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Abstract Schulze and ranked-pairs elections have received much attention recently, and
the former has quickly become a quite widely used election system. For many cases these
systems have been proven resistant to bribery, control, or manipulation, with ranked pairs
being particularly praised for being NP-hard for all three of those. Nonetheless, the present
paper shows that with respect to the number of candidates, Schulze and ranked-pairs elec-
tions are fixed-parameter tractable to bribe, control, and manipulate: we obtain uniform,
polynomial-time algorithms whose running times’ degrees do not depend on the number of
candidates. We also provide such algorithms for some weighted variants of these problems.
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1 Introduction

Schulze voting [34], though relatively recently proposed, has quickly been rather widely
adopted. Designed in part to well-handle candidate cloning, its users include Wikipedia in
French, Hebrew, and Russian, the Pirate Party in over a dozen countries, Debian, the Gentoo
Foundation, KDE e.V., the Free Software Foundation Europe, Ubuntu, and dozens of other
organizations, and in 2013 Wikipedia even asserted that “currently the Schulze method is
the most widespread Condorcet method” [36].

Although the winner-choosing process in Schulze voting is a bit complicated to describe,
involving minima, maxima, and comparisons of paths in the so-called weighted major-
ity graph, Schulze [34] proved that finding who won a Schulze election nonetheless is
polynomial-time computable, and Parkes and Xia [31] for the so-called destructive case and
Gaspers et al. [16] for the so-called constructive case (extending a one-manipulator result
for that case by Parkes and Xia [31]) proved that the (unweighted coalitional) manipulation
problem for Schulze elections is polynomial-time computable. On the other hand, Parkes
and Xia [31] proved that for Schulze elections bribery is NP-hard, and the work of Parkes
and Xia [31] and Menton and Singh [28] established that for Schulze elections 15 of the 22
benchmark control attacks are NP-hard.

Parkes and Xia also note that, by the work of [31, 37, 38], the ranked-pairs election
system, which is not widely popular but like Schulze has a polynomial-time winner-
determination problem and like Schulze is based on the weighted majority graph, is resistant
to (basically, NP-hard with respect to) bribery, control under each of the control types they
study in their paper, and manipulation. Based on their discovery that ranked pairs is more
broadly resistant to attacks than Schulze, the fact that Schulze itself “is in wide use,” and the
fact that there is “broad axiomatic support for both Schulze and ranked pairs,” Parkes and
Xia [31] quite reasonably conclude that “there seems to be good support to adopt ranked
pairs in practical applications.”

However, in this paper we show that the resistances-to-attack of Schulze and ranked pairs
are both quite fragile.

For each of the bribery and control cases studied by Parkes and Xia, Menton and Singh,
and Gaspers et al. for which they did not already prove Schulze voting to be in P, we prove
that Schulze voting is fixed-parameter tractable with respect to the number of candidates.
(The (unweighted) manipulation cases were already all put into P by these papers.) Fixed-
parameter tractable (see [30]) means there is an algorithm for the problem whose running
time is f (j)IO(1), where j is the number of candidates and I is the input’s size. This of
course implies that for each fixed number of candidates, the problems are in polynomial
time, but it says much more; it implies that there is a global bound on the degree of the
polynomial running time, regardless of what the fixed number of candidates is.

That result might lead one to even more strongly suggest the adoption of ranked pairs
as an attractive alternative to Schulze. However, although for ranked pairs Parkes and Xia
proved all the types of bribery, control, and manipulation they studied to be NP-hard, we
show that every one of those cases is fixed-parameter tractable (with respect to the number
of candidates) for ranked pairs. So even ranked pairs does not offer a safe haven from
fixed-parameter tractability.

Our final results section looks at bribery and manipulation in the case of weighted voting,
and establishes a number of results for that case. For example, for ranked pairs, we estab-
lish that weighted constructive coalitional manipulation is fixed-parameter tractable with
respect to the combined parameter “number of candidates” and “cardinality of the manipu-
lators’ weight set.” We give evidence that this fixed-parameter tractability result cannot be
extended to a general P result, namely, we establish that weighted constructive coalitional
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manipulation is NP-complete for five or more candidates. We also show that this “five” is
optimal unless P = NP, by establishing that this problem is in polynomial time for four or
fewer candidates.

The structure of the remainder of the paper is as follows. Section 2 presents the most
important contribution of this paper: a winner-set certification framework that will work
hand-in-hand with a “looping algorithm” to allow us to prove fixed-parameter tractability
results for a wide range of manipulative-attack problems related to Schulze elections and
ranked-pairs elections. Section 3 provides most of the definitions we need, including those
of ranked-pairs elections and various types of manipulative-attack problems. Section 4
surveys related work. Section 5 is our most central results section, and presents most of
our fixed-parameter tractability results for Schulze and ranked-pairs elections, obtained
by looping over our winner-set certification frameworks. Sections 6 and 7 provide addi-
tional results for, respectively, the unweighted-voting and weighted-voting cases, mostly
regarding alternate parameterizations and at what threshold the weighted constructive coali-
tional manipulation problem for ranked-pairs elections shifts from being in P to being
NP-complete.

2 Presentation of the key idea

Our fixed-parameter tractability proofs are of interest in their own right, because they face a
very specific challenge, which at first might not even seem possible to handle. The goal of
this section is to describe in relatively high-level terms what that challenge is and how we
handle it.

This section is organized as follows. Section 2.1 defines Schulze’s election system, and
gives an example to show how that systems works. Section 2.2 discusses why the “go-to”
approach for showing fixed-parameter tractability for manipulative-attack problems seems
to lack the flexibility to address Schulze and ranked-pairs elections. Finally, Section 2.3,
which is the most important section of our paper, discusses our approach to obtaining fixed-
parameter tractability results regarding manipulative attacks on these election systems. We
present, in Section 2.3, a “winner-set certification framework” for Schulze elections (and
later, in Section 5.1.2, for ranked-pairs elections) that will be extensively used in most of
the rest of this paper to obtain fixed-parameter tractability results.

2.1 Schulze voting

We present the definition of Schulze voting [34]. Voters will always vote by linear orders
over the candidates; in doing that, we adopt the complete, tie-free ordering version of
Schulze voting that is used in the papers most related to this one [16, 28, 31]. We first define
the important, standard notion of a weighted majority graph.

Definition 1 (Weighted Majority Graph) Given the input set of candidates and the set of
votes over them (as linear orders), the weighted majority graph (WMG) is the graph that for
each ordered pair of candidates c and d, c �= d, has an edge from c to d having weight equal
to the number of voters who prefer c to d minus the number of voters who prefer d to c.

Clearly, either all WMG edges have even weight or all WMG edges have odd weight, and
the weight of the edge from c to d is negative one times the weight of the edge from d to c.

The notion of a path’s strength underpins the definition of Schulze elections.
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Fig. 1 WMG for the election
examples, with one edge from
each pair left implicit. Those
edges are the reverse edges of the
displayed edges, with a weight
equal to negative one times the
weight of their displayed
counterpart, e.g., the implicit
edge from candidate f to
candidate g has weight -4

Definition 2 (Path Strength) The strength of a directed path between two nodes in the
WMG is the minimum weight of all the edges along that path.

The strength (of a path) can be negative.

Definition 3 (Schulze Elections) The Schulze election system is that candidate c is a win-
ner exactly if for each other candidate d it holds that there is some simple path from c to d

whose strength is at least as great as that of every simple path from d to c.

A lovely result is that the set of winners, under this definition, is always nonempty [34].
We now give a small Schulze-election example, adapted from an example of Parkes and

Xia [31], over the candidate set {e, f, g, h}. Although the votes are not specified here, using
McGarvey’s method [26] we can build a profile of votes realizing the WMG of Fig. 1.
(McGarvey’s method is quite standard, so we ask the reader to here take our claim on faith.
However, as Appendix B of our technical report version [20], we provide a detailed expla-
nation of McGarvey’s method, especially regarding the weighted case.) In Fig. 1’s example,
candidate g is the sole Schulze winner, strictly beating each other candidate in best-path
strength. For each other candidate i, candidate g has a path to i of strength 6, but i’s strongest
path to g has strength 2.

2.2 Looping over integer linear programming feasibility problems,
and the challenges that Schulze and ranked-pairs elections pose for this approach

One of the most powerful tools to use in building algorithms establishing fixed-parameter
tractability is a result due to Lenstra, showing that the integer linear programming feasibility
problem (henceforth, ILPFP) is in P if the number of variables is fixed [23]. Lenstra’s result,
based on the geometry of numbers, is very deep and so strong that intuition whispers it
should not even be true; yet it is.

Now, if within an appropriate-sized integer linear program with a number of variables
that was bounded by some function of the number of candidates we could capture our
bribery/manipulation/control challenges and the action of the election system, we would be
home free. Indeed, this has been done, for control, for such systems as plurality, veto, Borda,
Dodgson, and others (see the discussion on p. 338 of [11]). However, Schulze and ranked-
pairs elections have such extremely demanding definitions that they seem well beyond such
an approach, and we have not been able to make that approach work. So we have a challenge.
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Fortunately, the literature provides a way to hope to approach even systems that are
too hard to directly wedge—together with the manipulative action—into an ILPFP. That
approach is to define some sort of structure associated with subcases of behavior/outcomes
of an election system, such that for each fixed number of candidates the number of such
structures is bounded as a function of the number of candidates (independent of the number
of voters), yet such that for each such structure we can wedge into an ILPFP the question
of whether the given action can be made to succeed in the system in a way that is consistent
with that structure. If that can be done, then we just loop over all such structures (for the
given number of candidates), and for each of them build and run the appropriate ILPFP.

This has not been done often. But it has been done for example by Faliszewski et al. [14],
with respect to some control problems, for the election system known as Copeland voting.
The structure they used is what they called a Copeland Output Table, which is a collec-
tion of bits associated with the outcomes of the pairwise majority contests between the
candidates.

Unfortunately, such output tables do not seem to have enough information to support the
case of Schulze or ranked pairs. (Appendix A of our technical report version [20] provides
an alternative winner certification framework that readers may wish to look at to get more
of a sense of what certification frameworks do and how they may look. That alternative
certification framework is closer in flavor to Copeland Output Tables than the approach
we will outline here, although as that technical-report appendix discusses the alternative
approach is both quite clear and quite subtle.) The natural structure that would allow us to
tackle our systems is the one the systems are based on, namely, the WMG. Looping over all
of those would allow us within the loop to easily write/run an appropriate ILPFP to check
the given case. However, that falls apart because the number of WMGs is not bounded as a
function of the number of candidates; the number also grows as a function of the number of
voters. The impossibility of looping over WMGs leaves us still faced with the challenge of
how to tackle our problems.

2.3 Our Schulze winner certification framework

A key contribution of this paper is to show that the needle described above can be threaded—
and to thread it—for Schulze and ranked-pairs elections. In particular, we need to, for each
of those election systems, find a (winner-set certification) structure that on one hand is rich
enough that for each structure instance we can within an ILPFP check whether the given
manipulative action can lead to success in a way consistent with the case of which the
particular instance of the structure is speaking. Yet on the other hand, the structure must
be so restrictive that the number of such structures is bounded purely as a function of the
number of candidates (independent of the number of voters). In brief, we need to find, if
one exists, a “sweet spot” that meets both these competing needs.

We achieve this with structures we call Schulze winner-set certification frameworks
(SWCFs) and ranked pairs winner-set certification frameworks (RPWCFs). A Schulze
winner-set certification framework contains a “pattern” for howwe can prove that a given set
of candidates is the winner set of a Schulze election. To do that, the structure for each winner
a specifies, for each other candidate b, a “strong path” γab from a to b in the WMG (recall
that victory in Schulze elections is based on having strong paths), and then—to establish
that the other candidate b has no stronger path back to a—for every simple path from b back
to our candidate a the structure identifies a “weak link” (a directed edge on that path) that
will keep the path from being too strong. By a “weak link,” we mean an edge on that path
in the WMG such that its weight is less than or equal to that of every edge in our allegedly
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quite strong path γab. (Now, keep in mind that, at the time we are looping through the struc-
ture, we will not even know how strong each link is, since the manipulation/bribery/control
will not yet even have happened. Rather, the structure is specifying a particular pattern of
victory, and the ILPFP will have to check whether the given type/amount of manipula-
tion/bribery/control can bring to life that victory pattern.) Additionally, for each candidate
a the structure claims is not a winner, the structure will specify what rival b eliminates that
candidate from the winner set and then will outline a pattern for a proof that that is the case,
in particular, giving a “strong path” from b to a and for each simple path from a to b our
structure will specify a “weak link,” i.e., an edge on that path from a to b whose weight in
the WMG we hope will be strictly less than the weight of all edges in the selected strong
path from b to a; if all our hopes of this sort turn out to be true (and that is among what the
integer linear program will be testing, for each of our certification framework’s structures),
this proves that b eliminates a. Crucially, the number of structures in that Schulze winner-
set certification framework, though large, is clearly bounded as a function of the number
of candidates. The certification framework, however, does not itself have its hands on the
weights of the WMG. So the paths and edges it specifies are all given in terms of the self-
loop-free graph, on nodes named 1, 2, . . . , ‖C‖, that between each pair of distinct nodes
has edges in both directions. Since the candidate names are irrelevant in Schulze voting, we
can change to those canonical names, so that our Schulze structures are always in terms of
those names.

Crucially, as noted above, the number of structures in our Schulze winner-set certification
framework, though large, is bounded as a function of the number of candidates. Yet, also
crucially, this approach provides enough structure to allow a polynomial-sized (technically,
it is actually a uniform-over-all-numbers-of-candidates polynomial multiplied by a constant
that may depend on the number of candidates; this does not trivialize the claim, since the
ILPFP must work for all numbers of voters) ILPFP to do the “rest” of the work, namely,
to see whether by a given type of attack we can bring to life the proof framework that a
given instance of the structure sets out, as to who the winners/nonwinners are in the Schulze
election and why.

This approach underpins most of our fixed-parameter tractability results. Our proofs of
Theorems 1 and 3 give detailed examples of this approach, and those two proofs respectively
leverage our proofs of Theorems 2 and 6. Many additional examples can be found in the
proofs that we omit here but have included in our technical report version [20].

For ranked pairs, the entire approach is what we just described above, except the certi-
fication framework we use is completely different than that used for Schulze. Ranked pairs
is a method that is defined in highly sequential terms, through successive rounds some
of which add a relationship between two candidates. So our certification framework will
be making extensive guesses about what happens in each round (and about a number of
other things). But again, we will ensure that the number of such certification structures is
bounded as a function of the number of candidates (independent of the number of voters),
yet each structure will give enough information that the rest of the work can be done by
an integer linear programming feasibility problem. Our notion of a ranked pairs winner-set
certification framework will be given in detail in Section 5.1.2 and will first be applied in
Section 5.1.3.

3 Definitions

In this section, we define the ranked-pairs election system (Section 3.1), our manipulative-
attack problems and their various models (Section 3.2), and the complexity class FPT (3.3).
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3.1 Ranked-pairs elections

Schulze elections were defined in the previous section. We now define the quite differ-
ent system known as ranked pairs, due to Tideman (see [35]). The ranked-pairs winner is
defined by a sequential process that uses the weighted majority graph (WMG). We choose
the edge in the WMG of greatest weight, say from a to b, and fix in the eventual out-
put that a must beat b; cases of ties, either regarding what edge has the greatest weight,
or regarding cases where (a, b) and (b, a) both are weight zero, are handled as will be
specified in footnote 1. We then remove the edges between a and b from the WMG. We
then iterate this process, except if the greatest remaining edge is one between two candi-
dates who are already ordered by earlier fixings of output ordering (this can happen, due to
transitivity applied to earlier fixings), then we discard the pair of edges between those can-
didates. We continue until we have completely fixed a linear order.1 The candidate at the
top of this linear order is the winner under ranked pairs. Even if the first removed edge is
from a to b and that edge has positive weight, it is possible that a will not be the ranked
pairs winner.

We give a small example of selecting the winner under ranked pairs. We again consider
the election with candidate set {e, f, g, h} and votes such that Fig. 1 is the WMG. We will
break order-of-consideration ties (due to tied edge weights) between {a, b} and {c, d} in
favor of which pair has the lexicographically-larger larger-candidate-of-the-pair, and if they
tie in that, in favor of which pair has the lexicographically-larger smaller-candidate-of-the-
pair. Thus we handle the edges in the following order: f → h, e → f , h → e, g → e,
g → f , h → g. The output ordering will be set by those f � h, e � f , etc., except with
h → e discarded due to transitivity, and after g → e sets g � e we have a completed linear

1There are two different types of ties that must be handled. One is when we get to a case when we are
considering an edge, and we don’t discard it, and the candidates tie (the edges between them are both 0);
here, we break ties using some simple ordering among the candidates. By simple, we mean feasible; there is
a polynomial-time machine that, given the candidates, outputs a linear ordering of them that is the ordering
to use when breaking ties of this sort. The second type of tie is when there is a tie as to what is the largest
edge remaining in the WMG. In ties of that sort, we use a simple—again, by simple we mean feasible,
analogously to the first case—ordering among all unordered pairs of candidates to decide which pair having
a highest-weight edge still left is the one to next consider. If that pair is {a, b} and both (a, b) and (b, a) have
weight zero, either edge can be chosen to consider next, since which we consider at this point among (a, b)

and (b, a) makes no difference in the result of this step.
An at first seemingly tempting alternate approach to breaking ties would be to require as part of the input

the two types of tie-breaking orders discussed above. But that is highly unattractive, since that would require
changing the definitions of long-defined problems (manipulation, control, bribery), in order to add that extra
input part. In truth, the tie-breaking is being made, by us and the earlier papers, to be a part of ranked pairs;
and so it should be a feature or setting that is part of one’s version of ranked pairs, and should not be built in
by hacking the notions of manipulative actions. So to us, if one wants to speak about ranked pairs, one to be
clear and complete must also specify the two feasible tie-breaking functions that are needed to completely
define the system. However, our main results for ranked pairs, which are fixed-parameter tractability results,
will all hold for all feasible tie-breaking functions.
Here is an example of a pair of feasible tie-breaking functions. One could break ties between two can-

didates in favor of the lexicographically larger. And one could break ties between two candidate pairs in
favor of the pair with the lexicographically-larger larger-candidate-of-the-pair, and when the larger members
are the same in both pairs then breaking the tie in favor of whichever pair has the lexicographically-
larger smaller-candidate-of-the-pair. The suggestion to use the candidate-vs.-candidate ordering to induce
an ordering on the pairs—a suggestion our example is consistent with—was made and used by the creator
of ranked pairs, Nicolaus Tideman, in his book “Collective Decisions and Voting: The Potential for Public
Choice” [35].
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order, g � e � f � h, and so the processing stops. Thus under ranked pairs, g is the sole
winner in this example.

3.2 Models and manipulative-attack problems

As mentioned earlier, our elections are specified by a set of candidates and voters (each
vote is a tie-free linear ordering of the candidates). The standard (also called “nonsuccinct”)
approach to the votes is that each comes in separately. In the succinct approach, which is
meaningful only for systems such as Schulze and ranked pairs that don’t care about voters’
names, each tie-free linear ordering that is cast by at least one voter comes with, as a binary
integer, the number of voters that voted that way.

In our problems we will speak of making a candidate p a winner or precluding p from
being a winner. This is known as the nonunique-winner model or, in some papers, the co-
winner model. If one changes “a winner” into “the one and only winner,” that is what is
known as the unique-winner model. Which model is more natural to use depends on which
of these two questions is what one’s setting is focused on: being a winner, or being the one
and only winner. It has been argued by Faliszewski, Hemaspaandra, and Hemaspaandra [13]
that the nonunique-winner model is often the better model on which to focus. In our paper,
to support comparisons with each of these models, we will typically prove our results for
both models. Fortunately, this usually takes almost no additional work or discussion. In
fact, since ranked-pairs in the Parkes and Xia [31] version that we use never has more
than one winner, the models coincide there. However, the same cannot be said for Schulze
elections.

The problem definitions we are about to give present the definitions for the nonsuccinct,
nonunique-winner case. However, the above two paragraphs make clear the very slight
changes needed to define the succinct, nonunique-winner case, the nonsuccinct, unique-
winner case, and the succinct, unique-winner case. For consistency with the literature, the
wording of many of our attack-problem definitions is taken directly from or modeled on the
definitions given in [14]. In these definitions, E will represent the election system.

Definition 4 (The constructive and destructive bribery problems for E elections [10])

Given: A set C of candidates, a collection V of voters (specified via their tie-free linear
orders over C), a distinguished candidate p ∈ C, and a nonnegative integer k.

Question (constructive): Is it possible to change the votes of at most k members of V in
such a way that p is a winner of the election whose voter collection is the thus-changed
V and whose candidate set is C.

Question (destructive): Is it possible to change the votes of at most k members of V in
such a way that p is not a winner of the election whose voter collection is the thus-
changed V and whose candidate set is C.

In the literature, the above problem is often called the unweighted, unpriced bribery
problem.

Definition 5 (The constructive manipulation problem for E elections and the destruc-
tive manipulation problem for E elections [1, 7])

Given: A set C of candidates, a collection V of voters (specified via their tie-free linear
orders over C), a voter collection W (each starting as a blank slate), and a distinguished
candidate p ∈ C.
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Question (constructive): Is it possible to assign (tie-free linear order) votes to the mem-
bers of W in such a way that p is a winner of the election whose voters are the members
of V and W , and whose candidate set is C.

Question (destructive): Is it possible to assign (tie-free linear order) votes to the members
of W in such a way that p is not a winner of the election whose voters are the members
of V and W , and whose candidate set is C.

In the literature, this is often called the unweighted coalitional manipulation problem.
We will sometimes refer to the members of the manipulative coalition W as manipulators
and to the members of V as nonmanipulators.

As benchmarks, over time eleven “standard” types of control questions have emerged [2,
14, 19], each with a constructive version and a destructive version. Four of the eleven are
each of adding/deleting (at most k, with k part of the input) candidates/voters. A fifth is so-
called unlimited adding of candidates. The remaining six are partition of candidates, runoff
partition of candidates, and partition of voters, each in both the model where first-round ties
promote and in the model where first-round ties eliminate. The benchmark types are mod-
eled on situations from the real world. For example, constructive control by adding voters
models highly targeted get-out-the-vote drives and constructive control by adding candi-
dates models trying to draw into elections spoiler candidates who will hurt your opponents.
See for example [2, 14, 19] for a detailed discussion of the motivations of the bench-
mark control types. We mention in passing that recent work [18] has shown that in the
nonunique-winner model there are at most nine distinct destructive control types and in the
unique-winner model there are at most ten distinct control types; what we mean by this is
that that paper shows that some control types are identical as to which instances they can be
carried out on successfully.

Due to there being many control types, giving their definitions can take up a large amount
of space. In order to keep the paper self-contained for those who want more formal defi-
nitions, as Appendix A we provide in their typically stated forms the definitions of all the
control types. For those who already know the definitions or at this point simply want a brief
treatment (knowing Appendix A is available with formal definitions), the rest of the present
paragraph gives a short overview of the flavor of the different benchmark control attacks.
All these problems have as their input an election, (C, V ), and a distinguished candidate
p ∈ C. Constructive (destructive) control by deleting voters—for a given election system,
of course—also has a nonnegative integer k in the input and asks whether there is a subset
of V of cardinality at most k such that with that subset removed p is (is not) a winner. Con-
trol by adding voters is analogous, except the input is the election, k, and a set W of voters
who can be added (but at most k can be added). Deleting candidates and adding candidates
are analogous to the voter cases, with a k as part of the input, and the only twist is that in
destructive control by deleting candidates, it is forbidden to delete p. Unlimited adding of
candidates is the same except there is no limit k. Constructive (destructive) partition of vot-
ers, in the ties-promote model, asks whether there is a way of partitioning the voters into two
groups so that if all winners under the election system of each of those first-round elections
compete in a final election under the same election system in which all voters vote (with
their votes masked down to the remaining candidates), p is (is not) a winner. In its ties-
eliminate variant, only unique-winners of a first round election move forward. The runoff
partition of candidates types are analogous, except in the first round it is the candidates that
are partitioned and all voters vote in each of those subelections. Partition of candidates has
just one side of the partition participating in the first-round election, while the others get a
bye to the final round.
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3.3 Fixed-parameter tractability

We now define the important class FPT.

Definition 6 (FPT, see [30]) A problem is said to belong to the class FPT (equivalently, is
said to be fixed-parameter tractable) with respect to a parameter if there is an algorithm for
the problem whose running time is f (j)IO(1), where j is the input’s value of that parameter,
f is a computable function, and I is the input’s size.

Note that this means that although the algorithm for larger values of j can have a bigger
multiplicative constant, the degree of the polynomial running time is uniformly bounded
from above—there is some single integer k such that regardless of the fixed j the algo-
rithm for that parameter bound runs in time O(Ik). Our parameter will almost always be
the most natural one—the number of candidates. In Section 7, we will have cases where
our parameter is a tuple of features of the input rather than a single feature, i.e., is a “com-
bined” parameter (see [3, Chapter 9]). We stress that FPT should not be confused with the
class, of which it is a subset, XP. XP problems are in P for each fixed bound on the param-
eter, but their degree can grow as that bound grows. Thus XP is a far less attractive class,
even though by brute force it is often clear that parameterized versions of voting problems
fall into it. However, our focus is firmly on the more demanding goal of establishing FPT
results.

4 Related work

The computational complexity of manipulation, bribery, and control for Schulze voting and
ranked pairs has been studied previously by Parkes and Xia, Xia et al., Menton and Singh,
and Gaspers et al. [16, 28, 31, 38]. The work of Xia et al. and Parkes and Xia establishes
(see also the table in [31]) that for Schulze elections constructive and destructive bribery,
constructive and destructive control by adding and deleting voters, and constructive control
by adding candidates are NP-complete, and that ranked pairs has not only all these hard-
nesses but also has NP-completeness results for constructive and destructive manipulation,
for destructive control by adding candidates, and for constructive and destructive control by
deleting candidates. Menton and Singh (see Table 1 of [28]) studied all remaining types of
constructive and most types of destructive control for Schulze voting. Their work establishes
that NP-completeness holds additionally for constructive control by unlimited adding of
candidates, constructive control by deleting candidates, each variant of constructive control
by partition or runoff partition of candidates, and each variant of constructive and destructive
control by partition of voters. For the four cases of destructive control by partition or runoff
partition of candidates, they show that polynomial-time algorithms exist.2 The (unweighted
coalitional) manipulation problem is shown to be in P for the destructive case by Parkes
and Xia [31] and for the constructive case by Gaspers et al. [16]. Gaspers et al. [16] prove
that the weighted constructive coalitional manipulation problem for Schulze elections is in

2For Schulze, three of the 22 benchmark control cases—each clearly belonging to NP for Schulze—were left
open by the abovementioned papers: destructive control by adding candidates, destructive control by deleting
candidates, and destructive control by unlimited adding of candidates. Indeed, even now these cases remain
open as to whether they are in P, are NP-complete, or have some other complexity. However, for each of these
three control cases (and all other of the benchmark control cases), we obtain membership in FPT.
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polynomial time for each fixed number of candidates. We observe that inspection of their
paper immediately makes clear that they have even established the stronger claim that the
weighted constructive coalitional manipulation problem for Schulze elections is in the class
FPT.3

All the results in the two papers involving Xia are in the unique-winner model. Ranked
pairs is resolute (has exactly one winner), as Parkes and Xia frame it, and we follow their
framing. (For nonresolute versions of ranked-pairs elections, the handling of tie-breaking is
known to strongly affect complexity issues [6].) And so, as we noted earlier, the nonunique-
winner and the unique-winner models are in effect the same for ranked pairs. Schulze is not
resolute, but although Parkes and Xia’s results on that are in the unique-winner model, they
comment that their results all also hold in the nonunique-winner model. Gaspers et al. study
both the nonunique-winner model and the unique-winner model. Menton and Singh use
the nonunique-winner model as their basic model, as do we in the present paper. To us the
nonunique-winner model is more attractive in not requiring a tie-breaking that, especially
in symmetric cases, is often arbitrary and can change the flavor of the system. However,
our main FPT results are proven by a loop approach over ILPFPs (integer linear program-
ming feasibility problems), and it is clear that a straightforward adjustment to these will also
handle the unique-winner cases. The key difference between our work and all the above-
mentioned work is that our work is in general looking at the complexity of these problems
when parameterized by the number of candidates, and for this we give FPT algorithms. The
earlier papers primarily looked at unbounded numbers of candidates and obtained both P
and NP-completeness results. Our contribution is that for all their NP-complete cases, we
show membership in FPT.

As to technique, the closest precursors of this paper are two papers by Faliszewski et
al. [11, 14]. Those, like us, use a loop over ILPFPs. There are two main differences between
that work and ours. One is that they deal with control, whereas we are concerned with
control, bribery, and manipulation. The other difference is that, as explained in detail in
Section 2, their type of loop-over structure isn’t flexible enough for our cases, and the nat-
ural structure for one to loop over (WMGs) generates a number of objects not bounded
in the number of candidates. To handle this, and in contrast, our paper finds a middle
ground that allows the loop to be over a bounded-in-‖C‖ number of objects, yet provides
enough information in the objects so as to allow the ILPFPs to complete the checking
of whether success is possible. For a different type of attack known as “swap bribery”
and a different election system, Dorn and Schlotter [8] have recently employed what in
effect (although implicitly) is a loop over ILPFPs, and they mention in passing without
details that that swap bribery approach should apply to ranked pairs (please see footnote 4
of our technical report version [20] for a detailed discussion of the relationship of their
work and ours).

3Briefly, the reason the algorithm of Gaspers et al. [16] for the weighted constructive coalitional manipulation
problem for Schulze elections is clearly even an FPT algorithm is as follows. Their algorithm is using the
following fact, which was observed independently by them andMenton and Singh [27]. For Schulze elections
and the weighted constructive coalitional manipulation problem in the nonunique-winner model, it holds
that if one can make a given candidate a winner, then there is a set of manipulative votes in which all
manipulators vote the same way and that candidate is selected as a winner. Once one has this, an FPT
algorithm is obtained simply by cycling over all possible preference orders, for each seeing whether, if that
is what all the manipulators cast as their vote, the given candidate becomes a winner. And that is precisely
what their short, elegant algorithm is doing for this case.
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It is well-known that a problem is fixed-parameter tractable if and only if it has what is
known as a kernelization [22]. So each fixed-parameter tractability result, including those
of this paper, is establishing the existence of a kernelization. The size of the smallest kernels
of a problem is an interesting issue of study, although one that is not the focus of this paper
(however, see [4, 8, 17]).

Taking an even broader perspective, this work is part of a line that looks at the com-
plexity of elections in the context of bounds on the number of candidates, a study that
for example has been pursued famously by Conitzer, Sandholm, and Lang [7] regarding at
what candidate numbers complexity jumps from P to NP-complete. The particular focus on
FPT algorithms, and maintaining a uniform degree bound over all values of bounds on the
number of candidates, is part of the important field of parameterized complexity (see [30],
see [4] for a survey on this approach for elections, and see [32] for a survey of an alternate
approach to bypassing complexity results).

5 Results by looping over frameworks

We now present our results that are established by our looping-over-frameworks approach.
We will handle in separate sections bribery, control, and manipulation, showing how to
achieve FPT results for each.

In the bribery section, Section 5.1, we will first prove the bribery result for Schulze
elections, so that the reader quickly gets to seeing how the proof goes without hav-
ing to have first seen how the approach works for ranked pairs. We then will give our
ranked pairs winner-set certification framework, and will note how to convert our proof
into a proof for that case also. Then later in the control section, Section 5.2, we will
state and prove together the Schulze-elections case and the ranked-pairs case. To avoid
overly much repetition of proofs using the looping approach, in this journal version we
will present the detailed proofs of two theorems using that approach, namely, Theorem
1, which is about bribery, and Theorem 3, which is about control. We will refer the
reader to our technical report version [20] for detailed proofs of most of the remain-
ing results that are proved by the looping framework, as well as a few other lengthy
proofs.

Since (unweighted) Schulze manipulation has been shown to be in P in general,
both for the constructive [16] and the destructive [31] cases, we do not need to han-
dle Schulze elections in our manipulation section, Section 5.3. (For the nonunique-
winner model, weighted constructive coalitional manipulation for Schulze elections,
Gaspers et al. [16] provide what as mentioned earlier is an FPT algorithm. And in
Section 7 we will establish, as part of Theorem 11, that for Schulze elections our
approach provides an FPT algorithm for special cases of both weighted destructive
coalitional manipulation and unique-winner model, weighted constructive coalitional
manipulation.)

5.1 Bribery results and specification of ranked pairs winner-set certification
framework

In this section, we will first state and prove the bribery result for Schulze, then will give
our winner-set certification framework for ranked pairs, and then will state and prove our
bribery result for ranked pairs.
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5.1.1 Bribery result for Schulze

We state and prove the bribery result for Schulze. To help us avoid repetition in theorem
statements, we first introduce a shorthand that we will use in most of our theorem state-
ments. The “eight” below is because each of the three binary choices can be independently
made.

Notation 1 We will use “in our eight bribery models” as a shorthand for “in both the suc-
cinct and nonsuccinct input models, for both constructive and destructive bribery, in both
the nonunique-winner model and the unique-winner model.” We will use the analogous
shorthand for the cases of control and manipulation.

Theorem 1 For Schulze elections, bribery is in FPT (is fixed-parameter tractable) with
respect to the number of candidates, in our eight bribery models.

Proof Our proof will rely heavily on the notion of Schulze winner-set certification frame-
works (SWCFs), which we introduced in Section 2.3. Recall from that section that for each
(number of candidates) j , the number of j -SWCFs is constant. That is, the number of j -
SWCFs is bounded by a function of the number of candidates, and is independent of the
number of voters.

We first give the proof for the constructive, nonunique-winner model case. We will
handle simultaneously the succinct and nonsuccinct cases.

Our FPT algorithm works as follows. It gets as its input an instance of the bribery prob-
lem, and so gets the candidates (with a distinguished candidate noted), the votes (or for the
succinct version, a list of which types of votes occur at least once, along with the multi-
plicities of each), and the limit k on how many voters can be bribed. Let j be the number
of candidates in the input instance. To mesh with the naming scheme within our SWCFs,
we immediately rename all the candidates (including within the votes) to be 1, . . . , j , with
the distinguished candidate becoming candidate 1. Now, the top-level programming loop of
the algorithm is as specified in Algorithm 1 (recall that we are showing the constructive,
nonunique-winner model case in this algorithm).

Algorithm 1 Top-level loop for bribery

Start
for each j -SWCF K do

if candidate 1 is a winner according to K and K is an internally consistent,
well-formed j -SWCF then
(1) build an ILPFP that checks whether there is a way of bribing at most k of the
voters such that K’s winner-set certification framework is realized by that bribe
(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise bribe that succeeds)

end if
end for
declare that the given goal cannot be reached by using at most k bribes
End

All that remains is to specify the ILPFPs that we build inside the loop, for each given
j -SWCF K . Suppose we are doing that for some particular K . We do it as follows.
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There are j ! possible votes over j candidates; let us number them from 1 through j ! in
any natural computationally simple-to-handle way. We call the ith of these the ith “vote
type.” We will have constants ni , 1 ≤ i ≤ j !, denoting how many voters start with vote
type ni . Our ILPFP will have integer variables (which we will ensure are nonnegative) mi,�,
1 ≤ i ≤ j !, 1 ≤ � ≤ j !. mi,� is the number of voters who start with vote type i but are
bribed to instead cast vote type �. (Having mi,i �= 0 is pointless but allowed, as is having
simultaneously mi,� > 0 and m�,i > 0.) So the number of ILPFP variables is (j !)2, which
is large but is bounded with respect to j , so Lenstra’s algorithm [23] can be used to deliver
an FPT performance overall.

Also, not as direct parts of the ILPFP but as tools to help us build it, we define two
boolean predicates, Bigger(a, b, c, d) and StrictlyBigger(a, b, c, d), where the arguments
each vary over 1, . . . , j . Let us use D(a, b) to indicate the weight of the WMG edge (after
our manipulative actions) that points from a to b. Recall, from Section 2, that what a
j -SWCF does—and so in particular what our under-consideration j -SWCF, K , does—is
specify, for a very large number of such quadruples (that number is bounded as a function
of j , although we do not need that since our number of variables is already bounded as a
function of j ), that D(a, b) ≥ D(c, d) or that D(a, b) > D(c, d). That is, it is specifying for
various edge pairs in the WMG that the one edge is greater than or equal to the other edge
in weight, or is strictly greater in weight. For each such specified relation that explicitly
appears in K , set to true that bit in the appropriate predicate (Bigger or StrictlyBigger), and
leave all the other bits set to false. We of course will have to enforce these specifications
through our constraints.

Now we can specify all the constraints of our ILPFP. There will be three types of con-
straints. The first are the housekeeping constraints to make sure that the number of bribes
and the mi,�s are all reasonable. Our constraints of this sort are: For each 1 ≤ i, � ≤ j !, we
have a constraint mi,� ≥ 0. For each 1 ≤ i ≤ j ! we have a constraint ni ≥ ∑

1≤z≤j ! mi,z;
that is, we do not try to bribe away from vote type i more votes than initially exist of vote
type i. And we have the constraint k ≥ ∑

1≤i′,�′≤j ! mi′,�′ ; that is, our total number of bribes
does not exceed the bribe limit k.

The second type of constraint consists of those constraints used to enforce the bits set
to “true” in StrictlyBigger. For each such bit, we will generate one constraint: for a bit
that is saying that D(a, b) > D(c, d), we will enforce that with the constraint shown in
Fig. 2; in that figure and for the rest of this paper, in order to make the representation of
the constraints more concise, we introduce the shorthand notation pref (a, b) as the set of
vote types i, 1 ≤ i ≤ j !, in which candidate a is preferred to candidate b. All that the
bulky-looking constraint of the figure says is that after all the gains and losses due to bribing
happen, the number of voters who prefer a to b minus the number who prefer b to a is
strictly larger than the number of voters who prefer c to d minus the number who prefer d to
c. If StrictlyBigger(a, b, c, d) is set to “false,” that does not mean we generate a constraint
ensuring that D(a, b) �> D(c, d). Rather, if a given bit is set to “false,” that just means that
that particular bit-setting does not itself create a constraint. In contrast, bits set to “true” in
StrictlyBigger and Bigger mean that we generate a constraint to enforce the stated relation.

The third type of constraint consists of those constraints used to enforce the bits
set to “true” in Bigger. For each such bit, we will generate one constraint: for a bit
that is saying that D(a, b) ≥ D(c, d), we will enforce that with precisely the con-
straint shown in Fig. 2, except with the “1+” removed from the right-hand side of the
inequality.

That completes our statement of the ILPFP, which indeed captures what it seeks to cap-
ture. And using Lenstra’s algorithm [23] for each of our ILPFPs, the overall loop over the
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Fig. 2 Constraint enforcing that, after the bribes happen, D(a, b) > D(c, d)

ILPFPs has the desired running time. (Although for each fixed j the multiplicative con-
stant is very large, the degree of the polynomial, which is uniform over all j , isn’t terrible;
Lenstra’s algorithm uses just a linear number of arithmetic operations on linear-sized inte-
gers [30]. Still, even within the good news that we have placed the problem within FPT,
there is the bad news that the multiplicative constant is so large that this FPT algorithm does
not provide an algorithm for practical use.)

To be clear as to what is going on this proof, since what is a constant and what is a
variable is a bit subtle here, let us say a bit more about the use of Lenstra here. What
we in effect are using is that Lenstra’s work ensures that there is a k such that for each
fixed number of candidates and each of the (large but bounded as a function of the number
of candidates) ILPFPs generated in our loop, if we view that ILPFP as an object whose
running time for solution is being evaluated asymptotically as the number of voters increases
without bound, the ILPFP’s running time isO(nk). (That same value k holds for all numbers
of candidates and for all ILPFPs that our loop generates for that number of candidates.
However, for different numbers of candidates the multiplicative constant represented by the
“big O” may differ.) Note that each such ILPFP object in effect has as its set of variables
(regarding the asymptotics of its running time) the constants of the ILPFP; and a big part of
what our looping algorithm does is to set those constants based on the votes in the election.

That was the proof for the constructive, nonunique-winner model case. To change the
above proof from the constructive to the destructive case and/or from the nonunique-winner
case to the unique-winner case, in the main loop we will simply create ILPFPs for only those
SWCFs whose set of who wins and loses reflects a sought outcome. For example, for the
destructive case in the unique-winner model, that would be having the distinguished candi-
date not be a unique winner, i.e., the start of Algorithm 1’s “if” statement would become “if
candidate 1 is not a unique winner.

The same proof approach applies to ranked pairs. However, we first must do some work
to define an appropriate winner-set certification framework for ranked pairs. We turn to that
now.

5.1.2 Specification of ranked pairs winner-set certification framework

In this section, we describe the winner-set certification framework that makes our approach
work for ranked pairs.

Basically, an instance of that framework will be a story that tells us what happens at
each stage of the iterative process that defines ranked pairs. We could actually tell this story
without fixing up front, for each pair {a, b} of distinct candidates, whether a is preferred to
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b by a majority of the voters, or whether b is preferred to a by a majority of the voters, or
whether a and b exactly tie as to how many voters prefer one to the other. Not fixing that
information up front would improve our multiplicative factor that depends on but is fixed for
each fixed number of candidates. But we are not focused on that factor. So to make things
particularly simple to describe, we are here just going to toss into our framework a fixing of
all such pairwise-outcomes-in-the-WMG. As in the Schulze case, we will have changed all
the names of the candidates to be 1 through ‖C‖ (and will have remapped our tie-breaking
function in the same way). So, one part of our framework is, for each (unordered) pair of
distinct candidates {a, b}, a claim as to which one of these holds: the WMG edge from a

to b is strictly positive, the edge from b to a is strictly positive, or both edges are 0. (We
do not include any claim about the precise value of those edge weights; that would create
a framework whose number of instances, for a fixed number of candidates, grew with the
number of voters—something we must firmly avoid.) And an instance of the framework
then goes step by step through the process the ranked-pairs algorithm goes through, but
in a somewhat ghostly way in terms of what it specifies. For each step of the process, it
makes a claim as to what pair of candidates is considered next. And it makes a claim as to
whether that pair of candidates will be skipped permanently due to it having been already
set (due to transitivity) by earlier actions of our flow through ranked pairs (that isn’t an on-
the-fly thing in that the instance itself has all its earlier claims and so we can even make
sure to loop only over instances of the framework that are internally consistent regarding
this). And if it claims that that pair of candidates is not skipped, it also makes a claim about
which of the two outcomes happens (which is placed above the other in our ranked-pairs
outcome; again, we can read this from those choice-of-3-possibilities settings we did up
front, plus the feasible tie-breaking if needed). So that is the story the framework provides,
and a given instance of the framework will (if properly formed) set an ordering over all the
candidates. As before, the algorithms will loop over instances of these frameworks, doing
so over only instances that have the desired outcome (e.g., “p is a unique winner”) and
that aren’t obviously internally inconsistent. (For our partition by voter cases, there is a
double-loop over such frameworks, to handle both subelections.)

As in the Schulze case, we will use the ILPFPs to see if the given kind of control
can create a case where the given framework can be made to hold. All the housekeep-
ing work in the ILPFPs as to tallying how the votes are bribed/controlled/manipulated is
still needed here (so the variable sets are the same as the ones for Schulze). But note, cru-
cially, that we now must enforce not things about paths, but rather we must enforce that
the framework’s guesses about whether the edge from a to b is negative, positive, or 0 after
the bribery/control/manipulation are all correct (this is very natural to enforce with con-
straints, within the ILPFP framing), and must also enforce that the framework’s claim about
which candidate pair is considered next is what would actually happen under the votes that
emerged from the bribery/control/manipulation. But that latter claim, for each step in the
story, can be checked by appropriate, carefully built constraints, written with close attention
paid to the tie-breaking rule among pairs. These constraints will be pretty much our favorite
sort of constraint—seeing whether a WMG edge is greater than or equal to another, or see-
ing whether it is strictly greater than another. This will be made clearest by an example.
Suppose our candidates are named 1, 2, 3, and 4. And suppose the tie-breaking order on
unordered pairs is {4, 3} > {4, 2} > {4, 1} > {3, 2} > {3, 1} > {2, 1}, and on candidates is
4 > 3 > 2 > 1. (This is exactly a case of the sample feasible rule pair we gave in footnote 1,
under which, recall, tied pairs are tie-broken in favor of the pair with the lexicographically-
larger larger-candidate-of-the-pair, and when the larger members are the same in both
pairs then the tie is broken in favor of whichever pair has the lexicographically-larger
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smaller-candidate-of-the-pair. We’ve written our unordered pairs, in the tie-breaking order
above, with the lexicographically larger element first simply to make it clear why foot-
note 1’s example tie-breaking rule would put them in the order shown above.) Suppose the
RPWCF says the first pair to be compared is {1, 4} and that the outcome is 4 � 1. Let
D(a, b) be defined as before. To check that 4 � 1 is the right outcome, since 4 > 1 in the
tie-breaking function we need to check that D(4, 1) ≥ D(1, 4) (if 1 � 4 in the tie-breaking
order, we’d check that D(4, 1) ≥ 1 + D(1, 4)); we can read this right off the 3-way-claim
as to how 1 and 4 compare in their head-to-head contest, which itself we’ll enforce in con-
straints. And as to the claim that (1, 4) was the first pair to be compared, in light of the
tie-breaking order, that can be enforced using 10 constraints: 6 saying that our pair ties or
beats those below us in the tie-breaking ordering (D(4, 1) ≥ D(a, b) for the (a, b) val-
ues (3, 2), (2, 3), (3, 1), (1, 3), (2, 1), (1, 2)), and 4 saying that our pair strictly beats those
above us in the tie-breaking ordering (D(4, 1) ≥ D(a, b) for the (a, b) values (4, 3), (3, 4),
(4, 2), (2, 4)). We could cut those 6 + 4 constraints to 3 + 2 if we wish, by using the value
of the 3-way-claim for each of those 5 other pairs. Note that all these comparisons are about
post-bribe/manipulation/control vote numbers—things we do know how to easily put into
an ILPFP constraint, basically, by appropriate summations. Moving on, if the framework
says the next unordered pair after {1, 4} to be considered is {1, 3} and that the outcome is
1 � 3, we of course will not need to enforce any comparisons with D(4, 1) or D(1, 4);
we will generate and put into the ILPFP just the needed/appropriate comparisons. If the
framework after that says the third pair to consider is {3, 4} but it also says that (due to
4 � 1 � 3 already being set) the pair {3, 4} gets skipped, we under our RPWCF framework
still must generate the constraints to check that {3, 4} truly under our votes as they now
are did deserve to come up next (we mention in passing that we could skip that check as
long as we adjust our ILPFP to not check anything regarding pairs that are already related,
even transitively, under the �’s so far—a slightly different approach than ours but also quite
fine), but the generated comparisons-to-check-that will not do comparisons against things
the existing order so far (4 � 1 � 3) takes out of play. This completes our description of our
RPWCF notion.

5.1.3 Bribery result for ranked pairs

Having specified the ranked pairs winner-set certification framework, the bribery case for
ranked pairs can now be stated and justified.

Theorem 2 For ranked pairs (with any feasible tie-breaking functions), bribery is in FPT
(is fixed-parameter tractable) with respect to the number of candidates, in our eight bribery
models.

Proof We use the programming loop of Algorithm 1 to now loop over not j -SWCFs,
but instead over j -RPWCFs, with j again being the number of candidates. The vari-
ables of the ILPFPs will be the same as those for Schulze. As for the constraints of
the ILPFPs, all the housekeeping constraints for bribery remain intact. Additionally an
RPWCF, as described in Section 5.1.2, guesses for each edge whether it is positive, neg-
ative, or zero in weight. We can easily handle these possibilities with the constraints
D(a, b) ≥ 1, D(b, a) ≥ 1, and D(a, b) = 0 respectively. The other constraints enforced
by an RPWCF are those between pairs of edges, and they can be successfully captured
by the StrictlyBigger and Bigger predicates defined in the proof of Theorem 1. Thus we
clearly can build an ILPFP encoding an RPWCF and the constraints of the bribery problem
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in the same way we did for Schulze elections, and bribery is in FPT for ranked pairs
as well.

5.2 Control results

In this section, we establish our results for control gained through the looping-over-
frameworks approach. The proofs for these cases will closely follow our general looping-
over-frameworks structure, and we will just have to appropriately build the constraints of
our ILPFPs to handle the details of the control problems.

Theorem 3 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, control by adding voters is in FPT with respect to the number of candidates, in our
eight control models.

Proof We will handle together all the cases of this theorem.
Again, let the candidates in the control problem be 1, . . . , j with the distinguished

candidate being 1. The control problem has as its input a set of initial votes V and
a set of additional votes W (or for the succinct version, one list for each of these
two sets describing which types of votes occur at least once in that set, along with
the multiplicities of each), the latter of which contains the votes that can be added by
the control action. Also there is a limit k on the number of votes that can be added
from W .

The top-level programming loop is as described in Algorithm 2 (with WCF being either
SWCF for Schulze or RPWCF for ranked pairs).

Algorithm 2 Top-level loop for control by adding voters

Start
for each j -WCF K do

if candidate 1 (is/is not) (a winner/a unique winner) according to K and K is an
internally consistent, well-formed j -WCF then
(1) build an ILPFP that checks whether there is a set of votes W ′ ⊆ W , with

‖W ′‖ ≤ k, such that K’s winner-set certification framework is realized by the
set of votes V ∪ W ′
(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise added set that succeeds)

end if
end for
declare that the given goal cannot be reached by adding at most k voters
End

The “if” line at the start of the algorithm should be set to “is” (“is not”) for the construc-
tive (destructive) case, and to “a winner” (“a unique winner”) for the nonunique-winner
model (the unique-winner model).

All we have to do now is show how we build the ILPFP inside the loop. Again, as with
manipulation, we will have two groups of constraints: those corresponding to the WCF-
enforcing predicates and those corresponding to the structure of the control problem. For
every i, 1 ≤ i ≤ j !, we will have a variable vi representing the number of votes of type i in
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W ′ (i.e., the W ′ sought by Algorithm 2), a constant ni representing the number of votes of
type i in V , and a constant hi representing the number of votes of type i in W .

As we described in the proof of Theorem 6, if we can represent D(a, b) as a linear
expression in terms of our constants and variables, we can implement all theWCF-enforcing
constraints (those of the StrictlyBigger and Bigger predicates and those of the 3-way pos-
sibilities for ranked pairs) as linear constraints in our ILPFP. Thus, using the shorthand
notation pref (a, b) as described in Section 5.3, we express D(a, b) as follows:

∑

i∈pref (a,b)

(ni + vi) −
∑

i′∈pref (b,a)

(ni′ + vi′).

As for the constraints ensuring the validity of the control action, we first need to ensure
that for every type of vote, the number of votes of that type in W ′ is bounded by the number
in W . For every vote type i, 1 ≤ i ≤ j !, the constraint vi ≤ hi will enforce this in our
ILPFP. We also make the following constraint to enforce the adding bound:

∑

1≤i≤j !
vi ≤ k. (5.1)

Here again all of our variables have to be nonnegative, and thus we have the constraint
vi ≥ 0 for every i, 1 ≤ i ≤ j !.

This suffices to describe how we can build a WCF-enforcing ILPFP for the control
by adding voters problem in a way appropriate for our looping-over-frameworks tech-
nique. Thus we have an algorithm that will run in uniform polynomial time for every fixed
parameter value, putting this problem in FPT.

Theorem 4 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, control by deleting voters is in FPT with respect to the number of candidates, in our
eight control models.

Theorem 5 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, control by partition of voters is in FPT with respect to the number of candidates, in
both the ties-eliminate and ties-promote models, in our eight control models.

The proofs of Theorems 4 and 5 are provided in our technical report version [20].4

5.3 Manipulation results

Unweighted manipulation in Schulze elections has recently been shown to be in P by
Gaspers et al. [16] for the constructive case. So, since the destructive case was itself handled
even earlier by Parkes and Xia [31], there is no need to cover (unweighted) manipulation
for Schulze elections in this paper.

We now present our FPT result for (unweighted) manipulation in ranked pairs elec-
tions. Although for this case we could use the looping-over-framework approach to obtain

4For readers who refer to those proofs, we mention that in those proofs and a few of the other proofs for
which we refer the reader to that report, the proof says something of the form, “The two binary selections
in the algorithm’s ‘if’ statement are made as in the proof of Theorem 5.6.” Yet Theorem 5.6 of the technical
report in fact does not discuss the issue. What is meant in each case is: “The ‘if’ line at the start of the
algorithm should be set to ‘is’ (‘is not’) for the constructive (destructive) case, and to ‘a winner’ (‘a unique
winner’) for the nonunique-winner model (the unique-winner model).”
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an FPT algorithm, we instead obtain an FPT algorithm here simply as a consequence
of Theorem 3.

Very loosely put, the idea behind this proof is that, in a certain sense, for fixed numbers
of candidates manipulation nicely reduces—not just regarding ranked pairs but in fact as
a general matter—to control by adding voters, simply by putting into the set of potential
voters to add enough copies of every possible vote. Unfortunately, this approach doesn’t
quite work, due to the standard definition of control by adding candidates bounding rather
than exactly setting the number of additions, which is what one needs as one’s reduction’s
target to make this connection work. However, this worry is easy enough to smooth over
that we still can prove the manipulation case here as a quick consequence of groundwork
done for control.

In the proof of Theorem 6, we will use the notion of fpt-reductions (by which we will
always mean many-one fpt-reductions). This notion will be further used in Section 6.4. We
now give the standard definition of fpt-reductions for the case of reductions from a problem,
call it Q, with respect to a parameter j , to a problem, call it Q′, with respect to a parameter
j ′. Let j (x) be the function that given an input to Q gives the value of parameter j on input
x. Let j ′(x) be the function that given an input to Q′ gives the value of parameter j ′ on
input x. A function R is an fpt-reduction from Q to Q′ if the following three conditions
hold [15]: (i) for each x, x ∈ Q if and only if R(x) ∈ Q′, (ii) there exist a polynomial p and
a computable function f such that R is computable in time f (j (x))p(|x|), and (iii) there
exists a computable function g such that, for all x, j ′(R(x)) ≤ g(j (x)).

Theorem 6 For ranked pairs (with any feasible tie-breaking functions), manipulation is in
FPT with respect to the number of candidates, in our eight manipulation models.

Proof We will handle together all the cases of this theorem. Let us again assume with-
out loss of generality that the candidates in the manipulation problem are 1, . . . , j with the
distinguished candidate being 1. The manipulation problem has as its input a set of nonma-
nipulative votes V (or for the succinct version, a list of which types of votes occur at least
once, along with the multiplicities of each) and the set of manipulators W .

We give an fpt-reduction from this problem to a slightly modified version of control
by adding voters. The difference is that instead of having a bound on the number of votes
which we can add, we will need an exact number of votes to be added. This modification
will change only one of the constraints in our ILPFP (the constraint labeled 5.1 in the proof
of Theorem 3) from being an inequality to an equality, and so it is clear that the thus-altered
control by adding voters problems remain in FPT (by the thus-altered version of Theorem 3
and its proof). So an fpt-reduction to that problem will establish our desired FPT result for
manipulation.

Our (modified) control instance will have the same set of candidates, and the same dis-
tinguished candidate. The set of initial votes in the control instance will be identical to the
set of nonmanipulative votes in the manipulation instance. As for the additional vote set in
the control instance, it will include ‖W‖ copies of each possible vote (out of all j ! votes) (or
for the succinct version, a list of all j ! vote types, each with multiplicity of ‖W‖). Finally,
the “exact” number of votes to be added is equal to ‖W‖. This completes the specification
of the reduction.

Clearly, a manipulation instance is a Yes instance of manipulation if and only if this con-
struction maps to a Yes instance of the modified control problem. Furthermore, the mapped-
to control instance will have the same number of candidates as the mapped-from manip-
ulation instance. Finally, the reduction runs in time |x|(j !), where |x| is the manipulation
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problem’s input size. Thus the reduction meets the requirement of an fpt-reduction. This
proves that manipulation is in FPT with respect to the number of candidates.

6 Other results for the unweighted case

This section presents some additional results regarding the unweighted case. Section 7 will
discuss the weighted case,

Our FPT control results so far have been about voter control, parameterized on the
number of candidates. It is natural to wonder about other cases. Are Schulze elections
and ranked-pairs elections also in FPT for candidate control, parameterized on the number
of candidates? Are Schulze elections and ranked-pairs elections in FPT for voter control,
parameterized on the number of voters? In this section, we establish “yes” answers to both
these questions.

Although parameterizing on the number of candidates is by far the most com-
monly studied parameterization for election problems, it is easy to imagine situations
where the focus parameter is the number of additions/deletions allowed. This section
proves that constructive control by adding voters, deleting voters, and adding candidates
are each W[2]-hard for Schulze elections, when parameterized on the addition/deletion
bound. This is strong evidence that these problems do not belong to FPT. We also
observe that it follows from an examination of the proofs of Menton and Singh [28]
that many control problems for Schulze elections are NP-complete even when, for
example, one severely limits the number distinct weight values that can appear in the
WMG.

Parameterizing by number of candidates is certainly the most natural approach to
parameterization for election-manipulation problems. Indeed, it was the only parame-
terization we studied in Section 5. However, we feel that this section’s results, many
involving other parameterizations, provide a broader and more complete picture of
the control complexity of Schulze elections. See the survey of Betzler et al. [4] for
many examples of interesting results under parameterizations other than the number of
candidates.

6.1 Candidate control parameterized on the number of candidates

Under our primary parameterization of interest, parameterizing on the number of candi-
dates, and when considering manipulation, bribery, and voter control, we achieved FPT
results using the looping-over-frameworks technique, and thus involving Lenstra’s algo-
rithm. In contrast, when considering candidate control problems parameterized on the
number of candidates, we need not use such a powerful technique. Instead it is suf-
ficient to brute-force search over all possible control solutions to see if any of them
are successful. At every possible value for the parameter, there are only a constant
number of possible solutions to any of the candidate control problems, and check-
ing the success of the possible solution will require only a simple polynomial-time
task. Thus we have algorithms that at each fixed parameter value will have a running
time that is a (large, parameter-value-dependent) constant times a small uniform poly-
nomial. This puts these problems in FPT. We mention that for the adding/unlimited
adding of candidates cases, the parameter can even be taken to just be the size of
the pool of potential additional candidates, regardless of how many original candidates
there were.



212 L.A. Hemaspaandra et al.

Theorem 7 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, control is in FPT with respect to the number of candidates, for all standard types
of candidate control (adding/unlimited adding/deleting candidates and, in both the ties-
eliminate and ties-promote first-round promotion models, partition and runoff partition of
candidates), in our eight control models.

Proof In the case of adding candidates, at most all the 2||D|| possible subsets of the aux-
iliary candidate set D need be considered. In the case of deleting candidates, at most all
subsets of C that contain the distinguished candidate p need be considered, and so we
need look at at most 2||C||−1 subsets. (In the destructive case, the definition of this control
type forbids trivially satisfying the goal by deleting p. In the constructive case, deleting
p would make success impossible and so it need not be considered.) In the case of runoff
partition, there are 2||C||−1 interestingly distinct partitions, while in the partition case there
are 2||C||. The difference between these two different types of partition cases is because
in runoff partition of candidates case the two parts of the partition are handled symmet-
rically, and so the partitions (A,B) and (B,A) are not interestingly distinct from each
other, and we need consider just one among them. However, in the partition of candi-
dates case, where one side of the partition is getting a bye, no such general symmetry
can be claimed. For each of these cases, for each setting of its item that we are cycling
through above, we have to call the voting system’s winner problem between one and three
times. So all these cases will be in FPT for any voting system with a polynomial-time
winner problem.

6.2 Voter control parameterized on the number of voters

Although we feel that the number of candidates is the most natural parameterization for
manipulative action problems, it is natural to ask about parameterizing on the number of
voters. We do not exhaustively handle this case for all manipulative action problems, but
we note that voter control problems parameterized on the number of voters can be shown to
be in FPT through simple brute-force. Again, as in the case of candidate control problems
parameterized on the number of candidates, we note that the number of possible solutions
to these problems is bounded by a constant for each parameter value, and checking each
solution is easily done in polynomial time, giving us an FPT algorithm for each of the voter
control problems. We mention that for the adding of voters cases, the parameter can even be
taken to just be the size of the pool of potential additional voters, regardless of how many
original voters there were.

Theorem 8 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, control is in FPT with respect to the number of voters, for all standard types of voter
control (adding/deleting voters and, in both the ties-eliminate and ties-promote first-round
promotion models, partition of voters), in our eight control models.

Proof In the case of adding voters we will have to try at most all of the 2||W || possible
subsets of the auxiliary voter set W . In the case of deleting voters we will have to consider
at most all the 2||V || subsets of the voter set V . And in the partition of voters cases we
will have to consider the 2||V ||−1 interestingly distinct partitions of the voter set (again, we
need consider just one among the partitions (A,B) and (B,A)). In all of these cases the
large exponential term of the complexity will be constant with fixed parameter values. And
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beyond that term, we will just have to perform a few iterations of the voting system’s winner
function along with a few other simple checks, putting all these cases in FPT for any voting
system with a polynomial-time winner problem.

6.3 WMG edge bound parameterization

Let us return to considering the case of parameterization by number of candidates. What
drove us to our approach of looping over the winner “frameworks” we defined, rather than
just looping over all WMGs? It was the fact that even for fixed numbers of candidates,
the number of WMGs blows up as the number of voters increases. We mention in passing,
though, that if one, in addition to parameterizing on the number of candidates, requires that
the absolute value of the edge weights in the WMG be bounded by some fixed constant
independent of the number of voters, then for that particular special case, one could loop
over all WMGs. Is this natural and important? We would tend to say “no,” because assum-
ing that all edges in the WMG have weights bounded by k is to assume that even as the
number of voters grows, every single head-on-head contest between pairs of candidates is
very evenly matched. That simply is not the case in most natural elections.

On the other hand, perhaps surprisingly, there is something theoretical to be gained from
the strange approach just mentioned of considering elections in which all edges of theWMG
turn out to have relatively low weights. In particular, we observe that in the NP-hardness-
establishing reductions to Schulze control problems used by Menton and Singh [28], all
edges in the WMG have absolute value at most 6 (and for some types of control, at most 4
or 2). That, along with that fact that all weights of edges in the WMG have the same parity,
gives us Corollaries 1 and 2.

Corollary 1 (Corollary to the proofs of Menton and Singh [29])

1. Even when restricted to instances having all pairwise contests so equal that each
WMG edge5 has absolute value at most 2, Schulze elections are NP-complete (in the
nonunique-winner model) for constructive control by deleting candidates.

2. The same claim as in part 1 holds for constructive control by adding candidates, unlim-
ited adding of candidates, partition of candidates in the ties-eliminate model, and runoff
partition of candidates in the ties-eliminate model, except with a bound of 4.

3. The same claim as in part 1 holds for constructive control by partition of candidates
in the ties-promote model and runoff partition of candidates in the ties-promote model,
except with a bound of 6.

Clearly, this immediately implies the following result (still keeping in mind that the
values of all edge weights are of the same parity).

5In Corollaries 1 and 2, when we speak of restricting aWMG, theWMGwe are speaking of as having to obey
the restriction is the WMG involving all candidates involved in the problem. So for adding candidates, the
WMG this is speaking of is, using the votes in the problem instance, the WMG whose nodes are all the initial
candidates and all the candidates in the pool of candidates that can potentially be added. Since membership in
NP for all the problems discussed is obvious, what is most interesting in Corollaries 1 and 2 is NP-hardness.
And the fact that our restriction is applying to the broadest WMG involved in these control-by-candidates
problems makes the restriction harsher than if it were applying to some sub-WMG, and so makes the results
stronger.
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Corollary 2 (Corollary to the proofs of Menton and Singh [29])

1. Even when restricted to instances having all pairwise contests so equal that the total
cardinality of the set of absolute values of WMG edges (in the WMG involving all
candidates in the instance) is at most 2, Schulze elections are NP-complete (in the
nonunique-winner model) for constructive control by deleting candidates. Even when
restricted to instances having all pairwise contests so equal that the total cardinality of
the set of values of WMG edges is at most 3, Schulze elections are NP-complete (in the
nonunique-winner model) for constructive control by deleting candidates.

2. The same claims as in part 1 hold for constructive control by adding candidates, unlim-
ited adding of candidates, partition of candidates in the ties-eliminate model, and
runoff partition of candidates in the ties-eliminate model, except with the 2 and 3 above
replaced by 3 and 5.

3. The same claims as in part 1 holds for constructive control by partition of candidates
in the ties-promote model and runoff partition of candidates in the ties-promote model,
except with the 2 and 3 above replaced by 4 and 7.

6.4 Adding/deleting bound parameterization

For those control problems having as part of their inputs a limit on how many candi-
dates or voters can be added/deleted, it is natural to consider parameterizing on that limit.
This parameterization has been studied in some voting systems and the relevant problems
have often been found to be W[1]-hard or W[2]-hard, and thus very unlikely to be fixed-
parameter tractable. For example, under this parameterization, Betzler and Uhlmann [5]
showed, for what are known as Copelandα elections, that constructive control by adding
candidates and constructive control by deleting candidates are W[2]-complete, Liu and
Zhu [25] proved, for maximin elections, that constructive control by adding candidates is
W[2]-hard, and Liu and Zhu also achieved W[1]-hardness results for the relevant voter
control problems. For additional control results parameterized on the problem’s internal
addition/deletion limit, see Table 8 of Betzler et al. [4].

Hardness for these classes is defined in terms of fpt-reductions (whose definition can be
found in Section 5.3). Thus one typically shows a problem is, for instance, W[2]-hard by
providing such a reduction from a known W[2]-hard problem.

We observe that, with respect to parameterizing on the internal addition/deletion bound,
for Schulze elections it holds that constructive control by adding voters, constructive control
by deleting voters, and constructive control by adding candidates are all W[2]-hard.

Theorem 9 Parameterized on the adding/deleting bound, each of

1. constructive control by adding voters,
2. constructive control by deleting voters, and
3. constructive control by adding candidates

is W[2]-hard for Schulze elections, in the nonunique-winner model.

These problems have already been shown to be NP-complete by Parkes and Xia [31]
and Menton and Singh [27] through reductions from exact cover by 3-sets (X3C). In
order to prove W[2]-hardness, we need to reduce from a parameterized problem that
is known to be W[2]-hard. One such problem is hitting set. Thus we modify the NP-
hardness proofs given by Parkes and Xia to reduce from hitting set instead of from X3C.
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All that is necessary is to replace the role of candidates modeling X3C elements with
the role of candidates modeling hitting set sets, and to replace the role of voters mod-
eling the X3C sets with the role of voters with the same preferences modeling hitting
set elements. For the sake of completeness, we give the complete reduction for one of
the above three cases, namely, control by adding candidates. First, we give the definition
of hitting set.

Definition 7 (Hitting Set) Given a set of elements U , a collection F of subsets of U , and
a positive integer k, does there exist H ⊆ U , with ‖H‖ ≤ k, such that for every S ∈ F , we
have S ∩ H �= ∅ (i.e., H hits every set in F )?

Proof of part 3 of Theorem 9 The standard NP-complete problem hitting set is also known
to be W[2]-complete (see p. 464 of [9]). We give an fpt-reduction from hitting set to our
problem.

Given a hitting set instance (U,F , k) as described in the definition, we will construct
a control instance (C, D, V, p, k) where C is a set of original candidates, D is a set of
auxiliary candidates, V is a set of voters, p is a distinguished candidate, and k is an adding
bound. The original candidate set C will contain the following candidates.

– The distinguished candidate p.
– A candidate S for every S ∈ F .

The auxiliary candidate set D will contain the following:

– A candidate u for every u ∈ U .

The voter set V will be as follows. We will not explicitly construct the entire voter set,
but rather we will specify the weight of the WMG edges between the candidates and let the
voter set be as constructed by McGarvey’s method [26].

– For every S ∈ F , D(S, p) = 2 (and so D(p, S) = −2).
– For every u ∈ U , D(p, u) = 2 (and so D(u, p) = −2).
– For every u ∈ U , and for every S ∈ F such that u ∈ S, D(u, S) = 2 (and so D(S, u) =

−2).
– All WMG edges not set above will be of weight 0.

The distinguished candidate will be p and the adding limit will be the same limit k

as in the hitting set instance. This completes the specification of the reduction. Note that
initially—i.e., before any adding of candidates—the winners are exactly the “S” candidates
(unless F = ∅, in which case p is initially a winner in the control problem, and the hitting
set instance is a positive instance, so in the case we are already done).

If we map from a positive hitting set instance, we claim that we will have a positive
instance of the control problem. Why? Let H ⊆ U , ‖H‖ ≤ k, be a solution to the hitting
set instance. We will show that the set of candidates D′ corresponding to the elements from
H will be a solution to the control instance. First, ‖D′‖ ≤ k, so we are within the adding
bound. Also, since the hitting set solution includes members of every set in F , there will be
a path of strength two from p to each candidate corresponding to those sets, as including a
candidate u ∈ U creates paths from p to every “S” candidate hit by u. It is easy to see that
p will have paths to every other candidate just as strong as they have back to p, and so p

will be a Schulze winner.
If our reduction maps to a successful control instance, we claim it must have mapped

from a positive hitting set instance. Why? Recall that we earlier handled the case ‖F‖ = 0.
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Initially, each “S” candidate will have a path of strength two to p, but p’s strongest path to
each of them is of strength negative two. Adding “u” candidates will leave those strength-
two paths from each “S” candidate to p intact. Since all edges have weight at most two,
regardless of howmany candidates we add, no path can have a strength of more than two. So
for a control instance to succeed it must give p a strength-two path to each “S” candidate.
In our setting, that means adding a set of k “u” (auxiliary) candidates such that each “S”
candidate is pointed to (with a weight-two edge) by at least one of them. However, given our
current setup, that itself says that the hitting set instance being mapped from is a positive
instance.

Note also that our reduction clearly runs in polynomial time in the size of the entire input,
easily meeting the running-time limit for an fpt-reduction. Additionally, the parameter in
the mapped-to instance will always be bounded by—in fact, identical to—the parameter in
the mapped-from instance.

So this clearly is an fpt-reduction from hitting set to our problem. Thus we have estab-
lished that constructive control by adding candidates, parameterized on the adding bound,
is W[2]-hard for Schulze elections, in the nonunique-winner model.

7 Weighted case

So far this paper has studied just manipulative-action problems without weights. However,
weighted voting is quite common. In such settings as the US Electoral College, the US
House of Representatives (on local issues such as water rights on which each state’s repre-
sentatives tend to vote as a block), and stockholder elections, the voting is weighted. Even
beyond the human world, weighted voting can be very important. For example, in aggre-
gating a number of subsystems’ inputs as to what the best recommendation is on a certain
query, some subsystems might be given more weight, perhaps based on a belief in their
higher quality or track record.

So, although up to now in this paper our manipulation problems have been without
weights and our bribery problems have been without weights or prices, we mention that
(keep in mind we still are also parameterizing on the number of candidates, and that
when weights and prices are used in problems, they are typically taken to be—and here
we do take them to be—nonnegative integers) if one parameterizes by also bounding
the maximum voter weight (if there are weights) and the maximum voter price (if there
are prices), our main theorems hold even in the context of weights and prices. That is
because when weights and prices are bounded, one can clearly still carry out the approach
we use.

In fact, we can go slightly further, although at the outer edge of things doing so will
require some surgery on our approach. Not just for the cases of bounded weights and prices,
but even for the case where there is a bound on the cardinality of the set of weights (if
there are weights) and there is a bound on the cardinality of the set of prices (if there are
prices), all theorems (again, still parameterizing also on number of candidates) of Section 5
in bribery and manipulation still hold (as also do our Section 5 theorems on control, if one
looks at control in the context of weighted votes; studying control in the context of weighted
votes has only very recently been generally proposed [12], see also [24, 33]). To give an
example of how we can handle this, we now state the result for bribery.

We note that both Theorem 1 and 2 follow from Theorem 10, which is not surprising as
Theorem 1 in fact is building on and generalizing their approach. We include in this journal
version those earlier proofs, since they provide a clearer, simpler setting in which to present
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our proof approach. The detailed proof of the more flexible, difficult result that is Theorem
10 is provided in our technical report version [20], as is a detailed proof of Theorem 11.

Theorem 10 For Schulze elections and for (with any feasible tie-breaking functions) ranked
pairs, weighted bribery, priced bribery, and weighted, priced bribery each are in FPT with
respect to the combined parameter “number of candidates” and “cardinality of the set of
voter weights” (for cases with weights) and “cardinality of the set of voter prices” (for
cases with prices), in our eight bribery models.

Pushing beyond this, for the case of manipulation (still parameterized by the number of
candidates), we can handle even the case of there not being any bound on the cardinality of
the weight set of all the voters, but rather there simply being a bound on the cardinality of
the set of weights over all manipulative voters.

Theorem 11 1. For (with any feasible tie-breaking functions) ranked pairs, it holds that
weighted coalitional manipulation is in FPT with respect to the combined parameter
“number of candidates” and “cardinality of the manipulators’ weight set,” in our eight
manipulation models.

2. The same claim holds for Schulze elections, except limited to the destructive case (in
both the succinct and nonsuccinct input models, and in both the nonunique-winner
model and the unique winner model) and the unique-winner constructive case (in both
the succinct and nonsuccinct input models).6

This still is all a valid framework for our many-uses-of-Lenstra-based approach (see
our technical report version [20], which contains the omitted proofs from this paper).
Note that for the case of the cardinality of the set of weights being 1, that gives
the case of weighted noncoalitional manipulation mentioned as an aside by Dorn and
Schlotter [8], though here we’re handling even any fixed-constant number of manip-
ulators (since any fixed-constant number have at most a fixed-constant cardinality of
their weight set), and indeed, even a number of manipulators whose cardinality isn’t
bounded but who among them in total have a fixed-constant cardinality of occurring
weights.

Recall that we already were proving our unweighted manipulation result (Theorem 6)
nearly “for free,” by drawing on a related control problem’s groundwork (and in doing so,
we were pointing out an interesting connection between manipulation and control). The
strength of Theorem 11 is such that it gives us an alternative and even more “for free” path
to seeing that Theorem 6 holds: Theorem 6 follows from Theorem 11 simply by setting all
the weights to 1.

6The nonunique-winner model, constructive case for Schulze elections—which the above theorem is care-
fully avoiding claiming—also holds. But as noted in Section 4, a construction of Gaspers et al. [16]
establishes that the weighted constructive coalitional manipulation problem for Schulze elections is in FPT,
with respect to the parameter “number of candidates,” in the nonunique-winner model. That is a broader result
for nonunique-winner model, weighted constructive coalitional manipulation than would be the nonunique-
winner model, constructive, Schulze version of Theorem 11, and so it would not make sense to include the
nonunique-winner model, constructive Schulze case in the statement of Theorem 11. And the second para-
graph of Footnote 6 of our technical report version [20] provides a detailed discussion of why Theorem 11’s
claim about the destructive Schulze case (and similarly, its unique-winner model, constructive Schulze case)
seems not to be subsumed by or implicit in existing results, and mentions an interesting related open issue.
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It seems intuitively necessary to bound the cardinality of the manipulator weight set
to achieve results like the above. For ranked pairs we show that that is in some sense
necessary: We prove as Theorem 12 that weighted constructive coalitional manipulation
(with no bound on the number of manipulator weights) is NP-complete in ranked pairs
for each fixed number of candidates starting at five. The significance of this result is that
it shows that there cannot be any algorithm that is polynomial for any fixed number of
(at least five) candidates, unless P = NP. As a weaker consequence, this will also block
the existence of an FPT algorithm for this problem parameterized solely on the number
of candidates.

It is natural to want to know at what number of candidates a problem becomes hard.
This is an issue that has been intensely studied for a number of election systems, for
example in the famous work of Conitzer, Sandholm, and Lang [7]. Similarly, one may
naturally wonder whether the constant five is tight for the NP-hardness result we just
mentioned. Theorem 13 establishes that five indeed is tight here, by showing that for
each number of candidates smaller than five, we can solve the manipulation problem
under consideration in polynomial time. That is, Theorems 12 and 13’s significance is
that they show the precise number of candidates where hardness appears, for the weighted
constructive coalitional manipulation problem for ranked-pairs. The key idea behind the
proof of Theorem 13 is to show that, for each ranked-pairs instance with fewer than
five candidates, it holds that if there exists a successful manipulation, then for that
same instance there exists a successful manipulation in which all the manipulators vote
the same. Detailed proofs of Theorems 12 and 13 are provided in our technical report
version [20].

Theorem 12 For any feasible tie-breaking functions, and for each fixed number of candi-
dates, j , j ≥ 5, weighted constructive coalitional manipulation is NP-complete for ranked
pairs (under the given feasible tie-breaking functions), in both the nonunique-winner model
and the unique-winner model. Even without the assumption that the tie-breaking functions
are feasible, NP-hardness will still hold.

Theorem 13 For any feasible tie-breaking functions, and for each number of candidates,
j , j < 5, weighted constructive coalitional manipulation is solvable in polynomial time for
ranked pairs (under the given feasible tie-breaking functions), in both the nonunique-winner
model and the unique-winner model.

8 Open problems

For all cases of (unweighted) bribery, control, and manipulation, including many where
general-case hardness results exist, this paper proves that Schulze elections and ranked-pairs
elections are fixed-parameter tractable with respect to the number of candidates.

In order to concisely represent our unweighted results, we list in Table 1 the best currently
known tractability and intractability results regarding the unweighted case. All the figure’s
FPT results (and those results are parameterized with respect to the number of candidates)
hold for both the constructive and destructive cases, in both the succinct and nonsuccinct
input models, and for both the unique-winner and nonunique-winner models. Due to some
of the other NPC cases not having been explored in the literature, though, Table 1 limits
itself to speak just about the constructive case in the nonsuccinct input model and in the
nonunique-winner model.



Schulze and ranked-pairs voting 219

Table 1 Best current tractability and intractability results regarding the unweighted case of Schulze and
ranked pairs, for constructive attacks in the nonsuccinct input model and for the nonunique-winner model.
Our FPT results that are achieved by the looping-over-framework approach are shown in boldface. The FPT
results’ parameterization is with respect to the number of candidates

The most striking remaining open direction regards the weighted cases. For exam-
ple, Gaspers et al. [16] proved that the constructive, nonunique-winner case of weighted
coalitional manipulation is in FPT. Can their result be extended to the constructive, unique-
winner case, or the destructive, unique-winner case, or the destructive, nonunique-winner
case? These all remain open questions, although in Theorem 11 we give fixed-parameter
tractability results for special cases of all three of these issues. The analogous issues are not
open for ranked pairs: Theorem 12 shows that unless P = NP, the ranked-pairs analogue of
the Gaspers et al. result cannot hold.
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Appendix

Control definitions

In this section, we provide more formal definitions of the benchmark control types. Since
such papers as [2, 14, 19] provide a detailed discussion of the motivations of and real-
world inspirations for the benchmark control types, we don’t repeat the discussion here. The
statements below are taken, sometimes identically, from Faliszewski et al. [14]. We first
define the voter-control types, since those are more central in this paper. Then we define the
candidate-control types, which in this paper appear only in Section 6. All definitions below
are stated for the nonsuccinct, nonunique-winner model. Section 6’s comments specify how
to modify these to define the succinct case and/or the unique-winner case.

The adding-voters and deleting-voters control problems are the following.

Name: The constructive control by adding voters problem for E elections and the
destructive control by adding voters problem for E elections.
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Given: A set C of candidates, two disjoint collections of voters, V and W (each voter’s
vote is a tie-free linear order), a distinguished candidate p, and a nonnegative integer k.

Question (constructive): Is there a subset Q, ‖Q‖ ≤ k, of voters in W such that the voters
in V ∪ Q jointly elect p ∈ C as a winner according to system E?

Question (destructive): Is there a subset Q, ‖Q‖ ≤ k, of voters in W such that the voters
in V ∪ Q do not elect p as a winner according to system E?

Name: The constructive control by deleting voters problem for E elections and the
destructive control by deleting voters problem for E elections.

Given: A set C of candidates, a collection V of voters (each voter’s vote is a tie-free linear
order), a distinguished candidate p ∈ C, and a nonnegative integer k.

Question (constructive): Is it possible to by deleting at most k voters ensure that p is a
winner of the resulting E election?

Question (destructive): Is it possible to by deleting at most k voters ensure that p is not a
winner of the resulting E election?

As mentioned in Section 3.2, each partition problem has two variants, based on how ties
are handled in the preliminary (i.e., first) round. In the ties-eliminate tie-handling model, if a
first-round election does not have a unique winner then no one from that subelection moves
forward to the second round. In the ties-promote tie-handling model, if a first-round election
does not have a unique winner then all winners (if any) from that subelection move forward
to the second round. This issue of which tie-handling rule is used is what is referred to in the
definition below (and later, in the definitions of candidate partitioning) by the phrase “that
survive the tie-handling rule.”

Name: The constructive control by partition of voters problem for E elections and the
destructive control by partition of voters problem for E elections.

Given: A set C of candidates, a collection V of voters (each voter’s vote is a tie-free linear
order), and a distinguished candidate p ∈ C.

Question (constructive): Is there a partition of V into V1 and V2 such that p is a winner of
the two-stage election where the winners of election (C, V1) that survive the tie-handling
rule compete against the winners of (C, V2) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system E .

Question (destructive): Is there a partition of V into V1 and V2 such that p is not a winner
of the two-stage election where the winners of election (C, V1) that survive the tie-
handling rule compete against the winners of (C, V2) that survive the tie-handling rule?
Each subelection (in both stages) is conducted using election system E .

The unlimited-adding-candidates, adding-candidates, and deleting-candidates control
problems are the following.

Name: The constructive control by adding an unlimited number of candidates problem
for E elections and the destructive control by adding an unlimited number of candidates
problem for E elections.

Given: Disjoint sets C and D of candidates, a collection V of voters (each voter’s vote is
a tie-free linear order over the candidates in the set C ∪D), and a distinguished candidate
p ∈ C.

Question (constructive): Is there a subset E of D such that p is a winner of the E election
with voters V and candidates C ∪ E?

Question (destructive): Is there a subset E of D such that p is not a winner of the E
election with voters V and candidates C ∪ E?
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Name: The constructive control by adding candidates problem for E elections and the
destructive control by adding candidates problem for E elections.

Given: Disjoint sets C and D of candidates, a collection V of voters (each voter’s vote is
a tie-free linear order over the candidates in the set C ∪D), and a distinguished candidate
p ∈ C, and a nonnegative integer k.

Question (constructive): Is there a subset E of D such that ‖E‖ ≤ k and p is a winner of
the E election with voters V and candidates C ∪ E?

Question (destructive): Is there a subset E of D such that ‖E‖ ≤ k and p is not a winner
of the E election with voters V and candidates C ∪ E?

Name: The constructive control by deleting candidates problem for E elections and the
destructive control by deleting candidates problem for E elections.

Given: A set C of candidates, a collection V of voters (each voter’s vote is a tie-free linear
order), a distinguished candidate p ∈ C, and a nonnegative integer k.

Question (constructive): Is it possible to by deleting at most k candidates ensure that p is
a winner of the resulting E election?

Question (destructive): Is it possible to by deleting at most k candidates other than p

ensure that p is not a winner of the resulting E election?

The runoff-partition candidate control problems are the following. In runoff-partition
candidate control problems, each candidate must participate in precisely one of the two
first-round preliminary elections.

Name: The constructive control by runoff partition of candidates problem for E elections
and the destructive control by runoff partition of candidates problem for E elections.

Given: A set C of candidates, a collection V of voters (each voter’s vote is a tie-free linear
order), and a distinguished candidate p ∈ C.

Question (constructive): Is there a partition of C into C1 and C2 such that p is a winner
of the two-stage election where the winners of subelection (C1, V ) that survive the tie-
handling rule compete against the winners of subelection (C2, V ) that survive the tie-
handling rule? Each subelection (in both stages) is conducted using election system E .

Question (destructive): Is there a partition of C into C1 and C2 such that p is not a winner
of the two-stage election where the winners of subelection (C1, V ) that survive the tie-
handling rule compete against the winners of subelection (C2, V ) that survive the tie-
handling rule? Each subelection (in both stages) is conducted using election system E .

The partition candidate control problems are the following. In partition candidate control
problems, the partition is between candidates who participate in a first-round preliminary
election and candidates who get a “bye” through the first round.

Name: The constructive control by partition of candidates problem for E elections and
the destructive control by partition of candidates problem for E elections.

Given: A set C of candidates, a collection V of voters (each voter’s vote is a tie-free linear
order), and a distinguished candidate p ∈ C.

Question (constructive): Is there a partition of C into C1 and C2 such that p is a winner
of the two-stage election where the winners of subelection (C1, V ) that survive the tie-
handling rule compete against all candidates in C2? Each subelection (in both stages) is
conducted using election system E .
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Question (destructive): Is there a partition of C into C1 and C2 such that p is not a winner
of the two-stage election where the winners of subelection (C1, V ) that survive the tie-
handling rule compete against all candidates in C2? Each subelection (in both stages) is
conducted using election system E .
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