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Abstract The Berth Allocation Problem aims at assigning and scheduling incoming vessels
to berthing positions along the quay of a container terminal. This problem is a well-known
optimization problem within maritime shipping. In order to address it, we propose two
POPMUSIC (Partial Optimization Metaheuristic Under Special Intensification Conditions)
approaches that incorporate an existing mathematical programming formulation. POPMU-
SIC is an efficient metaheuristic that may serve as blueprint for matheuristics approaches
once hybridized with mathematical programming. In this regard, the use of exact methods
for solving the sub-problems defined in the POPMUSIC template highlight an interoper-
ation between metaheuristics and mathematical programming techniques, which provide
a new type of approach for this problem. The computational experiments reveal excellent
results.
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1 Introduction

The increasing demand of maritime transport and the great competition among port ter-
minals enforces terminal managers to efficiently exploit all resources in order to improve
the competitiveness of the terminals. On the other hand, shipping companies often require
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on-time and suitable services. In this context, according to [17], 93,6 % of the delayed vessel
schedules are attributable to port access and terminal operations. These operations, referred
to as seaside operations ([16], [23]), are strongly affected by the use of berths. Therefore,
it becomes imperative for container terminals to suitably schedule their use to increase or
maintain their market share ([27]).

The aforementioned discussion leads to the definition of the Berth Allocation Problem
(BAP). Its goal is to determine the berthing position and berthing time for each container
vessel arriving to the terminal over a given planning horizon. This problem has been exten-
sively studied in the literature. While our practical intent on this goes back for about two
decades [8], quite a bit of academic research has been done recently [2]. In this regard,
due to the large variety of maritime terminal layouts, research has produced a multitude of
variants for this problem.

(i) Depending on how the quay is modelled, the BAP can be referred to as discrete (the
quay is divided into segments called berths) or continuous (the quay is not divided,
thus the vessels can berth at any position along the quay). There are also options to
discretize the continuous quay to have intermediate options from classical berths up to
almost continuous ones [8]. Moreover, in some related works by, e.g., Cordeau et al.
[6], Umang et al. [26], there is also a hybrid approach of the quay (it is divided into
a set of berths and a vessel can occupy more than one berth at a time or share its
assigned berth with other container vessels).

(ii) Depending on the arrival time, the BAP can be classified into static, that is, the vessels
are already in the port when the berths become available; or dynamic, that is, the
vessels arrive during the planning horizon. Hence, the dynamic variant considers that
the vessels arrive at a certain time within the planning horizon.

(iii) Depending on the planning level, the BAP can be addressed at different levels.
Namely, operational, tactical or strategic level. At the operational level, the decisions
cover daily operations, while at the tactical level decisions from one week to several
months are addressed. Finally, the strategic level covers a time horizon from one to
several years.

For detailed descriptions of the BAP, the reader is referred to the works of Bierwirth and
Meisel [2] and Christiansen et al. [5]. The first of these two papers also provides a com-
prehensive literature review on berth allocation and related problems so that the reader may
consult this survey for additional references. To this end we also see a wealth of extensions
like the integrative treatment of berth allocation with quay crane allocation (crane split) or
the scheduling of yard resources (like automated guided vehicles, gantry cranes, etc.). A
few recent papers include, e.g., [9, 11, 14, 19, 21, 28, 29].

In this paper, we study the Dynamic Berth Allocation Problem (DBAP) proposed by
Cordeau et al. [6], that considers the berth’s and vessel’s time windows as well as heteroge-
neous vessel service times depending on the assigned berth. According to the classification
shown below, in the DBAP the dynamic discrete version of the BAP is addressed at an oper-
ational level. This problem is NP-hard since it can be modeled as a Multi-Depot Vehicle
Routing Problem with Time-Windows (MDVRPTW). Due to its difficulty, several approx-
imate and exact solution approaches have been proposed. Recently, de Oliveira et al. [18]
investigated a Clustering Search with Simulated Annealing and Ting et al. [25] applied
Particle Swarm Optimization for solving the DBAP. Although they are able to provide the
optimal solution values for the biggest instances proposed by Cordeau et al. [6], they are not
able to ensure that behaviour. Moreover, the mathematical reformulation of this problem as
a Generalized Set-Partitioning Problem allows to solve those instances within reasonable
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computational time (see Buhrkal et al. [3]). However, Lalla-Ruiz et al. [12] pointed out that
the GSPP model implemented in CPLEX runs out of memory for problem instances where
other characteristics are taken into account.

Large optimization problems, like the DBAP, usually require a lot of computational
effort. A natural way to solve these problems is by decomposing them into independent
sub-problems that are solved with an appropriate procedure (Resende and Pardalos [20]).
Nevertheless, such strategies can require a non-trivial way to address the decomposition of
the problem, which may also lead to solutions of moderate quality since the sub-problems
might have been created in a somewhat arbitrary fashion. Finding an appropriate way to
decompose a problem ‘a priori’ can be difficult, despite the fact that the decomposition can
be problem-dependent as it is designed according to a specific problem. Due to this, we
will need to design a specific decomposition for each problem. For addressing these con-
cerns, Taillard and Voß [24] propose the POPMUSIC framework. Its basic idea is to locally
optimize sub-parts of a solution, ‘a posteriori,’ once a solution to the problem is available.
These local optimizations are repeated until a local optimum is found. POPMUSIC may be
viewed as a local search working with a special, large neighbourhood.

The goals of this work are, on one hand, to assess the behaviour of POPMUSIC using
an exact method for solving the sub-problems. In this sense, the method becomes similar to
the corridor method of [22]. On the other hand, we seek to evaluate the effectiveness of the
POPMUSIC template by comparing its computational results with those given by the exact
resolution of the mathematical model presented by Christensen and Holst [4] and the results
obtained by the best algorithms in the related literature for this problem. In this regard, as
it will be discussed below, the results provided by POPMUSIC corroborate that it is able to
solve large scale instances from the literature to optimality and provide new best values for
instances where the mathematical model implemented in a general-purpose solver runs out
of memory.

The remainder of this paper is organized as follows. The berth allocation problem is
depicted in more detail in Section 2. In Section 3, the POPMUSIC approach for addressing
the dynamic berth allocation problem is described. The computational experience carried
out and a comparison summary are presented in Section 4. Finally, some conclusions and
several lines for further research are drawn in Section 5.

2 The dynamic berth allocation problem

In this paper, we study the application of POPMUSIC for solving the discrete Dynamic
Berth Allocation Problem (DBAP) proposed by Cordeau et al. [6]. In this problem we are
given a set of incoming container vessels, N , and a set of berths, M . Each container vessel,
i ∈ N , must be assigned to an empty berth, k ∈ M , within its time window, [ti , t ′i ], and
the assigned berth time window, [sk, ek]. Each berth can handle at most one vessel at a
time. For each container vessel, i ∈ N , its handling time, ρik , depends on the berth k ∈ M

where it is assigned to. That is, the handling time of a given vessel differs from one berth to
another. Moreover, some vessels may have forbidden berths in order to include water-depth
or maintenance constraints. Finally, each vessel i ∈ N has a given service priority, denoted
as vi , according to its contractual agreement with the terminal. It should be noted that the
higher this value, the higher the priority of the vessel. A comprehensive description of the
DBAP is provided by Cordeau et al. [6], Imai et al. [10], and Lalla-Ruiz et al. [12].

The objective of the DBAP is to minimize the total (weighted) service time of the incom-
ing container vessels. In this context, the service time of a container vessel is defined as the
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time elapsed between its arrival to the port and the completion of its transshipment opera-
tions. A mathematical formulation of the DBAP is provided by Cordeau et al. [6]. While this
formulation is based on a generalization of the vehicle routing problem, below we discuss
one based on a generalized set partitioning problem.

2.1 An example

Figure 1 illustrates an example of a solution for the DBAP. In the figure, a schedule and an
assignment plan are shown for six vessels within three berths. The rectangles indicate the
vessels and inside each rectangle we display the service priority of each vessel (vi), used
for establishing vessel priorities. The time windows of the vessels are represented by the
lines at the bottom of the figure. In this case, for example, vessel 1 arrives at time step 4 and
it should be served until time step 14. Moreover, the time window of each berth is limited
by the non-hatched areas. Table 1 reports the different handling times (ρik) for each vessel
(i) depending on the assigned berth (k). For example, if vessel 1 is assigned to berth 1, its
handling time would be equal to 6, which is shorter than the handling time of 8 that it would
have at berth 2.

As can be seen in the example, vessels 5 and 6 would have to wait for berthing in their
respective assigned berths. In this regard, since their service priority value is v5 = v6 =
1, their waiting will have less impact on the objective function value than delaying other
vessels, like vessels 3 and 4, for which the service priorities are v3 = 6 and v4 = 4,
respectively. That is, if their berthing time is delayed, the waiting time step of each vessel is
multiplied by 6 and 4, respectively.

Fig. 1 Example of a solution for the DBAP with six vessels and three berths
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Table 1 Vessel handling times
depending on the berth Berth 1 Berth 2 Berth 3

Vessel 1 6 8 5

Vessel 2 2 3 4

Vessel 3 5 5 4

Vessel 4 4 6 5

Vessel 5 5 8 7

Vessel 6 4 4 5

As indicated above, the objective value of a solution for the DBAP is the total (weighted)
service time of the incoming container vessels. In this example, the weighted service times
of the six vessels are calculated as follows.

– Vessels 1-4. Since the vessels are served as soon as they arrive to the port, their weighted
service time is equal to their handling times times their priority (ρik · vi). The con-
tribution of each of these vessels to the objective function value of the solution is as
follows.

– Vessel 1: ρ11(6) · v1(5) = 30
– Vessel 2: ρ22(3) · v2(3) = 9
– Vessel 3: ρ33(4) · v3(6) = 24
– Vessel 4: ρ42(6) · v4(4) = 24

– Vessels 5-6 These vessels have to wait after their arrival to the port in order to be
serviced. Their weighted service time is equal to the time required to be serviced from
their arrival to their departure (waiting time plus handling time) times their priority. In
this case, the contribution of each of these vessels to the objective function value of the
solution is:

– Vessel 5: 9 · v5(1) = 9
– Vessel 6: 5 · v6(1) = 5

Therefore, the objective function value of this solution is 101.

2.2 Generalized set-partitioning problem formulation

Christensen and Holst [4] propose a reformulation of the DBAP as a Generalized Set-
Partitioning Problem (GSPP). Buhrkal et al. [3] use this formulation to perform a compar-
ison of the different models for solving the DBAP and show that the GSPP is superior to
all other models on the set of instances from Cordeau et al. [6]. In order to make this paper
self-contained, we include the mathematical formulation of the GSPP.

The GSPP formulation is as follows. A column represents a feasible assignment of a
vessel to a berth at a time. The set of columns is denoted by Ω . Two matrices A and B are
defined, both containing |Ω| columns. Matrix A = (Aiω) contains a row for each vessel,
and Aiω = 1, if and only if column ω represents an assignment of vessel i ∈ N . Each
column of A contains exactly one non-zero element. Matrix B = (Bpω) contains a row per
(berth,time) position.

The rows of B are indexed by the set P = {1, 2, ..., K} with K = ∑
k∈M(ek − sk). The

entry Bpω is equal to 1, if and only if, position p ∈ P is contained in the assignment that
column ω represents. The cost cω of any column ω ∈ Ω is the service time of the respective
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position assignment and can be multiplied by the priority factor vi if necessary. A binary
variable xω is equal to 1, if column ω is used in the solution, and 0 otherwise. With these
definitions the GSPP formulation of the BAP presented in [3] is stated as follows.

minimize
∑

w∈Ω

cwxw (1)

subject to
∑

w∈Ω

Aiwxw = 1 ∀i ∈ N, (2)

∑

w∈Ω

Bpwxw ≤ 1 ∀p ∈ P, (3)

xw ∈ {0, 1} ∀w ∈ Ω (4)

The objective function (1) minimizes the service time of the vessels. The set of con-
straints (2) ensures that all vessels are served. Finally, the constraints (3) guarantee that at a
time interval, in a berth, only one vessel can be served.

3 Partial optimization metaheuristic under special intensification conditions
(POPMUSIC)

3.1 The general framework

POPMUSIC was firstly proposed by Taillard and Voß [24] as a framework for tackling
large problem instances. Its basic idea is to split a solution of the problem at hand, S, into
h parts part1, part2, ..., parth and joining some of them to build a sub-problem, R. To
form the sub-problem one of the h parts is selected, partseed , termed as seed-part. Once
that, a number, r , of the closest parts to partseed are aggregated to the latter to form the
sub-problem R. In order to determine the closeness of the parts a distance measure among
them is defined. Once a sub-problem is constructed, it is solved by using an approximate or
exact solution approach. If parts and sub-problems are defined in an appropriate way, every
improvement of a sub-problem corresponds to an improvement of the whole solution S. This
process is repeated, e.g., until the solution does not contain a sub-problem that can be improved.
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In Algorithm 1 the POPMUSIC framework is depicted. Firstly, an initial solution is gen-
erated, S (line 1). The next step is to divide the solution into h parts (line 2). Then, a
seed part, partseed , is selected (line 5). A sub-problem, R, is constructed by considering
its r nearest parts according to the relatedness function (line 6). In this regard, the unique
parameter of this framework, r , is used for delimiting the size of the sub-problems. The
sub-problem R is then solved by an approximate or exact procedure (line 7). In this frame-
work, the set of parts O corresponds precisely to seed parts that have been used to define
sub-problems that have been unsuccessfully optimized. Once O contains all the parts of
the complete solution (line 4), the process stops as all sub-problems have been examined
without success.

3.2 POPMUSIC approaches for the DBAP

In the context of the DBAP, the POPMUSIC implementation considers a solution S as
a sequence composed by the vessel identifiers, where each berth is delimited by a 0.
The service order of each vessel is determined by its position in the sequence. The solu-
tion structure for the example of Fig. 1 for three berths and six vessels is as follows:
S = {1, 0, 2, 4, 6, 0, 3, 5}.

The configuration of the parts for the DBAP is defined by means of the berths. That
is, the number of parts, h, is equal to |M|. Hence, for example, for the solution structure
reported above, S = {1, 0, 2, 4, 6, 0, 3, 5}, the number of parts will be equal to 3 since there
are three berths. The structure of each part is determined by the vessels within them. That is,
part1 = {1}, part2 = {2, 4, 6} and part3 = {3, 5}. As can be seen from the example, the
size of the parts depends on the number of vessels assigned to the berth represented by the
part.

Since the parts are determined by the vessels assigned to each berth, we define the dis-
tance of a part to the others by the forward distance among its identifier, id , and its increase
in r units, id + r . Hence, a sub-problem R is composed of partid , partid+1, ..., partid+r .
In case id + r is higher than the number of parts, then the neighbour parts are considered
starting from 1. Considering the above-mentioned example, part1, which is related to the
berth 1, has as a ‘neighbour part’, part2 for r = 1, and has as ‘neighbour parts’ part2 and
part3 when r = 2. In the case of part3, its neighbour solution for r = 1 is part1.

Lalla-Ruiz et al. [12] point out that the GSPP mathematical formulation implemented
in CPLEX is not able to provide any solution for the majority of medium- and large-sized
instances proposed in that work. Namely, as the time horizon, the number of vessels/berths
and the time windows are increased, CPLEX runs out of memory as it requires a large
amount of memory for providing a feasible solution using a standard computer. In this con-
text, the use of the POPMUSIC framework offers the advantage of dividing these large-sized
problem instances into sub-problems that can be treated by CPLEX and provide feasi-
ble solutions. Moreover, POPMUSIC allows to narrow those memory-consuming problem
constraints in order to enhance the performance of the GSPP mathematical formulation
implemented in CPLEX. The use of exact methods for solving the sub-problems embedded
in the POPMUSIC framework point out an interoperation between metaheuristics and math-
ematical programming techniques, which in the related literature is denoted as matheuristic
[15].

As indicated above, the POPMUSIC approach solves each sub-problem using its GSPP
mathematical formulation implemented in CPLEX. Hence, for each sub-problem, as con-
templated in the GSPP formulation (see Section 2.2), we generate the feasible columns
for the set of vessels and berths specified in the sub-problem. For example, continuing the
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previous example, let a sub-problem R consist of part1 = {1} and part2 = {2, 4, 6}. Then,
through the GSPP formulation, we will solve the sub-problem consisting of the set of ves-
sels N ′ = {1, 2, 4, 6} and berths M ′ = {1, 2} with their detailed information (service times,
time windows, arrival times, etc.) from the complete instance. Note, that the columns are
built as indicated in Section 2.2 using only the information from the sub-problem.

Once the POPMUSIC process is over, all the solution parts are joined. The information
obtained from them is used for determining a reduced problem instance that will be provided
to CPLEX. This narrow problem allows CPLEX to solve this reduced problem to optimality
without running out of memory. In doing so, we identify those characteristics provided by
the POPMUSIC solution regarding those problem constraints that can be narrowed. These
constraints are:

(i) Each vessel i ∈ N can only be berthed at berth k ∈ M until k becomes unavailable at
time step ek .

(ii) Each vessel i ∈ N has to be serviced until its departure time t ′i .

The way the constraints are narrowed is by tightening their related data from the problem
instance as explained below.

– We identify the maximum berth finalization time, maxB from the POPMUSIC solution
when joining the solution parts. This value is equal to the last departure time within
all vessels. With that value, for each ek , k ∈ M from the problem instance data, if
ek > maxB + (maxB)/h, it will be reduced to maxB + (maxB)/h.

– For each t ′i , i ∈ N from the problem instance data, if t ′i > maxB + (maxB)/h, it will
be reduced to maxB + (maxB)/h.

The addition of (maxB)/h is used as a relaxation looseness in order to consider the
relation that berths (parts) may have for allocating vessels within them when solving the
complete problem. As will be discussed in Section 4, the problem instances proposed in the
related literature for this problem by Cordeau et al. [6] and Lalla-Ruiz et al. [12] do not take
into account any priority of the vessels, i.e., vi = 1, i ∈ N .

For solving the DBAP we propose two different POPMUSIC approaches, POPMUSIC
and POPMUSIC-G. In Algorithm 2, the POPMUSIC framework adapted for the DBAP is
shown. The initial solution S is randomly generated (line 1) by applying a random-greedy
method (R-G) proposed by Cordeau et al. [6], given a random vessel permutation. Vessels
are assigned one at a time to the best possible berth following the sequence order. Then, the
solution is divided into a set H of parts, depending on the number of berths (line 2). The set
of improved parts, O, is emptied (line 3). A seed part, sseed , is selected at random from the
set of parts, H (line 5). Once a solution part is selected, the sub-problem R is established
by joining the sseed and its r neighbour parts (line 6). The GSPP mathematical formulation
of the sub-problem R is solved by CPLEX (line 7). In case, R has been improved, then the
solution S is updated (line 9) and the set O is emptied (line 10). Otherwise, sseed is included
in O (line 12). This procedure (lines 5 − 12) is repeated until O is fulfilled with all the h

parts (line 4); then the improved solution is provided (line 13).
The POPMUSIC-G differs from the original in the way the set of parts O is fulfilled

when there is an improvement. That is, in case a sub-problem R is improved, all its com-
posing parts (sseed and its neighbour parts) are included in O, instead of emptying O like in
the standard approach.



POPMUSIC as a matheuristic for the berth allocation problem 181

As indicated in [1] and [24] the time complexity of this template is high since it depends
on set O, which might not be reduced at each iteration and can be emptied. Nevertheless,
in [1] the authors indicate that empirically the complexity grows quasi-linearly with the
number of parts. In this regard, since POPMUSIC-G includes also the neighbouring parts
into the set O, the set O is filled before and, therefore, its time complexity is lower than
the traditional POPMUSIC approach. This feature is shown in Section 4, where the time
performance of POPMUSIC-G is better than POPMUSIC in terms of computational time.
Moreover, the complexity of POPMUSIC, as discussed in Section 4.1, depends on the gen-
eration of a decent initial solution since the better the solution the lesser local improvements
are required. Finally, it should be noted that since POPMUSIC is a framework, its compu-
tational performance in terms of running time depends on the optimizing technique used
within it.

4 Computational results

This section is devoted to present the computational experiments carried out for assessing
the performance of the proposed methods. All the reported computational experiments were
conducted on a computer equipped with an Intel 3.16 GHz and 4 GB of RAM.

The problem instances used for evaluating the proposed algorithm are the large-sized
instances proposed by Cordeau et al. [6] with 60 vessels and 13 berths. Those instances
were generated by taking into account a statistical analysis of the traffic and berth allocation
data at the maritime container terminal of Gioia Tauro (Italy) [7]. Moreover, we also use a
representative set of instances from the ones proposed by Lalla-Ruiz et al. [12] in order to
study the behaviour of POPMUSIC for instances where the GSPP implemented in CPLEX
using a standard computer runs out of memory. In doing so, we selected a representative
group of them.

4.1 Parameter and robustness assessment

In this subsection the selection of the parameter r , the initialization method, and the robust-
ness of our method are discussed. In doing so, on the one hand, for the initialization
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method, we use the two most common ones proposed in the literature for this problem.
Namely:

– Random-greedy method (R-G) proposed by Cordeau et al. [6]. Given a random vessel
permutation, vessels are assigned one at a time to the best possible berth by means of
the objective function value following the sequence order.

– First-Come First-Served Greedy (FCFS-G) proposed by Cordeau et al. [6] is based on
the First-Come First-Served queue policy used at some container terminals for allocat-
ing vessels. The vessels are ordered according to their arrival times and, then, assigned
one at a time to the best possible berth by means of the objective function value
following the sequence order.

On the other hand, for assessing the robustness of our approaches we made a compar-
ison over a reduced group of those instances tackled in this paper. In this regard, for each
instance, we report the success rate (α(%)) based on the number of times the best value
known for that instance is obtained over the total number of replications such that,

α = number of best known solutions provided

number of replications
(%) (5)

where 100 % indicates that in all the replications the best solution known for that instance
has been provided.

Table 2 illustrates the results provided by POPMUSIC and POPMUSIC-G for a set of
instances proposed in [6, 12]. We run both algorithms 10 times, for r = 1. The first col-
umn in the tables reports the problem instances used. For each approach (POPMUSIC and
POPMUSIC-G) and for each starting method (R-G and FCFS), we report the average objec-
tive function value (Avg. Obj.), the average computational time (Avg. t(s.)) measured in
seconds, and the success rate of the algorithm in terms of the best-known solutions provided
for that instance (α (%)). In the table it can be verified that FCFS-G exhibits a better per-
formance than R-G in terms of running time. On the other hand, POPMUSIC-G exhibits a
similar temporal performance regardless the initialization method.

Moreover, we have verified that the α = 100 % percentage is maintained for any of
the r values considered in this work, that is, for r = 1, 2, 3, 4. Therefore, in Table 3, we
only report the average computational times reported by POPMUSIC and POPMUSIC-G
for each r value over 10 replications using the FCFS-G. As it can be seen, the bigger r the
longer the running time. Concerning both methods, it can be checked that POPMUSIC-G
exhibits a better temporal performance than POPMUSIC.

4.2 Comparison with literature approaches

In this subsection we report the comparison with different approaches proposed in the liter-
ature for this problem. At the light of the results provided in the previous subsection, in the
following we report the computational results for r = 1 using FCFS-G as an initialization
method for both, POPMUSIC and POPMUSIC-G.

For the instances proposed by Cordeau et al. [6] we provide a comparison among:

(a) The best exact solution approach (GSPP) proposed in the related literature by
Christensen and Holst [4] implemented in CPLEX for this work.

(b) The best approximate solution approaches proposed in the literature for this problem.

(i) Clustering-Search with Simulated-Annealing (CS-SA) from de Oliveira et al.
[18].
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Table 3 Temporal performance of POPMUSIC and POPMUSIC-G in terms of average running time for
different r values, namely, r = 1, 2, 3, 4

POPMUSIC POPMUSIC-G

r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

i01 10.22 17.93 33.44 67.25 10.51 13.45 18.47 22.77

i02 9.53 14.03 33.83 55.81 9.88 14.27 16.68 16.55

i03 8.78 13.43 39.94 71.15 8.86 14.05 19.62 20.17

i04 9.72 15.43 39.50 65.29 9.93 14.98 14.59 21.47

i05 12.54 17.85 41.23 73.08 9.39 13.37 17.19 17.01

40 × 5 − 03 130.56 234.22 346.22 856.84 78.87 98.77 139.56 201.27

40 × 7 − 03 103.16 393.44 435.63 411.93 48.86 61.63 74.63 90.17

55 × 5 − 06 325.89 265.28 590.18 198.58 93.71 176.67 229.93 197.34

55 × 7 − 03 185.74 429.93 708.92 858.44 106.71 119.67 142.73 240.81

60 × 5 − 03 246.173 653.19 647.83 100.98 120.17 137.83 521.81 100.24

Average 104.23 205.47 291.67 275.94 49.69 66.47 119.52 92.78

The clustering-search method is an iterative approach decomposing the search
space into clusters that can be searched by means of some metaheuristic like
simulated annealing.

(ii) Particle Swarm Optimization (PSO) from Ting et al. [25].
The PSO aims at optimizing the problem by iteratively trying to improve a
population of candidate solutions called particles and ‘moving’ these particles
within the search space. The moves of each particle are based on their local best
position as well as some guidance towards best known positions in the search
space.

(iii) Tabu Search with Path Relinking, T 2S∗+PR, as proposed by Lalla-Ruiz et al.
[12]. In tabu search information about the search history is used to guide a local
search approach to overcome local optimality. Based on some sort of memory,
certain moves may be forbidden. Within this approach path relinking provides
a useful means of intensification and diversification where a path is constructed
between different solutions with the aim to find improved ones.

(c) The matheuristic approaches, POPMUSIC and POPMUSIC-G.

For the instances proposed by Lalla-Ruiz et al. [12] we made a comparison among:

(a) The best exact solution approach (GSPP) implemented in CPLEX for this work.
(b) The best approximate solution approach algorithm, T 2S∗+PR, proposed in the related

literature for those instances by Lalla-Ruiz et al. [12].
(c) The matheuristic approaches, POPMUSIC and POPMUSIC-G.

Table 4 illustrates the results obtained for the instances proposed by [6]. The first column
corresponds to the problem instance. In the GSPP column we report the optimal value (Opt.)
and the required computational time (t(s.)). In columns POPMUSIC and POPMUSIC-G,
we report the average objective value obtained from all the executions (Avg. Obj.) and the
average computational time (t(s.)). For the T 2S∗+PR, CS, and PSO, we report their best
value (Obj.), relative error (Gap(%)) and running time (t(s.)).
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Table 5 Results for a representative set of instances from the ones proposed by Lalla-Ruiz et al. [12]

GSPP POPMUSIC POPMUSIC-G T 2S∗+PR

Opt. t(s.) Avg. Obj. Avg. t(s.) Avg. Obj. Avg. t(s.) Obj. Gap (%) t(s.)

40x5-01 2301 41.51 2301 102.92 2301 32.57 2303 0.09 0.90

40x5-02 2829 59.89 2829 134.74 2829 53.67 2834 0.18 1.09

40x5-03 2880 99.20 2880 130.56 2880 78.87 2880 0.00 0.50

40x7-03 — — 2119 103.16 2119 48.86 2119 0.00* 1.17

55x5-03 — — 5499 273.23 5499 107.55 5499 0.00* 2.67

55x5-05 — — 5478 311.42 8478 139.85 5478 0.00* 2.73

55x5-06 — — 5595 325.89 5595 93.71 5595 0.00* 2.56

55x7-03 — — 3825 185.74 3825 106.71 3833 0.21* 5.57

55x7-05 — — 3797 227.19 3797 159.26 3801 0.11* 3.56

55x7-06 — — 3783 173.69 3783 107.97 3789 0.16* 3.70

60x5-03 — — 6780 246.17 6780 120.17 6780 0.00* 4.25

60x5-06 — — 6616 349.45 6616 144.96 6616 0.00* 3.53

(*)indicates those gaps that are calculated considering the POPMUSIC results.

As can be seen in Table 4, both approaches, POPMUSIC and POPMUSIC-G provide the
optimal solutions in all cases and executions. Note that the average value coincides with the
optimal value, which means α = 100% (see Section 4.1). This characteristic points out that
the recognition of ‘useless’ or ‘time-consuming’ parameters of the input data space can be
narrowed through using the information provided by exactly solving the sub-problems. In
this regard, the reduced instances obtained from our approach allow to solve those instances
to optimality as can be checked in the table. Moreover, we can conclude that POPMUSIC-G
is faster than CPLEX alone in solving these instances.

The temporal performance of the POPMUSIC approaches are meaningfully compared to
the ones exhibited by CS-SA and PSO. In this regard, although both approximate methods
are able to provide the optimal solution values for the instances considered in this table, they
cannot guarantee optimality. In this sense, once the POPMUSIC and POPMUSIC-G pro-
cesses are over and the problem instances are reduced, those reduced instances are solved by
CPLEX to optimality. This offers a benefit in terms of robustness allowing a similar quality
within all iterations. In this sense, although our approaches include a heuristic component,
the procedures proposed in this work are a step forward in the matheuristic concept and a
step ahead over the approximate way of solving this problem.

Table 5 shows the results obtained for a representative set of instances proposed in [12].
The first column corresponds to the problem instance. In the GSPP column we report the
optimal value (Opt.) and the required computational time (t(s.); measured in seconds). In
columns POPMUSIC and POPMUSIC, we report the average objective value obtained cal-
culated from all the executions (Avg. Obj.) and the average computational time (t(s.)). For
the T 2S∗+PR, we report the best provided value (Obj.), relative error (Gap(%)) and running
time (t(s.)) as reported in [12].

In the results shown in Table 5 it can be seen that CPLEX runs out of memory as the size
of the instances becomes larger. In this sense, thanks to the POPMUSIC template, the prob-
lem can be narrowed and then the reduced problem instances can be solved to optimality.
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This feature is relevant when we want to evaluate the behaviour of solution approaches
for these instances, like in this case, T 2S∗+PR, where the evaluation of the performance
regarding the objective value could not be done because CPLEX runs of memory without
providing an upper bound. Evidently, for some of the instances we are able to improve the
best solution results to date.

5 Conclusions

In this paper we have provided a POPMUSIC adaptation to the dynamic berth alloca-
tion problem. By using a given mathematical programming formulation together with the
decomposition approach inherent to POPMUSIC we are able, on the one hand, to solve
large scale well-known instances from the literature to optimality within less computational
time than the best exact approach for this problem. On the other hand, in those cases where
the mathematical model implemented in a general-purpose solver runs out of memory, our
approach is able to reduce the instance and solve the reduced instance to optimality. In those
cases where optimal solutions were known, the objective function values of the reduced and
the overall problem instances were the same. This seems a clear advantage over the best
approximate approaches known to date as the POPMUSIC approach can guarantee opti-
mality at least for the reduced instances. Taking into account the recent related works, we
can conclude that the proposed POPMUSIC approach is suitable as a resolution method for
being applied either individually or included in integrated schemes where this problem is
involved.

The results provided in this work highlight the successful application of POPMUSIC for
solving large-sized problems. In this regard, the POPMUSIC approaches proposed in this
work have a great potential for ‘recognizing’ relaxed constraints in the parameter space of
the problem through leveraging the information obtained by solving the sub-problems. This
also incorporates an explicit learning mechanism towards having an auto-adaptive control
of the size of the sub-problems solved.

On the basis of the findings presented in this paper, the next stage of our research will
be focused on a more indepth analysis of the POPMUSIC components such as the selection
of the parts and the constitution of the sub-problems. Moreover, it may be of interest to try
adapting our approach towards solving well-known allocation problems such as the ones
within the knapsack problem family.
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