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Abstract The concept of symmetry has been extensively studied in the field of con-
straint programming and in the propositional satisfiability. Several methods for detection
and removal of these symmetries have been developed, and their use in known solvers
of these domains improved dramatically their effectiveness on a big variety of prob-
lems considered difficult to solve. The concept of symmetry may be exported to other
areas where some structures can be exploited effectively. Particularly, in the area of
data mining where some tasks can be expressed as constraints or logical formulas.
We are interested here, by the detection and elimination of local and global symme-
tries in the item-set mining problem. Recent works have provided effective encodings
as Boolean constraints for these data mining tasks and some idea on symmetry elimi-
nation in this area begin to appear, but still few and the techniques presented are often
on global symmetry that is detected and eliminated statically in a preprocessing phase.
In this work we study the notion of local symmetry and compare it to global sym-
metry for the itemset mining problem. We show how local symmetries of the boolean
encoding can be detected dynamically and give some properties that allow to elimi-
nate theses symmetries in SAT-based itemset mining solvers in order to enhance their
efficiency.
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1 Introduction

The work we propose here is to investigate the notion of local symmetry1 elimination in the
Frequent Itemset Mining (FIM) [1] and compare it to global symmetry.2 The itemset mining
problem has several applications in real-life problems and remains central in the data mining
research field. The most known example is the one considered by large retail organizations
called basket data. A record of such data contains essentially the customer identification, the
transaction date and the items bought by the customer. Advances in bar-codes technology,
the use of credit cards of frequent-customer card make it now possible to collect and store
a great amount of sale data. It is then important for the retail firms to know the set of items
that are frequently bought by customers. This is the frequent itemset problem.

Since its introduction in 1993 [1], several highly scalable algorithms are introduced [2,
18, 23, 26, 36, 44, 45, 47] to enumerate the sets of frequent items. The challenging questions
investigated in such algorithms are: in one hand how to compute all the frequent and perti-
nent item-sets in a reasonable CPU time and in the other hand how to compact the output
and reduce its size when there is a huge number of such item sets. Many other data mining
tasks exist, such as the association rule mining, the frequent pattern, clustering and episode
mining etc, but almost all of them are closely in relationship to the itemset mining which
looks to be the principal problem. A lot of efficient and scalable algorithms are developed
for target and specific mining tasks. As stated in [42], different methods for the itemset
mining are provided. Mainly they differ from each other in the way they explore the search
space, the data structure they use, the exploitation of the anti-monotonicity property. The
other important point is the size of the output of such algorithms. Some solutions are found,
for instance one can enumerate only the closed, the maximal, the condensed, the preferred,
or the discriminative item sets instead of all the frequent item sets.

On the other hand, the data mining community introduced the constraint-based min-
ing framework in order to specify in terms of constraints the properties of the patterns
to be mined [15–17, 38]. A wide variety of constraints are successfully integrated and
implemented in different specific data mining algorithms.

Recently De Raedt et al. [24, 40] introduced the alternative of using constraint pro-
gramming in data mining. They showed that a such alternative can be efficiently applied
for a wide range of pattern mining problems. Most of the pattern mining constraint had
been expressed in a declarative constraint programming language. This include frequency
constraint, closeness, maximality, and anti-monotonic then use a constraint programming
system like Gecode as a black box to solve the problem. A strength point here is that dif-
ferent constraints can be combined and solved without the need to modify the solver, unlike
in the existing specific data mining algorithms. Since the introduction of this declarative
approach, there is a growing interest in finding generic methods to solve data mining tasks.
For instance, several works expressed data mining problems as boolean satisfiability prob-
lem [27, 30–32, 34, 41] and used efficient modern SAT solvers as black boxes to solve
them. More recently, a constraint declarative framework for solving data mining tasks called
MininZinc [25], had been introduced.

On the other hand, symmetry is a fundamental property that can be used to study various
complex objects, to finely analyze their structures or to reduce the computational complexity

1The symmetry of the sub-problems corresponding to the different nodes of the search tree.
2The symmetry of the initial problem corresponding to the root of the search tree.
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when dealing with combinatorial problems. Krishnamurthy introduced in [33] the principle
of symmetry to improve resolution in propositional logic. Symmetries for Boolean con-
straints are studied in depth in [11, 12]. The authors showed how to detect them and proved
that their exploitation is a real improvement for several automated deduction algorithms.
Since that, many research works on symmetry appeared. For instance, the static approach
used by James Crawford et al. in [19] for propositional logic theories consists in adding con-
straints expressing the global symmetries of the problem. This technique has been improved
in [6] and extended to 0–1 Integer Logic Programming in [7]. The notion of interchange-
ability in Constraint Satisfaction Problems (CSPs) is introduced in [21] and symmetry for
CSPs is studied earlier in [9, 39].

But the notion of symmetry in the field of data mining is not well studied yet. Only
few works on global symmetry elimination are introduced for some specific data mining
algorithms that are targeted to solve some data mining tasks [20, 22, 28, 29, 35, 37, 46].

As far as we know, there is no local symmetry breaking method in the framework of data
mining. In this work, we investigate dynamic local symmetry detection and elimination and
compare it to global symmetry exploitation in SAT-based item set mining solvers. Local
symmetry is the symmetry that we can discover at each node of the search tree during search.
Global symmetry is the particular local symmetry corresponding to the root of the search
tree (the symmetry of the initial problem). Almost all of the known works on symmetry are
on global symmetry. Only few works on local symmetry [11, 12] are known in the literature.
Local symmetry breaking remains a big challenge.

In most of the data mining tasks, we usually need to enumerate structures. This could
turn into a great size output when there is a huge number of such structures and thus could
be time consuming. Eliminating symmetry leads to enumerate only the non symmetrical
structures, then could provide a more pertinent and compact output and could significantly
reduce the CPU time needed to compute the output. In our study case, only non-symmetrical
patterns are generated. Patterns are partitioned into symmetrical classes where each sym-
metrical pattern class is represented by one element. The other elements of the class could
be found by applying the considered symmetries on this reference element. Symmetry elim-
ination is also used to avoid exploring in the search tree the symmetrical branches of an
explored branch that is shown to gives no solution. These are what we call symmetrical no-
goods. We do this because in itemset mining both symmetrical no-goods and symmetrical
patterns are in a sens redundant.

The rest of the paper is structured as follows: in Section 2, we give some back-
ground on the satisfiability problem, permutations and the necessary notions on itemset
mining problem. We study the principle of symmetry in itemset mining in Section 3.
In Section 4 we show how symmetries can be detected by means of graph automor-
phism. We show how local and global symmetries can be eliminated in Section 5.
Section 6 shows how symmetry elimination is exploited by a SAT-based item set min-
ing solver. Section 7 shows some related works on symmetry and some experiments
on different transaction data-sets are given in Section 8. We conclude the work in
Section 9.

2 Background

We summarize in this section some background on the satisfiability problem, permutations,
and the necessary notions on the itemset mining problem.
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2.1 The propositional satisfiability problem (SAT)

We shall assume that the reader is familiar with the propositional calculus. We give here, a
short description. Let V be the set of propositional variables called only variables. Variables
will be distinguished from literals, which are variables with an assigned parity 1 or 0 that
means T rue or False, respectively. This distinction will be ignored whenever it is conve-
nient, but not confusing. For a propositional variable p, there are two literals: p the positive
literal and ¬p the negative one.

A clause is a disjunction of literals {p1, p2, . . . , pn} such that no literal appears more
than once, nor a literal and its negation at the same time. This clause is denoted by p1 ∨
p2 ∨ . . . ∨ pn . A set F of clauses is a conjunction of clauses. In other words, we say that
F is in the conjunctive normal form (CNF).

A truth assignment of a system of clauses F is a mapping I defined from the set of
variables of F into the set {T rue, False}. If I [p] is the value for the positive literal p then
I [¬p] = 1 − I [p]. The value of a clause p1 ∨ p2 ∨ . . . ∨ pn in I is T rue, if the value T rue

is assigned to at least one of its literals in I , False otherwise. By convention, we define the
value of the empty clause (n = 0) to be False. The value I [F ] of the system of clauses is
T rue if the value of each clause of F is T rue, False, otherwise. We say that a system of
clauses F is satisfiable if there exists some truth assignments I that assign the value T rue

to F , it is unsatisfiable otherwise. In the first case, I is called a model of F . Let us remark
that a system which contains the empty clause is unsatisfiable.

It is well-known [43] that for every propositional formula F there exists a formula F ′ in
conjunctive normal form(CNF) such that F ′ is satisfiable iff F is satisfiable.

2.2 Permutations

Let � = {1, 2, . . . , N} for some integer N , where each integer might represent a proposi-
tional variable or an atom. A permutation of � is a bijective mapping σ from � to � that is
usually represented as a product of cycles of permutations. We denote by Perm(�) the set
of all permutations of � and ◦ the composition of the permutation of Perm(�). The pair
(P erm(�), ◦) forms the permutation group of �. That is, ◦ is closed and associative, the
inverse of a permutation is a permutation and the identity permutation is a neutral element.
A pair (T , ◦) forms a sub-group of (S, ◦) iff T is a subset of S and forms a group under the
operation ◦.

The orbit ωPerm(�) of an element ω of � on which the group Perm(�) acts is
ωPerm(�)={ωσ : ωσ = σ(ω), σ ∈ Perm(�)}.

A generating set of the group Perm(�) is a subset Gen of Perm(�) such that each
element of Perm(�) can be written as a composition of elements of Gen. We write
Perm(�) =< Gen >. An element of Gen is called a generator. The orbit of ω ∈ � can be
computed by using only the set of generators Gen.

2.3 The frequent, closed, maximal itemset problem

Let I = {0, . . . , m − 1} be a set of m items and T = {0, . . . , n − 1} a set of n transactions
(transaction identifier). A subset I ⊆ I is called an itemset and a transaction t ∈ T over
I is in fact, a pair (tid , I ) where tid is the transaction identifier and I the corresponding
itemset. In the basket data example, the tid of a transaction match the customer identifi-
cation and I the set of items he put in his basket (he bought). Usually, when there is no
confusion, a transaction is just expressed by its identifier. A transaction database D over
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I is a finite set of transactions such that no different transactions have the same identi-
fier. A transaction database can be seen as a binary matrix D(n × m), where n =| T |
and m =| I |, with Dt,i ∈ {0, 1} forall t ∈ T and i ∈ I . More precisely, a transaction
database is expressed by the set D = {(t, I ) | t ∈ T , I ⊆ I,∀i ∈ I : Dt,i = 1}. The
coverage CD(I ) of an itemset I in D is the set of all transactions in which I occurs. That
is, CD(I ) = {t ∈ T | ∀i ∈ I,Dt,i = 1}. The support SD(I ) of I in D is the number
| CD(I ) | of transactions containing I . Moreover, the frequency FD(I ) of I in D is defined
by |CD(I )|

|D| .

Example 1 Consider the transaction database D made over the set of fruit items I =
{Kiwi, Oranges,Apple, Cherries, P lums}. For example, we can see in Table 1 that the
itemset I = {kiwi,Apples} has CD(I ) = {1, 3}, SD(I ) =| CD(I ) |= 2, and FD(I ) =
0, 5.

Given a transaction database D over L, and θ a minimal support threshold, an itemset
I is said to be frequent if SD(I ) ≥ θ . I is a closed frequent itemset if in addition to the
frequency constraint it satisfies the following constraint: for all itemset J such that I ⊂ J ,
SD(I ) > SD(J ). I is said to be a maximal frequent itemset if in addition to the frequency
constraint it satisfies the following constraint: for all itemset J such that I ⊂ J , SD(J ) < θ .
Both closed and maximal itemsets are two known condensed representation for frequent
itemsets. The data mining tasks we are dealing with in this work are defined as follows:

Definition 1 1. The frequent itemset mining task consists in computing the following set
FIMD(θ) = {I ⊆ I|SD(I ) ≥ θ}.

2. The closed frequent itemset mining task consists in computing the following set
CLOD(θ) = {I ∈ FIMD(θ)|∀J ⊆ I, I ⊂ J, SD(I ) > SD(J )}.

3. The maximal frequent itemset mining task consists in computing the following set
MAXD(θ) = {I ∈ FIMD(θ)|∀J ⊆ I, I ⊂ J, SD(J ) < θ}.

In the next section, we will use the previous definition to express all of the frequent, the
closed frequent and the maximal frequent itemset mining tasks as declarative constraints
that could be solved by appropriate constraint solvers.

The anti-monotonicity expresses the fact that all the subsets of a frequent itemset are also
frequent item sets. More precisely:

Proposition 1 (Anti-monotonicity) If the itemset I is such that SD(I ) ≥ θ , then ∀J ⊆ I ,
SD(J ) ≥ θ .

3 Symmetry in itemset mining represented as a satisfiability problem

Both constraint programming and Satisfiability are two known declarative programming
frameworks where the user has just only to specify the problem he wants to solve rather
than specifying how to solve it. The frequent itemset mining tasks and some of its variants
tasks (closed, maximal, ..etc) had been encoded for the first time in [24, 40] as constraint
programming tasks where a constraint solver could be used as a black box to solve them.
Thereafter, other works [27, 30–32, 34, 41] expressed the data mining tasks as a satisfiability
problem where the mining tasks are represented by propositional formulas that are translated
into their conjunctive normal forms (CNF) which will be given as inputs to a SAT solver. In
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this work we use this last approach to encode the data mining tasks as satisfiability problems
in which we detect and eliminate the existing symmetries.

3.1 The boolean encoding of the data mining tasks

Before defining the notion of symmetry, we shall first give the CNF encoding of the data
mining tasks. The idea behind the CNF encoding of a data mining task defined on a transac-
tion database D is to express each of its interpretations as a pair (I, T ) where I represents
an itemset and T its covering transaction subset in D. To do that, a boolean variable Ii is
associated with each item i ∈ I and a variable Tt is associated with each transaction t ∈ T .
The itemset I is then defined by all the variables Ii that are true. That is Ii = 1, if i ∈ I , and
Ii = 0 if i /∈ I . The set of transaction T covered by I is then defined by the set of variable
Tt that are true. That is, Tt = 1 if t ∈ CD(I ) and Tt = 0 if t /∈ CD(I ).

For instance, the FIMD(θ) task can be seen as the search of the set of models M =
{(I, T ) | I ⊆ I, T ⊆ T , T = CD(I ), | T |≥ θ}. We have to encode both the covering
constraint T = CD(I ) and the frequency constraint | T |≥ θ . These constraints expressed
by the two following boolean and pseudo boolean constraints :

∧

t∈T

⎛

⎝¬Tt ←
∨

i∈I|Dt,i=0

Ii

⎞

⎠

∧

i∈I

⎛

⎝Ii →
∑

t∈T |Dt,i=1

Tt ≥ θ

⎞

⎠

The formula
∑

t∈T Tt ≥ θ is sufficient to describe the frequency constraint. The formula
we propose is an optimization of this constraint. It is called in the community, the reified
constraint. This forces the frequency constraint to be verified each time an item is added to
the current pattern.

The frequent closed itemset task is specified by adding to the two previous constraints
the two following constraint:

∧

t∈T

⎛

⎝¬Tt →
∨

i∈I|Dt,i=0

Ii

⎞

⎠

∧

i∈I

⎛

⎝Ii ↔
∧

t∈T |Dt,i=1

Tt

⎞

⎠

⎞

⎠

The maximal frequent itemset mining is specified by adding to the previous coverage
and frequency constraints the following pseudo boolean constraint :

∧

i∈I

⎛

⎝Ii ←
∑

t∈T |Dt,i=1

Tt ≥ θ

⎞

⎠

An important property of these logical encodings established to represent different data
mining tasks is that the models of the resulting logical formulas express the solutions of
the original data mining tasks considered. This approach is totally declarative, the logical
formulas representing the data mining tasks are translated to their equivalent CNF formulas
by using known transformation techniques [43] and then given as inputs to a SAT solver
which is used as a black box to compute theirs models. For example, if the considered
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problem is the search of frequent itemsets in a transaction database D, then the models of the
logical formula representing this task in D express exactly the different frequent itemsets of
D and their covers. That is, if CNF(k,D) denotes the CNF logic encoding of a data mining
task k in the transaction database D and P k

D a predicate representing the task k in D, then
an itemset I ′ ⊆ I having T ′ ⊆ T as a cover verifies P k

D (P k
D(I ′, T ′) = true) if I ′ is an

itemset which is an answer to the data mining task k and T ′ is its cover. Formally, we get
the following proposition:

Proposition 2 Let J = (I, T ) be an interpretation of CNF(k,D), I ′ = {i ∈ I : Ii =
true}, and T ′ = {t ∈ T : Tt = true}, then J is a model of CNF(k,D) iff P k

D(I ′, T ′) =
true.

Proof The proof is similar to that one given in [24, 40]. It expresses the fact that the boolean
encoding CNF(k,D) is sound.

3.2 Symmetry in itemset mining

On other hand, the concept of symmetry is well studied in constraint programming and in the
satisfiability problem. Since Krishnamurthy’s [33] symmetry definition and the one given
in [11, 12] in propositional logic, several other definitions are given in the CP community.
We will define in the following both the semantic and the syntactic symmetry notions for
the boolean encoding of the itemset mining problem and show their relationship.

Definition 2 (Semantic symmetry) Let CNF(k,D) be the CNF encoding of the mining
task k in D and LCNF(k,D) its set of literals. A semantic symmetry of CNF(k,D) is a
permutation σ defined on LCNF(k,D) such that CNF(k,D) and σ(CNF(k,D)) have the
same models.

Remark 1 In term of a transaction database D, a semantic symmetry could be seen as an
item permutation σ such that D and σ(D) have the same frequent patterns.

In other words a semantic symmetry of CNF(k,D) is a literal permutation that con-
serves the set of frequent/closed or maximal item sets of D. Semantic symmetry is a general
symmetry definition, but its computation is trivially time consuming. We give in the follow-
ing, the definition of syntactic symmetry that could be computed efficiently and which is
considered as a sufficient condition to semantic symmetry.

Definition 3 (Syntactic symmetry) Let CNF(k,D) be the boolean encoding of the data
mining task k defined on D and LCNF(k,D) its set of literals. A syntactic symmetry of
CNF(k,D) is a permutation σ defined on LCNF(k,D) such that the following conditions
hold:

1. ∀� ∈ LCNF(k,D), σ(¬�) = ¬σ(�),
2. σ(CNF(k,D)) = CNF(k,D)

In other words, a syntactical symmetry of CNF(k,D) is a literal permutation that leaves
CNF(k,D) invariant. If we denote by Perm(LCNF(k,D), ◦) the group of permutations of
LCNF(k,D) and by Sym(LCNF(k,D)) ⊆ Perm(LCNF(k,D)) the subset of permutations of



98 B. Benhamou

LCNF(k,D) that are the syntactic symmetries of CNF(k,D), then Sym(LCNF(k,D, ◦) is
trivially a sub-group of Perm(LCNF(k,D), ◦).

Theorem 1 Each syntactical symmetry of CNF(k,D) is a semantic symmetry of
CNF(k,D).

Proof It is trivial to see that a syntactic symmetry of CNF(k,D) is always a seman-
tic symmetry of CNF(k,D). Indeed, if σ is a syntactic symmetry of CNF(k,D), then
σ(CNF(k,D)) = CNF(k,D), thus it results that CNF(k,D) and σ(CNF(k,D)) have
the same models (they express the same item sets satisfying the predicate P k

D).

Remark 2 The converse of the previous theorems is not true. That is, it is not true that a
semantic symmetry of CNF(k,D) is always a syntactical symmetry of of CNF(k,D).

Example 2 Consider the transaction database D of Table 1 and k = FIMD(θ) for
θ = 2. If the set of items I = {Kiwi, Oranges, Apple, Cherries, P lums} are
encoded by the scalars {1, 2, 3, 4, 5}, then the corresponding boolean encoding CNF(FI-
MD(θ),D) for the frequent item set mining in D is formed by the set: var =
{I1, I2, I3, I4, I5, T1, T2, T3, T4} of boolean variables, and the set of clauses:

cl = {c1 : ¬T1 ∨ ¬I2, c2 : ¬T1 ∨ ¬I5,

c3 : ¬T2 ∨ ¬I1, c4 : ¬T2 ∨ ¬I5,

c5 : ¬T3 ∨ ¬I2, c6 : ¬T3 ∨ ¬I4,

c7 : ¬T4 ∨ ¬I1, c8 : ¬T4 ∨ ¬I4}

and the pseudo boolean constraints:

pb = {f1 : I1 → T1 + T3 ≥ 2,

f2 : I2 → T2 + T4 ≥ 2,

f3 : I3 → T1 + T2 + T3 + T4 ≥ 2,

f4 : I4 → T1 + T2 ≥ 2,

f5 : I5 → T3 + T4 ≥ 2}.
The permutation σ = (I1, I2)(I4, I5)(T1, T4)(T2, T3) defined on the set of variables var is
a syntactic symmetry of CNF(FIMD(θ),D).

Table 1 An instance of a
transaction database tid Itemset

1 Cherries, Apples, Kiwi

2 Cherries, Apples, Oranges

3 Plums, Apples, Kiwi

4 Plums, Apples, Oranges
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In the sequel we give some symmetry properties of the boolean encoding CNF(k,D),
which express some semantics on the database D.

Definition 4 Two literals Ii and Ij of CNF(k,D) are symmetrical if there exists a
symmetry σ of CNF(k,D) such that σ(Ii) = Ij .

Remark 3 The symmetry between the item literals Ii and Ij expresses the symmetry
between the items i and j of D. The previous definition could be applied for the transaction
literals Tt to express symmetry between transactions.

Definition 5 The orbit of a literal Ii ∈ CNF(k,D) on which the group of symmetries

Sym(LCNF(k,D)) acts is I
Sym(LCNF(k,D))

i = {σ(Ii) : σ ∈ Sym(LCNF(k,D))}

Remark 4 All the literals in the orbit of a literal Ii are symmetrical two by two.

Example 3 By considering the symmetry group of Example 2, we can see that the orbit of

the item I1 is I
Sym(LCNF(k,D))

1 = {I1, I2} and the one of I4 is I
Sym(LCNF(k,D))

4 = {I4, I5}. This
means that both Kiwi and Oranges are two symmetrical items in D. Also, both Cherries and

Plums are two symmetrical items in D. The orbit of I3 is reduced to itself I
Sym(LCNF(k,D))

3 =
{I3}. That is, the item Apples is symmetrical with no other item of the transaction
database D.

If I is a model of CNF(k,D) and σ a syntactic symmetry, we can get another model of
CNF(k,D) by applying σ on the literals which appear in I. These two symmetrical mod-
els of CNF(k,D) express two symmetrical patterns of D and their corresponding covers.
Formally we get the following property:

Proposition 3 I is a model of CNF(k,D) iff σ(I) is a model of CNF(k,D).

Proof Suppose that I is a model of CNF(k,D), then σ(I) is a model of σ(CNF(k,D)).
We can then deduce that σ(I) is a model of CNF(k,D) since CNF(k,D) is invariant
under σ . The converse can be shown by considering the converse permutation of σ .

In Example 2, if we consider θ = 2 and the symmetry σ =
(I1, I2)(I4, I5)(T1, T4)(T2, T3), then we can find some symmetrical models in CNF(k,D)

(symmetrical frequent item sets in D). For instance, J = (I, T ) = {I1, I3, T1, T3} is a
model of CNF(k,D) that corresponds to the frequent item set {Kiwi, Apples} and its
cover {1,3} in D. By the symmetry σ we can deduce that σ(J ) = {I2, I3, T2, T4} is also a
model of CNF(k,D) which corresponds to the frequent itemsets {Oranges,Apples} and
its cover {2,4}. These are what we call symmetrical models of CNF(k,D) or symmetrical
frequent itemsets of D. A symmetry σ transforms each frequent itemset (a model of the
CNF encoding) into a frequent itemset and each no-good (not a frequent itemset or not a
model of the CNF encoding) into a no-good. In the following we will use this property to
eliminate both the symmetrical no-goods and the symmetrical models.

Theorem 2 Let Ii and Ij be two literals of CNF(k,D) that are in the same orbit with
respect to the symmetry group Sym(LCNF(D), then Ii is true in a model of CNF(k,D) iff
Ij is true in a model of CNF(k,D).
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Proof If Ii is in the same orbit as Ij then it is symmetrical with Ij in CNF(k,D).
Thus, there exists a symmetry σ of CNF(k,D) such that σ(Ii) = Ij . If I is a model
of CNF(k,D) then σ(I) is also a model of σ(CNF(k,D)) = CNF(k,D), besides if
Ii ∈ I then Ij ∈ σ(I) which is also a model of CNF(k,D). For the converse, consider
Ii = σ−1(Ij ), and make a similar proof.

Corollary 1 Let Ii be a literal of CNF(k,D), if Ii is not true in any model of CNF(k,D),
then each literal Ij ∈ orbit� = �Sym(LCNF(k,D)) is not true in any model of CNF(k,D).

Proof The proof is a direct consequence of Theorem 2.

Corollary 1 expresses an important property that we will use to break the local symme-
tries encountered at each node of the search tree of a SAT-based procedure for the itemset
mining problem. That is, if a no-good is detected after assigning the value True to the cur-
rent literal Ii of CNF(k,D), then we compute the orbit of Ii and assign the value false to
each literal in it, since by symmetry the value true will not lead to any model of CNF(k,D).
Another use of symmetry when a current model is obtained is to avoid to generate its sym-
metrical models. Such models are not lost, but could be found by applying the considered
symmetries on the current model. This could lead to a reduction of the output.

4 Symmetry detection

The most known technique to detect syntactic symmetries for CNF formulas in satisfiability
is the one consisting in reducing the considered formula into a graph [3, 7, 19] whose auto-
morphism group is identical to the symmetry group of the original formula. We adapted the
same approach here to detect the syntactic symmetries of the boolean encoding CNF(k,D)

of a transaction database. That is, we represent the boolean encoding CNF(k,D) of the
transaction database D by a graph GCNF(k,D) that we use to compute the symmetry group
of CNF(k,D) by means of its automorphism group. When this graph is built, we use a
graph automorphism tool like Saucy [3] to compute its automorphism group which gives the
symmetry group of CNF(k,D). Following the technique used in [3, 7, 19], we summarize
bellow the construction of the graph which represent the boolean encoding CNF(k,D).
Given the encoding CNF(k,D), the associated colored graph GCNF(k,D)(V ,E) is defined
as follows:

– Each positive item literal Ii of CNF(k,D) is represented by a vertex Ii ∈ V of the
color 1 in GCNF(k,D). The negative literal ¬Ii associated with Ii is represented by a
vertex ¬Ii of color 1 in GCNF(k,D). These two literal vertices are connected by an edge
of E in the graph GCNF(k,D).

– Each positive transaction literal Tt of CNF(k,D) is represented by a vertex Tt ∈ V of
the color 2 in GCNF(k,D). The negative literal ¬Tt associated with Tt is represented by
a vertex ¬Tt of color 2 in GCNF(k,D). These two literal vertices are connected by an
edge of E in the graph GCNF(k,D).

– Each positive auxiliary3 literal �i of CNF(k,D) is represented by a vertex �i ∈ V of
the color 3 in GCNF(k,D). The negative literal ¬�i associated with �i is represented by

3The literals used to compute the CNF form CNF(k,D).
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a vertex ¬�i of color 3 in GCNF(k,D). These two literal vertices are connected by an
edge of E in the graph GCNF(k,D).

– Each clause ci of CNF(k,D) is represented by a vertex ci ∈ V (a clause vertex) of
color 4 in GCNF(k,D). An edge connects this vertex ci to each vertex representing each
literal of the corresponding clause.

– Each pseudo boolean constraint (cardinality formula) fi of CNF(k,D) is represented
by a vertex fi ∈ V (a pseudo boolean constraint vertex) of color 5 in GCNF(k,D). An
edge connects this vertex fi to each vertex representing each literal of the corresponding
pseudo boolean constraint.

Remark 5 There is no need to translate the pseudo boolean constraints into CNF formulas
to construct the graph and compute the symmetries.

Different colors are assigned to the different categories of literal vertices in the graph
GCNF(k,D). This forces the literals in each category to be swapped between them and avoid
for example to search for symmetries between items and transactions or between the items
and the auxiliary variables that are just used in the boolean encoding to compute its CNF
form.

For instance, the graph GCNF(k,D) of the boolean encoding of Example 2 corre-
sponding to the transaction database of Example 1 is given in Fig. 1. We can remark
that four colors are used to represent the different vertices of the graph. There is no

Fig. 1 The graph representation
of the boolean encoding of
Example 2
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need to introduce the fifth color since there is no auxiliary variable in this example.
The different colors are represented by different geometrical objects (circles, squares,
ellipses,...) in the figure and the negation by the symbol “−”. We can remark that
γ = (I1, I2)(I4, I5)(T1, T4)(T2, T3)(c1, c7)(c2, c8)(c3, c5)(c4, c6)(f1, f2)(f4, f5) is an
automorphism of the graph GCNF(k,D) from which is deduced the symmetry σ =
(I1, I2)(I4, I5)(T1, T4)(T2, T3) of the boolean encoding CNF(k,D).

An important property of the graph GCNF(k,D) is that it preserves the syntactic group
of symmetries of CNF(k,D). That is, the syntactic symmetry group of CNF(k,D) is
identical to the automorphism group of its colored graph representation GCNF(k,D). Thus,
we could use a graph automorphism system like Saucy on GCNF(k,D) to detect the syn-
tactic symmetry group of CNF(k,D). The graph automorphism system returns a set
of generators GEN of the symmetry group from which we can deduce each symmetry
of CNF(k,D).

5 Symmetry elimination

5.1 Global symmetry elimination

There are two ways to break symmetries. The first one is to deal with the global symmetries
that are present in the formulation of the given problem. Global symmetries can be elimi-
nated in a static way in a pre-processing phase of a SAT-based itemset solver by just adding
to the boolean encoding CNF(k,D) the symmetry predicates as it is done in [3, 6, 7, 19].

Given the set of generators of a symmetry group GEN − Sym(LCNF(k,D)) =
{σ1, σ2, . . . , σk} of CNF(k,D) and a total ordering I1 < I2 < · · · < In on the
variables of CNF(k,D) corresponding to the items of I . The partial lex-leader symmetry-
breaking predicate (PLL-SBP) [4] that we have to add to CNF(k,D) is expressed
as follows:

PP(σl) =
∧

1≤i≤I
′σl
i n

⎡

⎣
∧

1≤j≤i−1

(I ′
j = I

′σl

j ) → (I ′
i ≤ I

′σl

i )

⎤

⎦

PLL − SBP (Sym(LCNF(k,D))) =
∧

σl∈GEN−Sym(LCNF(k,D))

PP (σl)

PP (σl) is the permutation predicate corresponding to the symmetry generator σl and
the expression (I ′

i ≤ I
′σl

i ) denotes the clause (I ′
i → I

′σl

i ). I
′σl

j is the image value
obtained by applying the permutation σl on the literal I ′

j . To break global symmetry,
one needs to add the symmetry breaking predicates PLL − SBP (Sym(LCNF(k,D)) to
the encoding CNF(k,D) and apply an appropriate SAT solver on the resulting encoding
CNF(k,D)∧PLL−SBP (Sym(LCNF(k,D))). Of course a slight modification of the SAT
solver is needed to make an enumerator of models (the patterns) and to manage the pseudo
boolean constraints.

In summary, for a given data-mining task k, defined on a transaction database D, we
first generate the logic encoding CNF(K,D) from which we built the graph GCNF(k,D).
Then, we apply the graph automorphism tool Saucy on the generated graph GCNF(k,D) to
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calculate the symmetry group of CNF(K,D) that we use to generate the symmetry pred-
icates PPL − SBP that we add to the encoding CNF(K,D). Finally we apply an
appropriate SAT solver to the resulting encoding to find the solutions (unsymmetrical
patterns).

5.2 Local symmetry elimination

The second way is the elimination of local symmetry that could appear in the sub-
problems corresponding to the different nodes of the search tree of a SAT-based itemset
solver. Global symmetry can be considered as the particular local symmetry corre-
sponding to the root of the search tree. Local symmetries have to be detected and
eliminated dynamically at some decision node of the search tree. Dynamic symmetry
detection in satisfiability had been studied in [10–12] where a local syntactic symme-
try search method had been given. However, this method is not complete, it detects
only one symmetry σ at each node of the search tree when failing in the assignment
of the current literal �. As an alternative to this incomplete symmetry search method, a
complete method which uses the tool Saucy [3] had been introduced in [10] to detect
and break all the syntactic local symmetries of a constraint satisfaction problem (CSP)
during search and local symmetry had been detected and eliminated dynamically in
a SAT solver [14]. We use the same technique to break local symmetry in itemset
mining.

Consider the logic encoding F = CNF(k,D) of the data mining task k defined on
the transaction D, and a partial assignment I = {�1, �2, . . . , �i} of a SAT-based itemset
solver applied to CNF(k,D). Suppose that �i + 1 is the current literal under assignment.
The assignment I simplifies CNF(k,D) into a sub-formula FI = CNF(k,D)I which
defines a state in the search space corresponding to the current node nI of the search
tree. The main idea is to maintain dynamically the graph GCNF(k,D) of the sub-formula
FI = CNF(k,D)I corresponding to the current node nI , then color the graph GCNF(k,D)I

as shown in the previous section and compute its automorphism group Aut(CNF(k,D)I ).
The sub-formula FI = CNF(k,D)I can be viewed as the remaining sub-problem corre-
sponding to the unsolved part. By applying an automorphism tool on this colored graph
we can get the generator set GEN of the symmetry sub-group existing between liter-
als from which we can compute the orbit of the current literal �i+1 that we will use to
make the symmetry cut. Figure 2 where we suppose that the orbit of the literal �i+1 is

�
Sym(LFI

)

i+1 = {�′
1, �

′
2, . . . , �

′
m} gives an illustration of the cut.

One possible exploitation of local symmetry is to use Corollary 1 to break dynamically
the local symmetries and then prune search spaces of tree search itemset methods. Indeed,
if the assignment of the value true to the current literal �i+1 defined at the node nI of the
search tree corresponding to the sub-formula FI is shown to be a failure, then by symmetry,
the assignment of the value true to each literal in the orbit of �i+1 will result in a failure too.

Therefore, the negated literal of each literal in the orbit �i+1 is �
Sym(LFI

)

i+1 = {�′
1, �

′
2, . . . , �

′
m}

has to be assigned the value true in each extension of the partial assignment I . Thus, we
prune in the search tree, the sub-space which corresponds to true assignment of the literals
of the orbit of �i+1. That is what we call the local symmetry cut. The cut is illustrated in
Fig. 2.

The other exploitation of local symmetry is model reduction. We will see in the next
subsection that the cut could be applied in the case when a model is obtained in order to
eliminate all the symmetrical models of the current model.
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5.3 Elimination of symmetrical models (pattern reduction)

Another use of symmetry is the possibility of computing only the non-symmetrical mod-
els from which all the other models could be obtained by applying the symmetry group
considered.

In the case of global symmetry, both the symmetrical models and the symmetrical
no-goods are eliminated by the additional symmetry predicates (SBP) that are added
to the boolean encoding CNF(k,D). That is, the interpretations (no-goods or models)
are partitioned into symmetrical classes where each class is represented by the least-
leader interpretation. All the other interpretations are in a sense redundant then are
eliminated.

In the case of local symmetry elimination, the cut we have described above applies even
in the dual case when a model instead of a failure is obtained. Indeed, if the interpretation
of the current literal �i+1 to the value true in the partial interpretation I leads to a model,
so we know that we will get a local symmetrical model when interpreting to the value
true any symmetrical literal �j in the orbit of �i+1 (theorem 2). In this case, one can avoid
generating the local symmetrical model of I ∪ �i+1 by just assigning the value false to
�j when backtracking on the literal �i+1. Thus, by doing this for each literal in the orbit
of �i+1 we obtain the non-symmetrical models from which we can generate all the others
models by applying the calculated symmetries. Local symmetrical models are in a sense
redundant, their elimination could help to reduce the size of the output. The symmetry cut
is implemented with two options of use: the first one is when a no-good is detected. In this
case, the cut is used to eliminate all the local symmetrical no-goods of the current no-good.
The other option is when a model is obtained. In this last case the cut is used to eliminate
all the local symmetrical models of the considered model.

Fig. 2 Local symmetry cut
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6 Local symmetry advantage in tree search algorithms

Global symmetry is eliminated statically in a pre-precessing phase by adding the symmetry
breaking predicates to the boolean encoding CNF(k,D) and then use a SAT solver on the
resulting formula as a black box without any modification.

However, local symmetry must be detected and eliminated dynamically during search. A
slight modification of the SAT solver is necessary to integrate local symmetry. We will show
how the detected symmetrical literals can be used to increase the efficiency of SAT-based
algorithms for the itemset mining. We choose in our implementation the Davis Putnam (DP)
procedure to be the baseline method of the solver that we want to improve by the advantage
of local symmetry elimination. We will show in the next session how the local symmetry
cut had been integrated in a DPLL solver.

If I is a partial interpretation in which the assignment of the value T rue to the current
literal � is shown to be conflicting or a model is obtained, then all the literals in the orbit
of � computed by using the group Sym(LCNF(k,D)I ) returned by Saucy are symmetrical to
�. Thus, we assign the value False to each literal in �Sym(LCNF(k,D)) since the value T rue

is either contradictory or leads to a symmetrical model, and then we prune the sub-space
which corresponds to the value T rue assignments. The procedure called Satisfiable given
in Fig. 3 shows how the symmetry cut is integrated in a Davis Putnam procedure.

The input formula F expresses the boolean encoding CNF(k,D). A monoliteral is a
unit clause, and a monotone literal is a literal that appears either in its positive parity form or
in its negative parity form, but not in both them. The function orbit (�, Gen) is elementary,
it computes the orbit of the literal � from the set of generators Gen returned by Saucy.

In summary, for a given mining task k defined on a transaction database D, we gen-
erate as in the case of global symmetries, the logical encoding CNF(k,D) represented
by the formula F in the procedure given in Fig. 3. Next, we apply on the CNF(k,D)

encoding a SAT solver including dynamic detection and elimination of local symmetries
(Fig. 3) to compute the solutions (non-locally symmetric patterns) and cut the symmetrical
no-goods.

Fig. 3 The Davis Putnam procedure with local symmetry elimination
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7 Experiments

Now we shall investigate the performances of our search techniques by experimental
analysis.

7.1 The input data-sets

We choose for our experiments the following data-sets:

– Simulated data-sets: In this class, we use the simulated data-sets, generated specifi-
cally to involve interesting symmetries. The process was to create a lot of symmetrical
items in different transactions. This will generate totally symmetric Datasets that can
be used to see the impact of symmetries in computing only non-symmetrical patterns
to reduce the output. The data is available at http://www.cril.fr/decMining.

– Public datasets: The datasets used in this class are well known in the data mining
community and are available at https://dtai.cs.kuleuven.be/CP4IM/datasets/.

7.2 The experimented methods

Now we shall investigate the performances of our search techniques by experimental analy-
sis. We choose the previous datasets for our study to show the symmetry behavior in solving
the itemset mining problem. We expect that symmetry breaking will be profitable in other
datasets. Here, we tested and compared three methods:

1. No-sym: search without symmetry breaking by using the AVAL solver [8] as the
baseline method;

2. Gl-sym search with global symmetry breaking. This method uses in pre-processing
phase the program SHATTER [5, 7] that detects and eliminates the global symmetries
of the considered instance by adding on it symmetry breaking clauses, then apply the
solver AVAL [8] to the resulting instance. The CPU time of Gl-sym includes the time
that SHATTER spends to compute the global symmetry.

3. Lo-sym: search with local symmetry breaking. This method implements in AVAL the
dynamic local symmetry detection and elimination strategy described in Fig. 3. The
CPU time of Lo-sym includes local symmetry search time.

The common baseline search method for the three previous methods is AVAL. The com-
plexity indicators are the CPU time (in seconds) and the size of the output. Both the time
needed for computing local symmetry and global symmetry are added to the total CPU time
of search. The source codes are written in C and compiled on a Core2Duo E8400, 2.8 GHZ
and 4 Gb of RAM.

7.3 The obtained results

We reported in Fig. 4 the practical results of the methods: No-sym, Gl-sym, and Lo-sym,
on a simulated data dataset-gen-jss-5 for the closed frequent itemset mining problem. The
curves give the CPU times (the ones on the left in the figure) respectively the number of
patterns (the ones on the right in the figure) with respect to the minimum support threshold.
We can see on the time curves that symmetry elimination is profitable for the itemset mining
problem. Indeed, both Gl-sym and Lo-sym outperform No-sym. We also remark that Lo-sym
detects and eliminates more symmetries than Gl-sym and is more efficient. From the curves

http://www.cril.fr/decMining
https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Fig. 4 Results on simulated data (Closed frequent itemsets): CPU time and number of patterns

giving the number of patterns we can see that symmetry leads to significantly decrease
the size of the output by keeping only non-symmetrical patterns. We can see that Lo-sym
reduces more the output than Gl-sym. Local symmetry elimination is profitable for solving
the itemset mining problem and outperforms dramatically global symmetry breaking on
these problems.

In Fig. 5, we reported the practical results of the methods No-sym and Gl-sym and Lo-
sym on some public datasets for the frequent itemset mining problem. We can see that there
exist some symmetries that are exploited and even the symmetries do not abound, Gl-sym
and Lo-sym outperforms No-sym in CPU time. Indeed, many symmetrical no-good branches
in the search tree are avoided in the exploration. We can remark that the impact of symmetry
decreases as the the frequency threshold increases and local symmetry outperform global
symmetry.

In Fig. 6, we reported the results of the methods No-sym and Gl-sym and Lo-sym on
both the Australian and Mushroom datasets for the closed frequent itemset mining problem.
We can remark in general a diminution of the impact of symmetries in resolution when the
frequency threshold increases. The CPU time of each algorithm is reduced in comparison to
the frequent pattern case. Indeed, the number of frequent patterns satisfying the additional
constraints of closeness decreases. Both global symmetry and local symmetry still profitable
in solving this problem variant and local symmetry remains more advantageous than global
symmetry.
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Fig. 5 Results on public data—Australian and Muchroom—(frequent itemsets): CPU time
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In Fig. 7, we reported the results of the different methods on both the Australian and
Mushroom datasets for the Maximal frequent itemset mining problem. We can remark
the same behavior as in the case of closed patterns. That is, the number of frequent pat-
tern satisfying the maximality constraint is in a same diminution as in the case of closed
patterns. These are two known condensed forms to represent the output. The impact of
symmetry decreases as the frequency threshold increases, but both global and local sym-
metry take advantage in solving this problem variant and local symmetry remains more
profitable.

On other hand, no reduction is observed on the number of frequent/closed/Maximal item-
sets when using symmetry on the Australian and the Mushroom datasets. On these datasets,
most of the computed symmetries involves items in the same transactions. This explains
why these particular symmetries does not reduce the number of maximal/closed/frequent
itemsets. However, even when the size of the output is not reduced, breaking symmetries
using our approach significantly reduce the search space since symmetrical no-goods are
not generated.

8 Related works

The purpose of eliminating symmetry in data mining tasks is in general either to obtain a
more compact output or to decrease the necessary CPU time for its generation or to han-
dle new mining properties to find interesting frequent patterns. Some symmetry works are
introduced in the field of Data mining following this direction.

– Symmetries in graph mining are studied in Desrosiers et al. [20], and in Vanetik [46].
The area of graph mining has a great importance in many applications, but generates a
great huge of combinatorial complexity. In Desrosiers et al. [20] symmetry is exploited
to prune the search space of sub-graph mining algorithms. However, in Vanetik [46],
symmetry is used to find interesting frequent sub-graphs (those having limited diameter
and high symmetry). Such graphs represent the more structurally important patterns in
all of the the chemical, text and genetic data-sets. Their technique allows also to reduce
the necessary CPU to find such graphs.

– Murtagh et al. in [37] used symmetry to get a powerful means of structuring and
analyzing massive, high dimensional data stores. They illustrate the powerfulness of
hierarchical clustering in case studies in chemistry and finance.
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– Symmetry is also studied in the framework of Zero-BDDs [35]. These symmetries
looks very particular, since they are just transpositions of two items and still identity
for the remain items. They used such symmetry to studies the properties of sym-
metrical patterns. Such symmetries are used in [22] to explain in some cases why
the number of rules of a minimal cover of a relation is exponential in number of
items.

– Two symmetry elimination approaches for frequent itemset mining are introduced in
[28]. They consist in rewriting the transaction database in pre-processing phase by
eliminating the symmetrical of some items. These symmetries are only some particular
global symmetries that the authors use to simplify the underlying transaction in a phase
of near-treatment. They do not detect all the global symmetries. These approaches are
specific to the data mining task considered. They could be combined with our method
as a pretreatment to the database transaction.

– Another approach integrate dynamic symmetry elimination in the Apriori-like algo-
rithm [29] in order to prune the search space of enumerating all the frequent item sets
of a transaction database.

– More recently, a method is introduced in [13] to deal with the symmetries between the
items of a transaction database. Declarative symmetry breaking predicates are added
to the encoding to break such global symmetries. The authors of [13] detect the global
symmetry between the items directly from the transaction database. In our approach we
detect such symmetry on the boolean encoding of the underlying transaction database
in order to compare it to the local symmetry elimination.

All of these approaches deal only with global symmetry. Almost all of them are static
techniques that detects symmetry in a pre-processing phase. These are different from the
method we developed here which detects and eliminate local symmetry dynamically during
the search process.

9 Conclusion

We studied in this work the notions of global and local symmetry for the itemset mining
problem expressed as a CNF formulas. We addressed the problem of dynamic sym-
metry detection and elimination of local symmetry during the search process. That is,
the symmetries of each CNF sub-formula defined at a given node of the search tree



110 B. Benhamou

and which is derived from the initial formula by considering the partial assignment
corresponding to that node. Saucy is adapted to compute this local symmetry by main-
taining dynamically the graph of the sub-formula defined at each node of the search
tree. Saucy is called with the graph of the local sub-formula as the main input, and
then returns the set of generators of the automorphism group of the graph which is
shown to be equivalent to the local symmetry group of the considered sub-formula. The
proposed local symmetry detection method is implemented and exploited in the DPLL
search method to improve its efficiency. Experimental results confirmed that symme-
try breaking is profitable for the itemset mining problem expressed as a satisfiability
problem.

As a future work, we are looking to eliminate symmetry in other data mining problems
like clustering and try to implement some weakened symmetry conditions under which we
may detect more symmetries, then experiment it and compare its results with the ones given
here.
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