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Abstract We review the behavior of some popular dynamic geometry software when com-
puting envelopes, relating the diverse methods implemented in these programs with the
various definitions of envelope. Special attention is given to the new GeoGebra 5.0 version,
that incorporates a mathematically rigorous approach for envelope computations. Further-
more, a discussion on the role, in this context, of the cooperation between GeoGebra and
a recent parametric polynomial solving algorithm is detailed. This approach seems to yield
accurate results, allowing for the first time sound computations of envelopes of families of
plane curves in interactive environments.

Keywords Automated deduction in geometry · Envelope computation · Dynamic
geometry
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1 Introduction

Loci determination is unanimously accepted as a key characteristic of dynamic geometry
(DG) systems. This ability is the second most present feature in the Wikipedia list of DG
software properties [1]. Less attention has been paid both from DG developers and users
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to the computation of a particular kind of loci, namely, the envelopes of families of curves.
Thus, it is often the case that these programs just include a rough strategy for envelope
computation, mostly consisting on tracing—for a sufficiently large number of instances—
an element of the given family of curves, as the main way for graphically suggesting the
corresponding envelope. Although this approach is rather unreliable and clearly leaves room
for improvement, we have not detected significant requests from user forums to enhance
such tools, as it is the case, on the contrary, concerning loci computation facilities (see, for
instance, [2]).

Yet, envelopes, apart from being a classical topic, involve different mathematical fields
and can be used fruitfully in STEM1 teaching, specially with the cooperation of Computer
Algebra (CAS) or Dynamic Geometry systems. For instance, see the very recent contribu-
tion by [3], reflecting on the use of CAS and DG to explore envelope computation, in the
context of in-service teacher training. As stated there (pp. 55) “The topic is sometimes not
easy...”.2 This is not new: already fifty years ago, René Thom [4] claimed against the dis-
appearance of such topic from the French undergraduate mathematical curriculum, blaming
such omission to the complexity of the underlying theory.

In summary: computing envelopes is a classical, but difficult and yet not well settled
topic. Ideally, because of its applications to STEM teaching, it is a topic favoring the
introduction—at college level—of CAS and DG systems, as potentially helpful tools to
explore envelope computation. Yet, currently, we consider there is not a truly performing
implementation of envelope computation in most Dynamic Geometry systems. Namely, an
implementation that connects a rigorous algebraic definition and a symbolic computation
of the envelope, to the graphical environment where the corresponding family of curves is
displayed.

Bearing this situation in mind, our first goal in this note is to present the state of the art
concerning the computation of envelopes, for families of plane curves, as currently available
in some of the most popular DG environments, namely Cabri, Cinderella and The Geome-
ter’s Sketchpad (GSP). To this end, Section 2 starts recalling some basic notions about
envelopes and refers to different reputed sources, some classical and some very modern,
for further details on the elusive concept of envelope. Then, through selected examples and
cases, Section 3 reviews how the above mentioned DG systems perform when computing
envelopes, exhibiting, in particular, some of their limitations and errors.

Finally, the last part of Sections 3 and 4 address the second objective of this note, namely,
to describe the basic issues behind a new command for envelope computation, featured in
the new 5.0 version of GeoGebra (September 2014) and based on a series of recent contri-
butions by the authors of this note and their collaborators [5–11]. The idea here is to present
just a sketchy picture on how some key ingredients from effective algebraic geometry are
put together to conform the algorithmic approach behind this GeoGebra command. We con-
clude the paper with some examples of its performance, along with a rough description of
some essential limitations (i.e. the semialgebraic case) of the proposed method.

1STEM is a well established acronym referring to the academic disciplines of science, technology,
engineering and mathematics.
2Indeed, not easy at all, and not only to students. As an example, we can exhibit discrepancies with some
of the results of [3], such as declaring empty (see [3, p. 55]) the envelopes of families of lines where the
coefficients of the equations are affine functions of the parameter. Our approach, in a similar situation as in
Fig. 2, yields it is not empty, namely, it is the point (−4, 0), see Section 4).
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Fig. 1 A family of straight lines enveloping an ellipse

2 Formal definition of envelope

Usually, informal definitions of envelope highlight the idea of contact. For instance, an
envelope is defined as a curve which touches every member of a family of curves or lines
[12], or a curve C such that C is tangent to every member of the set [of curves] [13]. Even a
collaborative source as Wikipedia begins its article on the concept of envelope defining it as
a curve that is tangent to each member of the family at some point [14]. But soon, the ency-
clopedia introduces other alternative definitions, and mentions different set containments
between them. Although someone could doubt on the soundness of the Wikipedia, in the
envelope case its description faithfully follows the main ideas developed in more reputed
sources as [15]. There, the envelope E1 or discriminant of a family of curves in the real
(x, y)-plane F(x, y, t) = 0, parametrized by t ∈ R, is defined as the set3

E1 = {(x, y) ∈ R
2 : ∃t ∈ R, F (x, y, t) = ∂F

∂t
(x, y, t) = 0}.

In the same reference, three other definitions of envelope are also introduced. For
instance, a second notion, that of an envelope E2 considered as the curve tangent to
Ft (x, y) = F(x, y, t), for each t . A new idea of envelope E3 is also presented as the limit
of intersection points of nearby curves Ft . Finally, the notion of envelope E4 is outlined as
the boundary of the region filled by curves Ft . Furthermore, it is shown that Ei ⊂ E1 for
i = 2, 3, 4.

In all these cases, the given family of curves we would like to compute its envelope,
is presented as depending on a single parameter t . Now, if the family of curves, as it
usually happens in DG, depends on a point moving on some constructed path, users will
deal not anymore with a uniparametric family, but with one involving two parameters,

3Note that we restrict the definition to families of plane curves. Furthermore, the notation here used is slightly
modified with respect to [15].
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Fig. 2 The lines sweep the whole plane

namely, the two coordinates of the mover point. In this case the family will be described
by F(x, y, t1, t2) = 0, where parameters t1 and t2 are constrained by the restriction of
point (t1, t2) to move along a one-dimensional path in the plane, that is, by adding an extra
equation g(t1, t2) = 0. In this case the defining condition in envelope E1 is to be replaced
by

E1 = {(x, y) ∈ R
2 : ∃t1, t2 ∈ R, F (x, y, t1, t2) = ∂F

∂t1

∂g

∂t2
− ∂F

∂t2

∂g

∂t1
= 0}.

Finally, let us remark that, in general, more than two parameters could be involved in the
construction of the moving path for the parametric point describing the family of curves. In
such a case, given a n-parametric family F(x, y, t1, . . . , tn) = 0, there will be, for sound
DG constructions, exactly n − 1 constraints g1, . . . , gn−1, and the envelope E1 is the set of
real solutions x, y of the system consisting of F(x, y, t1, . . . , tn) = 0, gi(t1, . . . , tn) = 0,
for i = 1, . . . , n − 1, and the Jacobi determinant

∣
∣
∣
∣
∣
∣

∂F/∂t1 . . . ∂F/∂tn
∂g1/∂t1 . . . ∂g1/∂tn

∂gn−1/∂t1 . . . ∂gn−1/∂tn

∣
∣
∣
∣
∣
∣

= 0

for real values of t1, . . . , tn.

3 Envelopes in dynamic geometry software

3.1 Envelopes as boundaries of plane regions

Definition E4 has been traditionally used in DG systems to suggest envelopes. Since tracing
an element in any environment is a quite basic task for DG programs, given a family of
curves, selecting a family member and activating its trace, a user can inspect the part of the
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Fig. 3 The envelope of a family of ellipses in Cinderella (left) and Cabri (right)

plane swept by the curve and get a feeling of the envelope. Consider, for instance, a circle
with center (0, 0) and radius 4, the point A(3, 0), and a point B moving on the circle. Draw
the line AB and its perpendicular line through B. Activate the trace of this last line and
drag B along the circle. The user will get, in any of the four DG systems enumerated in the
Introduction, a screen similar to the one in Fig. 1.

Nevertheless, stating that the graphically displayed envelope is, in fact, an ellipse, will
usually be out of bounds for inexperienced users. With envelope computation in DG systems
mostly limited to this tracing approach, even teachers could ignore in some cases which is
the precise curve that corresponds to the displayed envelope. Although this situation can be
well suited for discovery tasks, the concern here is the automatic computation inside the sys-
tem. And, since there is not a curve as result, this method for envelope computation sounds
unpromising. Even worse, sometimes the boundary can be hard to visualize, ill–defined or
non existent at all, adding difficulties for the user to draw any specific conclusion. As an
illustration of this latter case, let us reconsider the construction above by designing A to lie
in the circle, say A(4, 0), and then trace again the line AB. Now the trace is the whole plane
(Fig. 2), and thus—after some reflection—we should conclude that the envelope is empty,
according to definition E4. Moreover, the purely graphical approach does not provide an
argument for the noticeable fact that the traced lines seem to concentrate on the circle point
opposed to A, turning this point—for non expert users—into a potential candidate for the
envelope. This fact is not fortuitous, as we will see below.

GeoGebra and GSP do not incorporate any refinement of this envelope-computation-by-
tracing strategy. At least in these programs a user can manually sample the one-dimensional
path of the parametric point and trace a family curve for each sample point, in order to
get a more pleasant visualization of the envelope. A GeoGebra command for this task is
Sequence,4 as it has been recommended in [16], where a request for enhancing envelope
computations has been posted. On their side, both Cabri and Cinderella automate this pro-
cess by using their Locus command. Although this command will be further discussed in
a following subsection, let us here pay special attention to its behavior in the envelope
computation context.

4See http://wiki.geogebra.org/en/Sequence Command

http://wiki.geogebra.org/en/Sequence_Command
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Fig. 4 An approximate envelope computed with Cinderella

Thus, the standard DG approach to find the geometric locus of a (tracer) point depending
somehow on another (mover) point consists of automatically sampling the path of the mover,
and, for each sample, compute the actual position of the corresponding tracer point. The
list of computed points is then plotted, showing the sought trajectory (see [6] for a full
description of loci finding strategies in DG). Replacing the tracer point by a tracing curve,
Cabri and Cinderella commands are then used to plot a collection of curves in order to
suggest the envelope. The main difference with respect to the manual approach lies on the
sampling mechanism, which can incorporate sophisticated methods to divide the parameter
path. A direct translation of this idea is thus used by Cabri and Cinderella when dealing
with envelopes. Facing the envelope of ellipses with foci A(4, 0) and B(0, t), where B is
constrained to a segment such that −3 ≤ t ≤ 3, and major axis 5, Cinderella will output as
result a 2-dimensional region (Fig. 3, left). Cabri, if using a macro to construct ellipses from
foci and an ellipse point, returns a similar region. Nevertheless, changing its Preferences in
the Options menu by selecting Envelope and increasing the Number of objects in locus to
500, the border of the region appears (Fig. 3, right), showing a more accurate result.

3.2 Envelopes as limit of intersections of nearby curves

Although no current DGS strictly features automatic envelope computation following this
approach, it could be implemented by computing the intersection of a curve of the family
with another (close) curve, and finding the locus of these intersection points, that will define
the envelope. GSP, although not having a specific command to deal with envelopes, gives
some related advice about constructing envelopes.5 There, the statement a geometric enve-
lope can be thought of as the limit or edge of the locus of a line or a circle is succesfully

5See http://www.dynamicgeometry.com/Technical Support/FAQ/Constructions and Use/Envelope Construc
tions.html.

http://www.dynamicgeometry.com/Technical_Support/FAQ/Constructions_and _Use/Envelope_Constructions.html
http://www.dynamicgeometry.com/Technical_Support/FAQ/Constructions_and _Use/Envelope_Constructions.html
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Fig. 5 An approximate envelope computed through definition E3 in GeoGebra

applied to find some envelopes. This protocol catches the concept behind definition E3, and
it is a natural way to get the envelopes as curves. Yet there are some difficulties that we
will summarily describe through an example. For instance, let us consider the construction
in Fig. 1, from the previous subsection, where the intersection of two close perpendicular
lines will be a point whose locus, in turn, will be the sought envelope when both curves are
infinitely close. Since taking such a limit is unfeasible in current DGs, we conclude that we
can only find an approximate envelope through this strategy. Figure 4 shows a Cinderella
construction where the intersection D of two family lines is controlled by dragging point C.
A segment ending at C determines the distance between circle points B and B ′, and, thus,
the selected pair of lines. The locus of D when B moves along the circle approaches the
envelope as the segment length approaches to 0.

If we intend to go beyond this approximate construction and if we (wrongly) attempt to
consider the limit case by selecting a 0-length segment, then no locus is plotted, although
Cinderella reports that such locus exists in its Construction Text window. Since, in this
construction, the locus has an identifying equation, 0 = 0, we should understand that the
computed locus is the whole plane! This answer, as a locus, is the correct one for the 0-
length case, because we are asking about the position of any point in the perpendicular
line while this line sweeps the plane. Obviously this is not the correct computation for the
envelope, since the limit of the intersection of two lines, when the lines get arbitrarily close,
is not the intersection of a single line with itself, as it happens here in the 0-length case.
Thus, the discussed strategy is not suitable for envelope computation and can, at most, as
a by-product of the approximate computation, reinforce the belief of the user on an ellipse
being the envelope.

As a side remark, let us notice that correctly computing the limit of intersection points,
i.e. the characteristics points, requires considering, first, the family Ft (x, y) = 0 and, then,
considering the distance of the points of one of the curves to a nearby one Ft+dt (x, y) = 0,
such that this distance is greater than dt . That is, finding those Ft -ordinary points satisfying
that

F(x, y, t) = 0,
∂F

∂t
(x, y, t) = 0.
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Fig. 6 The point at the infinity as envelope of vertical lines in Cinderella

In summary, the characteristic points of Ft are the ordinary points of Ft such that their
distance to Ft+dt is an infinitesimal of higher order than dt [17, p. 37], which are the (x, y)

values of the solutions of the above system.
Clearly, computing the loci of characteristic points returns correct envelopes, as it has

been illustrated in [18]. But computing the characteristic points is not an easy task. For
instance, it should be noted that real characteristic points are not always limit of real inter-
section points. A canonical example in [17] illustrates this issue by considering a curve as
the envelope of its osculating circles. These circles have not real intersection for infinitely
close points. Their intersections are imaginary conjugated whereas their limit is a real point
in the curve.

We do not discuss envelopes following definition E2 because the concept of tangency is
subsumed by the idea of studying intersections of nearby curves.

3.2.1 An illustration concerning differences between definitions E3 and E4

Let us reconsider the envelope of ellipses with foci A(4, 0), B(0, t), −3 ≤ t ≤ 3, and major
axis 5 (see Fig. 3). The above approach of computing the loci of intersection points of nearby
curves shows a result which is similar to the one obtained through the approach to the enve-
lope computation as the boundary of some region traced by the curves of the given family.
But there are some, albeit small, important differences. Figure 5, left, illustrates the approx-
imate envelope when the distance between parametric points B, B ′ is set to 0.5. There, the
envelope is computed as the loci of intersection points L,M of blue and red ellipses cor-
responding to positions B and B ′ of the variable focus. Note that if B is at a extremum
position, say (0, 3), the blue ellipse degenerates into a double line (Fig. 5, right). The inter-
sections of this fixed (although degenerated) ellipse with nearby ones are two points: L,
lying on the approximated envelope, and M , which is not part of it. Approaching B ′ to B

(by dragging the red point in the construction), we get a sequence of points M , all lying in
the degenerated ellipse, with limit A. In other words, A is an isolated characteristic point,
and, as such, A should be also considered as part of the envelope.
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Fig. 7 The correct graphic envelope in Cabri and its wrong equation

3.2.2 Contradictory results in Cabri and Cinderella

Let F(x, y, t) = x − t be a family of vertical lines in the plane. Its envelope, according
to definition E1, consists of the real points satisfying {x − t = 0, −1 = 0}, i.e. the empty
set. Besides the mentioned set containment Ei ⊂ E1, i = 2, 3, 4, it is clear that this family
occupies the entire plane, so the E4 envelope must be empty, as expected. On the other hand,
the lines do not intersect, and, thus, the E3 envelope is also empty.

The Envelope command in Cabri does not return any object for this family, elemen-
tary constructed with a semifree point moving along the x axis and the perpendicular lines
through these points. Nevertheless, Cinderella, although not showing any new graphic ele-
ment, computes a point as result of its Locus command (recall that the Cinderella command
claims to return envelopes if selected a point on a linear path and a curve parametrically
depending on the point). This new point C (see Fig. 6) is a point at the infinity, so we guess
that Cinderella follows, partially at least, definition E3 for envelope searching. Note also
that Cinderella provides native support for other geometries than Euclidian. So, considering
the point at infinity as intersection of parallel lines seems to be natural inside this system.

Things change for Cabri if we restrict the values of the parameter. Instead of being
unconstrained, we consider now a point gliding on the unit circle, and vertical lines passing
through it. Now, the graphic envelope is correctly drawn. However, asking for the equation
of the found envelope we get a wrong result (Fig. 7). Cabri ability for returning loci equa-
tions, up to degree six, is not robust enough to deal with this simple envelope, which can be
described by the conjunction of two equations. Cinderella, in turn, is not able to detect the
new situation, returning again the point at the infinity.

At the beginning of this subsection, the family F(x, y, t) = x − t of vertical lines
was proposed in order to decide if it can be enveloped. The conclusion was negative after
attending different envelope definitions. Nevertheless, it is known that a family of vertical
lines yet admits an envelope just by changing the way it is parametrized. Let us consider
F(x, y, t) = x − t3. In this case, the E1 envelope will be the line x = 0. Despite both
families are geometrically identical, algebraically are very different. We could talk about
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Fig. 8 Steiner deltoid for triangle A(−1, 0), B(1, 0), C(0, 1)

constant speed for the first family, while this is clearly not the case for the last one. As stated
in [15], “the envelope depends on F , and not just on the curves [of the family]”. In our own
words, “computing envelopes in DGS depends on the construction protocol and not just
on the geometric object” [11]. Similar problems can arise when the envelope construction
involves several parameters, some of them possibly unnecessary. Furthermore, the algebraic
translation of the construction can also introduce unnecessary equations. These issues have
been studied in [11], so we refrain to detail them here.

3.3 Envelopes as discriminants

Neither if tracing some curves of a given family, nor when computing the locus of inter-
section points of nearby family curves, do DG environments provide, in general, further
information about envelopes. For instance, a user gets no idea at all about the expression of
the computed curve(s) in the envelope displayed of Figs. 3 and 5. Even simple envelopes,
such as the one in Figs. 1 and 4, cannot be easily managed if ignoring their analytical expres-
sions. Thus, a naive GeoGebra user, once convinced he/she is dealing with an ellipse, could
attempt to construct five points on it and use the Conic command in order to obtain the cor-
responding analytic equation. But, as it is well-known, numerical inaccuracies will severely
determine the final equation. Even worse, if there is no sound conjecture about the actual
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Table 1 The Gröbner cover for
the envelope in Fig. 1 Nr. Segment Basis

1 C
2 \ V(7x2 + 16y2 − 112) {1}

2 V(7x2 + 16y2 − 112)\ {(9y2 + 49)t2 + (21xy − 112y),

V((9y2 + 49, 3x + 16) (9y2 + 49)t1 + (−49x − 48y2)}
3 V(9y2 + 49, 3x + 16) {1}

degree of the graphically presented curve, this interpolation procedure is just a non reliable
guessing.

The reader will have observed that, for the construction we are discussing, Cinderella
correctly labels as an ellipse the obtained locus, and that its equation is accessible in the
Construction Text window. Unfortunately, this characteristic is not universal in Cinderella.
When searching for loci, the system gets a list of locus points after sampling the path. This
list is tested in order to see if their members are in a line, circle or general conic. This test
is applied not only to the current instance of the construction, but to an extensive number
of similar instances, in a probabilistic setting. If the tests are successfull, the equation of
the line, circle or conic is returned for describing the object and for easier rendering. Con-
cerning envelopes, it seems that Cinderella uses definition E3, thus reducing envelopes to
loci. Furthermore, intersections are only computed in the case of families of straight lines.
If the curves of the family are different, the strategy is limited to a smart sampling of the
parameter path and plotting some curves of the family.

No standard DG system is currently able to automatically compute equations of loci or
envelopes in a sound manner, i.e. by using definition E1 of envelopes as discriminants. In
this direction let us mention that there has been some proposal about linking DG environ-
ments with Computer Algebra Systems (CAS) in order to enrich the former with symbolic
capabilities. Also, academic prototypes have been developed showing the feasibility of
these ideas. As a sequel of [7], JSXGraph, a Javascript library for DG computations, and
GeoGebra, incorporated a symbolic approach allowing the knowledge of loci equations.
A similar proposal related to envelopes was described in [8]. Both works were based on
algebraic elimination via Gröbner bases, used special CAS packages, such as CoCoA and
Singular, and implemented a protocol to communicate them with a DG system. The idea,
for envelopes, is straightforward: construct in the DG system the family of curves depend-
ing on a point, translate the family and the point to an adequate algebraic description, and
apply definition E1 via polynomial elimination. Once the elimination is done, incorporate
the result into the geometric environment as a new object whose equation is now known.

Let us note that this procedure is only defined for the purely algebraic setting (that is, lim-
ited to dealing with constructions that involve just equality constraints). So, no guarantee of
success exists if applying it to semialgebraic constructions (i.e. if inequalities are involved).
For instance, the above mentioned family of moving ellipses with a variable focus can not
be considered as an algebraic one, since the focus is constrained to belong to a segment and,
thus, one of the variables is subject to inequalities expressing it should be limited by the
extremes of the segment. Lacking of an efficient proposal for dealing with the semialgebraic
case, let us consider this family in a purely algebraic fashion, even if then its description
includes some other, unexpected, curves. Thus, let us apply the standard construction for an
ellipse of foci at points A(4, 0) and B(0, t) and major axis of length 5, c.f. [9], yielding that
an ellipse of the family is described by

4y2t2 − 4yt3 − 36x2 − 100y2 + t4 − 32xyt + 16xt2 + 164yt − 82t2 + 144x + 81 = 0,
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Fig. 9 An envelope correctly computed in GeoGebra5.0

and the elimination of this polynomial and its partial derivative with respect to t is, once
factorized,

(2x + y2 − 9)(18x − y2 + 9)(x2 − 8x + y2 + 16),

that is, two parabolas and the point A(4, 0). We observe that point A, also found following
definition E3, is, as expected, also included into the output for envelope E1. Here, the new
knowledge provided by this algebraic approach is about the borders of the region where
the ellipses move, which are now clearly defined by the pair of parabolas. Note that these
parabolas envelope not only the ellipses, but also do with the hyperbolas that the family
equation defines when the variable focus B lies out of the segment, i.e. when t < −3 or
t > 3. An in-depth study of this envelope can be found in [9].

Besides the algebraic vs. semialgebraic setting, the elimination approach deals with a
second difficulty, since it does not return projections, but their closure in a Zariski topology,
i.e. it always returns algebraic sets and not just some parts of them. Yet, our definition of E1
explicitly requires a projection (as expressed by the ∃ symbol included in the definition).
Thus, when looking at a family of curves F(x, y, t) = 0 as a surface, its envelope is the sur-
face projection on the (x, y)–plane, and eliminating t we get an algebraic variety containing
perhaps strictly the sought projection, since the algebraic variety can include some spurious
points or sets that are not part of the envelope. Finally, degenerate instances of the construc-
tion can also introduce, through their projection, other spurious factors into the elimination
result. Consider, for example, finding the deltoid as the envelope of Simson-Wallace lines.
Given a triangle ABC and a point G moving on its circumcircle, construct the orthogonal
projections of G on sides AC and BC, H and I , and find the envelope of lines HI when
G describes the circle. As shown in [8, p. 8], the elimination result includes a quartic curve,
the Steiner deltoid, and an extra linear factor which corresponds to a degeneracy. When G

and C coincide, both points H and I are identical, and no line HI is defined. Thus, the
case of G = C should be excluded in order to get a sound envelope. An expert user could
explicitly remove this degeneration when defining the polynomial system for elimination
by using the trick of Rabinowitz, but currently there is no way to automatically detect them.
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Fig. 10 A family of lines without envelope (left), and the envelope of vertical lines passing through a point
in the unit circle (right) computed with GeoGebra 5.0

4 A symbolic approach to envelope computation in GeoGebra 5.0

As shown in the previous section, there are different problems that need to be circumvented
concerning the elimination-based approach to envelope computation. Since Sept. 2014, it is
the first time a well spread, dynamic geometry program, GeoGebra, with over 20 million
users all around the world, includes a specific command for E1 envelope computations. Cur-
rently, GeoGebra incorporates two strategies for dealing with such computations. The first
one performs standard ideal-theoretic elimination by using Giac, a computer algebra system
packaged inside GeoGebra. As described in the preceding Section, the returned envelopes
are not projections, but their closure, thus possibly including spurious parts. Furthermore,
Giac elimination algorithms are less powerful than Singular ones. A curious illustration of
this fact, along with a plotting mistake of GeoGebra, is the above mentioned Steiner deltoid.
GeoGebra correctly draws this envelope (Fig. 8), despite the expression of the curve is the
sextic

x6 + 2x4y2 + 10x4y − x4 + x2y4 − 6x2y3 + 12x2y2 − 8x2y = 0,

which factors in

x2(x4 + 2x2y2 + 10x2y − x2 + y4 − 6y3 + 12y2 − 8y) = 0.

The plotting procedure of GeoGebra is not able to draw the double line factor x2 = 0, thus
returning a correct graphic result although contradictory with the algebraic one.

Instead of using Giac, GeoGebra desktop based version offers the possibility to outsource
envelope computations to an external free accessible server,6 SingularWS [5]. Following
some ideas by the authors of the present paper, among others [6], instead of performing
standard ideal-theoretic elimination, the polynomial system is seen as a parametric one,
where here we think that x, y are parameters and t or t1, . . . , tn are variables (note the
change of the usually assigned meaning). Thus, parametric polynomial system solving can

6See http://wiki.geogebra.org/en/Release Notes GeoGebra 5.2

http://wiki.geogebra.org/en/Release_{N}otes_{G}eoGebra_{5}.2
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Fig. 11 A circle as the envelope of lines AD when A moves along circle c

be applied to study the solutions for given parameter values. Being more specific, GeoGebra
uses the recent GröbnerCover algorithm [10] to discuss and classify the system attending to
its number of solutions (finite, infinite and no solution).

We shortly recall the algorithm: Let us consider an envelope construction described by a
polynomial system F = {fi(x, y, t1, . . . , tn) : i = 1, . . . , m}, where x, y are the parameters
(the variables in the family of enveloped curves), and t1, . . . , tn the rest of the construction
variables. The solution V(I) = {(x, y, t1, . . . , tn) ∈ C

n+2 : ∀i, fi(x, y, t1, . . . , tn) = 0},
where ideal I = 〈fi〉, can be computed by the GröbnerCover algorithm. Given a monomial
order and the ideal I ⊂ Q[x, y][t1, . . . , tn], there exists a unique set of pairs {(Sj , Bj ) :
1 ≤ j ≤ s}, called Gröbner cover, such that

– The segments Sj ⊂ C
2 are disjoint.

– The segments Sj are locally closed subsets of the parameter space C
2.

– Associated to each segment Sj there is a basis Bj ⊂ Q[x, y][t1, . . . , tn] that specializes
to the reduced Gröbner basis of I for every pair (x, y) ∈ Sj .

The envelope in Fig. 1, for A(3, 0), involves a point B(t1, t2) such that t2
1 + t2

2 = 16, and
the equation of the generating line is t2(y − t2) + (t1 − 3)(x − t1) = 0. A Gröbner cover for
these poynomials and the Jacobi determinant is shown in Table 1.

Thus, the envelope computed by the algorithm is the difference of two varieties

V(7x2 + 16y2 − 112) \ V(9y2 + 49, 3x + 16).

Note that points (−16/3, ±7i/3) should be excluded for the envelope output; nevertheless,
being non-real points, just the ellipse 7x2 + 16y2 = 112 is returned as an implicit curve
(Fig. 9) and GeoGebra shows a correct result. If the points to exclude were real, GeoGebra
would currently return the complete ellipse without removing any point, because its data
structure is not able to manage constructible sets, i.e. sets described as difference of vari-
eties. Users must be aware of this fact, as well as that internal computations are performed
in the complex field, not the real one, that is, what is actually computed is the complex,
algebraic envelope, not the real or semialgebraic one.

Dragging A to (4, 0) the algebraic computation of the envelope outputs now the equation
x2 + 8x + y2 = −16 and no plot is shown. Note that the curve reduces now to the real
point (−4, 0), and that current plotting features of GeoGebra are not able of graphing such
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Fig. 12 The envelope is still a complex circle x2 − 10x + y2 − 4y = −34 despite there is no familly of real
lines

(degenerated to a point) implicit curves. For such an instance of this envelope construction,
solving the associated parametric polynomial system we get two types of solutions:

– t1 = 4 and t2 = 0 for parameter values in V(y) \ V(y, x + 4), and
– t2

1 + t2
2 = 16 for parameter values in V(y, x + 4).

Note that the first one corresponds to a degeneration (when point B(t1, t2) coincides with
(4, 0), being undefined the line AB and so its perpendicular). Since the line y = 0, a 1–
dimensional object, corresponds to a 0–dimensional set of values (t1, t2), this solution is
to be discarded. On the contrary, the second part exhibits the opposite behavior. For any
other position of B in the circle than (4, 0), we get x = −4, y = 0. Having in mind the
importance of caustic curves for the historical development of the theory of envelopes (see
[19]), one would say that the family lines burned the point (−4, 0) .

Fig. 13 The envelope of lines b cannot be computed with GröbnerCover (e) but standard elimination returns
an equation (f ) containing it
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Table 2 Summary of envelope related features and capabilities in the four DG systems

Cabri Cinderella GeoGebra <5 GeoGebra 5 GSP

Does an 4 (as locus) 4 (as locus) 7 4 7

Envelope command

exist?

Used envelope E3, E4 E3, E4 E3, E4 E1, E3, E4 E3, E4

definitions

Graphical Linear object By trace (in general) By trace Linear object By trace

answer

Analytical answer 4 4 7 4 7

External computation 7 7 7 4 (Singular) 7

needed 7 (Giac)

As this example roughly shows, it is crucial for envelope computation to compare dimen-
sions of solution sets for different pieces of the parameter space. Thus, the envelope protocol
currently followed by GeoGebra performs such comparison, accepting as (part of the) enve-
lope the parameter values that yield to solutions of dimension verifying certain conditions.
But this paper is not the adequate place to detail such conditions, as they involve sophisti-
cated algebraic computations [11]. Think, for instance, that there are constructions where
an envelope factor has dimension 1 and it comes from a finite set of ti values, being not
a degeneracy. Recall, for example, the case of the envelope of the family of vertical lines.
We concluded in a preceding section that this family has no envelope at all, since the con-
tradiction −1 = 0 is included into the system one has to solve to compute the envelope.
GeoGebra answers as expected, returning the empty implicit curve 0 = −1 (Fig. 10, left).
But if the family of vertical lines is now defined as the collection of vertical lines passing
through a moving point in the unit circle, the envelope is not anymore empty but, at least, it
contains the lines x = 1 and x = −1, following definition E4. Computing in this case the
envelope E1 with the GröbnerCover algorithm (for parametric polynomial system elimina-
tion [6]), we get t1 = x and t2 = 0 for parameter values in V(x − 1)∪V(x + 1). That is, the
1–dimensional set of lines x = 1 and x = −1 corresponds to t1 = ±1 and t2 = 0. Accord-
ing to the current protocol implemented in GeoGebra, both lines should be removed from
the envelope, thus giving a wrong result. Note that none of the lines comes from a degen-
eration, but they are ordinary members of the family for (±1, 0) positions of the moving
point in the unit circle. As a consequence, the criterium on the dimensions of variables and
parameters spaces needs to be filtered by studying whether an envelope part emerges from
degeneration. This filter is not available in current versions of GeoGebra 5.0. Depending
on the selected version, users will get either such components, or nothing (Fig. 10, right).
We expect to find this new approach included and thoroughly documented in a forthcoming
beta version of GeoGebra.

GeoGebra users have been advised about being aware of the complex (as opposite to real)
character of the computed envelopes in the current version of GeoGebra. At the beginning
of this Section a discussion involving the envelope of Example 1 shows that the final result
lies in the complex field. The curve is an ellipse without two imaginary points, so being
also correct in the real plane. Nevertheless, it is easy to find constructions where working
within the complexes leads to cognitive difficulties for non experts users. Consider, for
instance, the following construction: a point A sliding in a circle c is the center of another
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circle with radius BC, and D is a common point to both circles. The envelope of lines AD

is the inner circle in Fig. 11, with equation x2 − 10x + y2 − 4y = −26. The original
circle and the one centered at A do not share real points whenever length of BC is greater
than 4, but the Implicit Curve object denoting the envelope persists in the Algebra window
of GeoGebra as a complex circle (Fig. 12), despite the environment labels the intersection
point D and the line AD as undefined. There is no way to remove such inconsistencies while
using GröbnerCover to compute envelopes. Future work to deal only with real solutions will
imply the use of techniques from real algebraic geometry, such as Cylindrical Algebraic
Decomposition.

A final issue related to GeoGebra computations deals with timing constraints. Since
GröbnerCover uses sophisticated algebraic algorithms, some envelopes can require an
amount of time which is clearly excessive for a true interactive system. The construction in
Fig. 13 illustrates such a case. A point C moving on a line AB is the center of a circle with
radius FG. Another circle with center D and passing through E is used to define a point H ,
lying on both circles. The envelope of dotted lines CH when C moves along line AB cannot
be determined within the system default time (5 s), returning undefined as result. A future
GeoGebra version should employ concurrent tactics. Given an envelope to be computed, it
should simultaneously perform classical elimination and GröbnerCover. If the slot time for
GröbnerCover is not fulfilled, return the classical result, stating that spurious factors could
perhaps be included in the output. Figure 13 includes both results: e is the unsuccessful out-
put of the envelope computation through GröbnerCover, and f is the envelope computed
through standard elimination.

A summary comparison of various features and capabilities of the discussed DG envi-
ronments is given in Table 2. It shows that GeoGebra 5.0, from the analysed systems, offers
the most accurate ambiance for the study of plane envelopes.

5 Conclusion

We have reviewed abilities and shortcomings of standard dynamic geometry environments
such as Cabri, Cinderella, GeoGebra and The Geometer’s Sketchpad when dealing with
envelopes of families of plane curves. These approaches are related to the different enve-
lope definitions. Special attention has been given to describe the current efforts concerning
the most recent GeoGebra version. There, remote symbolic computations are performed to
output more reliable envelopes and with more associated information, both in geometric as
well as in analytic terms.
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