.08 %

8 12.81 % 10.20 % 10.20 % 6.63 % 42.23 % 42.23 %

7 14.49 % 9.49 % 11.53 % 6.63 % 63.61 % 37.66 %

6 13.78 % 10.71 % 11.94 % 6.63 % 42.94 % 25.73 %

5 10.56 % 9.18 % 10.20 % 6.63 % 35.11 % 9.16 %

4 11.22 % 8.26 % 10.30 % 6.63 % 64.49 % 20.04 %

3 12.04 % 9.08 % 10.41 % 6.63 % 54.71 % 30.13 %

2 8.47 % 7.57 % 8.18 % 6.63 % 48.91 % 15.76 %

The averaged (over 20 realizations) error rates for these scenarios are shown in Table 3.
The collected results show that both linear and nonlinear versions of Knowledge Trans-
fer LUPI with C-mapping improve the performance of SVM on decision inputs (often
significantly, in relative terms) in all of the considered scenarios.

6 Conclusions

In this paper, we described several properties of privileged information including its role
in machine learning, its structure, and its applications. We extended the existing knowl-
edge transfer research in the area of privileged information (initially considered for SVM)
to neural networks and presented a scalable algorithmic framework, which has the same
scalability properties as current implementations. The described framework is the first step
in the proposed direction, and its further improvements (especially concerning alternative
methods of knowledge transfer) will be the subject of future work.
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