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Abstract In this paper we study the relationship between separating hyperplanes and the
Radon partitions of their support vectors. This study is relevant for maximal margin sepa-
rations, which appear in Support Vector Machines (SVM), as well as for separations that
optimize a Chebyshev norm. We propose a new version of the Stiefel exchange algorithm
where we exploit the property that each Stiefel exchange is in fact a Radon exchange. Origi-
nally, the Stiefel exchange algorithm was developed to find Chebyshev approximations, but
we show that it is also suited for finding hyperplane separations. We also show that many
important properties in approximation theory are closely related to fundamental results in
convex set theory, in particular to Helly’s, Radon’s and Caratheodory’s Theorem.Within this
context, we prove a new result that generalizes both Radon’s and Caratheodory’s Theorem.

Keywords Separating hyperplanes · Radon partition · Enclosing hyperplanes · Maximal
margin · Caratheodory’s Theorem
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1 Introduction

One of the basic problems in machine learning is to find an optimal decision surface that
separates two sets of data points. Often, as in support vector machines (SVMs), these deci-
sion surfaces are hyperplanes. The major challenge is that the separation takes place in some
high-dimensional feature space, and that the data sets can be huge, sometimes even too large
to store in computer memory.

Given two sets of data points, an SVM constructs the hyperplane of maximal margin, that
is the hyperplane that separates the two sets and that has the largest distance to the nearest
data points. The separating hyperplane is accompanied by two parallel supporting hyper-
planes that contain a small set of data points, called support vectors. Finding the hyperplane
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of maximal margin and the support vectors is a constrained quadratic optimization problem,
which in general requires huge data storage and expensive matrix calculations [13]. The
properties of the support vectors are important for the development of efficient algorithms,
as well as the generalizing behavior of an SVM.

A common approach to obtain acceptable computation times is to decompose the sepa-
ration problem into subproblems. Chunking methods start with a small arbitrary subset of
the data, and solve the problem for the subset. The support vectors of the first problem are
then added to a second chunk of data, and the process is repeated [2, 3]. A prerequisite for
the efficiency of this method is that the number of support vectors is small compared to
the size of the data set. More recent decomposition methods put upper limits on the size
of the working set and add or remove data points from the working set depending on how
they violate the optimality criterion [11, 12, 19]. In Platt’s Sequential Minimal Optimiza-
tion (SMO) algorithm the working set is reduced to its minimum, that is, two elements [20].
The time complexity of a projected conjugate gradient chunking algorithm scales between
linear and cubic in the size of the data set, while the SMO algorithm scales between linear
and quadratic time [20].

A further step in this direction is the conversion of the maximal margin separation prob-
lem into finding the point in a convex polytope nearest to the origin. The support vectors can
be derived from the vertices of the face containing the point nearest to the origin. Keerthi
et al discuss several adaptations and extensions of Gilbert’s nearest point algorithm and the
Mitchell-Demanov-Malozemov algorithm, which makes these algorithms more suitable for
the huge computational demands of SVMs [8, 13, 16]. Keerthi et all report computational
speeds comparable to SMO.

Although all research on SVMs recognizes the importance of the support vectors, up to
now the main focus has been on their statistical distribution over the data set. In this paper
we examine the combinatorial properties of support vectors. Our support vector working
sets will be elemental subsets, a concept borrowed from robust regression [10, 21]. The
main contribution of this paper is the proof that the distribution of the support vectors in
an elemental subset corresponds to a Radon partition. According to Radon’s Theorem in a
d-dimensional space, a set of d + 2 points can always be uniquely partitioned into two
subsets such that the intersection of their convex hulls is non-empty. We will show that if we
project the support vectors orthogonally onto the separating hyperplane, we always obtain
a Radon partition.

The combinatorial properties of support vectors also hold for other optimization prob-
lems. To find the separating hyperplane of maximal margin an SVM determines two parallel
supporting hyperplanes at maximal distance from each other. A crucial factor is how this
distance is measured. One modification of the separation problem is to compute the sup-
porting hyperplanes such that the difference between their heights is maximized, instead
of the margin. This modified separation problem is identical to a Chebyshev (or L∞)
approximation problem, which is a linear programming problem [28]. Again, the optimal
hyperplane in the Chebyshev sense is determined by a small set of support vectors, a prop-
erty known as the minimax property of de la Vallée Poussin [24, 28]. Also in this case
we prove that the projections of the support vectors on the separating hyperplane form a
Radon partition, but now we project them along the direction of a coordinate axis. In fact,
we will show that a Chebyshev separation is also a maximal margin separation, provided its
orthogonal projection yields a Radon partition as well. Other interesting relations between
L∞, L1 and L2 approximations are discussed in [4].

Also from the algorithmic viewpoint our results shed more light on how a separation
algorithm converges towards a solution. A classical method to solve Chebyshev’s problem is
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Stiefel’s exchange algorithm [18, 22]. Osborne and Watson showed that Stiefel’s algorithm
is equivalent to the simplex method applied to the dual [18, 28]. We will show that Stiefel
exchanges are the same as Radon exchanges, which can be defined as point replacements
in the elemental subsets that preserve Radon partitions [9]. In particular, we show that a
Chebyshev separation always exists if the projections of the convex hulls of the two data
sets overlap. This result follows immediately from a generalized version of Caratheodory’s
Theorem, also proven in this paper. Finally we note that the minimax property of de la Vallée
Poussin, which is an essential ingredient of Stiefel’s method, follows directly from Helly’s
Theorem on convex sets. This explains why in general there are d + 1 support vectors when
we separate two data sets in R

d .
This paper is an extension of a previous paper in which a combinatorial separation algo-

rithm was presented for the Chebyshev separation problem [27]. In Section 2 we examine
the relation between enclosure and separation problems. Section 3 introduces a fast algo-
rithm for finding enclosures. Section 4 shows how the enclosure algorithm can be used as a
combinatorial separation algorithm. Section 5 contains the main result of the paper, where
we prove sufficient conditions for the separation algorithm to produce a correct result. In
Section 6 we prove a result on Radon partitions for separating hyperplanes that maximize
the margin. The time complexity of the algorithms is discussed in Section 7.

2 Separation and enclosure

We first establish the relation between Chebyshev approximations and different kinds
of separation and enclosure problems. Let fa(p) : R

d → R denote a real function
of the form

fa(p) := xd − (a0 + a1x1 + · · · + ad−1xd−1), (1)

where the ai represent coefficients and p = (x1, . . . , xd) is a point of Rd . The equation
fa(p) = 0 defines a hyperplane in R

d with coefficients a = (a0, . . . , ad−1). We first
consider the Chebyshev approximation problem [28]. Let S be a finite subset of points pi

in R
d . Let ε(S) denote the minimal value for ε for which the system

ε ≥ xd − (a0 + · · · + ad−1xd−1) ≥ −ε (p ∈ S) (2)

is still feasible. Clearly, ε(S) can be found by linear programming, where we have to
minimize ε, while the ai and ε are subject to linear inequalities. If a0, . . . , ad−1, and ε(S)

represent a solution of (2), then the points of S are tightly enclosed by the hyperplanes
fa(p) = ε(S) and fa(p) = −ε(S). The problem that we are interested in, however, is not
an enclosure but a separation problem. Let S+, S− be two finite subsets of Rd . We define
δ(S+, S−) as the maximal value of δ for which the system

xd − (a0 + · · · + ad−1xd−1) ≥ δ (p ∈ S+)

xd − (a0 + · · · + ad−1xd−1) ≤ −δ (p ∈ S−)
(3)

is still feasible. Clearly, the determination of δ(S+, S−) and the ai is still a linear program-
ming problem. In fact, we can easily convert it into a second kind of enclosure problem.
First we rewrite (3) as

(xd − τ) − (a0 + · · · + ad−1xd−1) ≥ δ − τ (p ∈ S+)

(xd + τ) − (a0 + · · · + ad−1xd−1) ≤ −δ + τ (p ∈ S−)
(4)
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where τ is some real number. Now let ε = −δ + τ , so that we can derive from S+ and S−
two new sets:

T +
τ = {q : q = p + (0, . . . , 0,−τ), p ∈ S+}

T −
τ = {q : q = p + (0, . . . , 0, τ ), p ∈ S−}, (5)

If we denote the coordinates of q as q = (y1, . . . , yd), then finding the maximal value for δ

in (4), is the same as finding the minimal value for ε for which

yd − (a0 + · · · + ad−1yd−1) ≥ −ε (q ∈ T +
τ )

yd − (a0 + · · · + ad−1yd−1) ≤ ε (q ∈ T −
τ )

(6)

is still feasible. We shall denote this minimal value as ε(T +
τ , T −

τ ). Clearly,

ε(T +
τ , T −

τ ) = τ − δ(S+, S−) (7)

holds for any τ . Thus (6) takes the form of an enclosure problem in which we raised the
points of S− over a distance τ , while we lowered the points of S+ over the same distance.
The main difference between (2) and (6) is that the first system is symmetrical, while the
second is not. In the second system there are two different sets, T +

τ and T −
τ that define

the upper and lower bounds for ε. We will call this problem a signed enclosure problem in
which we have to compute ε(T +

τ , T −
τ ), while (2) is called an unsigned enclosure problem

where we compute ε(S), or ε(S+ ∪ S−) for that matter.
Furthermore, we note that different values for τ yield different values for ε(T +

τ , T −
τ ).

However, once we know ε(T +
τ , T −

τ ) for one particular value of τ , we can immediately
derive δ(S+, S−) from (7). In the sections that follow, our goal will be first to establish an
algorithm for computing ε(T +

τ ∪ T −
τ ), and second to delineate the conditions under which

ε(T +
τ , T −

τ ) is equal to ε(T +
τ ∪ T −

τ ).

3 A combinatorial algorithm for unsigned enclosures

3.1 Elemental subsets

In this section we describe a combinatorial algorithm for finding unsigned enclosures, which
is based on elemental subsets [26]. Elemental is a term borrowed from robust regression
[10, 21]. An elemental subset is any subset of the data that contains the minimum number
of points needed to identify the parameters of the model. In our case, an elemental subset
contains d + 1 points, because there is no unique solution for (2) when |S| ≤ d.

Furthermore, we shall add one constraint to ensure that we can actually determine unique
values for the parameters of the enclosing hyperplanes. We say that a set of d points pi in
R

d is in general position if there is a unique hyperplane fa(p) = 0 passing through the
points pi , where fa is defined as in (1).

Definition 1 Let S be a finite set of points in R
d . An elemental subset E is a subset of S

with d + 1 points, which has at least one d-point subset of points in general position.

The primary importance of elemental subsets stems from the fact that in the special case
that E comprises all the points of S, (2) can be solved in an analytical way [25]. To this end,
we define the (d + 1) × (d + 1) matrix

ME :=
⎛
⎝

1 x11 . . . x1d
. . .

1 x(d+1)1 . . . x(d+1)d

⎞
⎠ , (8)
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where the entries xij come from the coordinates of the points pi = (xi1, . . . , xid ) of E. Let
Ci denote the cofactors of the last column ofME , where 1 ≤ i ≤ d+1. These cofactors play
an important role with respect to the relative positions of the points in E and the enclosing
planes fa(p) = ±ε.

From now on S is always a finite subset of points in R
d , and E a subset of S with d + 1

points. We start with a simple observation, which follows immediately from linear algebra.

Lemma 1 The subset E is an elemental subset if and only if at least one of the cofactors Ci

of ME is non vanishing.

Proof First we show that if some cofactor Ci �= 0, then there is always a unique hyperplane
passing through a d point subset of E. Without loss of generality we may assume Cd+1 �= 0.
Consider the system of d linear equations

xid = a0 + a1xi1 + · · · + ad−1xi(d−1) (i = 1, . . . , d),

which defines the hyperplane passing through p1, . . . , pd . If at least one xid �= 0, this
is a non-homogeneous system, which has a unique solution since the determinant of its
coefficient matrix, which is equal to Cd+1, is non-zero. If all xid = 0 for i = 1, . . . , d , this
is a homogeneous system with the unique solution (a0, . . . , ad−1) = (0, . . . , 0). In both
cases there is a unique hyperplane xd = a0 + a1x1 + · · · + ad−1xd−1 passing through the
points pi , i = 1, . . . , d.

Conversely, suppose Cd+1 = 0. Then the above system either has infinitely many solu-
tions or no solution at all, depending on whether it is homogeneous or not. In neither case
it has a unique solution. If all cofactors are zero, none of the corresponding systems has a
unique solution, and E is not an elemental subset.

With Lemma 1 we can also attribute a more geometrical meaning to the notion of general
position. Let π(p) denote the projection of the point p on the plane xd = 0, i.e., π(pi) =
(xi1, . . . , xi(d−1), 0), and let π(E) denote the set of projected points of E. According to
Lemma 1 the uniqueness of the hyperplane depends on the projection π(E). To give a
specific example, for planes in R

3, there is a unique plane x3 = a0 + a1x1 + a2x2 passing
through 3 distinct points p1, p2, p3, provided π(p1), π(p2), π(p3) are not collinear. More
generally, the following conditions are equivalent:

– E is an elemental subset;
– one of the cofactors Ci is non-vanishing;
– the projected points π(pi) affinely span the plane xd = 0;
– E contains at least one d point subset p1, . . . , pd for which there is no affine

dependency of the form α1π(p1) + · · · + αdπ(pd) = 0 with α1 + · · · + αd = 1.

Note that the condition that the points of E span a hyperplane of Rd is not sufficient. In
fact, this hyperplane could be perpendicular to the plane xd = 0, in which case it cannot be
of the form xd = a0 + a1x1 + · · · + ad−1xd−1.

3.2 Enclosure of elemental subsets

The cofactors not only determine the uniqueness of the hyperplane, but are also essential
for the enclosure of E. We start by giving a geometrical interpretation to the value of the
determinant of ME and the cofactors Ci . The absolute value of the determinant is d! times
the volume of the d-simplex spanned by the d + 1 vertices pi . Similarly, the absolute value
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of Ci is (d −1)! times the volume of the (d −1)-simplex spanned by the d projected vertices
π(p1), . . . , π(pi−1), π(pi+1), . . . , π(pd+1).

For an elemental subset E we now introduce the ratio ε(E) of the volume of the d-
simplex over the average volume of the d − 1 simplices,

ε(E) :=
( | detME |

d!
)

/
(|C1|+···+|Cd+1|)

d(d−1)!
= |C1x1d + · · · + Cd+1x(d+1)d |/(|C1| + · · · + |Cd+1|).

(9)

We will call ε(E) the height of E. Since by Lemma 1, for an elemental subset at least one
of the cofactors is non-zero, the denominator in (9) is always non-zero, and ε(E) is always
defined. From (9) it is immediately clear that the height of E is zero when all the points of
E lie in a common hyperplane. In fact, even when the points of E are not coplanar, ε(E)

will give us a precise measure of how far the points of E lie from a common plane.

Theorem 1 Let E be an elemental subset for which all the d-point subsets are in general
position. Then there is a unique pair of hyperplanes fa(p) = ε(E), fa(p) = −ε(E) such
that each point pi in E lies on the hyperplane

fa(pi) = sign (Ci)sign (detM)ε(E).

Furthermore, there is no hyperplane fa(p) = 0 for which |fa(p)| < ε for all p ∈ E.

The above theorem appears in various forms in the work on Chebyshev approximations
[6]. A proof of this particular version can be found in [25, 26]. Geometrically, the theorem
states that the height ε(E) is one half times the difference in height between the enclosing
hyperplanes.

The requirement in Theorem 1 that all d-point subsets of E must be in general position,
is stronger than what we had before. This new requirement is equivalent to the condition that
all cofactors Ci are non zero, which is also known as the Haar condition [18, 28]. Although
the Haar condition is necessary for Theorem 1, it is not needed to define the height ε(E).
As discussed in [28], this has not always been clearly stated in the literature.

Also note that sign (Ci) ∈ {−1, 1} as soon as E satisfies the Haar condition, but this does
not prevent the possibility that sign (ME) can be zero. If this happens, also the height of E

will be zero, and all points of E will lie a unique common hyperplane.
On the other hand, to illustrate what happens when the Haar condition is not fulfilled,

Fig. 1a and b show a configuration where all points pi = (xi, yi) have the same x

coordinate, except for p5. The elemental subset E145 = {p1, p4, p5} has matrix

M145 =
⎛
⎝

1 x1 y1
1 x4 y4
1 x5 y5

⎞
⎠ ,

where detM145 �= 0. If we let C1, C4, C5 denote the cofactors of the last column of M145,
then, since x1 = x4 �= x5, we have C1 �= 0, C4 �= 0, but C5 = 0. As a result the enclosing
hyperplanes fa(p) = ±ε(E) are not unique, although ε(E145) is well defined. Figure 1a
and b show two possible enclosures where in each case the vertical height between the two
supporting hyperplanes is equal to ε(E145). Since the sign of cofactor C5 is not in {−1, 1},
the point p5 can either lie on the lower supporting hyperplane, or on the higher supporting
hyperplane.
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Fig. 1 Three special cases where some of the points have the same x-coordinate. As a result the enclosing
(or supporting) hyperplanes are not unique. c shows a configuration where ε(S) = ε(E134) = ε(E145).
However, both E134 and E145 have some cofactors that are zero, and their enclosing hyperplanes are not
unique. Therefore, the enclosing hyperplanes of S are also not unique. On the other hand, the elemental
subset E345 has a unique pair of enclosing hyperplanes (shown as gray lines in c), but these hyperplanes do
not enclose the entire set S, since ε(E345) < ε(S)

3.3 Radon partition of an elemental subset

Geometric meaning cannot only be attributed to the absolute value of the cofactors, but
also to their signs. Again according to Theorem 1, when sign (Ci)sign (detM) is positive,
then the point pi lies on the upper hyperplane fa(p) = ε(E). When sign (Ci)sign (detM)

is negative, then pi lies on the lower hyperplane fa(p) = −ε(E). It is important to note,
however, that the cofactors only depend on the positions of the projected points π(pi). More
in particular, the signs of the cofactors do not depend on the value of the d-th coordinate xid .
Thus the projections single-handedly determine a partition of the elemental subset into two
parts. The sign of the determinant then determines to which hyperplane each part belongs.
The partition is also invariant for any permutation of the rows of ME .

For an elemental subset E that satisfies the Haar condition, we let {E+, E−} denote the
partition induced by the signs of the cofactors, that is,

E+ := {pi : pi ∈ E and Ci > 0},
E− := {pi : pi ∈ E and Ci < 0}. (10)

We will show that the projections π(E+) and π(E−) form a Radon partition, whose
existence is justified by Radon’s Theorem [7]. Let conv S denote the convex hull of a finite
set S.

Theorem 2 (Radon’s Theorem) Let S = {p1, . . . , pr } ⊂ R
d be a finite set, and let {S1, S2}

be a partition of S, i.e., S = S1 ∪ S2, |S1| ≥ 1, |S2| ≥ 1.

(a) If r ≥ d + 2 then the partition can be chosen such that conv S1 ∪ conv S2 �= ∅.
(b) If r = d + 2 and any d + 1 points of S are affinely independent, then the partition in

(a) is unique.

The condition in (b) is the Haar condition. Furthermore, when |S1 +S2| = d +2 the par-
tition {S1, S2} is the so-called Radon partition [29]. We have formulated Radon’s Theorem
here in a form stronger than usual (compare with [29]), as we shall need this strong version
later on .
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We can now prove that the partition {π(E+), π(E−)}, as induced by the signs of cofac-
tors, is also a Radon partition. What is more, the intersection of the convex spans of E+ and
E− can be expressed by the cofactors.

Lemma 2 Let Ci be the cofactors of the last column of the matrix ME . Then we have
∑

1≤i≤d+1

π(pi)Ci = 0

and ∑
1≤i≤d+1

Ci = 0.

Furthermore, if E satisfies the Haar condition, then {π(E+), π(E−)} is the unique Radon
partition of π(E).

Proof To prove the first part it suffices to replace the last column ofME by the elements xij

for some j = 1, . . . , d − 1. Since the determinant of a matrix with two identical columns is
zero,

∑
1≤i≤d+1 xijCi = 0 for each j = 1, . . . , d −1. It follows that

∑
1≤i≤d+1 π(pi)Ci =

0. Second, if we replace the elements of the last column of ME all by 1, we again obtain a
matrix with two identical columns, and therefore

∑
1≤i≤d+1 Ci = 0.

Finally, assume E satisfies the Haar condition, or equivalently, that all cofactors are
non-zero. Then we have

∑
pi∈E+

|Ci |π(pi) =
∑

pi∈E−
|Ci |π(pi) (11)

while ∑
pi∈E+

|Ci | =
∑

pi∈E−
|Ci | �= 0.

When we divide each |Ci | in (11) by ∑
pi∈E+ |Ci |, we obtain on the left side a convex com-

bination of the points in π(E+) that coincides on the right side with a convex combination
of the points in π(E−). Therefore, {π(E+), π(E−)} must be a Radon partition. Since E

satisfies the Haar condition, all d points subsets of π(E) are affinely independent and the
Radon partition is unique.

Thus the Radon partition of π(E) is the same as the partition {π(E+), π(E−)}, with E+
and E− defined by (10). By Theorem 1 this partition also coincides with the distribution of
the points over the two enclosing hyperplanes of E. It is important to emphasize that the
partition {E+, E−} only depends on the relative positions of the points in the projected set
π(E). The partition does not depend on the xid coordinate of the points pi .

Unsigned enclosures are optimal in the following sense. There is no signed enclosure
that is tighter than the unsigned enclosure of Theorem 1 [25, 26]. To formulate this more
precisely, given a partition {S+, S−} of S, for each elemental subsetE in S+∪S−, we define

E+
S := E ∩ S+,

E−
S := E ∩ S−.

Thus {E+
S , E−

S } is the partition of E as enforced by {S+, S−}, while {E+, E−} is the par-
tition for which {π(E+), π(E−)} is a Radon partition. The following result is proven in
[25].
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Theorem 3 Let E be an elemental subset of S that satisfies the Haar condition. Then for
any partition {S+, S−} of S, we have ε(E) ≤ ε(E+

S , E−
S ).

From Theorems 1 and 3 we conclude that ε(E+
S , E−

S ) takes its minimal value when the
partition {E+

S , E−
S } coincides with the partition as defined in (10). If we enforce a partition

that differs from the partition induced by the cofactor signs, the enclosure will be less tight.
So in general, the height of the unsigned enclosure will not be the same as the height of a
signed enclosure. In Sections 4 and 5 we will establish conditions under which both heights
are equal nevertheless.

3.4 Unsigned enclosure of arbitrary sets

Up to now, all results refer to the unsigned enclosure of elemental subsets. Let S be a (large)
finite set of points that contains at least one elemental subset. We extend our definition of
the height of a set as follows,

ε(S) := max
E⊆S

ε(E), (12)

where the maximum of ε(E) is taken over all elemental subsets E in S.
With respect to unsigned enclosures, we have the following result by de la Vallée Poussin

[24], which is very effective in Chebyshev approximations.

Theorem 4 Let S be a finite set of points and let E be an elemental subset for which
ε(E) = ε(S). Let fa(p) = 0 be a hyperplane such that |fa(p)| ≤ ε(E), for all p ∈ E.
Then |fa(p)| ≤ ε(E), for all p ∈ S. Furthermore, for any ε < ε(E) there is no hyperplane
fa(p) = 0 such that |fa(p)| ≤ ε, for all p ∈ S.

Geometrically, this means that the height of S is the maximum of the heights of all its
elemental subsets. Originally, Theorem 4 was proven within the framework of Chebyshev
approximations [18, 24]. However, as shown in [25], this theorem also readily follows from
Helly’s theorem on convex sets.

Helly’s Theorem states that in R
d a finite collection of convex sets has a non-empty

intersection if the intersection of every d+1 of these sets has a non-empty intersection. More
specifically, since each inequality in (2) defines a convex set, this system of inequalities has
a solution if each subsystem with d + 1 inequalities has a solution. As a matter of fact, each
elemental subset defines a subsystem

ε ≥ xd − (a0 + · · · + ad−1xd−1) ≥ −ε (p ∈ E)

with d + 1 inequalities, and a minimal value ε(E) for which this subsystem is still feasible.
Therefore, as a consequence of Helly’s Theorem, the elemental subset E in S for which
ε(E) is maximal defines the smallest value for ε such that the larger system (2) still has a
solution. In fact, if we introduce ε = maxE⊆S ε(E) in (2), then all its (d + 1)-inequality
subsystems will be feasible, and therefore the entire system will have a solution.

Whether the hyperplane in Theorem 4 is unique depends on the number of elemental
subsets E that yield the same maximal height ε(S), as well as their cofactors. For example,
in Fig. 1c, we have ε(S) = ε(E145) = ε(E134). Furthermore, we note that in (12) the
maximum is taken only over the elemental subsets of S. For example, in Fig. 1a we have

ε(S) = max{ε(E125), ε(E135), . . . , ε(E345)},
where the sets {p1, p2, p3}, . . . , {p2, p3, p4} are not included, since they are not elemental
subsets.
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3.5 The Haar assumption

In the sequel, to simplify the exposition we will avoid the special cases described in Fig. 1,
and we will assume that all the d point subsets of S are in general position. In other
words, we assume that each subset of d + 1 points is an elemental subset that satisfies the
Haar condition. With respect to Fig. 1 this means that no two points can have the same x

coordinate.
In practice, when working with real data sets, the Haar condition can be enforced by

guarding the sign tests of the cofactors. When the value |Ci | is less than some small positive
real number, we add a small perturbation to the position of some of the data points. This has
the additional advantage that all floating point computations will be more reliable [15].

3.6 Exchange algorithm for unsigned enclosures

With Theorem 4 we have a result that defines the height of S in terms of the heights of the
elemental subsets. This result has an immediate corollary [26]. It suffices to note that an
elemental subset can only give rise to enclosing hyperplanes if its height is maximal. Or
conversely, if a point q ∈ S is not enclosed by the supporting hyperplanes of some elemental
subset E, then E∪{q} must have a height that is larger than the height of E (since otherwise
the supporting hyperplanes of E would also enclose E ∪ {q}). On the other hand, E ∪ {q}
must contain at least one elemental subset that has the same height as E ∪ {q}. Thus, we
have the following result, which is also known as the Stiefel exchange property [18, 26].

Corollary 1 (Stiefel exchange) Let E be an elemental subset of S. Let fa(p) = ε(E) and
fa(p) = −ε(E) denote the two hyperplanes that enclose the points of E. If there is a point
q ∈ S for which |fa(q)| > ε(E) then the set E ∪ {q} contains at least one elemental subset
D for which ε(D) > ε(E).

The Stiefel exchange property states that when a point q is not enclosed by the supporting
hyperplanes of E, then there is a point p in E such that if replace p by q, we obtain a new
elemental subset that has a larger height than E. However, Corollary 1 does not specify how
we can identify the point that has to be replaced.

The selection of p again depends on the properties of Radon partitions. The following
lemma shows that we can use the cofactors Ci to select p. The proof is an adaptation of the
proof of the Radon Exchange Lemma in [9]. Here we use the additional fact that the convex
dependences in a Radon partition can be expressed by the cofactors of ME , as in (11). We
give a detailed proof because the way in which we select p will also be used in the exchange
algorithm that follows.

Lemma 3 (Radon exchange) Let E be an elemental subset of S, and let {π(E+), π(E−)}
be the Radon partition of π(E). If q is any point of S, then there is a point p ∈ (E+ ∪ E−)

such that

{π(E+ ∪ {q} \ {p}), π(E− \ {p})}

is a Radon partition.
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Proof Let I+ denote the set of indices of the points pi contained in E+, and let I− denote
the indices of the points contained in I−. Then, by Lemma 2,

∑
i∈I+

|Ci |π(pi) =
∑
i∈I−

|Ci |π(pi), (13)

where ∑
i∈I+

|Ci | =
∑
i∈I−

|Ci |.

Since E is an elemental subset, π(q) is affinely dependent on the d + 1 points π(pi), and
there must be αi, βi such that

π(q) + ∑
i∈I+ αiπ(pi) = ∑

i∈I− βiπ(pi),

1 + ∑
i∈I+ αi = ∑

i∈I− βi,
(14)

where αi and βi are not necessarily positive. Let μ be the minimum of the ratios αi/|Ci |,
i ∈ I+, and βi/|Ci |, i ∈ I−. We subtract (13) μ times from (14) to obtain an expression of
the form

π(q) +
∑
i∈I+

λiπ(pi) =
∑
i∈I−

δiπ(pi),

where λi = αi − μ|Ci |, δi = βi − μ|Ci |. Furthermore, λi ≥ 0, δi ≥ 0, and some λi or δi

will be zero, while 1 + ∑
i∈I+ λi = ∑

i∈I− δi . Hence, q together with the points for which
λi is strictly positive on the left side, and the points for which δi is strictly positive on the
right side will form a Radon partition.

In the above lemma we add q to E+. This preference for E+ is completely arbitrary, and
we may as well add q to E−. This will only change the choice of the point p that must be
removed.

It remains to show that the height ε(E) will increase when we replace p by q. The proof
of the lemma below is again based on classical results [6, 18, 22], but with the adaptation
that we express the growth of height in terms of cofactors.

Lemma 4 Let E be an elemental subset of S. Let fa(p) = 0 be the hyperplane for which
|fa(pi)| = ε(E), for all pi ∈ E. Let q be any point of S such that fa(q) > ε(E). Let p be
selected as in Lemma 3, and define

D+ := E+ ∪ {q} \ {p}
D− := E− \ {p}.

Then D = D+ ∪ D− is an elemental subset whose height is larger than the height of E.

Proof Let λ denote the column vector (C1, . . . , Cd+1)
T of the cofactors. Let b0, . . . , bd−1

be the coefficients of any hyperplane, and let θ = ( b0, . . . , bd−1, −1 )T denote the
column vector of the coefficients bi extended with −1. We define the column vector

r := MEθ
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whose components ri are called the residuals of the points pi . By Lemma 2, we have∑
i Ciπ(pi) = 0. Hence we have

|λT r| = |λT MEθ |
= |( 0, . . . , 0,

∑
i Cixid ) ( b0, . . . , bd−1, −1 )T |

= | −
∑

i

Cixid |

= ε(E)
∑

i

|Ci |,

where we used (9) in the last step. On the other hand λT r = ∑
Ciri , and we find the

following relation for the residuals ri :

ε(E)
∑

i

|Ci | = |
∑

i

Ciri |. (15)

Now we apply (15) to the elemental subsetD, but where the coefficients in θ are those of the
best fitting hyperplane of the elemental subset E. Note that with respect to this hyperplane
the residuals ri of the points pi are all equal to ±ε(E). Moreover, the signs of the residuals
are either equal to the signs of the corresponding cofactors, or equal to the opposite signs.
Let pk be the point in E that has been replaced by q. Let Di denote the cofactors of the last
column of MD , where MD is the matrix ME in which we replaced the k-th row by the row
vector of q. Then (15) takes the form

ε(D)
∑

i

|Di | =
∑
i �=k

|Di |ε(E) + |Dk|rq,

where rq is the residual of q. Hence, we have

ε(D) = ε(E) + |Dk|(rq − ε(E))∑
i |Di | , (16)

which means that ε(D) > ε(E) as long as rq > ε(E). This will be the case when fa(q) >

ε(E).

Although the above lemma was stated for a point q that lies above the supporting hyper-
planes, the result is equally true for any point q that lies below the supporting hyperplanes,
provided we add q to E− instead of E+.

The above results form the basis for an exchange algorithm for unsigned enclosures [26].
The basic idea is to increase the height of an elemental subset by replacing one of its points
until we have found an elemental subset of maximal height. This technique is also known
as the Stiefel exchange method [22, 28]. In the version given below we add an important
improvement, however. We use the cofactors of ME to select the point p that has to be
replaced, which speeds up the computation significantly, because we do not have to compute
all the heights of the d + 2 elemental subsets of E ∪ {q}.
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Exchange algorithm for unsigned enclosures.
Input: A finite subset S of R.
Output: An elemental subset E such that ε(E) = ε(S).

1. Select an arbitrary initial elemental subset E of S.
2. Use the cofactors of ME to compute the height ε(E) and the Radon

partition of π(E).
3. Compute the best fit fa of E by solving the linear system

xid − (a0 + a1xi1 + · · · + ad−1x(d−1)) = sign (Ci)sign (detME)ε(E),

(xi1, . . . , xi(d−1)) ∈ E, for the d unknowns a0, . . . ad−1. Although this
system has d + 1 equations, its rank is equal to d.

4. Process all points of S until a point q is found at a distance further than
ε(E) from the best fit.

5. If no such point is found, return the current elemental subset E.
6. Perform a Radon exchange. Replace E by a new elemental subset D

of E ∪ {q} such that ε(D) > ε(E). If π(E ∪ {q}) satisfies the Haar
condition, the point p that has to be replaced by q can be found by
the Radon exchange computation used in the proof of Lemma 3. If
π(E ∪ {q}) does not satisfy the Haar condition, D can still be found
by computing the height of all the d + 1 point subsets of E ∪ {q}.
According to Corollary 1, at least one of the d + 1-point subsets of
E ∪ {q} will have a height larger than E.

7. Proceed with step 2.

Note that although in our theoretical results we made the assumption that all elemental
subsets of S satisfy the Haar condition, in the above exchange algorithm we have taken
into account the possibility that some elemental subsets do not meet this requirement. An
alternative approach would be to apply small perturbations to the data set so that the Haar
condition can be met.

Also note that the point q with the largest residual will not always give the largest
increase in height, because this increase also depends on the cofactors of the new elemen-
tal subset D, as specified in (16). In practice, however, one simply chooses the point with
largest residual because it takes as much time to compute the cofactors of D as it takes to
do one more iteration. Figure 2 illustrates how the enclosure algorithm iterates towards a
solution for a simple example.

The time complexity of the exchange algorithm will be further addressed in Section 7.

4 Signed separations from unsigned enclosures

The exchange algorithm determines the unsigned enclosure and height ε(S) of a finite
set S. However, to solve a separation problem, we must either determine the maximal
value of δ in (3), or after raising the points of S− and lowering the points of S+, deter-
mine the minimal value of ε in (6). Both problems are signed problems with asymmetrical
constraints.
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Fig. 2 Subsequent iterations in the enclosure algorithm. In a we start with an arbitrary elemental subset and
the two supporting lines that enclose it. If we extend the subset E with any point p that is not enclosed,
i.e, the crossed point in a, then one of the elemental subsets E ∪ {p} will have a larger height than E. This
enables us to replace E by a new elemental subset, shown in b, which contains p and two previous points.
The process continues as long as not all the points of S are enclosed by the supporting lines E. A solution is
found after three iterations, as shown in c

Figure 3 shows the difference between a signed and an unsigned enclosure. The dark
points are the result of raising of some set S−; the light points depict the lowering of S+.
Figure 3a shows the unsigned enclosure. One of the supporting lines contains points of S−
as well as S+, and therefore it cannot be the supporting line of a signed enclosure. Figure 3b
shows a signed enclosure.

Figure 4 shows a configuration of lowered and raised points for which the signed and
unsigned enclosure do coincide. Each supporting line only contains points either from S−
or from S+. In accordance with what we expect for an unsigned enclosure, the distribution
of the support vectors over the two support lines yields a Radon partition when we project
the points upon the x1-axis. This means that the convex hulls of the projected sets π(S−)

and π(S+) must intersect.
In the sequel we will show that for separations of raised and lowered points the opposite

is also true, which is the main result of this paper. We will prove that the unsigned and
signed enclosures coincide when the intersection of the convex hulls of π(S−) and π(S+)

is non-empty, and provided that the distance τ over which we lower and raise the points is
sufficiently large.

The following lemma states that an elemental subset E for which the Radon partition of
π(E) does not coincide with the partition imposed by S+ and S−, cannot be an enclosing
subset of S when τ is sufficiently large. This is the first step in proving that we can obtain
separations from unsigned enclosures if the points are sufficiently raised or lowered.
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x2
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b

Fig. 3 a Unsigned enclosure, and b signed enclosure. The signed and unsigned enclosures are distinct. Also
note that ε(S) ≤ ε(S+, S−) and that projections of the support vectors of the unsigned enclosure form a
Radon partition
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Fig. 4 The signed and unsigned
enclosure coincide. In Section 5
we will prove that a sufficient
condition for signed and unsigned
enclosures to coincide is that the
convex hulls of the projected sets
have a non-empty intersection
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Lemma 5 Let {S+, S−} be a partition of S, such that S+ ∪ S− contains at least one
elemental subset E for which the Radon partition of π(E) coincides with the partition
{π(E+

S ), π(E−
S )}. Let τ be a positive real number, and let T +

τ and T −
τ denote the sets

derived from S+ and S− as in (5). Let Tτ = T +
τ ∪ T −

τ and let Emax
τ be the elemental subset

in Tτ with the largest height, i.e.,

Emax
τ := argmaxE⊂Tτ

ε(E).

Then there exists a lower bound τ0 such that

{π(Emax
τ ∩ T +

τ ), π(Emax
τ ∩ T −

τ )} (17)

is a Radon partition of π(Emax
τ ) for all τ ≥ τ0.

Proof Let E = {p1, . . . , pd+1} be an elemental subset of S. Let I = {1, . . . , d +1} denote
the set of indices of the points in E. We partition I into four different subsets:

I++ := {i : pi ∈ E ∩ S+ and Ci > 0}
I−− := {i : pi ∈ E ∩ S− and Ci < 0}
I+− := {i : pi ∈ E ∩ S+ and Ci < 0}
I−+ := {i : pi ∈ E ∩ S− and Ci > 0}.

(18)

Since Ci �= 0 for all i, we have I = I++ ∪I−− ∪I+− ∪I−+. We will use CI as a shorthand
for the value of

∑
i∈I |Ci |.

The height of E can then be written as

ε(E) =
⎛
⎝|

∑
i∈I++

xidCi +
∑

i∈I−−
xidCi +

∑
i∈I+−

xidCi +
∑

i∈I−+
xidCi |

⎞
⎠ /CI . (19)

There are only two ways in which the signs of the cofactors can coincide with the parti-
tion (17), either I+− = I−+ = ∅, or I++ = I−− = ∅. First assume that I+− = I−+ = ∅.
Then (19) is equal to

ε(E) =
⎛
⎝|

∑
i∈I++

xidCi +
∑

i∈I−−
xidCi |

⎞
⎠ /CI .
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When we raise the points of S− by τ , while we lower the points of S+ also by τ the
height will change:

ε(Eτ ) =
⎛
⎝|

∑
i∈I++

(xid − τ)Ci +
∑

i∈I−−
(xid + τ)Ci |

⎞
⎠ /CI (20)

where Eτ contains the raised and lowered points of E. Since Ci > 0 for i ∈ I++ and
Ci < 0 for i ∈ I−−, we obtain

ε(Eτ ) =
(∣∣∣∣∣

∑
i∈I

xidCi − τ
∑
i∈I

|Ci |
∣∣∣∣∣

)
/CI .

Hence, for τ sufficiently large, i.e, τ > | ∑i∈I xidCi |/CI , the height ε(Eτ ) increases as

ε(Eτ ) = τ − ε(E). (21)

The case I++ = I−− = ∅ leads to a similar result. Also in this case ε(Eτ ) increases as in
(21).

Now let F = {q1, . . . , qd+1} be a second elemental subset for which {F+
S , F−

S } is not a
Radon partition. We again define index sets as in (18). In this case we have I−+ ∪ I+− �=
∅ as well as I++ ∪ I−− �= ∅. We denote the coordinates of the points of F as qi =
(yi1, . . . , yid ). If we let Fτ denote the set of lowered and raised points of F , we have

ε(Fτ ) =
⎛
⎝

∣∣∣∣∣∣
∑

i∈I++
(yid − τ)Ci +

∑
i∈I−−

(yid + τ)Ci+

∑
i∈I+−

(yid − τ)Ci +
∑

i∈I−+
(yid + τ)Ci

∣∣∣∣∣∣

⎞
⎠ /CI .

Since, Ci > 0 for i ∈ I++ ∪ I−+ and Ci < 0 for i ∈ I−− ∪ I+− we obtain

ε(Fτ ) =
⎛
⎝

∣∣∣∣∣∣
∑
i∈I

yidCi − τ

⎛
⎝ ∑

i∈I++∪I−−
|Ci | −

∑
i∈I+−∪I−+

|Ci |
⎞
⎠

∣∣∣∣∣∣

⎞
⎠ /CI .

Because in this case I−+ ∪ I+− �= ∅ and I++ ∪ I−− �= ∅, it follows that

0 ≤
∣∣∣∣∣∣

∑
i∈I++∪I−−

|Ci | −
∑

i∈I+−∪I−+
|Ci |

∣∣∣∣∣∣
/CI < 1.

Hence, for τ sufficiently large, the height ε(Fτ ) increases as

ε(Fτ ) = c0 + c1τ, (22)

where c0, c1 are constants and 0 ≤ c1 < 1. Thus, by comparing (21) with (22), we conclude
that when τ is sufficiently large, ε(Eτ )will always be larger than ε(Fτ ). Hence, the partition
in (17) is a Radon partition for τ sufficiently large.

We have shown that for τ sufficiently large, the height of those elemental subsets E for
which {π(E+

S ), π(E+
S )} is a Radon partition will dominate the height of the other elemental

subsets. In essence this means that the exchange algorithm can also be of use to compute
signed enclosures. However, Lemma 5 can only be applied if there is at least one elemental
subset for which the Radon partition coincides with the partition imposed by {S+, S−}. At
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this moment it is not clear yet when such an elemental subset is available. In the next section
we will settle this question.

5 Sufficient conditions for the existence of Radon partitions

In this section we will derive more explicit conditions that ensure that S+ ∪ S− contains
at least one elemental subset E for which the Radon partition {E+, E−} coincides with
the partition {E+

S , E−
S } as imposed by {S+, S−}. This correspondence is needed for the

application of Lemma 5. The conditions formulated here are more general than those in
[27].

Our proof will be based on the following construction. If the convex hulls of π(S+) and
π(S−) have a non-empty intersection, we can find always subsets P ⊆ S+, and Q ⊆ S−,
such that convπ(P ) ∩ convπ(Q) �= ∅, and |P | + |Q| = d + 1. In fact, E = P ∪ Q will be
an elemental subset for which {π(E+

S ), π(E−
S )} is a Radon partition.

According to Caratheodory’s theorem if a point p lies in the convex hull of a subset S of
R

k , then there is a subset P of S with k + 1 or fewer points such that p lies in the convex
hull of P . Caratheodory’s theorem was used to prove the main result of [27]. Here, to prove
a more general result, we need the following extension of Caratheodory’s theorem. Note
that for the sake of notational simplicity, we formulate this theorem in Rd , but later we will
apply it on the projected sets in R

d−1.

Theorem 5 Let P , Q be two finite sets in R
d such that convP ∩ convQ �= ∅. Then there

are subsets P ′ ⊂ P , Q′ ⊂ Q such that

(a) |P ′| ≥ 1, |Q′| ≥ 1,
(b) |P ′| + |Q′| ≤ d + 2,
(c) convP ′ ∩ convQ′ �= ∅.

Proof Let pi denote the points of P , qi denote the points ofQ. Since convP ∩convQ �= ∅,
there is a point s that can be written as a convex combination of both sets, i.e.,

s =
n∑

i=1

αipi =
m∑

i=1

βiqi (23)

where
∑n

i=1 αi = 1, with αi ≥ 0, and
∑m

i=1βi = 1, with βi ≥ 0. If n + m ≤ d + 2, we are
done. So we may assume that n+m > d +2. Now suppose one of the convex combinations
only contains one point, e.g,

pj =
m∑

i=1

βiqi .

Then we can choose P ′ = {pj } and by Caratheodory’s original theorem [29], pj is a convex
combination of a subset Q′ that contains at most d +1 points, which proves the theorem for
this particular case.

Therefore, from now on we assume that n + m > d + 2, as well as n ≥ 2, and m ≥ 2.
The theorem is obviously true for d = 1. Therefore we may also restrict ourselves to the
case d ≥ 2. It follows that at least one of n or m is larger than 2. Without loss of generality
we assume n > 2. Since n + m − 2 > d, the n + m − 2 points (p3 − p1), . . ., (pn − p1),
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(q1 − p1), . . ., (qm − p1) are linearly dependent. Hence there are real numbers μ1i , γ1i not
all zero, such that

n∑
i=3

μ1i (pi − p1) +
m∑

i=1

γ1i (qi − p1) = 0.

If μ11 is defined as μ11 := −(
∑n

i=3μ1i + ∑m
i=1γ1i ), then

μ11p1 +
n∑

i=3

μ1ipi +
m∑

i=1

γ1iqi = 0 (24)

with

μ11 +
n∑

i=3

μ1i +
m∑

i=1

γ1i = 0.

Since at least one of the coefficients in (24) is non-zero, without loss of generality we may
assume that μ11 �= 0. If this was not yet the case, we can always relabel the points of P and
Q, and, if necessary, also swap the roles of P and Q.

Likewise, since the n+m− 2 points (p3 −p2), . . ., (pn −p2), (q1 −p2), . . ., (qm −p2)

are also linearly dependent, we can find real numbers μ2i , γ2i not all zero, such that

μ22p2 +
n∑

i=3

μ2ipi +
m∑

i=1

γ2iqi = 0 (25)

with

μ22 +
n∑

i=3

μ2i +
m∑

i=1

γ2i = 0.

Now, we introduce
μ1s := μ11 + ∑n

i=3μ1i
μ2s := μ22 + ∑n

i=3μ2i .

Then, we also have −μ1s = ∑m
i=1γ1i , and −μ2s = ∑m

i=1γ2i .
First, suppose that μ1s = 0, then we have found a combination

n∑
i=1

μ1ipi =
m∑

i=1

(−γ1i )qi , (26)

with
∑n

i=1 μ1i = 0, as well as
∑m

i=1(−γ1i ) = 0, and where at least one of the μ1i or (−γ1i )

is not zero. Then for any τ

s =
n∑

i=1

(αi − τμ1i )pi (27)

and

s =
m∑

i=1

(βi + τγ1i )qi (28)

still represent convex combinations, provided (αi − τμ1i ) ≥ 0 and (βi + τγ1i ) ≥ 0. Fur-
thermore, at least one of the μ1i or (−γ1i ) is positive. Let κ denote the maximum of all μ1i
and (−γ1i ). We define

λ := min{α1/κ, . . . , β1/κ, . . .}.
Then we have λ > 0, and

αi − λμ1i ≥ 0 (i = 1, . . . , n)

βi + λγ1i ≥ 0 (i = 1, . . . , m).
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For at least one αi or βi the equality will hold. Therefore, in at least one of the two convex
combinations (27) or (28) at least one of the coefficients will be zero. In other words, at
least one of the convex combinations can be written with one point less. This process can
be repeated as long as n + m > d + 2, and the same process can be used when μ2s = 0.

We now consider the remaining case that μ1s �= 0 and μ2s �= 0. Then there is a non-zero
scalar ρ such that μ2s − ρμ1s = 0. Subtracting (24) ρ times from (25) we find

− ρμ11p1 + μ22p2 +
n∑

i=3

(μ2i − ρμ1i )pi = −
m∑

i=1

(γ2i − ργ1i )qi . (29)

Since −μ1s = ∑m
i=1γ1i , and −μ2s = ∑m

i=1γ2i , we also have

m∑
i=1

(γ2i − ργ1i ) = 0,

and therefore

−ρμ11 + μ22 +
n∑

i=3

(μ2i − ρμ1i ) = 0.

Since μ11 �= 0, ρ �= 0, we have ρμ11 �= 0, in other words, at least one of the coefficients in
(29) is non-zero.

Hence, we can rewrite (29) as

n∑
i=1

μ′
ipi =

m∑
i=1

(−γ ′
i )qi , (30)

with
∑n

i=1 μ′
i = 0, and

∑m
i=1(−γ ′

i ) = 0, and where at least one of the coefficients is non-
zero. Since the above expression has the same form and properties as (26), we can proceed
as before and subtract the coefficients in (30) multiplied by an appropriate constant from αi

and βi to eliminate a point in one of the convex combinations of (23).

Theorem 5 encompasses Caratheodory’s original theorem as a special case, if we let P

consist of a single point. In addition, if we let P = Q it implies part (a) of Radon’s Theorem
(Theorem 2).

Theorem 6 Let {S+, S−} be a partition of S such that

convπ(S+) ∩ convπ(S−) �= ∅.

Then S+ ∪ S− contains an elemental subset E for which the Radon partition of π(E)

coincides with the partition {π(E+
S ), π(E−

S )}.

Proof It suffices to combine the strong form of Radon’s Theorem with the extension of
Caratheodory’s Theorem. First, we apply Theorem 5 to the (d − 1)-dimensional space
defined by the hyperplane xd = 0. The projection π(S+ ∪ S−) lies in this hyperplane.
Hence, there are two sets P + ⊂ S+ and P − ⊂ S− such that P + ∪P − contains d +1 points,
and convπ(P +) ∩ convπ(P −) �= ∅. Now choose E = P + ∪ P −. We then have

convπ(E+
S ) ∩ convπ(E−

S ) �= ∅.
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On the other hand, we assume that all subsets with d+1 points satisfy the Haar condition.
Hence by Radon’s Theorem (Theorem 2), there is only one way to partition E into two sets
E+ and E− such that

convπ(E+) ∩ convπ(E−) �= ∅.

It follows that the Radon partition of π(E) coincides with the partition {π(E+
S ), π(E−

S )}.

Note that the previous lemma formalizes our observation made in Figs. 3 and 4. In fact,
the main result of this paper now follows immediately.

Theorem 7 Let {S+, S−} be a partition of S such that convπ(S+) ∩ convπ(S−) �= ∅. Let
Tτ denote the set of raised and lowered points of S, that is, Tτ := T +

τ ∪ T −
τ . Then there is

a lower bound τ0 such that for all τ ≥ τ0

max
E⊂Tτ

ε(E) = ε(Tτ ) = ε(T +
τ , T −

τ ) = τ − δ(S+, S−).

Proof By Theorem 6 there is at least one elemental subset E in S for which the imposed
partition {E+

S , E−
S } is a Radon partition. The same must be true for the elemental subsets of

Tτ , for any value of τ .
Let Emax

τ denote the elemental subset of maximal height in Tτ , or more precisely,
ε(Emax

τ ) := maxE⊂Tτ ε(E). By definition the height of Emax
τ is the same as the height of

Tτ , that is, ε(Emax
τ ) = ε(Tτ ). This makes sense since by Theorem 4, the hyperplanes that

enclose Emax
τ also enclose Tτ . All these results hold for any value of τ .

However, when τ is sufficiently large, then by Lemma 5 we also have ε(Emax
τ ) =

ε(Emax
τ ∩ T +

τ , Emax
τ ∩ T −

τ ). By Theorem 1 the hyperplanes that enclose Emax
τ also enclose

Tτ . Since each of these enclosing hyperplanes either contains points fromEmax
τ ∩T +

τ or from
Emax

τ ∩T −
τ , but not from both sets, the signed enclosure of {Emax

τ ∩T +
τ , Emax

τ ∩T −
τ } is also

a signed enclosure of {T +
τ , T −

τ }. It follows that ε(T +
τ , T −

τ ) ≤ ε(Emax
τ ∩ T +

τ , Emax
τ ∩ T −

τ ).
On the other hand, by Theorem 3 we always have ε(Tτ ) ≤ ε(T +

τ , T −
τ ). As a result,

we have ε(Tτ ) = ε(T +
τ , T −

τ ), and therefore also ε(Emax
τ ) = ε(T +

τ , T −
τ ). The equality

ε(T +
τ , T −

τ ) = τ − δ(S+, S−) is the same as (7).

Based on the previous results we can now propose an algorithm for signed separations.
The signed separation algorithm is based on the enclosure algorithm, but where we displace
the points over τ , and give a new interpretation of the output. The basic idea is illustrated in
Fig. 5.

An essential characteristic of the signed separation algorithm is that we do not have to
substitute an actual value for τ when we compute the heights of the elemental subsets. Let
E denote an elemental subset of S. Without loss of generality we may assume that the first
k points of E belong to S+ and the remaining d + 1− k points belong to S−. Let Eτ be the
elemental subset obtained after raising the points of S−, and lowering the points of S+. To
compute ε(Eτ ) we must compute the cofactors of

MEτ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x11 . . . x1d − τ

. . .

1 xk1 . . . xkd − τ

1 x(k+1)1 . . . x(k+1)d + τ

. . .

1 x(d+1)1 . . . x(d+1)d + τ

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 5 How the separation algorithm uses enclosure to find hyperplanes that maximize the vertical distance.
Two finite sets S+ and S− are shown in a. To find a separation we lower the points of S+, raise the points of
S−, and use the enclosure algorithm to find the enclosing hyperplanes, as in b. The separating hyperplanes
are then found by translating the points and the hyperplanes back to their original position, shown in c. In
this illustration we used small displacements. When the height comparisons are correctly implemented in the
algorithm, the displacements will always be sufficiently large

Since τ only appears in the last column of the matrix MEτ , the height ε(Eτ ) will always be
of the form |a + bτ |, where a, b are real numbers derived from the cofactors which do not
depend on τ . When comparing heights or when computing the coefficients of the support-
ing hyperplanes, we simply take the limit for τ → ∞. To be precise, when comparing the
heights of two elemental subsetsEτ andE′

τ , with heights |a+bτ | and |a′+b′τ |, respectively,
it suffices to compare the number pairs (a, b) and (a′, b′). We define |a + bτ | < |a′ + b′τ |
whenever 0 ≤ |b| < |b′|. If |b| = |b′|, we define |a + bτ | < |a′ + b′τ | whenever
|a| < |a′|. This avoids the computation of very large numbers, and at the same time it guar-
antees that the outcome of the height comparisons always agrees with an optimal choice
of τ . Furthermore, as demonstrated in the proof of Lemma (5), for the resulting elemental
subset E we can only have |b| = 1 when the imposed partition {π(E+

S ), π(E−
S )} coin-

cides with a Radon partition. In all other cases, |b| < 1. Hence, the computed value
of |b| can be used to determine whether such an elemental subset is present or not.

Algorithm for signed separations
Input: A finite subset S = S+ ∪ S− on R

d such that any subset of d + 1 points
satisfies the Haar condition.
Output: Either an elemental subset E that defines the separating hyperplane that
maximizes the separation distance, or the conclusion that no such elemental subset
exists.

1. Use the enclosure algorithm to compute the elemental subset Eτ of largest
height where the points of S− have been lowered over a distance τ and the
points of S− have been raised over τ .

2. Let |a + bτ | denote the height of Eτ . If |b| = 1, we have found a subset for
which the Radon partition {π(E+), π(E−)} coincides with the imposed parti-
tion {π(Eτ ∩ T +

τ ), π(Eτ ∩ T −
τ )}. This solves the signed separation problem.

If |b| < 1, then convπ(T +
τ ) ∩ convπ(T −

τ ) = convπ(S+) ∩ convπ(S−) = ∅.
In that case, there are no supporting hyperplanes that separate S+ from S−
such that the projection {π(E+

S ), π(E−
S )} of the support vectors forms a Radon

partition.
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After applying the signed separation algorithm, there are three possible outcomes
for the separation problem. First, the algorithm may return an elemental subset
that defines a hyperplane that separates the given data sets S+ and S− in an optimal way.

Second, even when the algorithm returns an elemental subset E, after inspection we may
find that the optimal hyperplane that separates E+ from E− does not separate S+ from
S−. The reason is that the algorithm actually computes an enclosure of displaced points,
which may not correspond to a separation after the displacement is undone. This situation
invariably occurs when S+ and S− are not linearly separable, or in other words, when their
convex hulls intersect. The hyperplane defined by E will then be the hyperplane for which
the enclosure of the points that are at the wrong side of the separating hyperplane is minimal.
This is similar to a separation with a soft margin by an SVM in the case of inseparable data
sets [3].

Third, the outcome of the algorithm may be that no appropriate elemental subset can
be found. Or in other words, the unsigned separation problem does not provide a solu-
tion for the signed problem, due to a peculiarity of the data set. This peculiarity, however,
also opens the way for a fall-back strategy. Since the outcome now indicates that the
convex hulls of π(S+) and π(S−) do not intersect, we can use the same algorithm to
separate the projected sets π(S+) and π(S−) in R

(d−1). Any hyperplane in R
(d−1) of the

form xd−1 = a0 + a1x1 + · · · + ad−2xd−2 that separates π(S+) and π(S−) can always be
embedded into a larger hyperplane orthogonal to xd = 0 that separates S+ and
S− in R

d .

6 Maximal margin separation

In the previous sections we described a separation algorithm to find hyperplanes that
maximize the distance to the nearest data points. The distance is measured in the sense
of Chebyshev approximations, that is, along a fixed coordinate axis. As explained in
Section 2 Chebyshev enclosures and separations give rise to linear programming problems.
Since the separation/enclosure algorithms proceed by applying Radon exchanges to an ele-
mental subset, they may be called combinatorial methods. Support vector machines, on
the other hand, find hyperplanes that maximize the margin measured orthogonally to the
hyperplane. This is a quadratic programming problem, which is usually solved by iterative
methods [3].

Because quadratic programming poses challenges that are not present in linear program-
ming, at first sight there appears to be a fundamental difference between a maximal margin
problem and the separation problem of the previous sections. This is also confirmed by the
examples. In general the hyperplane found by our combinatorial algorithm will not be the
same as the maximal margin hyperplane, as illustrated in Fig. 6.

Nonetheless, we will show that the criterion for optimality turns out to be almost the
same for both problems. We will show that a separating hyperplane H found by the com-
binatorial algorithm is also a separation with maximal margin if the orthogonal projection
of the elemental subset E on H coincides with a Radon partition. Hence, the main differ-
ence is that we must project the support vectors orthogonally on the separating hyperplane
instead of projecting them along the xd -axis.

Suppose we have two data sets S+ and S− of points p = (x1, . . . , xd). To solve the
maximal margin separation, we have to minimize

a21 + · · · + a2d
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Fig. 6 Two data sets S− = {p1, p2} and S− = {p3, p4, p5} that have to be separated. a indicates the
combinatorial solution, while b shows the optimal supporting hyperplanes that maximize the margin, which
is different. The reason why the combinatorial solution is not the same as the optimal solution is illustrated
in c. If we project p5 along the y-axis on the line p1p2 then the projection falls within the convex hull of p1
and p2. However, if we project p5 perpendicularly upon the line p1p2, then the projection falls outside the
convex hull of p1 and p2. Hence, p1, p2 and p5 cannot be support vectors for an optimal hyperplane where
we measure the distance perpendicularly. In Figure b the orthogonal projection of p2 upon the line p3p5 falls
within the convex hull of p3 and p5

subject to the conditions

a0 + a1x1 + · · · + adxd ≥ 1 (p ∈ S+)

a0 + a1x1 + · · · + adxd ≤ 1 (p ∈ S−).

The solution of this quadratic programming problem will give us the parameters a0, . . ., ad

of the optimal hyperplane that separates S+ and S− with the largest margin [3].
The next theorem defines an optimality criterion for maximal margin separations, which

is again based on Radon partitions. Although the result can be proven almost immediately,
we will give a constructive proof based on Householder transformations. A Householder
transformation is a linear transformation that corresponds to a reflection about a hyperplane.
We will use it to map the separating plane onto the plane xd = 0.

Theorem 8 Let {S+, S−} be a partition of S, and let E denote the elemental subset that
maximizes ε(E). Let fa(p) = ε(E) and fa(p) = −ε(E) be the hyperplanes as defined
in Theorem 1. If the orthogonal projections of E+

S and E−
S on the hyperplane fa(p) = 0

coincide with a Radon partition, then fa(p) = 0 is a separating hyperplane that maximizes
the margin.

Proof Let n1 denote the normal vector of the hyperplane H , let n2 denote the normal
vector of the plane xd = 0, and define v = (n1 + n2)/(||n1 + n2)||). Then v is the normal
vector of the hyperplane H ′ that bisects the hyperplanes H and xd . Let P = I − 2vvT

be a Householder transformation matrix, where I is the identity matrix and vT denotes the
transpose of v. The Householder transformation matrix represents a reflection R about H ′.
We will denote the image of the transformation of a set S as R(S), and of a point p as
R(p). If we apply the transformation R to H , R(H) will coincide with the horizontal plane
x′
d = 0. As a result, for each point p of S+∪S−, the distance measured between R(p) along
the axis orthogonal to the plane x′

d = 0 will now coincide with the real shortest distance
between R(p) and R(H). Furthermore, the projections of R(E+

S ) and R(E−
S ) on R(H) will

coincide with a Radon partition if and only if the orthogonal projection E+
S and E−

S on H
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was a Radon partition. Hence, because of Theorem 1, the elemental subset R(E) defines the
supporting planes with maximal margin. Since a reflection preserves all distances, it follows
that E defines the supporting planes with maximal margin.

Theorem 8 is restrictive in the sense that it only states that the Chebyshev separation
yields a maximal margin separation when the orthogonal projection of the support points
defines a Radon partition. This does not exclude the possibility that there can be maximal
margin separations that are not generated by elemental subsets. It is perfectly possible that
there are less than d + 1 support vectors. In this case, it is not difficult to see that the
projected support vectors will form a Radon partition in an affine subspace of the separating
hyperplane. There can also be more than d+1 support vectors. In that case the set of support
vectors will contain a subset of d + 1 points that projects onto a Radon partition.

7 Time and space complexity

The separation algorithm has the same time complexity as the enclosure algorithm, the
only adaptation being that we lower and raise points. Therefore, we only examine the time
complexity of the exchange algorithm for enclosures.

Number of radon exchanges To determine the time complexity of the exchange algorithm,
we first look at the number of needed Radon exchanges. Suppose the data set consists of n

points. In R
d , this means that there are O(m) elemental subsets, where m = (

n
d+1

)
. Since

the goal of the enclosure algorithm is to find the elemental subset with the largest height, the
time complexity depends on the speed with which the height will increase at each exchange.
Let ε1, . . . , εm represent the heights of all the elemental subsets in increasing order. Let εi

be the height of the current elemental subset E in the exchange algorithm. When we replace
one point of E by a new point, the new height will be one of εi, . . . , εm. We will now
assume that it is equally probable that εj is larger than median of εi, . . . , εm, than that it is
smaller. Under this assumption, the number of elemental subsets with height larger than the
current subset is halved at each exchange. The algorithm reaches the maximal height after
O(log

(
n

d+1

)
) = O((d + 1) log n) replacements.

Although the above assumption has not been proven, simulations with random data sets
confirm that for d fixed the average number of replacements is bounded by k log2 n, where
k does not increase faster than d [27]. Figures 7 and 8 illustrate the outcome of these
experiments.

The height ε(E) and the enclosing hyperplanes fa(E) = ±ε(E) After each replacement
of the current elemental subset by a new subset E we have to compute the new height ε(E).
The most straightforward approach is to compute ε(E) from (9). Both the cofactors and the
determinant can be computed in O(d3) time by matrix inversion of ME . Once the cofactors
and ε(E) are known, the separating hyperplane of E can be computed in O(d3) time by
solving the linear system

x
j
d − (a0 + · · · + ad−1x

j

d−1) = ε(E), (x1, . . . , xd) ∈ E

for the d unknowns ai , i = 0, . . . , d − 1. This system has (d + 1) equations, but its rank
is equal to d, and we can find a unique solution by discarding one of the equations. In
particular, if Cj �= 0, we can discard the j -th equation. Each elemental subset has at least
one such cofactor.
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Fig. 7 Time complexity for varying size of the data set. From the time complexity analysis, the expected
number of iteration grows as (d + 1) log n. The experimental results show the average number of iterations
that were needed to find the enclosing elemental subset. The average was taken over 100 experiments for each
n = 10, 20, . . .. The smooth curves show plots of the best fit of the form a + b log2(n) to the experimental
results, where n represents the number of data points. In R

4 a good fit was a + 1.35 log2(n) (shown left), in
R
6 a good fit was a + 2.31 log2(n). In each case, the rate b is smaller than the expected value d + 1

A point outside the enclosing hyperplanes For each elemental subset we have to evaluate,
in the worst case, all n points to find a new point q outside the enclosing hyperplanes of the
current elemental subset, which yields time complexity O(n).

Selecting an appropriate subset in E ∪ {p} Once a new point q has been found outside the
enclosing hyperplanes of E, we must exchange q for a point p. As explained in the proof of
Lemma 3, for the selection of p we need the cofactors Ci and an affine dependency relation
between π(q) and points of π(E). The latter can be found by solving a linear system with
d + 1 unknowns (Eq. 14). Hence, p can be found in O(d3) time.

To summarize, the number of replacements is of the order O((d + 1) log n). Since ε(E),
fa(E), q, p have to be determined at each iteration of the algorithm, the total time complex-
ity is O((d3 + n)((d + 1) log n)) = O((d4 + nd) log n). This means that in its present form
the enclosure algorithm scales reasonably well for the number of points n, but badly for the
dimension d. The main asset, however, is that the space complexity is O(d2 + n). When d

is small, the algorithm can handle very large data sets. Moreover, we do not need random
access to the data points. To find a new exchange point q the data points can be examined
one by one in arbitrary order.
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40
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80
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Fig. 8 The average number of iterations when d increases, and n is kept fixed (n = 1000). For each d, the
average number of iterations was taken over 100 simulations. The graph confirms that the time complexity
scales as O((d + 1) log n), for n fixed
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8 Conclusion

The primary goal of this paper was to examine the relationship between support vectors and
Radon partitions, both for maximal margin separations as for Chebyshev separations and
enclosures. To establish these relationships all the cornerstones of combinatorial convexity
made their appearance, i.e., Radon’s, Caratheodory’s and Helly’s Theorem.

We proposed an improved version of the Stiefel exchange algorithm, suited to compute
enclosures as well as separations in the Chebyshev sense. Although this algorithm is par-
tially based on classical methods, it also includes new elements such as Radon exchanges
based on cofactors.

To derive the time complexity of the enclosure/separation algorithms we assumed that
at each exchange the increase in height is uniformly distributed between the minimal and
maximal increase. With this assumption in mind, the separation algorithm has space com-
plexity O(d2 + n) and time complexity O((d4 + nd) log n), where n is the number of data
points, and d the dimension of the space in which the separation takes place. Although the
assumption remains unproven, the simulations confirm that it is plausible.

Especially with respect to the number of dimensions d, the proposed separation algo-
rithm is slow when compared to learning algorithms for Support Vector Machines where
time complexities have been reported of the order O(d2n+d3), O(dn2 +n3), or O(dn) [5,
12, 23]. One reason is that the exchange algorithm solves a slightly different problem, and
that it does not make use of any of kind of heuristics or active subsampling [3, 17]. Further-
more, the linear time complexity of the iterative SVM algorithms often depends strongly on
the parameter settings, such as the required accuracy of the approximation, the sparseness
of the feature vectors, and the soft margin parameter [1, 14].

An important question that remains is how we can exploit Radon partitions to understand
and improve maximal margin algorithms. For example, in [13] the maximal margin separa-
tion problem is first transformed into a minimum norm problem, by taking the Minkowski
difference of the sets S+ and S−. Each point in the Minkowski corresponds to a vector
p+ − p−, with p+ ∈ S+ and p− ∈ S−. In the minimum norm problem we have to find
the point in the Minkowski difference that lies closest to the origin. In [13] this problem is
solved iteratively. At each iteration step, a new point is found that lies closer to the origin
along a certain line segment. An interesting question, therefore, is to examine which points
of the original sets are involved at each iteration step, knowing that the final result has to
correspond to a Radon partition. A similar question arises for the GJK algorithm that finds
the smallest distance between two polytopes in 3D space [8].
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