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Abstract Competitive facility location problems arise in the context of two non-
cooperating companies, a leader and a follower, competing for market share from a given set
of customers. We assume that the firms place a given number of facilities on locations taken
from a discrete set of possible points. For this bi-level optimization problem we consider
six different customer behavior scenarios from the literature: binary, proportional and par-
tially binary, each combined with essential and unessential demand. The decision making
for the leader and the follower depends on these scenarios. In this work we present mixed
integer linear programming models for the follower problem of each scenario and use them
in combination with an evolutionary algorithm to optimize the location selection for the
leader. A complete solution archive is used to detect already visited candidate solutions and
convert them efficiently into similar, not yet considered ones. We present numerical results
of our algorithm and compare them to so far state-of-the-art approaches from the litera-
ture. Our method shows good performance in all customer behavior scenarios and is able to
outperform previous solution procedures on many occasions.
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1 Introduction

In competitive facility location problems (CFLPs) two decision makers, a leader and a fol-
lower, compete for market share. They choose given numbers of facility locations from a
finite set of possible positions in order to satisfy client demands, whereas the leader starts
to place all of his facilities, then the follower places his facilities. In our work we consider
different scenarios which vary in the way customers satisfy their demands from the set of
open facilities. This classification is taken from Suárez-Vega et al. [24]:

Customer behavior

– Binary: The demand of each customer is fulfilled by the nearest facility only.
– Proportional: Each customer splits his demand over all open facilities proportional to

an attractiveness value, which depends on the distances to the facilities.
– Partially binary: This is similar to the proportional behavior but the demand is split

only between the nearest leader and nearest follower facility, again, proportional to an
attractiveness value depending on the distance.

Demand model

– Essential demand: The customers satisfy all of their demand.
– Unessential demand: The customers do not satisfy all of their demand but only a

proportion depending on the distance to the serving facility.

Combining the three customer behaviors and the two demand models results in six differ-
ent scenarios. Since demand corresponds to the buying power of the customers the turnover
of the competing firms increases with the amount of fulfilled demand. Therefore, in order
to obtain an accurate revenue value for the leader, the subproblem of finding an optimal set
of facility locations for the follower for a given set of leader locations has to be solved. This
makes the problem a �P

2 -hard bi-level optimization problem [18]. In this work we model
the decision problem of the leader who wants to maximize her turnover knowing that a
follower will enter the market subsequently under a given customer behavior scenario. We
propose mathematical models as well as a hybrid metaheuristic based on an evolutionary
algorithm to approximately solve all variants of this problem in a practically efficient way.

Our evolutionary algorithm (EA) searches for the best possible facility locations for the
leader so that her turnover is maximized. It is assumed that the follower will place his facil-
ities optimally, i.e., aiming at maximizing his revenue or minimizing the leader’s revenue.
For the problem of finding the optimal locations for the follower, mixed integer linear pro-
gramming (MIP) models for different customer behaviors are presented. These models can
then be solved either exactly using a general purpose MIP solver like CPLEX or approx-
imated by solving their linear programming (LP) relaxation or by a greedy algorithm. As
a result, we obtain a multi-level evaluation scheme which reduces the number of accurate,
hence more time-consuming, evaluations which can be applied when the LP relaxation value
of the model is good enough. The EA is further enhanced with a solution archive which is
a special data structure that stores all generated candidate solutions and converts duplicate
solutions into guaranteed not yet considered ones. A local search procedure, combined with
the archive into a tabu search variant, further improves promising solutions of the EA and
thus turns it into a powerful hybrid approach. This article extends our previous work [5] by
covering all customer behavior scenarios introduced in [24] and providing models as well
as numerical results.
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In Section 2 we define the problem under the different customer behavior scenarios more
formally. Related work is presented in Section 3, which is followed by a description of
the mathematical models for our considered CFLPs in Section 4. Section 5 introduces our
evolutionary algorithm and its extensions. Section 6 discusses our computational results and
compares our method to approaches from the literature when possible. Finally, we draw
conclusions in Section 7 and give an outlook on further promising research questions.

2 Problem definition

In the following we will formally define the competitive facility location problem with
different customer behavior scenarios. Given are the numbers p ≥ 1 and r ≥ 1 of facilities
to be opened by the leader and follower, respectively, and a weighted complete bipartite
graph G = (I, J, E) where I = {1, . . . , m} represents the set of potential facility locations,
J = {1, . . . , n} represents the set of customers, and E = I ×J , is the set of edges indicating
corresponding assignments. Let wj > 0, ∀j ∈ J , be the demand of each customer, which
corresponds to the (maximal) turnover to be earned by the serving facilities, and dij ≥
0, ∀(i, j) ∈ E, be the distances between customers and potential facility locations. The
goal for the leader is to choose exactly p locations from I for opening facilities in order to
maximize her turnover under the assumption that the follower in turn chooses r locations
for his facilities optimally maximizing his turnover.

The turnover distribution of the customers differ in the six scenarios defined before and
in the following we will give a formal description of the turnover computation of all scenar-
ios. The definitions for the binary essential case is taken from [6] and for the proportional
case from [5]. In the following let (X, Y ) be a candidate solution to our competitive facil-
ity location problem, where X ⊆ I, |X| = p, is the set of locations chosen by the leader
and Y ⊆ I, |Y | = r , is the associated set of follower locations. Note that X and Y do not
have to be disjunct in general. Further, let D(j, V ) = min{dji | i ∈ V }, ∀j ∈ J, V ⊆ I

be the minimum distance from customer j to all facility locations in set V . Following
Kochetov et al. [13] we define the attractiveness of a facility location to a customer by
vij = aij

(dij +1)β
and define analogous to the minimum distance the maximum attractiveness

from customer j to all facility locations in the set V as A(j, V ) = max{vji | i ∈ V }, ∀j ∈
J, V ⊆ I . In this work we set β = 1 and aij = 1 ∀i ∈ I, j ∈ J . For the attrac-
tiveness one is added to the original distances dij just to avoid numerical problems with
zero distances which might occur when considering the same locations for facilities and
customers.

In the next sections we follow the classification of the different customer behavior
scenarios [24] and give definitions of the turnover computation of each of these scenarios.

2.1 Binary essential

Each customer j ∈ J chooses the closest facility, hence the owner of this closest facility
gains the complete turnover wj . The leader is preferred in case of equal distances so the
follower never places a facility at a location occupied by the leader and therefore we can
assume that X ∩ Y = ∅ for this scenario. The set of customers which are served by one of
the follower’s facilities is U f = {j ∈ J | D(j, Y ) < D(j, X)} and the customers served
by the leader is given by U l = J \ U f. Consequently, the total turnover of the follower is
pf = ∑

j∈U f wj and the total turnover of the leader pl = ∑
j∈J wj − pf. Note that this

problem is also known as (r|p)-centroid problem [9].
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2.2 Proportional essential

Each customer j splits all of his demand over all opened facilities proportional to their
attractiveness. Let xi = 1 if i ∈ X and xi = 0 otherwise, and yi = 1 if i ∈ Y and yi = 0
otherwise, ∀i ∈ I . Then, the turnover of the follower is

pf =
∑

j∈J

wj

∑

i∈I

vij yi

∑

i∈I

vij xi + ∑

i∈I

vij yi

and the turnover of the leader is

pl =
∑

j∈J

wj − pf.

2.3 Partially binary essential

Each customer j splits all of his demand over the nearest leader and the nearest follower
facility proportional to their attractiveness. Let vL

j = A(j,X), i.e., the highest attraction

value from any leader facility to customer j and vF
j = A(j, Y ). Then, the turnover of the

follower is

pf =
∑

j∈J

wj

vF
j

vF
j + vL

j

and the turnover of the leader is

pl =
∑

j∈J

wj − pf.

2.4 Unessential demand

In the unessential demand scenarios we need a function which describes how much the
demand of a customer decreases with the distance to the nearest facility. We define this
demand reduction function as f (d) = 1

(d+1)γ
. Parameter γ controls the decrease of demand,

in our work we assume γ = 1. Further, we note that when the demand is unessential∑

j∈J

wj ≥ pl +pf, i.e., the total demand satisfied by the leader and the follower is no longer

necessarily equal to the total demand of all customers. In the following we present the profit
computation for the unessential scenarios under the different customer choice rules:

– Binary Unessential

pf =
∑

j∈U f

wjf (D(j, Y )) and pl =
∑

j∈U l

wjf (D(j, X))

– Proportional Unessential

pf =
∑

j∈J

wj

∑

i∈I

vij f (dij )yi

∑

i∈I

vij xi + ∑

i∈I

vij yi

and
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pl =
∑

j∈J

wj

∑

i∈I

vij f (dij )xi

∑

i∈I

vij xi + ∑

i∈I

vij yi

– Partially Binary Unessential

pf =
∑

j∈J

wj

vF
j

vF
j + vL

j

f (D(j, Y )) and pl =
∑

j∈J

wj

vL
j

vF
j + vL

j

f (D(j, X))

3 Related work

Competitive facility location problems are an old type of problem introduced by Hotelling
[11] in 1929. He considered two sellers placing one facility each on a line. In the last years
many variations were considered that differ in the way the competitors can open their facil-
ities and in the behavior of the customers. Kress and Pesch give an overview of competitive
location problems in networks in [14]. Vega et al. [24] outline different customer choice
rules of competitive facility location problems. They consider six different scenarios of
customer behavior, including binary, partially binary, proportional as well as essential and
unessential goods. In their work the authors assume that the facilities can be placed any-
where on the plane and give discretization results for several customer choice rules but no
concrete solution algorithms. We use the classification of these scenarios for the models we
used in this work.

Most of the articles that tackle competitive facility location problems focus on one
customer behavior scenario. However, Hakimi [10] extended the basic formulation to
different customer behaviors and also to unessential demand. Serra and Colome [23]
developed metaheuristics for the follower problem where the leader is already in the
market with binary, proportional and partially binary customer choice rules and essential
demand.

The literature about the binary essential customer behavior scenario is the richest and
this problem is widely known as the (discrete) (r|p)-centroid problem which has originally
been introduced by Hakimi [9]. Alekseeva et al. [1–3] present several heuristic and exact
solution approaches. Laporte and Benati [16] developed a tabu search and Roboredo and
Pessoa [20] describe a branch-and-cut algorithm. In Section 6.1 we compare our approach
to two metaheuristics by Alekseeva et al. [2, 3].

Proportional essential customer behavior is considered by Kochetov et al. [13] who
developed a matheuristic for a more general problem variant that contains our problem as
special case. They propose a bi-level mixed integer non-linear programming model. To solve
the problem more efficiently they linearized the follower’s problem. Our approach also uses
this linearized model. The authors suggest an alternating heuristic to solve the leader’s prob-
lem which is derived from an alternating heuristic developed for the (r|p)-centroid problem
with continuous facility locations in [4]. In Section 6.2 we compare our approach to their
algorithm.

Literature about unessential demand and partially binary customer behavior is rare. Many
papers about CFLPs mention these customer behavior scenarios [10, 23, 24] but do not
provide concrete algorithms. One of our contributions in this work is to give linear models
for the follower’s problem under unessential demands and the partially binary choice rule
to be able to tackle these scenarios and find effective solution procedures.
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A related work by Fernández and Hendrix [7] also considers variants of CFLPs. They
study recent insights in Huff-like competitive facility location and design problems. In their
survey article they compared three different articles [15, 21, 22] describing all the same
basic model. In all three papers, for each facilitiy a quality level has to be determined similar
to the design scenarios used in Kochetov [13] and fixed costs for opening facilities incur.
Küçükaydin et al. [15] and Saidani et al. [21] assume that the competitor is already in the
market and Sáiz et al. [22] focus on finding a nash equilibrium of two competitors entering
a new market and opening only one facility each. However, these variants are not scope of
the current article.

4 Mathematical models

In this section we present mathematical models for CFLPs with different customer behavior
scenarios. In case of binary choice we adopt the linear model from Alekseeva [2]. Finding
linear models for the partially binary and proportional case is not straightforward because
we have to model a ratio of demand fulfilled by the leader and the follower, respectively.
In these cases we present linear transformations which are based on the transformation
performed by Kochetov [13] for the proportional essential scenario.

All models use two types of binary decision variables:

xi =
{

1 if the leader opens a facility at location i

0 else
∀i ∈ I

and

yi =
{

1 if the follower opens a facility at location i

0 else
∀i ∈ I.

4.1 Binary essential

The following bi-level MIP model has been introduced in [2]. It uses an additional type of
binary decision variables:

uj =
{

1 if customer j is served by the leader
0 if customer j is served by the follower

∀j ∈ J.

We define the set of facilities that allow the follower to capture customer j if the leader
uses solution x (x = (xi)i∈I ):

Ij (x) = {i ∈ I | dij < min
l∈I |xl=1

dlj } ∀j ∈ J

Then we can define the upper level problem, denoted as leader’s problem, as follows:

max
∑

j∈J

wju
∗
j (1)

s.t.
∑

i∈I

xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)
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where (u∗
1, . . . , u

∗
m) is an optimal solution to the lower level problem, denoted as follower’s

problem:

max
∑

j∈J

wj (1 − uj ) (4)

s.t.
∑

i∈I

yi = r (5)

1 − uj ≤
∑

i∈Ij (x)

yi ∀j ∈ J (6)

xi + yi ≤ 1 ∀i ∈ I (7)

uj ≥ 0 ∀j ∈ J (8)

yi ∈ {0, 1} ∀i ∈ I,∀j ∈ J (9)

The objective function for the leader’s problem (1) maximizes the leader’s turnover.
Equation (2) ensures that the leader places exactly p facilities. The objective function for
the follower’s problem (4) maximizes the follower’s turnover. Similarly as in the leader’s
problem, (5) ensures that the follower places exactly r facilities. Inequalities (6) together
with the objective function ensure the uj variables to be set correctly, i.e., decide for each
customer j ∈ J from which competitor he is served. Inequalities (7) guarantee that the fol-
lower does not choose a location where the leader has already opened a facility. Note that
all xi variables are considered as constants here. Variables uj are not restricted to binary
values because in an optimal solution they will become 0 or 1 anyway.

4.2 Proportional essential

For the proportional essential scenario we start with a non-linear bi-level model which is
derived from Kochetov et al. [13]. The upper level problem (leader’s problem) is:

max
∑

j∈J

wj

∑

i∈I

vij xi

∑

i∈I

vij xi + ∑

i∈I

vij y
∗
i

(10)

s.t.
∑

i∈I

xi = p (11)

xi ∈ {0, 1} ∀i ∈ I (12)

where (y∗
1 , . . . , y∗

m) is an optimal solution to the lower level problem (follower’s problem):

max
∑

j∈J

wj

∑

i∈I

vij yi

∑

i∈I

vij xi + ∑

i∈I

vij yi

(13)

s.t.
∑

i∈I

yi = r (14)

yi ∈ {0, 1} ∀i ∈ I (15)

The objective functions (10) and (13) maximize the sums of the fulfilled demand by the
leader and the follower, respectively, considering the splitting over the facilities inversely
proportional to their distances. Constraint (11) ensures that the leader opens exactly p facil-
ities and, similarly, constraint (14) guarantees that the follower places exactly r facilities.
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Note that the follower in principle is allowed to open facilities at the same locations as the
leader. All of the xi variables are considered as constants in the follower’s problem.

In order to be able to solve the follower’s problem more efficiently Kochetov et al. [13]
suggested a linear transformation of this model, which works as follows. First, two new
kinds of variables are introduced:

zj = 1
∑

i∈I

vij xi + ∑

i∈I

vij yi

∀j ∈ J (16)

and

yij = wjzj vij yi ∀i ∈ I, j ∈ J. (17)

Variables yij have the intuitive meaning that they are the demand of customer j that is
supplied by the follower facility at location i and the zj variables are basically the denom-
inator of the fractional objective function for a fixed j . It is obvious that if we are able to
model the non-linear equation (17) in a linear way such that equation (16) is valid we get a
model that is equivalent to (13–15). This is realized by the following mixed integer linear
program:

max
∑

j∈J

∑

i∈I

yij (18)

s.t. (14), (15) and
∑

i∈I

yij + wjzj

∑

i∈I

vij xi ≤ wj ∀j ∈ J (19)

yij ≤ wjyi ∀i ∈ I, j ∈ J (20)

yij ≤ wjvij zj ≤ yij + W(1 − yi) ∀i ∈ I, j ∈ J (21)

yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (22)

Objective function (18) maximizes the turnover obtained by the follower. Constraints (19)
set the variables yij by restricting them to not exceed the total demand of customer j minus
the demand captured by the leader. The fact that a facility location i can only get some
turnover from customer j when the follower opens a facility there is ensured by constraints
(20). Finally, equations (17) are fulfilled because of constraints (21).

Constant W is chosen large enough, so that an optimal solution to this model
satisfies equations (16), i.e., W = max

j∈J
(wj ) · max

i∈I,j∈J
(vij ) · max

j∈J
(zj ), where

max
j∈J

(zj ) ≤ max
j∈J

(1/
∑

i∈I

vij xi) because of constraints (19). Due to constraints (21) with its

W , the LP relaxation of this model unfortunately is in general relatively weak, therefore
finding an optimal follower solution by this model using a general purpose mixed integer
programming solver like CPLEX is time-consuming even for small instances. Nevertheless,
this model is still easier to solve than the non-linear model (13–15).

4.3 Partially binary essential

The model for the partially binary essential scenario is similar to the model for the propor-
tional case. The difference is that for each customer we only have to model the ratio of the
nearest leader and the nearest follower facility, which results in the following non-linear
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bi-level model:

max
∑

j∈J

wj

vL
j

vL
j + vF ∗

j

(23)

s.t.
∑

i∈I

xi = p (24)

vL
j = max

i∈I
(vij xi) ∀j ∈ J (25)

xi ∈ {0, 1} ∀i ∈ I (26)

where (vF ∗
1 , . . . , vF ∗

m ) is an optimal solution to the lower level problem:

max
∑

j∈J

wj

vF
j

vL
j + vF

j

(27)

s.t.
∑

i∈I

yi = p (28)

vF
j = max

i∈I
(vij yi) ∀j ∈ J (29)

yi ∈ {0, 1} ∀i ∈ I (30)

The objective functions (23) and (27) maximize the sums of the fulfilled demand by the
leader and the follower, respectively, considering the splitting over their nearest facilities.
Constraint (24) ensures that the leader opens exactly p facilities and, similarly, constraint
(28) guarantees that the follower places exactly r facilities. The highest attraction values
for each customer j , expressed by variables vL

j and vF
j , ∀j ∈ J are set by the non-linear

constraints (25) and (29).
Again, we propose a linear transformation of the follower model similar to the propor-

tional case. We introduce three new kinds of variables:

zj = 1

vL
j + vF

j

∀j ∈ J (31)

ŷij =
{

1 if i is the nearest follower facility to customer j

0 else

and

yij = wjzj vij ŷij ∀i ∈ I, j ∈ J. (32)

Once more, variables yij are set to the amount of demand a (possible) follower facility at
location i supplies to customer j and zj is the denominator of the objective function Note
that exactly one facility satisfies a certain amount of demand of a customer and therefore for
a fixed j exactly one yij variable has a non-zero value. The linearized model is presented
next.
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max
∑

j∈J

∑

i∈I

yij (33)

s.t.
∑

i∈I

yi = p (34)

∑

i∈I

yij + wjzj v
L
j ≤ wj ∀j ∈ J (35)

yij ≤ wj ŷij ∀i ∈ I, j ∈ J (36)

yij ≤ wjvij zj ≤ yij + W(1 − ŷij ) ∀i ∈ I, j ∈ J (37)

ŷij ≤ yi ∀i ∈ I, j ∈ J (38)
∑

i∈I

ŷij = 1 ∀j ∈ J (39)

yi ≥ 0, yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (40)

ŷij ∈ {0, 1} ∀i ∈ I, j ∈ J (41)

Objective function (33) maximizes the turnover obtained by the follower. Constraints (35)
set the variables yij by restricting them to not exceed the total demand of customer j minus
the demand captured by the leader. The fact that a facility location i can only get some
turnover from customer j when there is the nearest open follower facility is ensured by
constraints (36). Equations (32) are fulfilled because of constraints (37). Constraints (38)
and (39) guarantee that there is exactly one nearest follower facility to each customer and
that this location has to be chosen by the follower.

4.4 Unessential cases

When the demand of customers is unessential, two different goals for the follower are pos-
sible. He can either aim to minimize the leader’s profit (LMIN) or to maximize his profit
(FMAX). Depending on the goal the follower might choose different locations for his facil-
ities. In this section we will discuss the changes to the models introduced before that are
needed to consider unessential demand.

4.5 Binary unessential

In the LMIN scenario only a change in the objective function is needed because the distance
from each customer to the nearest leader facility is known beforehand. The new objective
function for the follower’s problem is the following:

min
∑

j∈J

wj zjf (D(j, X))

If the follower uses the FMAX strategy new variables have to be introduced to indicate
which location i hosts a follower facility that is nearer to a customer j than any other open
(leader or follower) facility. This is modelled by decision variables ŷij which are defined
similarly as before:
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ŷij =
⎧
⎨

⎩

1 if i is the nearest follower facility to customer j

and nearer than all leader facilities
0 else

The complete model for the follower problem is as follows:

max
∑

j∈J

wj

∑

i∈I

ŷij f (dij ) (42)

s.t.
∑

i∈I

yi = r (43)

1 − zj ≤
∑

i∈Ij (x)

yi ∀j ∈ J (44)

xi + yi ≤ 1 ∀i ∈ I (45)

ŷij ≤ yi ∀i ∈ I, ∀j ∈ J (46)

ŷij ≤ 1 − zj ∀i ∈ I,∀j ∈ J (47)
∑

i∈I

ŷij ≤ 1 ∀j ∈ J (48)

zj ≥ 0 ∀j ∈ J (49)

yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (50)

ŷij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (51)

In this model there are three new types of constraints to set the ŷij variables correctly.
Constraints (46) ensure that if one of these variables is set to one then there must be a
follower facility on this location. Furthermore, a ŷij variable is only set to 1 iff customer j

is served by the follower, which is ensured by constraints (47). Of course, only one follower
facility can be the nearest to a customer, so constraints (48) are introduced. The change in
the objective function models the unessential demand by reducing the turnover gained by
each customer by our demand reduction function f .

4.6 Proportional unessential

In the proportional customer behavior scenario for both LMIN and FMAX a change in the
objective function is needed and for LMIN additionally a change of constraints (19):

LMIN: min
∑

j∈J

wj zj

∑

i∈I

vij xif (dij )

∑

i∈I

yij + wjzj

∑

i∈I

vij xi = wj ∀j ∈ J

FMAX: max
∑

j∈J

∑

i∈I

yij f (dij )
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4.7 Partially binary unessential

Also for the partially binary case, the objective function changes and for LMIN the
constraints (35) as well:

LMIN: min
∑

j∈J

wj zj v
L
j f (

1

vL
j

− 1)

∑

i∈I

yij + wjzj v
L
j = wj ∀j ∈ J

FMAX: max
∑

j∈J

∑

i∈I

yij f (dij )

5 Evolutionary algorithm

In this section we present an EA that aims to find the optimal solution to the leader’s problem
for each different customer behavior scenario. The algorithmic framework is also used in
[6] for binary customer behavior and in [5] for proportional customer behavior, both only
considered essential demand. We use an incomplete solution representation only storing the
facilities of the leader indicated by the binary vector x = (x1, . . . , xm). For augmenting
the incomplete leader solution, which can also be seen as evaluating a candidate leader
solution, the follower’s problem has to be solved. For this purpose we derived the MIP
models in the last section. As solving these MIPs exactly is time-consuming in general, a
greedy evaluation procedure and, for the binary customer behavior, the LP relaxation of the
MIP model is used for approximating the quality of intermediate leader solution candidates,
which is different for each case. Only at the end of the EA the best approximate solution
found (for the proportional and partially binary case) or each candidate solution of the final
population (for the binary case) is exactly evaluated using the corresponding MIP to get
optimal objective values.

First, we explain the greedy solution evaluations for the different customer behavior sce-
narios. Then we will show a method for how to avoid exact evaluations during the EA and
still do not miss potentially good solution candidates due to the approximation of objec-
tive values. We introduced this concept in [6] and called it multi-level solution evaluation
scheme (ML-ES). It is applicable to models which have a reasonably good LP relaxation
bound; here we apply ML-ES only for binary customer behavior. After explaining these
solution evaluation methods we will introduce the EA with its variation operators. We fur-
ther want to reduce the time needed for the solution evaluation so we employ a complete
solution archive, which is a data structure that stores all generated candidate solutions. It
efficiently converts created duplicates into similar but not yet considered solutions to avoid
unnecessary evaluations. At the end of this chapter we show how we combine the solution
archive and local search to a tabu search and integrate it into the EA to obtain a powerful
hybrid approach.

5.1 Greedy solution evaluation

The greedy evaluation procedures are structurally similar for each customer behavior and
they try to find a near-optimal solution to the follower’s problem in short time. They perform
by iteratively selecting a locally best possible position for opening a facility, until all r
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follower facilities are placed. A currently best possible location is determined by computing
the turnover of the follower for each possible additional location depending on the specific
consumer behavior using the corresponding functions defined in Section 2:

Binary Essential: pf
BE(y) =

∑

j∈U f(y)

wj (52)

Proportional Essential: pf
PE(y) =

∑

j∈J

wj

∑

i∈I

vij yi

∑

i∈I

vij xi + ∑

i∈I

vij yi

(53)

Partially Binary Essential: pf
PBE(y) =

∑

j∈J

wj

vF
j (y)

vF
j (y) + vL

j

(54)

Here, y = (y1, . . . , ym) is the partial solution vector of the follower containing all so far
opened facilities plus the candidate location. A location with the highest turnover is chosen;
ties are broken randomly. The final value obtained from this procedure is a lower bound to
the follower’s problem and therefore

∑
j∈J wj − pf(y) is an upper bound to the objective

value of the leader’s solution. For the binary essential case we do not have to recompute
the whole function each time we place a new facility. Whenever a new facility captures
facilities from the leader, they are removed from the set of customers and therefore do no
longer increase the turnover of the follower. Then we only compute the turnover gain for
each placed facility separately and in the end take the sum. When the demand is unessential
the greedy criteria can be adapted analogously. However, the upper bound to the leader’s
problem has to be computed using the functions for the turnover computation for the leader
defined in Section 2.

5.2 Multi-level evaluation scheme

As mentioned in the beginning of this section we can devise a multi-level evaluation scheme
originally introduced in [6] which exploits relationships of different solution evaluation
methods to reduce the time needed for evaluation without missing potentially new incum-
bent solutions. As the greedy solution evaluation procedure is an approximation of the
follower’s problem and returns a feasible solution candidate, the greedy evaluation yields
an upper bound to the leader’s problem for a fixed x. When solving the LP relaxation of a
corresponding follower’s model from Section 4, i.e., solve the model by omitting the inte-
grality constraints, we get a lower bound to the leader’s problem (again, for a fixed x). These
relations can be exploited as follows. Whenever a new solution candidate is generated its
solution value is approximated by the greedy method. When the resulting turnover of the
leader is worse than than or equal to the best turnover value of the leader obtained by solv-
ing the LP relaxation so far then we do not have to evaluate this solution candidate more
accurately because we know that it cannot be better than our current best solution. How-
ever, when the resulting turnover of the leader is greater than the so far best LP value, we
have to evaluate it more accurately (e.g., by solving the LP relaxation), which is more time
consuming, and update the best solution found so far if needed.

Our algorithm benefits from the ML-ES when we are able to omit accurate evalua-
tions often, which is the case when the LP relaxation value of the follower’s problem
is good enough. Unfortunately, preliminary tests showed that for the partially binary and
proportional cases the LP relaxation is in general too weak and therefore we do not
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use ML-ES for these customer behavior scenarios. However, for the binary case, in over
95 % of the created solution candidates we are able to avoid the more time-consuming
evaluation, which results in a faster algorithm and a significantly better final solution
quality.

5.3 Evolutionary algorithm framework

The EA’s initial population is created by choosing p different facility locations uniformly
at random to ensure a high diversity at the beginning. We employ a steady-state genetic
algorithm in which exactly one new candidate solution is derived in each iteration. It
always replaces the worst individual of the population. Binary tournament selection with
replacement is used to choose two candidate solutions for recombination. Offsprings further
undergo mutation.

Recombination works as follows. Suppose that two parent solutions X1 ⊂ I and X2 ⊂ I

are selected. Then an offspring X′ of X1 and X2 is derived by adopting all locations from
S = X1 ∩ X2 and adding p − |X1 ∩ X2| further locations from (X1 ∪ X2) \ S chosen
uniformly at random.

Mutation is based on the swap neighborhood structure, which is also known from the p-
Median problem [17]. A swap move closes a facility and re-opens it at a different, so far
unoccupied position. Our mutation applies μ random swap moves, where μ is determined
anew at each EA-iteration by a random sample from a Poisson distribution with mean value
one.

Each new candidate solution derived via recombination and mutation whose objective
value lies within a certain distance from the so far best solution value further undergoes
a local improvement procedure or a tabu search. It is based on a local search applying
the swap neighborhood structure already used for mutation. The best improvement step
function is used, so all neighbors of a solution that are reachable via one swap move are
considered and evaluated and the best one is selected for the next iteration. This procedure
terminates when no superior neighbor can be found, i.e., a locally optimal solution has been
identified.

5.4 Solution archive

We use a solution archive that stores all generated candidate solutions in a compact data
structure. The archive is attached to the EA framework either after mutation is performed
or in conjunction with local search. The essential idea is to avoid the reconsideration of
already evaluated solutions by converting them into similar, but new solutions, i.e., perform-
ing an “intelligent mutation”. This concept is able to boost the performance of evolutionary
algorithms with complex solution evaluations significantly, and further reduces the dan-
ger of premature convergence. It has been successfully applied to benchmark problems
with binary solution representations, including NK landscapes and Royal Road functions
[19], the generalized minimum spanning tree problem [12], and our previous work on the
current problem [5]. Another rather theoretical property of such an archive-enhanced EA
is that in principle it is a complete optimization approach yielding a guaranteed optimal
solution in bounded time after considering all solutions of the search space. In practice,
however, such an EA usually will be terminated earlier, still yielding only a heuristic
solution.

We combine the EA and the solution archive as follows: Each time a candidate solution
is created, we check if this solution is already contained in the archive. In case it is a dupli-
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cate it is converted on-the-fly into a not yet considered solution. Then this new solution is
inserted into the archive and transferred back to the EA, where it is integrated into the pop-
ulation. For the underlying data structure we use a trie, which is a tree data structure often
applied in dictionary applications [8] and allows inserting, searching and converting a solu-
tion to be implemented in O(m) time, where m is the length of the solution representation,
i.e., independent of the number of solutions it contains. Such a trie has a strong relationship
to an explicitly stored branch-and-bound tree, as each node divides the search space into
two subspaces: Each trie node at level i corresponds to the i-th bit in the solution vector
and has two entries representing “0” and “1”. They either contain a reference to a trie node
on the next level, a complete-flag which indicates that all solutions in the subtree have been
visited, or an empty-flag which indicates that none of the solutions in the subtree has been
visited in the EA.

To insert a solution into the trie, we follow the solution vector and go down the trie.
If we encounter a complete-flag, we know that the solution has been inserted before and
thus is a duplicate. Otherwise when we reach the last level, we insert a complete-flag in the
corresponding entry. To convert a duplicate solution we strive to flip a minimal number of
bits in the binary vector. The decision of which bits to be flipped is based on following the
solution in the trie and take alternative randomly selected branches that lead to unexplored
subspaces. For a detailed description of the insertion and conversion operators, we refer to
our previous work [5].

5.5 Archive-based tabu search

In cooperation with the solution archive the basic local improvement procedure can be
extended to a tabu search variant where the solution archive acts as tabu list. When enumer-
ating the swap neighborhood of a candidate solution, we check for each neighbor solution
if it has already been visited before, i.e., is contained in the solution archive. Only so far
unvisited solutions are evaluated and the best one is selected for the next iteration, even if it
is worse than the original solution; ties are broken randomly. This process is repeated for α

iterations without improving the objective value or until there is no more unvisited neighbor
solution. Note that our approach differs from classical tabu search implementations since
we do not consider move attributes to be black-listed in a tabu list of limited length, but use
the solution archive instead. This tabu search is applied to the most promising solutions in
the EA population.

6 Computational results

In this section we present computational results of our algorithmic approach applied to
different customer behavior scenarios and demand models. We consider separate sets of
instances for the binary and for the proportional and partially binary case because the binary
essential case has a significantly lower complexity and we want to maintain comparability
to algorithms from the literature. We used instances generated in [6] for the binary case and
instances generated as part of our previous work [5] for the proportional and partially binary
case. Both instance sets are based on instances from the discrete problem library1 and can

1http://www.math.nsc.ru/AP/benchmarks/english.html

http://www.math.nsc.ru/AP/benchmarks/english.html
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be found online2. In all instances each customer location corresponds to a possible facility
location, i.e., I = J and the other properties are the following:

Binary essential and Proportional/
unessential partially binary essential

and unessential

Number of essential: 200, unessential: 100, 100, chosen randomly on an Eu-
locations chosen randomly on an Euclidean clidean plane of size 100 × 100

clidean plane of size 7000 × 7000
Customer chosen uniformly at random from chosen uniformly at random from
demands the set {1, . . . , 200} the set {1, . . . , 10}
r, p r = p ∈ {10, 15, 20} r ∈ {2, . . . , 5}, p ∈ {2, . . . , 10}

The parameter settings for the EA were determined in preliminary tests and are sim-
ilar for all scenarios. The population size is 100 and the EA is terminated after 3000
iterations without improvement or after 300 seconds except for the binary case, where
we have a fixed time limit of 600 seconds. The termination parameter α for the tabu
search-based local search is set to five. Local search/tabu search is called for each can-
didate solution whose objective value lies within 1 % (for the binary case 5 %) of the
best solution found so far. After the EA finishes, the final best solution is evaluated
exactly by solving the corresponding MIP from Section 4 and using the best greedy solu-
tion as starting solution with CPLEX 12.5. In preliminary tests it turned out that for
the binary behavior the exact evaluation of one candidate solution needs less than one
second, so in these test cases we evaluated the whole population after the last itera-
tion exactly and took the best solution candidate among them as our final solution. All
tests were performed on a single core of an Intel Xeon Quadcore with 2.54 GHz. In
the next sections each customer behavior scenario with essential demand is analyzed and
discussed.

At the end of each of the following tables for essential demands we give a quick overview
over all instances on the geometric mean, the number of instances where the corresponding
configuration performed best and the number of instances where the algorithm performed
best and better than all others.

6.1 Binary essential

First we evaluate in Table 1 how our algorithm performs compared to algorithms from the
literature when the behavior of the customers is binary and the demand is essential. Our EA
uses the solution archive (SA) and the multi-level solution evaluation scheme (ML-ES) as
described in Section 5.2 and we compare it to the tabu search approach (TSAL) by Alekseeva
et al. [3] and the hybrid memetic algorithm which embeds this tabu search (HMA) developed
in [2]. All algorithms are executed 30 times with a total run time of 600 seconds. The
average objective values over these runs and their associated standard deviations are given
in columns obj and sd, respectively. For our EA, the median of the time needed for the best
solution is given as well in the column tbest[s].

2www.ads.tuwien.ac.at/w/Research/Problem Instances#Competitive Facility Location
Problems

www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems
www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems
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Table 1 Results of binary customer behavior with essential demand

TSAL HMA EA + SA + ML-ES

Instance r p obj sd obj sd obj sd tbest[s]

Code1 10 10 9545.43 35.14 9505.07 57.16 9594.00 10.37 243.10

Code2 10 10 9324.50 50.20 9217.80 58.07 9321.13 26.28 130.10

Code3 10 10 9367.07 32.45 9329.37 53.93 9374.30 28.15 227.00

Code4 10 10 8882.03 18.31 8877.13 22.02 8888.47 14.39 115.60

Code5 10 10 9227.30 48.62 9240.40 52.15 9273.10 27.45 268.20

Code6 10 10 9825.20 35.02 9808.13 39.34 9850.53 5.58 197.50

Code7 10 10 9225.70 42.60 9183.77 55.95 9270.30 20.44 222.80

Code8 10 10 9088.17 9.62 9046.43 34.70 9092.57 2.37 170.60

Code9 10 10 9009.53 3.68 8950.47 59.78 9011.40 8.76 182.90

Code10 10 10 9382.67 25.28 9365.40 46.44 9411.00 0.00 151.70

Code1 15 15 10076.73 49.31 10051.83 59.42 10095.00 37.02 297.10

Code2 15 15 9578.77 46.03 9514.93 51.54 9626.67 17.34 392.00

Code3 15 15 9355.93 18.85 9310.30 44.48 9365.97 17.19 281.90

Code4 15 15 9169.93 18.46 9116.27 68.57 9179.03 32.68 241.30

Code5 15 15 9242.57 64.44 9237.70 41.65 9252.03 42.10 320.90

Code6 15 15 10119.03 52.39 10095.73 41.17 10148.23 27.71 326.70

Code7 15 15 9556.13 39.65 9496.63 59.54 9580.30 35.03 283.90

Code8 15 15 9047.13 47.40 8987.20 41.46 9063.10 41.76 357.90

Code9 15 15 9124.70 66.93 9086.47 65.56 9168.20 23.40 335.40

Code10 15 15 9290.80 49.24 9240.83 57.79 9312.40 51.91 434.30

Code1 20 20 9837.17 53.95 9767.93 58.96 9831.97 56.35 460.50

Code2 20 20 9667.17 32.12 9602.20 38.63 9666.37 52.72 421.30

Code3 20 20 9286.17 67.10 9253.50 63.57 9296.67 70.96 426.90

Code4 20 20 9439.13 34.47 9402.23 55.74 9404.70 89.41 388.50

Code5 20 20 9498.80 38.81 9422.63 52.81 9512.10 42.91 345.90

Code6 20 20 10283.10 83.09 10210.53 59.37 10261.53 91.67 452.50

Code7 20 20 9902.20 43.20 9860.03 52.13 9943.10 33.88 361.90

Code8 20 20 9329.67 29.32 9248.07 59.96 9342.90 23.35 484.30

Code9 20 20 9438.00 17.91 9404.67 42.67 9452.57 16.55 416.80

Code10 20 20 9741.20 35.77 9683.63 50.92 9688.73 74.95 460.40

Geometric mean 9456.10 9411.33 9470.05

#best results 6 0 24

#unique best res. 6 0 24

In Table 1 we can clearly see the superiority of our algorithm as we are able to out-
perform TSAL on 24 instances. We also tested for statistical significance in our previous
work [6] with a larger instance set and there we showed that our algorithm is statistically
better in 38 out of 90 instances, worse in 3 instances and equal in 17 instances. We could
not observe statistically significant differences on the remaining 32 instances. We refer
the reader to [6] for a more detailed analysis of our computational results for the binary
essential case.
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6.2 Proportional essential

For proportional customer behavior we evaluate the impact of the solution archive on the
results in Table 2 as well as the performance compared to the alternating heuristic (AH)
by Kochetov et al. [13]. Their AH is based on a starting solution for the leader to find
the optimal facility locations for the follower which are computed using the linear MIP
model for the follower. This follower solution is subsequently chosen as leader solution
and the optimal follower solution is found again. This procedure is repeated until a solution
is obtained which has already been generated. Since the repeated exact computation of
the optimal follower’s locations is very time-consuming we modified their approach by
using our greedy algorithm instead of the MIP as described in Section 5.1 for finding the
locations for the follower. The results are based on our previous work [5] where we analyzed
following configurations:

– The EA variant where the final best solution is not evaluated with the MIP. This means
that the corresponding objective values are not exact, but only approximate values from
the greedy evaluation method.

– A modified version of the Alternating Heuristic (MAH) by Kochetov et al. [13], where
each solution candidate is approximated by our greedy algorithm instead of evaluated
exactly.

– The EA variant (EA + MIP) that does not employ the archive and utilizes the basic local
search only; the final best solution is evaluated with MIP.

– The EA variant (EA + SA + MIP) that uses the solution archive and the tabu search as
local improvement method; the final best solution is evaluated with MIP.

In this table, again, objstands for the average of the objective values over 30 runs with their
standard deviation in column sd. The time needed until termination is given in column t[s].
Since MAH is a deterministic algorithm only one run is performed.

In Table 2 the numerical values are given. Numbers in parenthesis mean that evaluating
the best solution candidate of the EA needed more than 3600 seconds and so the objective
values are determined by the greedy algorithm only. Therefore they are only approxima-
tions and not directly comparable to exact objective values. So in the summary of the EA
configuration these values are not considered for comparison. The best value in each row is
marked bold. When some values of a row are obtained by greedy evaluation and some other
values in the same row are exact solution qualities, only the exact values are compared to
each other, e.g., in the row with r = p = 3.

In some cases of the EA + MIP variant not all 30 runs terminated within the time limit
so only the average over the finished runs is given, e.g., the row with r = 3 and p = 5.
We observe that even for small p values of 4 and 5 we were not able to evaluate even one
solution candidate in the given time limit. Another interesting point is that evaluating the
candidate solution exactly via the MIP is the most time-consuming part of the algorithm; for
r = 3 and p = 8 it needed over 90 % of the overall time but it decreases when p increases.
The run-time of all configurations that incorporate the exact evaluation increases steadily
with r because of the growing complexity of the MIP.

On some instances MAH finds a solution in less time than our algorithms and espe-
cially when the exact evaluation is too time consuming it is very fast. The quality of the
solutions is similar to our EA approach when we do not use the SA, but by incorporating
the solution archive we boosted the performance of our algorithm so that the final solu-
tion quality is in all but 4 of the tested instances better than the quality of the solutions
produced by MAH and in 3 of the 4 cases it is equal. For some of the smaller instances
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Table 2 Results of proportional customer behavior with essential demand

EA EA + MIP MAH EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj t[s] obj sd t[s]

2 2 (280.002) 0.13 106 278.671 0.15 677 277.942 667 278.736 0.00 600

2 3 (338.170) 0.31 157 336.587 0.19 684 334.233 535 337.228 0.00 625

2 4 (374.754) 0.71 154 373.455 0.48 623 373.665 503 374.425 0.00 674

2 5 (399.834) 0.50 200 398.642 0.90 493 399.208 260 401.781 0.00 505

2 6 (419.360) 0.46 241 418.779 0.67 525 419.920 275 421.091 0.15 586

2 7 (434.640) 0.62 223 434.388 0.74 394 431.803 272 436.123 0.00 440

2 8 (447.131) 0.42 202 446.710 0.46 322 446.474 158 448.192 0.18 440

2 9 (456.992) 0.45 300 456.615 0.63 419 455.788 166 458.905 0.37 529

2 10 (465.178) 0.54 300 464.620 0.53 401 463.211 173 467.055 0.16 416

3 2 (223.059) 0.18 144 (223.059) 0.18 144 (223.153) <1 (223.194) 0.00 27

3 3 (281.283) 0.31 174 (281.283) 0.31 174 276.818 5959 279.000 0.00 6397

3 4 (321.185) 0.86 201 (321.185) 0.86 201 319.427 4128 319.819 0.00 3956

3 5 (349.644) 0.54 300 347.429* 0.48 3892 349.471 3867 349.793 0.00 2703

3 6 (372.924) 0.68 300 371.900* 0.98 3896 372.760 3453 373.836 0.12 2777

3 7 (391.264) 0.65 300 390.753* 0.74 3493 391.314 2086 391.894 0.39 2658

3 8 (406.302) 0.52 300 405.907* 0.77 3124 407.623 1721 407.765 0.08 3148

3 9 (418.553) 0.37 300 418.051* 0.53 2795 419.985 1709 420.305 0.18 2424

3 10 (429.040) 0.56 300 428.357 0.53 2370 430.465 1299 431.578 0.33 2670

4 2 (183.188) 0.11 246 (183.188) 0.11 246 (183.223) <1 (183.223) 0.00 38

4 3 (238.953) 0.33 226 (238.953) 0.33 226 (239.527) <1 (239.628) 0.00 83

4 4 (279.021) 0.56 298 (279.021) 0.56 298 (280.336) <1 (280.549) 0.08 126

4 5 (310.562) 0.70 300 (310.562) 0.70 300 (313.041) <1 (313.041) 0.00 157

4 6 (335.415) 0.65 300 (335.415) 0.65 300 (337.158) <1 (337.540) 0.12 242

4 7 (355.659) 0.52 300 (355.659) 0.52 300 (356.575) <1 (358.233) 0.18 267

4 8 (372.334) 0.67 300 (372.334) 0.67 300 (374.436) <1 (375.031) 0.04 300

4 9 (386.207) 0.81 300 (386.207) 0.81 300 (387.975) <1 (389.837) 0.12 300

4 10 (398.011) 0.74 300 (398.011) 0.74 300 (400.421) 1 (401.428) 0.13 300

5 2 (156.357) 0.15 199 (156.357) 0.15 199 (156.538) <1 (156.538) 0.00 44

5 3 (207.548) 0.18 293 (207.548) 0.18 293 (207.682) <1 (208.025) 0.00 112

5 4 (247.295) 0.76 300 (247.295) 0.76 300 (244.959) <1 (248.663) 0.06 212

5 5 (278.806) 0.60 300 (278.806) 0.60 300 (279.889) <1 (281.522) 0.00 194

5 6 (304.283) 0.54 300 (304.283) 0.54 300 (305.488) <1 (307.129) 0.13 300

5 7 (325.520) 0.81 300 (325.520) 0.81 300 (327.357) <1 (328.314) 0.05 300

5 8 (343.534) 0.61 300 (343.534) 0.61 300 (345.947) <1 (346.254) 0.12 300

5 9 (358.373) 1.02 300 (358.373) 1.02 300 (360.572) <1 (362.159) 0.31 300

5 10 (371.213) 0.74 300 (371.213) 0.74 300 (374.737) 1 (374.556) 0.24 300

Geo. mean (330.38) 330.06 330.55 331.67

#best res. − 0 1 35

#u. best res. − 0 1 32

∗Not all of the 30 runs completed in the time limit
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Table 3 Results of partially binary customer behavior with essential demand

EA EA + MIP EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj sd t[s]

2 2 (283.753) 0.29 26 278.450 1.15 549 278.931 0.00 529

2 3 (315.105) 0.47 33 309.243 0.49 539 310.013 0.00 515

2 4 (337.476) 1.13 32 330.013 1.24 432 332.359 0.00 376

2 5 (349.361) 0.35 38 343.743 0.46 417 345.116 0.32 444

2 6 (359.113) 0.53 36 354.270 0.76 436 357.640 0.45 437

2 7 (368.140) 0.64 40 363.248 0.70 404 366.883 2.55 412

2 8 (376.035) 0.71 33 370.994 1.18 378 376.136 2.12 382

2 9 (383.784) 0.84 47 378.761 1.91 382 385.354 1.08 316

2 10 (391.553) 1.31 44 384.370 1.72 378 388.068 0.47 303

3 2 (259.461) 0.25 38 247.791 0.34 590 247.946 0.00 606

3 3 (289.450) 0.74 42 277.505 1.26 451 279.000 0.00 432

3 4 (311.032) 1.50 43 299.228 1.47 380 302.217 0.00 354

3 5 (323.333) 0.93 39 312.901 1.92 362 313.582 0.43 362

3 6 (334.559) 0.65 42 324.425 0.88 393 325.250 0.97 386

3 7 (343.815) 0.66 49 333.255 1.39 354 335.827 1.37 348

3 8 (352.919) 0.83 57 341.766 0.91 331 347.421 2.07 344

3 9 (360.388) 1.14 72 349.304 1.94 333 356.983 2.23 320

3 10 (367.969) 1.45 64 355.705 1.97 305 363.047 1.97 348

4 2 (239.204) 0.54 58 225.354 0.57 559 225.640 0.00 560

4 3 (269.482) 0.64 52 253.806 1.15 429 255.072 0.00 410

4 4 (290.283) 1.68 45 274.913 1.94 331 279.000 0.00 330

4 5 (303.248) 1.61 51 288.922 1.95 349 291.000 0.62 330

4 6 (315.374) 0.65 56 301.074 0.58 331 303.139 0.78 343

4 7 (324.823) 0.61 83 310.542 0.83 325 315.167 0.33 298

4 8 (333.640) 0.86 78 319.463 1.15 317 327.670 0.00 302

4 9 (341.007) 0.87 80 327.074 3.05 299 335.919 0.13 318

4 10 (348.310) 1.02 97 335.461 1.64 299 343.982 0.58 304

5 2 (220.928) 0.72 58 211.955 0.94 667 212.604 0.00 626

5 3 (250.491) 0.99 52 240.746 1.07 515 242.035 0.00 427

5 4 (272.251) 2.35 45 262.368 2.43 379 265.917 0.00 365

5 5 (285.997) 1.32 51 276.552 1.71 403 278.193 0.00 401

5 6 (297.032) 0.58 56 287.690 0.77 402 290.754 0.88 400

5 7 (306.395) 0.75 83 297.093 0.92 356 301.843 0.49 340

5 8 (315.239) 0.74 78 306.201 1.21 370 314.168 0.00 340

5 9 (323.263) 0.98 80 314.983 1.40 353 323.154 0.00 364

5 10 (330.717) 2.00 99 322.066 2.12 315 330.684 0.00 311

Geo. mean 7(316.00) 305.65 309.24

#best res. − 0 36

# u. best res. − 0 36
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EA + SA + MIP has a very small standard deviation, which underlines the robustness of
our algorithm.

Compared to binary customer behavior, the proportional scenario is much harder to solve
and we can only approximate the value of solution candidates for instances that are only
half the size.

6.3 Partially binary essential

In the next computational tests we analyzed the partially binary essential customer behavior.
Since there is, to the best of our knowledge, no algorithm with numerical results described

Table 4 Results of binary customer behavior with unessential demand

LMIN FMAX

Instance r p obj l sd obj f sd sat. obj l sd obj f sd sat.

Code1 10 10 1846.37 0.00 699.52 0.00 29.30 % 1849.32 0.00 1539.73 0.00 39.00 %

Code2 10 10 1927.16 0.00 988.90 0.00 27.72 % 1929.70 0.00 1793.24 0.00 35.39 %

Code3 10 10 1850.92 0.00 1164.79 0.00 32.25 % 1855.38 0.01 1564.22 0.01 36.57 %

Code4 10 10 1914.31 0.00 1313.22 0.00 32.51 % 1918.90 0.00 1674.72 0.00 36.20 %

Code5 10 10 1909.94 0.00 1189.45 0.00 30.26 % 1912.81 0.00 1718.66 0.00 35.45 %

Code6 10 10 1892.39 0.00 1000.04 0.00 30.39 % 1898.67 0.00 1753.45 0.00 38.37 %

Code7 10 10 1928.64 0.00 895.01 0.00 25.21 % 1937.19 0.00 1819.43 0.00 33.54 %

Code8 10 10 1889.22 0.00 995.05 0.00 30.18 % 1893.17 0.00 1698.59 0.00 37.58 %

Code9 10 10 1937.16 0.00 1001.99 0.00 28.27 % 1943.06 0.00 1756.90 0.00 35.59 %

Code10 10 10 1926.28 0.00 1165.26 0.00 30.23 % 1931.94 0.00 1793.41 0.00 36.43 %

Code1 15 15 2626.28 0.00 1270.15 0.00 44.84 % 2630.42 0.41 2065.77 0.41 54.05 %

Code2 15 15 2835.00 0.00 1148.96 0.00 37.87 % 2835.93 4.31 2492.44 4.31 50.65 %

Code3 15 15 2673.87 0.00 1602.77 0.00 45.73 % 2675.32 5.63 2118.62 5.63 51.27 %

Code4 15 15 2786.36 0.00 1576.55 0.00 43.95 % 2791.15 0.00 2231.67 0.00 50.60 %

Code5 15 15 2788.79 0.00 1433.94 0.00 41.23 % 2790.91 3.26 2346.67 3.26 50.16 %

Code6 15 15 2780.75 0.00 1635.72 0.00 46.40 % 2786.19 0.26 2398.07 0.26 54.47 %

Code7 15 15 2850.97 0.89 1453.86 10.88 38.44 % 2857.61 4.30 2563.34 4.30 48.41 %

Code8 15 15 2766.82 0.00 1429.97 0.00 43.91 % 2769.97 2.24 2239.73 2.24 52.42 %

Code9 15 15 2827.96 0.00 1553.82 0.00 42.15 % 2832.91 1.53 2418.83 1.54 50.52 %

Code10 15 15 2835.45 0.00 1686.00 0.00 44.22 % 2841.64 1.69 2466.41 1.69 51.91 %

Code1 20 20 3156.98 64.77 1549.71 132.88 54.17 % 3153.85 51.35 2654.00 40.05 66.84 %

Code2 20 20 3476.13 65.08 1813.75 212.00 50.28 % 3515.71 54.99 3224.91 47.04 64.07 %

Code3 20 20 3267.67 48.30 1806.11 131.34 54.26 % 3227.89 64.64 2754.22 57.30 63.97 %

Code4 20 20 3386.16 85.40 1985.39 132.71 54.11 % 3375.96 62.21 2817.20 60.38 62.39 %

Code5 20 20 3418.97 59.38 2011.84 134.34 53.02 % 3402.50 60.47 2987.49 56.47 62.38 %

Code6 20 20 3436.56 82.77 1807.69 152.24 55.10 % 3356.40 80.46 2963.24 66.61 66.40 %

Code7 20 20 3537.77 61.17 1978.53 155.31 49.26 % 3548.15 63.04 3316.42 45.49 61.30 %

Code8 20 20 3378.65 60.82 1714.22 133.31 53.29 % 3355.12 58.21 2851.08 54.63 64.94 %

Code9 20 20 3540.28 59.59 1981.12 148.48 53.11 % 3494.47 51.85 3124.28 36.54 63.67 %

Code10 20 20 3482.95 78.33 2137.71 134.22 54.96 % 3463.84 81.00 3135.54 65.65 64.54 %
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in the literature we only compare different configurations of our EA. Similarly to the pro-
portional case we compare our EA without exact evaluation, the EA with exact evaluation
in the end (EA + MIP) and the EA with solution archive and exact evaluation (EA +
SA + MIP). Table 3 shows our numerical results, column names have the same meaning
as before.

First, we observe that for all our tested instance we were able to evaluate the best solution
candidate exactly, even for the cases which were not possible for the proportional customer
behavior. Also, the time needed for this evaluation is much less and at most about 10 minutes
for the hardest instance (in the case of r = 5 and p = 2). The deviation of the greedy
objective value and the exact objective value is around 3 % on average which shows that our
greedy solution evaluation method is relatively accurate. In this customer behavior scenario
the benefits of using a solution archive are even more obvious than in the other scenarios
as EA + SA + MIP performed better in all our tested instances. Second, we see again that
for a fixed r the time needed for solving the model decreases with increasing p because the
solution space is getting smaller. For many of the instances we obtained a very low standard
deviation which, again, shows the robustness of our approach.

Compared to the other customer behavior scenarios the complexity of partially binary
behavior lies in between the binary and the proportional choice rule, where binary is the
easiest to solve and proportional by far the hardest. We also see that the leader is preferred
in proportional scenarios as for a fixed r and p the turnover is higher than in the partially
binary case in most of the instances but especially for a large p and small r , i.e., when he is
able to place more facilities than the follower. For example, the turnover for the leader when
r = 3 and p = 10 is in the proportional case nearly 16 % higher than when the customers
use the partially binary choice.

6.4 Unessential demands

We performed computational tests for all customer behavior scenarios with unessential
demands. Like in the partially binary customer behavior also for unessential demands there
are no numerical results available in the literature. We tested the two different follower
strategies LMIN and FMAX and compared them to each other. In the following tables in

Table 5 Results of binary customer behavior with unessential demand for instances with r = p = 20 with
an increased time limit of 1800s

LMIN FMAX

Instance r p obj l sd obj f sd sat. obj l sd obj f sd sat.

Code1 20 20 3379.95 0.00 1607.54 0.00 57.40 % 3382.53 0.00 2442.62 0.00 67.04 %

Code2 20 20 3714.01 0.00 1407.34 0.00 48.68 % 3717.09 0.00 3034.83 0.00 64.18 %

Code3 20 20 3409.31 0.00 1749.61 0.00 55.17 % 3412.34 0.00 2578.23 0.00 64.06 %

Code4 20 20 3582.97 0.00 1849.46 0.00 54.72 % 3587.58 0.00 2611.09 0.00 62.44 %

Code5 20 20 3621.48 0.00 2053.21 0.00 55.40 % 3626.47 0.00 2773.11 0.00 62.48 %

Code6 20 20 3639.92 0.00 1687.07 0.00 55.97 % 3643.62 0.00 2706.55 0.00 66.72 %

Code7 20 20 3739.66 0.00 1956.10 0.00 50.86 % 3750.13 0.00 3132.62 0.00 61.46 %

Code8 20 20 3581.40 0.00 1517.67 0.00 53.35 % 3586.28 0.00 2635.38 0.00 65.10 %

Code9 20 20 3689.02 0.00 1983.98 0.00 54.57 % 3693.16 0.00 2949.16 0.00 63.89 %

Code10 20 20 3712.01 0.00 1744.49 0.00 53.36 % 3716.74 0.00 2908.06 0.00 64.78 %
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addition to the average leader objective value (obj l) over 30 runs we also present the average
turnover obtained by the follower for the corresponding best leader solution found (obj f).
For both values the standard deviations are given as well (sd). Usually only a fraction of

Table 6 Results of proportional customer behavior with unessential demand

LMIN FMAX

r p obj l sd obj f sd sat. obj l sd obj f sd sat.

2 2 19.818 0.00 19.818 0.00 7.10 % 30.460 0.00 29.331 0.00 10.72 %

2 3 32.045 0.00 18.100 0.00 8.99 % 42.091 0.00 26.735 0.00 12.33 %

2 4 42.586 0.00 16.047 0.00 10.51 % 52.266 0.00 25.160 0.00 13.88 %

2 5 52.538 0.00 15.569 0.00 12.21 % 61.266 0.00 23.528 0.00 15.20 %

2 6 61.468 0.00 14.990 0.00 13.70 % 70.285 0.00 22.218 0.00 16.58 %

2 7 69.757 0.00 14.551 0.00 15.11 % 78.613 0.00 20.634 0.00 17.79 %

2 8 77.767 0.00 14.143 0.00 16.47 % 85.893 0.00 19.610 0.00 18.91 %

2 9 84.962 0.00 13.604 0.00 17.66 % 91.963 0.00 19.118 0.00 19.91 %

2 10 91.552 0.00 13.027 0.00 18.74 % 98.666 0.03 18.557 0.07 21.01 %

3 2 17.133 0.00 23.343 0.00 7.25 % 28.049 0.00 40.476 0.00 12.28 %

3 3 25.262 0.00 25.262 0.00 9.05 % 39.386 0.00 38.039 0.00 13.88 %

3 4 35.786 0.02 23.610 0.32 10.64 % 49.724 0.03 35.434 0.03 15.26 %

3 5 45.888 0.00 22.267 0.00 12.21 % 59.172 0.00 33.332 0.00 16.58 %

3 6 54.939 0.00 21.571 0.00 13.71 % 67.564 0.00 31.682 0.00 17.79 %

3 7 63.250 0.00 21.026 0.00 15.10 % 74.954 0.00 29.902 0.00 18.79 %

3 8 71.341 0.08 20.260 0.10 16.42 % 82.241 0.00 28.839 0.00 19.91 %

3 9 78.551 0.20 19.595 0.08 17.59 % 89.195 0.07 28.040 0.13 21.01 %

3 10 85.244 0.19 18.998 0.08 18.68 % 95.494 0.39 27.384 0.21 22.02 %

4 2 15.120 0.00 33.323 0.00 8.68 % (26.501) 0.00 – – –

4 3 22.935 0.00 28.380 0.00 9.20 % (37.586) 0.00 – – –

4 4 29.895 0.00 29.895 0.00 10.72 % 47.448 0.00 45.056 0.00 16.58 %

4 5 39.870 0.00 28.417 0.00 12.24 % 56.606 0.00 42.641 0.00 17.79 %

4 6 49.085 0.00 27.466 0.00 13.72 % 64.863 0.13 40.647 0.14 18.91 %

4 7 57.464 0.03 26.822 0.03 15.10 % 72.384 0.03 39.126 0.16 19.98 %

4 8 65.234 0.34 25.972 0.25 16.35 % 79.469 0.25 37.534 0.30 20.97 %

4 9 72.388 0.54 25.180 0.23 17.49 % 86.197 0.53 36.634 0.27 22.01 %

4 10 78.244 0.84 24.138 0.38 18.35 % 91.158 1.06 35.784 0.33 22.75 %

5 2 (13.856) 0.00 – – – (25.474) 0.00 – – –

5 3 20.973 0.00 35.673 0.00 10.15 % (36.173) 0.00 – – –

5 4 27.804 0.00 32.685 0.00 10.84 % (45.780) 0.00 – – –

5 5 34.449 0.00 34.449 0.00 12.35 % (54.150) 0.00 – – –

5 6 43.715 0.01 33.071 0.02 13.76 % 62.393* 0.05 49.228* 0.11 20.00 %

5 7 52.077 0.13 32.331 0.17 15.13 % 70.206 0.25 47.418 0.26 21.08 %

5 8 59.373 0.77 31.206 0.36 16.23 % 76.770 0.51 46.073 0.41 22.01 %

5 9 65.956 1.14 30.357 0.30 17.26 % 82.630 0.68 44.856 0.36 22.85 %

5 10 70.972 2.02 29.086 0.38 17.93 % 86.950 1.85 43.642 0.38 23.40 %

∗Not all of the 30 runs completed in the time limit
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the total demand of all customers can be satisfied when the demand is unessential and these
(average) fractions are the values in column market saturation (sat.).

The first interesting observation is that the turnover of the follower and the market sat-
uration in the FMAX strategy is higher than in the LMIN strategy in all our test cases,

Table 7 Results of partially binary customer behavior with unessential demand

LMIN FMAX

r p obj l sd obj f sd sat. obj l sd obj f sd sat.

2 2 21.288 0.00 21.288 0.00 7.63 % 34.168 0.00 31.450 0.00 11.76 %

2 3 35.324 0.00 20.960 0.00 10.09 % 47.015 0.00 30.165 0.00 13.83 %

2 4 48.015 0.00 21.055 0.00 12.38 % 59.276 0.00 29.247 0.00 15.86 %

2 5 59.988 0.00 19.512 0.00 14.25 % 71.004 0.00 27.864 0.00 17.72 %

2 6 71.623 0.00 19.022 0.00 16.24 % 82.540 0.00 27.079 0.00 19.64 %

2 7 82.551 0.00 19.783 0.00 18.34 % 93.484 0.00 25.939 0.00 21.40 %

2 8 93.423 0.00 19.487 0.00 20.23 % 103.987 0.30 25.514 0.65 23.21 %

2 9 103.254 0.00 20.031 0.00 22.09 % 114.234 0.00 25.246 0.00 25.00 %

2 10 113.116 0.00 20.735 0.00 23.99 % 122.132 1.36 24.473 0.38 26.27 %

3 2 20.501 0.00 22.075 0.00 7.63 % 32.744 0.00 44.798 0.00 13.90 %

3 3 28.658 0.00 28.658 0.00 10.27 % 45.339 0.00 43.072 0.00 15.84 %

3 4 41.349 0.00 28.753 0.00 12.56 % 57.582 0.00 41.117 0.00 17.69 %

3 5 53.268 0.00 29.170 0.00 14.77 % 69.171 0.00 39.802 0.00 19.53 %

3 6 64.903 0.00 28.679 0.00 16.77 % 80.790 0.00 38.398 0.00 21.36 %

3 7 75.591 0.00 29.186 0.00 18.78 % 91.440 0.00 37.178 0.00 23.05 %

3 8 86.463 0.00 28.890 0.00 20.67 % 101.820 0.00 36.985 0.00 24.88 %

3 9 96.482 0.00 27.898 0.00 22.29 % 111.967 0.02 36.416 0.20 26.59 %

3 10 106.419 0.00 28.221 0.00 24.13 % 122.981 0.31 35.902 0.04 28.47 %

4 2 19.856 0.00 22.720 0.00 7.63 % 31.007 0.00 57.367 0.00 15.84 %

4 3 27.934 0.00 29.378 0.00 10.27 % 44.102 0.00 55.005 0.00 17.76 %

4 4 35.294 0.00 35.294 0.00 12.65 % 56.457 0.00 53.602 0.00 19.72 %

4 5 47.213 0.00 35.711 0.00 14.86 % 67.858 0.00 51.352 0.00 21.36 %

4 6 58.848 0.00 35.220 0.00 16.86 % 79.037 0.00 49.204 0.00 22.98 %

4 7 69.629 0.00 35.515 0.00 18.84 % 89.714 0.00 48.228 0.00 24.72 %

4 8 79.507 0.00 35.948 0.00 20.69 % 100.461 0.00 47.720 0.00 26.56 %

4 9 90.337 0.00 34.987 0.00 22.46 % 110.602 0.03 46.858 0.16 28.22 %

4 10 100.274 0.00 35.311 0.00 24.30 % 120.672 0.07 46.275 0.33 29.92 %

5 2 19.241 0.00 20.779 0.00 7.17 % 30.831 0.00 68.490 0.00 17.80 %

5 3 27.318 0.00 27.420 0.00 9.81 % 43.493 0.00 66.877 0.00 19.78 %

5 4 34.570 0.00 36.014 0.00 12.65 % 55.232 0.00 64.410 0.00 21.44 %

5 5 41.462 0.00 41.462 0.00 14.86 % 66.663 0.00 61.991 0.00 23.06 %

5 6 53.097 0.00 40.971 0.00 16.86 % 77.940 0.00 59.831 0.00 24.69 %

5 7 63.878 0.00 41.266 0.00 18.84 % 88.616 0.00 58.855 0.00 26.43 %

5 8 74.554 0.00 40.796 0.00 20.67 % 98.942 0.03 58.530 0.12 28.22 %

5 9 84.363 0.00 41.222 0.00 22.51 % 109.581 0.00 57.526 0.00 29.95 %

5 10 94.297 0.00 41.528 0.00 24.34 % 119.869 0.00 56.054 0.00 31.53 %
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which corresponds to our intuition. Also, in the proportional and the partially binary case
the turnover of the leader is always lower when the follower uses the LMIN strategy. It is
quite surprising that this is not always the case for the binary customer behavior, see Table 4.
In most of the instances with r = p = 20 the leader objective value is higher for the LMIN
strategy. This can be explained by the observation that the model for the follower is usu-
ally easier to solve in the LMIN case. Therefore the algorithm is able to converge faster
and the leader can frequently obtain better facility locations. To confirm this assumption we
increased the time limit on instances with r = p = 20 to 1800 seconds and report the results
in Table 5. There we see that now the leader’s profit of the LMIN strategy is consistently
lower than with the FMAX strategy.

The model for the follower’s problem for the proportional unessential customer behavior,
especially FMAX, is still hard to solve so we again only compute greedy values for some
of the instances, denoted by parentheses in Table 6. For these instances we do not state the
market saturation and the objective values and standard deviations of the follower because
we do not have exact results. However, compared to essential demands we were able to solve
the follower’s model for more instances and therefore get accurate results in more cases.

In Table 7 we see the results of partially binary customer behavior with unessential
demands. The results show that for this scenario the results are very stable because the
objective values have a very low standard deviation in many instances. The most interesting
observation in this table is that, in contrast to the essential cases, in most instances the leader
objective value (and the market saturation) is higher than in the proportional scenario. The
reason for this behavior is that in the partially binary scenario more demand is satisfied by
nearer facilities and therefore the total satisfied demand also increases.

From the results we conclude that in general the FMAX strategy is better because signif-
icantly more demand can be satisfied and the follower increases his profit, too. However, if
the follower wants to lower the turnover of the leader by all means the LMIN strategy might
be useful but we could show that this is only valid for proportional and partially binary
behavior and not for binary behavior. Compared to the essential demand cases we showed
that while the complexity of the models for the follower’s problem of the binary behavior
increases, the complexity of the other two scenarios decreases and we got accurate results
for more instances.

7 Conclusions and future work

In this work we presented bi-level mixed integer programming models for competitive facil-
ity location problems with different customer behavior as described in the literature. We
used an evolutionary algorithm incorporating a complete solution archive for finding the
best locations for the leader, which has already been successfully applied to binary and pro-
portional behavior in our previous work. The solution representation is based on the leader
facilities only and we used our developed lower level MIP models as well as a greedy
method for the evaluation of candidate solutions. We showed that the model for the binary
customer behavior scenario can be solved much more easily than the others and that the pro-
portional case is by far the hardest to solve. The observation that the leader benefits more
from proportional customer behavior than from partially binary behavior is also interesting.
Even more interesting is that this changes when the demand is unessential. For the unessen-
tial demand model binary behavior is still the easiest and the proportional behavior still
the hardest to solve but the former is getting harder while partially binary and proportional
models are getting easier.
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Our tests showed that our algorithmic approach is practically effective for CFLPs. Even
for the more complex customer behavior scenarios our EA is able to find good solutions
relatively fast. We compared our algorithm with previous state-of-the-art algorithms on the
binary and proportional essential customer behavior scenarios and were able to outperform
them in many cases.

Future research directions could be the development of a better approximation of the
leader’s objective value, e.g., by extending our greedy algorithms with a local search. When
using a more elaborate solution evaluation we have obviously a tradeoff between accu-
racy and run-time. It would also be interesting to extend our models for different customer
behavior to more realistic scenarios by taking opening costs of facilities into account to be
able to maximize not only the turnover of the leader but also the profit. We also want to
study the impact of different customer behaviors, i.e., compare the solutions obtained by
the corresponding models in a more detail. This enables us to gain insights into the impact
of different models on scenarios in practice.
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