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Abstract This study is a continuation of a work published byMete, Ou, and Sirakov (2012),
where a model of a 4D manifold of feature vectors was developed. The present paper intro-
duces an improved metric in the 4D manifold first and then extends both the size of the
sample space and the dimension (to 6D) of the manifold model in which the sample space
lies. As a result, we not only overcame the issue of one single vector representing multiple
skin lesions, which occurred in the work of Mete, Ou, and Sirakov (2012), but also improved
the accuracy of classification. Furthermore, a statistical evaluation of our support vector
machine (SVM) classification method was performed. The intervals of confidence were cal-
culated for the mean of classification of a large sample set in the 6D model. Comparison
results of classification with our SVM in 4D and 6D models using 10-fold cross-validation
are given at the end of the paper. It is found that the 6D model improves the classification
results of the previous study suggesting that two newly introduced features contributed to
the increase of the classification accuracy.
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1 Introduction and motivation

This paper applies Support Vector Machines (SVM) to classify feature vectors (FV) in a 6D
model space with a metric. The 6D Riemannian manifold is an extension of the 4D man-
ifold presented in [1]. The 4D FV (AB,AC,B,C) is generated by embeding most of the
ABCD features used by dermatologists for the purpose of skin lesion diagnosis to benign
and malignant [2–4]. With AB we have denoted in [1] the lesions asymmetry, AC the asym-
metry of the color regions present in the lesion, B the number of the skin lesion abrupt
ending arcs, C the number of the color regions present in the lesion.

In [1], the weights from the Total Dermoscopy Score were used to develop a metric for
the 4D manifold. Furthermore, the 4D vectors were mapped into a 3D space via generalized
cylindrical and spherical coordinates in order to determine pattern of the malignant vectors.
It was observed that these vectors are located around a four-degree polynomial curve in the
3D spherical spaces, which suggested the use of such a kernel by ν − SV M in this space.
A set of 70 vectors was used to train different types of SVM and the same vectors were
classified with an f-measure of 89 % [1].

Despite its popularity among dermatologists ABCD rule poses some disadvantages such
as the one presented hereafter. As we extended the size of the sample space from 70 to 90
images we discovered that 18 % of the FVs have the same coordinates in the 4D manifold
[1]. A reason for this repeated labeling of lesions is that each vector component takes only a
few choices. For example, the AB component takes the values of 0, 1, and 2 only. This very
disadvantage makes a classifier fails many cases since learning from many cross-labeled
same feature vectors causes more intricate classifier.

To avoid the problem above, in this paper we split AB into AB
M and AB

m, where AB
M ∈

[0, 1] represents the asymmetry of the skin lesion about the major axis, and by AB
m ∈ [0, 1]

the asymmetry of the skin lesion about the minor axis. Applying the same idea to split AC

to AC
M and AC

m we generate a new 6D FV (AB
M,AB

m,AC
M,AC

m,B,C). This technique proved
to be successful as it separates, in the 6D model, the vectors which coincided in the 4D
manifold.

The asymmetry calculation approach from [1] is also modified to determine the new kind
of asymmetries AB

M,AB
m,AC

M,AC
m. Further, a 6D manifold was developed using a new set

of weights suggested by our dermatologist. Another achievement of the present study is that
we extended the number of samples in our experiments, from 70 to 90 FVs, which brings
more robust generalization into the skin lesion classification. Unlike our previous study in
[1], we performed 10-fold cross-validation for the purpose of the 90 FVs classification in
the 6D Riemannian manifold using different kernels of SVM.

The rest of the paper is organized as follows: the next section provides review of the
most related studies; Section 3 explains the measurement of the features used to construct
the 6D FVs and introduces an elaborated formulation of the active contour model employed
to extract these features. Section 4 develops the 6D manifold as the model space and intro-
duces the basic tools of Riemannian geometry we will use to study geometric structures
and distribution of the lesion vectors. Next, Section 5 describes the experiments and the
classification results obtained with SVM classifier. The paper ends with Section 6 giving
a discussion on the obtained results, a list of the contributions, comparison with a recent
study, and the future work.

2 Related work

The skin lesion cancer is one of the most deadly cancers in the US and in the world. An
automatic imaging system that extracts the features of skin lesions, measures them and
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classifies the lesion as malignant or benign would greatly improve clinical practice and
patient care. Thus this problem attracts the attention of experts from science fields like
mathematics, computer science, and image processing.

A number of papers has been devoted to the problem of skin lesion features extraction.
One of the most targeted feature is the lesion’s boundary. To extract the boundary of a
lesion from noisy image the authors of [7] applied level set approach, whereas [8] used a
gradient vector flow. The active contour presented in [22] was successfully applied to skin
lesion boundaries extraction, but the method is not capable of accurately defining color
regions boundaries. A completely different approach based on neural networks and generic
algorithms were employed in [10] for the same purpose. Another feature of interest was the
pigmented networks determined in [9] employing graph theory.

The ultimate aim for features extraction and quantification is to provide the necessary
strong basis for automatic skin lesion classification to benign and malignant. An overview
of set of features useful for classification and methods to do so are discussed in [11]. One
of the methods most related to our is given in [12], where SVM classifier has been applied
on vectors whose components are color related features. The reported f-measure accuracy
for this study is 80 % using 199 images.

Another study close to the present one in the sense of applying the ABCD rule was
published by Alcon et al [13]. Unlike our method (which uses SVM) they employed logistic
model trees. The accuracy of automatic classification to malignant and benign is 86 %. To
achieve this accuracy the authors used “context knowledge” about the risk group and the
body part where the lesion is located on.

3 Lesion features

In the present section we first list the set of features used to construct the FVs and explain
the basic approaches applied to quantify these features. Next we introduce a shrinking active
contour elaborated to extract these features from noisy skin lesion images.

3.1 Construction of the FVs

In this section we describe the quantification of the three main lesion features used to
generate a FV from every image of our dataset.

(A)symmetry – As a shape descriptor, asymmetry has been considered in [2] as the upper-
most important in evaluation of skin lesions. The lesions posing asymmetric border sign for
uncontrolled growth and are high likely to be diagnosed as malignant. Extending our previ-
ous calculation in [1], we go beyond simple thresholding and opt to use direct asymmetry
measures from the lesions. To calculate asymmetry values for each lesion we start with
finding major and minor axes of the lesion boundary [17] (Fig. 1). Note that in the clinical
practice dermatologist has to estimate A (first component in the ABCD rule) of the lesion
investigating the major and minor axes of asymmetry [2] in a quick manner. Similarly, we
modeled this procedure using a threshold after calculation of asymmetry values with respect
to major and minor axes. However, this process ends up in [1] with only binary outcomes,
0 or 1, meaning that loss of information is inevitable due to discretization. To relax this
stage in the decision making model, instead of using a predefined threshold, we use both
asymmetry values of the major and minor axes, as direct inputs to FVs.

In order to quantify asymmetry [1, 15, 21] with respect to a given axis, the area of
the lesion or color mask, R, is flipped around this axis. The overlapping region is area of
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Fig. 1 Lesion boundary (blue, dark in gray-scale ) extracted by S-ACES with BC 4 and used to calculate the
area Sa

interest, which is denoted by Ts and called true-symmetry. In a similar manner, the non-
overlapping region is called false-symmetry and denoted by Fs . Then asymmetry is given
by Fs/R for the axis of interest. In contrast with previous studies, in which asymmetry
component of FV takes either 0, 1 or 2, we extent AB to AB

M ∈ [0, 1], and AB
m ∈ [0, 1].

Similar to asymmetry calculation for lesion mask, asymmetricity of each color region is
also calculated replacing AC - asymmetry of colors in [1] with asymmetry of colors with
respect to the lesion’s major axis AC

M and with respect to the lesion’s minor axis AC
m. These

components are determined as the average of the asymmetricity of all color regions. For
more detailed calculation of the asymmetry components please see [1, 15]. It is obvious
from Xi = (ABi

M ,ABi
m ,ACi

M ,ACi
m , Bi, Ci) that the feature A of the ABCD rule is extended

into four features using asymmetry values.
(B)order – To calculate B in [1] we developed a model for border evaluation. This is

again to mimic the naked eye abrupt lesion edges assessment performed by dermatologists
(ABDC rule [2]). To determine the value taken by B our approach uses the active con-
tour model introduced in Section 3.2. Employing the boundary condition (BC) given in (4)
the active contour determines the lesions boundary. The area bounded by this boundary is
denoted by Sa . Applying the BC defined in (5) the active contour extracts the lesion’s color
regions. The union of these regions is denoted by Sb. Further, the lesion is divided into eight
sectors by the help of eight straight segments with a join initial point, at the mass center,
and π/4 radians apart from each other (Fig. 1). Thus, in every sector j = 1, ..., 8 we define
an area S

j
a and an area S

j
b . Then we test if 1 − τ ≤ S

j
a /S

j
b ≤ 1 + τ holds [15], where τ is

an empirically found threshold. If this test holds for a current section, we add one point to
the total score for abrupt border.

In each segment abrupt ending of the lesion [6] is investigated and inputed as fifth
component in FVs. [1, 15] detailed calculation of this component. The larger value of B
component, the higher likelihood for melanoma.

(C)olors – Since the presence of many colors in a lesion increases the likelihood of
melanoma, the last component C of a FV regards number of colors seen in the lesion.
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As defined by the ABCD rule, the following are considered major lesion colors: white,
red, light-brown, dark-brown, blue-gray, and black. If all 6 colors are found in a lesion the
maximum color score is 6. The minimum score is 1 since at least 1 color is expected in skin
lesions. Melanomas are usually characterized by presence of three or more colors (Fig. 3).

3.2 Automatic extraction of the FVs components

This section elaborates a shrinking active contour model (S-ACES), whose core version
was first [6]. This model is employed to automatically extract the FV components: lesion
boundary, lesion colored regions, number of colored regions, and boundary used to calculate
abrupt lesion endings.

For the proper skin lesion classification to benign and malignant, the accurate extrac-
tion of the above features is an important requirement. To study the abilities of the S-ACES
model to comply with the above requirement experiments have been performed in [14] with
50 skin lesion images with ground truth of their boundaries. A statistics on these experi-
ments showed that the mean of the border error is 6.6 % while the mean of the recall and
the precision are 85 % and 93 % respectively [14]. In [21] tuning the parameters the bor-
der error was reduced to 5.4 %, and consistently, precision moved up to 99% but the recall
dropped to 75%. 51 images have been used for the second set of experiments.

The above experiments confirmed that S-ACES is a suitable tool for skin lesion boundary
extraction if proper parameters are used in the basic equations of the model. These equations
are as follows: evolution equation (EE); initial conditions (IC); and boundary conditions
(BC). The EE guides the active contour toward the target (Fig. 2b) and is formulated with
the following parametric vector function [1]:

r(q, t) = eaq−4a2(t0+u∂t)(C1cos(c.a.q), C2sin(c.a.q)) (1)

In (1), q is a space angular parameter that describes a particular curve and q ∈ [0, 2π
ac

],
t = t0 + u∂t defines a family of curves for u ∈ [0, ∞) (a curve moving through the
plane), t0 denotes the initial time, ∂t is a time period, u is the consecutive time step. Further,
a = |dq|/2, C1, C2, and c are real constants such that r : R2 → R2. The symbol dq

denotes the rate of change of q.

Fig. 2 a) Skin lesion along with its boundary determined by S-ACES; b) the evolving contour guided by the
EE along with the lesion boundary extracted by the contour and its BC. The most outer curve is defined by
the IC to envelops the image
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The IC are developed to envelop the entire image [6, 15, 21] and to keep the curve closed
during the time of evolution as shown in (Fig. 2b)

u = 0, t0 = 0.1, c = 1000, C1 = C2 = R =
√

n2c + n2r , (2)

a = |dq|/2 ≥ 0.1, q ∈ [0, 0.002π

a
], (3)

In (2) nc denotes the number of columns in the image, nr the number of rows. One may tell
that (1) describes a circle with a radius R → 0 if a2t → ∞. In practice R becomes a point
(pixel) if a2t ≈ 2.5.

In order to halt the active contour on the lesion’s boundary (Fig. 2) the following BC is
applied [15]:

r(q, t) = r(q, t + ∂t) if
∂f

∂t
(r(q, t)) > ε, f or 2.5 > ta2 > 0.001 (4)

To define color regions and extract their boundaries, the following BC is applied along
with evolution (1), and IC (2) and (3):

r(q, t) = r(q, t + dt) if f (r(q, t + dt)) ∈ [ε1, ε2]
r(q, t) �= (q, t + dt) otherwise.

(5)

The bounds ε1 and ε2 represent image intensities and their values are selected by the user
to define the six major colors considered under the ABCD rule [2]: white, red, light-brown,
dark-brown, blue-gray, and black. Suggestions about a set of bounds for these colors in
RGB space are given by [15]. f (x, y) denotes the image function such that f : R2 → R+.

The BC (5) is designed to detect the color’s boundaries in images with a high rate of
noise (Fig. 3). A BC that let the active contour pass through noise, whose area is a half of a
window with sizes q × k pixels, is developed in [16]. The window is traversing the active
contour at every time step u and the BC (5) is checked at every space step�q (digital analog
of dq). A number of experiments were preformed in [16] to validate the capabilities of the
new BC.

In [21] the extracted lesion boundaries were used to measure the lesion’s asymmetry and
calculate the lesion’s area. Thus 51 2D FVs were generated in that study. Further BC (4)

Fig. 3 Upper left to down right: image of malignant lesion; masks from – the lesion’s boundary, the black,
the blue gray, the light brown, and the red color regions. The down right polygon represents the abrupt
boundary of the lesion. All boundaries are extracted by S-ACES



Skin lesion classification modeled on Riemannian manifolds 223

was applied in [15] along with an area based approach to calculate the lesions abrupt end-
ings of 64 skin lesions from images. A BC (5) that allows the active contour passes through
noisy regions and extract lesion colored regions is developed in [15] and implemented in
[16]. The noise robust implementation was applied to extract the boundaries of the col-
ored lesion regions from total of 90 skin lesion images. Ninety FVs were generated from
these images. Thus, our approach automatically extracts and quantifies the asymmetry of
the lesion’s boundary with respect to (w.r.t.) the major axis of asymmetry AB

M and w.r.t. the
minor axes AB

m; the asymmetry of lesion’s colored regions w.r.t. the major and minor axes,
respectively, AC

M , AC
m, lesion’s abrupt boundary B, and the number of colors in a lesion C.

Thus a 6D FV is generated: Xi = (ABi
M ,ABi

m ,ACi
M ,ACi

m , Bi, Ci) for i = 1, ...., n; where n

is the number of images in the sample space where we developed our classification frame-
work. For example, the 6D FV for the lesion in Fig. 3 has the following values for its
components (0.82, 0.83, 0.79, 078, 1, 3). In this vector the black color was not considered
(three colors were counted, Fig. 3), because its area is too small.

In this paper we present the sample space Sn = {Xi : i = 1, ...., n} as a subspace of a 6D
Riemannian manifold to study the geometric structures and distribution pattern of the sets
defined by malignant and benign FVs.

4 Sample space geometry

By extracting the lesion features of an image we generate a FV associated with this
image. The set of all FVs of the images studied is the sample space. One of our goals
is to embed this sample space into a Riemannian manifold so that the tools of Rieman-
nian geometry can be applied to help identify and classify the malignant images. To the
effect, the results of extraction is a process to label images quantitatively. In [1] we used
4-feature labeling and hence the sample space is naturally embedded into a 4D mani-
fold R4 = {(X1, X2, X3, X4)| Xi ∈ R}. The weights in the ABCD rule, used by most
dermatologists [2, 3], lead us to choose the metric defined by:

g(X, Y ) = 1.3X1Y1 + 1.3X2Y2 + 0.5X3Y3 + 0.1X4Y4, (6)

where X = (X1, X2, X3, X4) and Y = (Y1, Y2, Y3, Y4) are any two vectors in R4. Thus the
norm of X = (X1, X2, X3, X4) is given by

|X| = (g(X,X))1/2 = [1.3X2
1 + 1.3X2

2 + 0.5X2
3 + 0.1X2

4]1/2, (7)

which yields the distance ρ(X) of the terminal point of the vector X to the origin.

We compute the angle between the two vectors X = (X1, X2, X3, X4) and Y =
(Y1, Y2, Y3, Y4) by

θ = cos−1 g(X, Y )

|X||Y | . (8)

For example, the directional angles of a vector X = (X1, X2, X3, X4) are computed by

θi = cos−1 g(X, ei)

|X| for i = 1, ..., 4, (9)

where e1 = 1√
1.3

(1, 0, 0, 0, ), e2 = 1√
1.3

(0, 1, 0, 0, ), e3 = 1√
0.5

(0, 0, 1, 0, ), e1 =
1√
0.1

(0, 0, 0, 1, ) is an orthonormal basis of the Riemannian manifold (R4, g).
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In [1] we also made an attempt to understand the geometric structure of the malignant
set in the sample space by projecting 4D space into a 2D plane via a generalized polar
coordinates

(ρ(X), θm) −→ (|X| cos θm, |X| sin θm), (10)

where θm = θ1+θ2+θ3+θ4
4 is the average of the directional angles.

We also obtained a visualization of our 4D sample space in 3D space by projecting a 4D
point to a 3D point via the generalized cylindrical and spherical coordinates [1]:

X −→ (ρ(X) cos θm, ρ(X) sin θm, θσ ), (11)

X −→ (ρ(X) sin θm cos θσ , ρ(X) sin θm sin θσ , ρ(X) cos θm), (12)

where θσ = 1
4

∑4
i=1(θm(X) − θi(X))2 is the variation of the directional angles.

In this paper, we improve the 4D metric by changing the weights of the metric given
in (6). After consulting our medical colleagues about the importance of the features in
diagnosing malignant lesions we choose to use the new metric

ḡ(X, Y ) = 0.32X1Y1 + 0.52X2Y2 + 0.42X3Y3 + 1.52X4Y4 (13)

for the manifold R4.
Replacing the previous metric g by the new metric ḡ in formulas (7) and (9) we obtain

the distance function and the directional angles of a vector X under the new metric ḡ. A fur-
ther computation gives the generalized cylindrical and spherical coordinates using the new
metric ḡ. The comparison of the 10-fold classification results of the SVM classifier applied
to the previous cylindrical and spherical coordinates and the new cylindrical and spherical
coordinates show that the new metric is a rewarding improvement increasing classification
accuracy. More precisely, in the sample space of 90 images, the accuracy of SVM classifier
applied to cylindrical coordinates using the new metric is 82.2 % versus 68.8 % of using the
previous coordinates; the accuracy of SVM applied to spherical coordinates using the new
metric is 83.3 % versus 76.7 % of using the previous coordinates.

In our further attempt to use geometric tools and to enlarge the sample space we discover
that there was a drawback in our 4D FVs construction [1]. More precisely, in the 4D sample
space constructed from the 90 FVs (AB,AC, B, C) there were 18 % of points in which one
had exactly same coordinates with another. In other words, there were 18 % of lesions in
the data set having repeated labels.

In the present paper, we solved this problem by changing the 4-feature extraction
approach into a 6-feature extraction one. As a result, our sample space consists of FVs with
6 components (AB

x , AB
y , AC

x ,AC
y , B, C). Thus, the sample space is now naturally embedded

in a 6D manifold R6 = {(X1, · · · , X6)| Xi ∈ R}. Based on the new ranking of the features
importance for diagnosis in 4D, suggested by our dermatologist, we propose the following
Riemannian metric to be used by the SVM for FVs classification in the 6D space:

g(X, Y ) = 0.32X1Y1 + 0.32X2Y2 + 0.52X3Y3 + 0.52X4Y4 + 0.42X5Y5 + 1.52X6Y6, (14)

where X = (X1, · · · , X6) and Y = (Y1, · · · , Y6) are two vectors in R6. The distance
function (determined by the metric given by (14)) of 90 FVs in the 6D sample space is
plotted in Fig. 4.

The advantages of replacing the 4D sample space by a 6D sample space include: (1)
there are no coinciding points in the new 6D sample space, i.e., the 6-feature extraction
gives no repeated labeling of the lesions; (2) the best found 10-fold accuracy with SVM
classification, using (14), of the 6D sample space shows an improvement from 80 % to 89 %
compared to the result applying the SVM to the 4D sample space.
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Fig. 4 The graph of the distance function for the 90 6D FVs

5 Experiments and discussion

We used 90 FVs to verify the advantages of utilizing 6D manifold for image lesions classifi-
cation to benign and malignant. A data set of 90 (47 benign and 43 malignant) lesion images
were selected from [5]. To ensure fair experiments and statistical calculation the images
have the same resolution with respect to which the image size varies between 1891x1261
and 707x484. The images are produced under the same conditions and three dermatologist
anonymously diagnosed each lesion as benign or malignant and manually draw the bound-
ary of each lesion. Next, they agreed on the best boundary and diagnosis. The above defined
ground truth was used to determine the accuracy of boundary extraction and classification.

To separate malignant FVs from benign ones we used SVM [23] in the 6D space. Recall
that in [1] we did compare SVM classification results in 4D with TDS results.

Throughout the classification experiments, performed in the 6D space, we have applied
the LibSVM [24], where in the SVM was used the Riemanian metric represented by (14).
10-fold cross-validation (CV) and model accuracies are reported in Table 1. In 10-fold CV,
at each fold non-overlapping quasi-equal class distribution one-tenth of the samples was

Table 1 10-fold cross validation (CV) and model accuracies in 6D of the utilized 90 FVs. 4D data-set is
included for a comparison

E A Re Pre T K D γ C Co Norm

4D Model 0.83 0.79 0.85 C-SVM Poly 4 0.11 1 15 Yes

4D CV 0.80 0.72 0.84 C-SVM Poly 5 0.001 1 10 Yes

6D Model 0.93 0.93 0.93 C-SVM Poly 5 0.11 5 12 Yes

6D CV 0.89 0.84 0.92 C-SVM Radial N/A 0.01 6.3 1 Yes

The parameters are the ones used to obtain the accuracy in the corresponding experiment.

Norm shows whether data-set is normalized or not.

E: experiment type, A: accuracy, Re: recall, Pre: precision, T: type of SVM, K: kernel, D: degree, C: cost,
Co: coefficient
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Fig. 5 Recall and precision are plotted, on the interval [0,1] for each of the four kind of classification

excluded from the dataset, and called test set. A model was built with the remaining ones
(nine-tenth), which are called training samples. Then, each lesion in test set was classified
with this SVMmodel. This process was repeated ten times having each of the lesions in test
set in turn.

A second set of experiment was also conducted to find model accuracy, which is another
measure of a classifier accuracy. In model accuracy, none of lesions was removed from
training set. All of them are used as training sample and the accuracy is reported.

While experimenting, to reach best classification parameters, we compare candidate
models over f-measure, which is harmonic mean of precision and recall. Note that recall is
the percentage of positive (malignant) labelled instances that were predicted as positive and
found by T P/(T P + FN). Precision is defined as the percentage of positive predictions
that are correct, and calculated by T P/(T P + FP).1

We employed both, C − SV M , the most common type of SVM used in the litera-
ture, and ν − SV M [20] to build up a hyper-surface that will separate malignant from
benign FVs. Similar to C − SV M , ν − SV M is also a soft margin classifier using ν-
parameterizations instead of C. A wide range of parameters are tested in order to select the
optimal set. A grid search was performed for the 6D dataset within the two SVM types. The
parameters were varied in the following set1: γ = {0.001, 0.005, 0.01, 0.015, 0.02, 0.11};
d = {1, 2, 3, 4, 5, 6}; ν = {0.29, 0.4, 0.5} and applying the following kernels - linear, poly-
nomial, radial basis function, and sigmoid. We determined that the best CV accuracies are
found using C − SV M . The parameter used to calculate the accuracy, recall and precision,
reported in Table 1, are listed in the right part of the same table. In addition, the average for
recall and precision are plotted in Fig. 5 for every kind of classification performed on the
data set of 90 lesion images.

In order to estimate the accuracy of classification of our method for a large data set we
calculated the confidence interval for the CV experiments, in 6D.

For this purpose we calculated the percentile of success for each fold of classification in
6D using 90 LFVs: 0.67, 0.78, 0.89, 1, 0.89, 1, 0.78, 1, 0.89, 1. The mean and the standard
deviation of the data are 0.889 and 0.1.

1TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative
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Since the above classification data is small in size, the experiments do not present
binomial trial, the data set is not normally distributed and the standard deviation for the pop-
ulation is unknown we apply the t-distribution formula, as proposed in [25], to calculate the
confidence intervals in 6D:

X ± t α
2 ,n−1

S√
n

(15)

In (15) X denotes the mean of the sample set, n is the size of the sample set, and S

is the standard deviation of the sample data. t α
2 ,n−1 is a value determined from t-table

corresponding to n − 1 degree of freedom.
Applying (15) on the classification data in 6D it was found that with 90 % of confidence

we may state that the mean of the accuracy of classification of a large sample set will belong
to the interval of [83.1 %, 94.7 %].

6 Conclusion

As stated in the beginning, this paper is a natural extension of the study presented in [1]. A
drawback in the previous work was that 18 % of the FVs had the same coordinates in 4D
sample space due to the very narrow range of values that each component of a FV can take.
To overcome this repeated labeling problem, obtain a better understanding of the geometric
structure of the sample space, and achieve more accurate classification/identification of
FVs, the present work has led to the following contributions:

– The active contour model used for skin lesion features extraction from images was
theoretically elaborated;

– The metric of the 4D manifold was improved under the guidelines of our medical
expert;

– The dimension of the ambient manifold in which the sample space of FVs lies, has been
extended from 4D to 6D. With the new model and sample space of 6D FVs we solved
the repeated labeling problem and achieved a better accuracy of classification (Table 1);

-The intervals of confidence were calculated for the mean of the accuracy of the CV
classification, with our SVM, in a large sample set in the 6D space.

In [26] the authors developed an approach for skin lesion classification. In their work
a geometric information extracted from skin lesion images along with information from
knowledge database were used as input to the classification process. In the present study
geometric and color information are used as input to the SVM for skin lesion classification
to benign and malignant.

[26] calculates the minimal number of samples needed to receive E = 1 % error in the
evaluation of the classification method presented there. The following formula is applied
for this purpose:

Zα
2

≤ E
√

n√
pq

. (16)

In (16) n denotes the number of samples needed, p - is the percentile of successes, q - is
the percentile of un-successes, while Zα

2
is a coefficient from a table for a standard normal

distribution..
Considering E = 1 % and the model classification in 6D, where p = 0.933 (Table 1),

and q = 0.067 we determined that Zα
2

= Z0.005 = 2.58. Applying (16) we found that
4, 333 ≤ n, which means that at least 4,333 skin lesion images are needed to perform
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experiments in order to evaluate the classification with 1 % error. Thus the lower bound
of our method is smaller than 6656 needed by [26] to evaluate their method with the same
error.

One of the classification works more close to our is [13] where the ABCD rule is applied
along with logistic model tree which uses meta data (age, gender, the part of the body the
lesion is located) to facilitate the classification. The authors performed 10 fold CV and
obtained an f-accuracy of 86 %. In our method no meta data is used and the 10 fold CV
showed an f-accuracy of classification 89 % in the 6D manifold.

Another study to compare with is reported in [12]. This paper applies SVM classifier
for the purpose of classification to benign and malignant and reports an f-accuracy of 80 %
on a sample space of 199 skin lesion images. As noted above the accuracy of our SVM
classification is 89 % but our data-set has 90 images. Recall that we calculated in the previ-
ous section we are 90 % confident that the accuracy of our approach on a large population
(including 199 images) is in the interval of [83.1 %, 94.7 %].

This work will continue with a further extension of the FV dimensionality through
including new features as vector components. Features subject of interest are skin lesion
dots and streaks.
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