
Ann Math Artif Intell (2014) 72:225–266
DOI 10.1007/s10472-014-9422-x

Effective deadlock resolution with self-interested
partially-rational agents

Nadav Sofy · David Sarne

Published online: 23 May 2014
© Springer International Publishing Switzerland 2014

Abstract This paper pertains to distributed deadlock resolution in settings populated with
self-interested bounded-rational autonomous agents. In particular it reports the results of
extensive experimentation with 66 agents, each using a deadlock resolution strategy devel-
oped and maintained throughout the experiment by a different human decision maker. While
from the game-theoretic perspective a simple equilibrium-based solution can be engineered
for the problem, it is shown that such a solution fails to hold with bounded-rational agents,
even when its principles are thoroughly explained to the individuals that maintain the agents’
strategies. Instead, we show that the system converges to a steady-state, in which the agents
use a rich set of different strategies, varying in their performance, as each of them has
a different belief regarding its ability to improve, based on the behaviors of the others.
To improve system performance, we develop and implement a restructuring heuristic that
changes the input each agent receives, as a means of affecting the agents’ decisions to bet-
ter align with the desired solution. The restructured deadlock presented to each agent is
based on former deadlocks it had experienced. Our experiments demonstrate the effective-
ness of the restructuring heuristic in facilitating a new steady-state in which the system as
a whole substantially improves its performance. The efficiency of the method, in terms of
the size of the set of former experiences required for effectively restructuring the agents’
input, is demonstrated through a comparison with a neural network implementation of input
restructuring, showing a substantial advantage to the restructuring heuristic.

Keywords Multi-agent systems · Distributed deadlock resolution · Bounded-rational
agents

N. Sofy · D. Sarne (�)
Bar-Ilan University, Ramat-Gan 52900 Israel
e-mail: david.sarne@gmail.com

N. Sofy
e-mail: nadavsof@gmail.com

mailto:david.sarne@gmail.com
mailto:nadavsof@gmail.com

226 N. Sofy, D. Sarne

1 Introduction

In many multi-agent environments, both physical and virtual, deadlocks may occur. These
deadlocks usually take the form of a cyclic set of requests each agent makes to the next
agent in the cycle [27, 32, 62], holding its regular course of task execution. The deadlock
can be resolved only if one of the agents chooses to opt-out of the deadlock, i.e., waves
off its requests from others, and fulfills requests from others (e.g., releases the resources it
holds, without first receiving the resources it requests).

The deadlock problem occurs in many different contexts [30]. For instance, in peace
talks between two warring nations if both parties refuse to give up any occupied land while
demanding the return of some land held by their adversary, the talks could be blocked
indefinitely. Another common example is the traffic deadlock where four cars arrive at a
four-way intersection at approximately the same time, each wishing to proceed ahead or
turn left. If they all obey the right-of-way regulations, none of them will be able to pro-
ceed, indefinitely. Finally, deadlock is a common problem in multiprocessing where many
processes share a specific type of mutually exclusive resource known as a software lock or
soft lock [28]. As such, the problem has received much attention in Operating Systems and
Databases literature [2, 42, 52, 55], resulting in various mechanisms for avoiding, detect-
ing and recovering from deadlock situations [6, 36]. Yet, most of the research in this area
focuses on centrally managed systems, which assume that agents are inherently coopera-
tive and can be preempted (e.g., can be forced to release their resources), as needed, by the
system manager (e.g., the Operating System) [36]. Recent advances in deadlock research
have extended the deadlock model to distributed environments where deadlocks are more
difficult to manage since none of the participating agents has full knowledge concerning
the system’s state. Consequently, a number of approaches have been pursued for deadlocks
avoidance [6, 32, 37] and detection [10, 34] in distributed systems. Still, all the methods
designed for deadlock resolution in distributed settings assume that agents are cooperative
and follow a dictated deadlock resolution protocol [35, 41, 47, 51, 55].

In many deadlock situations occurring in multi-agent systems agents are, however,
self-interested (e.g., in negotiation or traffic problems), and a cooperative deadlock reso-
lution scheme cannot be enforced. This situation, of deadlocks with self-interested agents,
is also likely to hold in future virtual open environments where agents migrate between
different platforms, communicating and negotiating with other agents, autonomously, with-
out the mediation of hosting operating systems and platforms. In such environments,
deadlocks can be resolved only if an agent willingly retracts from its deadlock-related
requirements (e.g., releases the resources it holds or cancels its requirements from the
other agents). The problem becomes even more complex if the agents are not fully ratio-
nal or pre-programmed with different deadlock handling logics (e.g., programmed by
different users). In this case, each individual agent needs to be incentivized to comply
with the required behavior that will lead the system to an effective deadlock reso-
lution. The vast deadlock management solutions discussed in literature, based on the
assumption that agents are cooperative and fully rational, may become irrelevant in such
settings.

In this paper we report the results of extensive experimentation with deadlock resolution
in distributed settings of self-interested, partially-rational agents. Each agent’s deadlock
resolution strategy, in our experiment, was programmed and continuously maintained by a
different individual, corresponding to situations where different programs or agents running

Effective deadlock resolution with self-interested partially-rational agents 227

on the platform are programmed by different programmers or software companies.1 The
goal of the agents was to finish executing their task as early as possible. The essence of the
deadlock resolution strategy was therefore deciding, based on the deadlock parameters and
the time elapsed since it was formed, whether or not to opt-out. While a decision to opt-out
from the deadlock early in the process guarantees a quick deadlock resolution, the agent
opting-out would need to wait until all the other agents in the deadlock finish executing,
before it could continue to execute its own task. On the other hand, holding the decision
to opt-out, hoping that the deadlock will be resolved by others has the risk of waiting a
substantial time in the deadlock until it is resolved.

The paper makes several contributions with respect to deadlock resolution in distributed
settings of the type described above. First, it provides evidence of the ability of such sys-
tems to reach a steady-state. Naturally, when an agent repeatedly operates in the same
environment, its designer may attempt to improve its deadlock management strategy by
better adapting to the environment. We show that such adaptation processes, even when
simultaneously performed by all users along time, result in the eventual (relatively quickly)
convergence of the different strategies to a steady-state, where none of the participants is
interested in further changing her agent’s strategy. The convergence to a steady-state is
demonstrated in all the settings that were examined.

Second, evidence is given of the failure of game-theoretic-based approaches in the dis-
tributed deadlock resolution domain, where agents’ strategies are set by rationally-bounded
(human) designers. The resulting steady-state strategies in our experiments are not efficient
system-wise, as the average waiting time of the agents in deadlocks is relatively substantial
in comparison to the theoretical bound. Game theory principles can be applied to con-
struct a simple stable distributed solution to the problem which guarantees immediate, and
more important, mostly effective deadlock resolution. Yet, prior literature has suggested that
game-theoretic-based solutions often do not hold where people or rationally-bounded agents
are concerned [4, 7, 40, 64]. Our attempt to suggest such a solution resulted in poor per-
formance of our testing environment, even though the solution was thoroughly explained to
the individuals that maintain the agents’ strategies. Once the testing environment reached a
steady-state, none of the strategies used by the agents followed the game-theoretic solution.

Finally, as an alternative to the game-theoretic approach, the paper demonstrates the use-
fulness of input restructuring as a means of improving the system performance in settings
such as those discussed in the paper. In particular, the paper introduces an adaptive heuris-
tic for restructuring, i.e., changing the deadlock description the agents receive as an input.
Meaning that for the same deadlock encountered by a group of agents, each agent may
receive a different deadlock as an input for its decision making process. This new approach
parallels recent developments in psychology, behavioral economics and agents’ design [31,
50, 58], suggesting restructuring (i.e., changing) the decision-making problem itself rather
than attempting to directly change a decision-maker’s strategy. The idea is that the decision
maker, believing that the restructured deadlock is indeed the deadlock faced, will act dif-
ferent than when facing the actual deadlock. The heuristic thus attempts to present to each
agent a different (restructured) deadlock that is likely to affect its decision to opt-out in a

1Meaning that the agents do not use self-adapting strategies or any kind of learning but rather the changes in
their strategies are fully attributed to the will of their human software developers.

228 N. Sofy, D. Sarne

way that better aligns with the desired behavior. This way, deadlocks can be resolved more
efficiently system-wise. The restructuring heuristic was tested in the same experimental
environment. Its effectiveness derives from its ability to lead the system to a new steady-
state in which the system as a whole substantially improves its performance as demonstrated
in our experiment. Its efficiency is demonstrated through a comparison with a legacy neu-
ral network implementation of input restructuring, showing that the proposed restructuring
heuristic requires a substantially smaller database of prior observations than the latter to
reflect the same performance improvement.

All in all, the results reported in this paper mainly apply to system designers, highlighting
the inherent inefficiency of unintervened distributed deadlock resolution when the deci-
sion makers are not fully rational. Much of this inefficiency can be substantially overcome
using a relatively simple to employ and manage restructuring heuristic such as the one sug-
gested in this paper. Indeed, in systems that guarantee data integrity, the approach of input
restructuring is not feasible. However, as our experimental results demonstrate, whenever
the system is allowed to provide a restructured input to agents, the improvement achieved
(both system-wise and individually) is substantial.

The paper is organized as follows. In the following section we introduce the formal
deadlock model. Section 3 provides a detailed theoretical analysis of the model, agent-wise
and system-wise, introducing the different performance bounds that are used later to ana-
lyze the results. It also gives the game-theoretic solution to the problem. Section 4 presents
the proposed input restructuring heuristic, designed to improve the system performance in
such settings. Section 5 details the experimental methodology used to evaluate the conver-
gence to a steady-state and the effectiveness of the input restructuring heuristic. Section 6
presents the results and their analysis. Section 7 describes three complementary experiments
and their results. The first supplies a better understanding of the sources of improvements
achieved with the input restructuring heuristic. The second aims to evaluate the usefulness
of supplying the decision makers with the appropriate input regarding the deadlock exis-
tence and its parameters in the first place. The third demonstrates how the restructuring
heuristic can be adjusted to balance between individual and system performance. Finally, in
Section 8 we review related literature and we conclude with a discussion and directions for
future research in Section 9.

2 The deadlock model

The model considers a distributed multi-agent system, where agents are self-interested,
partially-rational and possibly represent different users. Each agent is assigned a task, for
which it needs several different (reusable) resources to complete it. The goal of each agent is
to minimize the time it takes to complete its task. The modeling of deadlocks in the system
fully aligns with the standard Coffman deadlock model, commonly found in literature on
Operating Systems [12, 52]. According to this model, resources first need to be requested
(to be acquired) by an agent and once used are released.2 The system is considered to be in a
deadlock state if a circular chain (A1, ..., AN, A1) of agents (the “circular wait condition”)
exists, where each agent Ai attempts to acquire a resource held by agent Ai+1 (A1, in case
i = N) in order to proceed with its execution (the “ hold and wait condition”). This can

2While the terminology used in the literature on Operating Systems considers processes as the system’s
blocked entities, we prefer agents due to the context of self-interested entities.

Effective deadlock resolution with self-interested partially-rational agents 229

Fig. 1 Resource Allocation Graph (left) and its corresponding Wait-For Graph (right) of a circular deadlock
state. Agents are represented by circles and resources by rectangles. A1 is holding resource R1, and is waiting
for A2 to release resource R2. Once A1 receives resource R2 it will need tA1 time units to complete its task.
A2 will not release resource R2 until it acquires resource R3 and finishes its task, which is estimated to take
tA2 time units. Meanwhile, A3 is holding resource R3 and is waiting for resource R1 and thus the system is
in a deadlock

typically be represented by a resource allocation graph or a wait-for graph [52] (see Fig. 1).
It is assumed that a resource cannot be used by more than one agent at a time (the “mutual
exclusion condition”), and that a resource cannot be forcibly taken from an agent holding it
but can only be released by an explicit action of the agent (the “no preemption condition”).

Each agent Ai is associated with a time tAi
, representing the time it is planning to use

the resource it is waiting for (the resource currently held by Ai+1) after having acquired it.
Therefore, tAi

is also the time it takes Ai to release the resource Ai−1 is waiting for from
the time it attains the resource for which it is waiting. The deadlock can thus be represented
as A = ((A1, tA1), ..., (AN, tAN

), (A1, tA1)). If an agent willingly releases the resource it
holds (opt-out) it will need to acquire both the resource released (now held by the former
agent in the chain) and the resource it was waiting for (held by the next agent in the chain)
in order to proceed with its task. We assume these two resources are acquired as soon as
they are released by the agents currently holding them. For example, in Fig. 1, if A1 releases
resource R1 that it holds after t ′ time units, then A3 immediately gains hold of R1 and
executes the task for tA3 time units. A2 waits tA3 time units until attaining R3 and then
executes the task for tA2 time units. The last to execute is A1, which opted-out and resolved
the deadlock. After waiting tA3 + tA2 time units for both A3 and A2 to complete their tasks,
A1 will re-acquire R1 back and R2, and will then execute the task for tA1 time units. The
waiting times of the different agents in this example are: t ′ for A3 which executed the task
immediately after A1 opted-out, t ′ + tA3 for A2 and t ′ + tA3 + tA2 for A1.

We assume the existence of a central entity (e.g., an operating system), that sup-
plies system-related information to the agents, which cannot preempt the agents’ hold
of resources or enforce any particular agent behavior. In particular, since agents in a
multi-agent system (MAS) can block their regular operation for various reasons (i.e., not
necessarily due to a deadlock), we assume the system informs the agents once they are actu-
ally in a deadlock and supplies them with the deadlock description.3 This latter information
consists of a vector of times, where the i-th element in the vector represents the time associ-
ated with the i-th agent along the circular chain (where the agent receiving the information

3Deadlock detection is supported by various mechanisms [10, 34] which can be done in O(n2) operations,
where n is the number of vertices in the wait-for graph.

230 N. Sofy, D. Sarne

is the first in the chain).4 In Fig. 1, for example, the deadlock descriptions A1, A2 and A3
receive are (tA1 , tA2 , tA3), (tA2 , tA3 , tA1) and (tA3 , tA1 , tA2), respectively.

An agent’s strategy, when in a deadlock A, is thus the mapping S : A �→ t , where t is
the time since the deadlock is first reported to the agent until the agent willingly opts-out
(if the deadlock is not resolved by another agent by then). As mentioned above, each agent’s
goal is to minimize the time it takes to complete its task. Since no agent has control over
its own processing time, this goal is equivalent to minimizing its overall waiting time in the
deadlock (i.e., the time elapsed since the deadlock was formed until the agent managed to
acquire the resources it requested and began executing the task). From the system’s point
of view, we consider the sum of utilities realized by the agents (utilitarian social welfare)
as common in multi-agent settings [44], i.e., the goal is to minimize the expected average
waiting time of the agents.

3 Analysis

In this section we analyze the agents’ and the system’s performance, and develop the per-
formance bounds that are used later to analyze the experimental results. For exposition
purposes, we use Asub(Ai, Aj) to represent the subchain of the agents positioned between
Ai and Aj (exclusive) in deadlock A. We also assume, WLOG, that the deadlock is formed
at time t = 0.

Once an agent Ai ∈ A opts-out from a deadlock, the deadlock is resolved. In this case
agent Ai will need to wait a time

∑
Ak∈A∧k �=i tAk

, while any other agent Aj will wait a
time equal to the total processing times of all the agents along the subchain Asub(Aj , Ai)

(formally, given by
∑

Ak∈Asub(Aj ,Ai)
tAk

). Notice that once the deadlock is resolved by agent
Ai , no agent Aj �= Ai can reduce the time it needs to wait by individually opting-out as
well. This is because opting-out will not affect the time any of the agents in Asub(Aj , Ai)

will need to wait until acquiring the resource they request.
If the deadlock is resolved at time t ′ > 0, then the agent that resolved the deadlock

could have done better had it opted-out at time t = 0. In fact, all the agents in the deadlock
would have reduced their waiting time by t ′ had the agent resolving the deadlock opted-out
at time t = 0 rather than t = t ′. Still, always opting-out at time t = 0 is definitely not the
best strategy for a self-interested agent. Using the t = 0 strategy when none of the other
agents are using it results in always waiting for all the other agents to finish executing their
task, hence waiting

∑
Ak∈A∧k �=i tAk

time units. If all the agents use a t = 0 strategy then
any single agent would improve its performance by switching to a t > 0 strategy. Using a
t → ∞ strategy (i.e., holding onto the resource and never choosing to opt-out) is beneficial
if the deadlock is resolved relatively early by one of the other agents. However, if all agents
use this strategy then they will all wait indefinitely.

Let F(A,i)(t) denote the probability that a random agent placed as the i-th agent in
deadlock A will opt-out at or before time t . Assuming t is continuous, the derivative

f(A,i)(t) = dF(A,i)(t)

dt
is the probability density function (PDF) of having the i-th agent in

4It is assumed that the times tAi
(i ≤ n) are known to (or can be learned by) the central entity. For example,

the central entity can estimate the time it takes agent Ai to complete a specific task according to statistics over
previous executions of this task, or alternatively, the agents truthfully disclose this value (where truthfulness
is enforced by the system through the denial of future service or other means).

Effective deadlock resolution with self-interested partially-rational agents 231

deadlock A opt-out at time t . The optimal (i.e., expected-waiting-time-minimizing) strategy
t∗ when being the j -th agent in the deadlock is thus given by:5

t∗ = argmint

⎛

⎝
∫ t

y=0

⎛

⎝
∑

Ak∈A,k �=j

f(A,k)(y)
∏

w �=j,k

(1 − F(A,w)(y))·
⎛

⎝y +
∑

Al∈Asub(Aj ,Ak)

tAl

⎞

⎠

⎞

⎠ dy +
⎛

⎝
∏

w �=j

(1 − F(A,w)(t))

⎞

⎠

⎛

⎝t +
∑

k �=i

tAk

⎞

⎠

⎞

⎠ (1)

The right hand side of the equation calculates the expected waiting time of the j -th agent
for any opt-out time t it can possibly use and returns the one resulting in the minimum
value. The first part of the term relates to cases where the deadlock is resolved by one of
the other agents at any time y < t . The calculation iterates over all other agents, taking the
probability each of them will be the first to opt out at time t , in which case agent Aj waits
y + ∑

Al∈Asub(Aj ,Ak)
tAl

. The second part relates to the case where Aj is the first to opt-out,
i.e., when all other agents choose to opt-out later than t , thus it waits t plus the sum of all
other agents’ time. The time t∗ that minimizes the expression is therefore the best opt-out
strategy for agent Aj when in deadlock A. Yet, the use of such a strategy requires a huge
database of results, to accurately extract the probability function F(A,i)(t), given the many
possible combinations of processing times, as well as the number of agents in the deadlock
and each agent’s position in the deadlock.

From the system’s point of view, the optimum (i.e., expected-average-waiting-time-
minimizing) deadlock resolution is achieved when the deadlock is resolved at t ′ = 0. This
is because any solution according to which the agent to opt-out first opts-out at time t ′ > 0
is dominated by the same solution, except that the agent opts-out at time t ′ = 0. If the dead-
lock is resolved by agent Ai ∈ A at time t ′ = 0, then the total waiting time is the sum of
waiting times of each agent Aj �=i plus the time agent Ai itself has to wait until all other
agents finish executing their task. Thus, the average waiting time, is given by:

1

N

⎛

⎝
∑

j �=i

∑

Ak∈Asub(Aj ,Ai)

tAk
+

∑

k �=i

tAk

⎞

⎠ (2)

Therefore from the system’s point of view, a lower bound for the expected average wait-
ing time is obtained when agent Ai , for which (2) is minimized, opts-out at time t ′ = 0.
Taking the setting given in Fig. 1 as an example, if the processing times are tA1 = 6, tA2 = 3
and tA3 = 5, then the best outcome is achieved if A3 opts-out at time t ′ = 0, resulting in a
total waiting time of 12 time units (A2 executes its task immediately, A1 waits 3 time units
and A3 waits a total of 9). It is noteworthy that even though A1 has the longest processing
time, if it opts-out at time t ′ = 0, the resulting total waiting time is 13 (A3 executes its task
immediately, A2 waits 5 time units and A1 waits a total of 8 time units).

Theoretically, having agent Ai , for which the average waiting time according to (2) is
minimized, opt-out at t ′ = 0, can be achieved in the distributed setting this paper considers
using game theory principles. For example, given a deadlock A, the agents can follow a

5A similar equation can be formulated for the case of discrete t values, substituting the integral with a sum,
and f(A,i)(t) with P = F(A,i)(t + 1) − F(A,i)(t), and handling ties.

232 N. Sofy, D. Sarne

strategy according to which only the agent that minimizes (2) opts-out at time t ′ = 0 and
all the remaining agents never choose to opt-out (i.e., set t ′ → ∞). This strategy is in
equilibrium, since none of the agents has an incentive to deviate from it: as all other agents
use t ′ → ∞, the agent that is supposed to opt-out at t ′ = 0 will adhere to this strategy. As
discussed earlier, any other strategy t > 0 is dominated by t = 0 for this agent, and using
t → ∞ will result in an overall infinite waiting time. As for the other agents, since the
deadlock is supposed to be resolved at time t = 0, none of them will have an incentive to
deviate to a different strategy. In fact, based on the same argument, any protocol whereby
one of the agents is selected to opt-out at time t < ∞ according to some pre-defined criteria
(e.g., having the minimum or maximum processing time) while all other agents use t → ∞
is in equilibrium.

The theoretical analysis given in this section can be used to compare the performance
of any two sets of agents’ strategies from the system’s point of view. The measure uses the
following supplementary notations:

– B, D - two sets of agents’ strategies.
– Perf ormanceB , Perf ormanceD - the average waiting time (over all agents) with sets

B and D, respectively.
– T heoreticalP erf ormance - the theoretical minimum average waiting time (accord-

ing to (2)).

The difference between Perf ormanceB or Perf ormanceD and T heoretical

P erf ormance is the overhead (or “inefficiency”) due to the use of the non-optimal set of
strategies in environments B and D, respectively. The performance improvement of the sys-
tem, when switching from environment B to environment D, measured as the change (in
percentages) in the overhead time, is given by:

1 − Perf ormanceD − T heoreticalP erf ormance

P erf ormanceB − T heoreticalP erf ormance
(3)

This choice of using the overhead as a the main measure for improvement is because
the overhead is the component out the overall waiting time over which the restructuring
heuristic can actually affect (as a waiting time lower than the theoretical performance is
unattainable). Any other measure (e.g., taking the overall expected waiting time) would
highly depend on the deadlock settings generated for the experiments.

While (3) is used throughout this paper to compare the system performance under differ-
ent treatments, we are also interested in comparing individual performance of agents under
these treatments. The measure for individual performance change makes use of the overhead
change concept as above, defining:

– Perf ormanceB(Ai), Perf ormanceD(Ai) - the average waiting time of agent Ai

when operating alongside agents of sets B and D, respectively.6

– T heoreticalAgentP erf ormance - a lower bound for the expected average waiting
time of an agent.

The difference between Perf ormanceB(Ai) or Perf ormanceD(Ai) and the bound
T heoreticalAgentP erf ormance is the overhead (or inefficiency) due to the use of
a non-optimal set of strategies in environments B and D, respectively. The individual

6Notice that the strategy of Ai itself may change in the transition from B to D.

Effective deadlock resolution with self-interested partially-rational agents 233

performance improvement of agent Ai’s performance when switching from environment B

to environment D, measured as the change (in percentages) in the overhead time, is given
by:

1 − Perf ormanceD(Ai) − T heoreticalAgentP erf ormance

P erf ormanceB(Ai) − T heoreticalAgentP erf ormance
(4)

We note that unlike in the system’s performance measure, the individual agent’s the-
oretical minimum expected waiting time depends on the set of the other agents in the
system. Therefore, the measure uses a lower bound for the agent’s individual performance,
T heoreticalAgentP erf ormance, which does not depend on the strategies used by the
other agents. This bound, which is explained in more detail in Section 5.1, essentially con-
siders the case where the deadlock is always resolved at time zero (therefore it does not
depend on the other agents’ strategies) and the agent is never the first to opt out. The
improvement we report in individual performance, whenever relating to that measure, is
therefore a lower bound for the actual improvement.

4 Restructuring heuristic

While the game-theoretic-based solution can be theoretically engineered to guarantee the
best possible system performance, as discussed in the former section, there is much empiri-
cal evidence of failure of such mechanisms in settings where the agents are not fully rational
[19, 59], e.g., when programmed by people [9, 40]. In this paper, we use an alternative
approach, a heuristic that restructures the deadlock-related information the agents receive as
input from the system. The idea is to indirectly influence the agents’ deadlock-related deci-
sions in a way that improves the overall system performance. Applying such an approach
requires the agents to be unaware of the fact that the input they receive is being restructured,
in order to prevent attempts of acting strategically, which might decrease the effectiveness
of the input restructuring approach. This latter approach builds on recent developments in
psychology and behavioral economics [31, 58] as well as in multi-agent systems [4, 25, 50].

In the distributed deadlock resolution domain the problem restructuring approach offers
various advantages in comparison to attempting to directly influence the decision-maker’s
strategy so that it aligns better with the desired one. First, since the agents are self-interested
it is very difficult to incentivize each individual agent to act in a desired manner. Second,
even if the appropriate incentives can be constructed, the direct approach often requires
argumentation, since the bounded-rational agents may fail to realize the benefits in the pro-
posed solution. The restructuring approach, on the other hand, completely avoids the need
to persuade the decision-maker of the usefulness or benefits of the system-desired strategy.
Finally, in most cases the strategy of an agent is pre-set and cannot be changed externally,
unless it is re-programmed, and thus the agent simply cannot be persuaded by the system. In
such cases, only the restructuring approach can influence the agent’s decisions. Despite its
many advantages, the new approach should be carefully managed, as the reaction of agents
to the restructured information may not always align with the system designer’s expecta-
tions. Since the agents’ strategies are not a priori known, it is possible that some of the
agents will not act as expected, and the use of the restructured input will end up making
things worse. Furthermore, based on the performance of the agents with the restructured
data, the agents’ designers/owners may decide to re-design their agents’ strategies and the
system may end up doing worse than with the original agents’ strategies. Also, as discussed
in the introduction, this new approach is not applicable whenever the system is obligated
or regulated to supply a non-restructured deadlock, e.g., when the system’s code is offered

234 N. Sofy, D. Sarne

as an open source (e.g., as in Linux). Still, whenever input restructuring is applicable, the
individual and overall benefits are substantially improved, as demonstrated in the following
sections.

Unlike prior work where the input restructuring approach is used [4, 31, 58], our use of
input restructuring attempts to affect the collective behavior of a group of agents rather than
a single agent, by supplying a revised input (deadlock description) to each agent separately.
The goal of effectively influencing the collective behavior of a group of agents is more
complex in our case, as any agent that does not respond as expected, might negatively affect
the whole group. Another difference is that in the deadlock setting, the system and agents’
individual goals often conflict, whereas in prior work the focus has been solely on the benefit
of the agent whose input is restructured [50].

Our use of the restructuring approach for distributed deadlock resolution suggests that
each agent in the deadlock be presented a variation of a deadlock it has previously
encountered rather than the deadlock it is currently encountering. The alternative deadlock
presented to the agent may differ from the original deadlock in any parameter (e.g., number
of other agents and their processing times). The only restructuring constraint in our case is
the true processing time of the agent itself which is kept as is (as this latter information is
known to the agent or can be later verified). The deadlock variation eventually used is thus a
previously encountered deadlock in which the agent is either most likely to wait the longest
time until opting-out or the one for which the agent is most likely to wait the shortest time
until opting-out (depending on the role planned for that agent). The restructuring heuristic
modifies the selected deadlock by changing the agent’s own time to its time in the current
deadlock.

The restructuring heuristic is described in Algorithm 1. Since the heuristic relies on for-
mer deadlocks the agents encountered, it uses a classical exploration versus exploitation
approach, with a decaying exploration [3, 5]. The heuristic is based on three main phases: (a)
exploration versus exploitation decision; (b) predicting worse and best opt-out times given
the current database of formerly observed deadlocks, for each agent, that can be achieved
using input restructuring; and (c) deciding on the restructured deadlock each agent receives
as input.

The heuristic receives the current deadlock description the system is in, which includes
the identities of the agents and their positions in the deadlock (denoted by “Acurrent”), and
the set of formerly observed deadlocks (denoted by “DB”). Each formerly observed dead-
lock in DB has the identity of all agents that did not receive it in its original masked form
(i.e., in its non-restructured form). This is because the behaviors of these agents in that
deadlock are correlated with the restructured deadlocks they received rather than the dead-
lock stored in the database. Both Acurrent and DB are made available by the system using
the heuristic. After the resolution of each deadlock, the system adds the deadlock to DB,
masking all agents that were not presented with that deadlock, as explained above. Restruc-
tured deadlocks are not stored in DB in order to prevent situations where the exploitation is
based on a set of rather homogeneous deadlocks.7 The heuristic outputs a set of deadlocks
to be presented to the agents in the current deadlock. Based on the set of formerly observed
deadlocks, DB, the heuristic first extracts (as a preprocessing step) the relevant dead-
locks for each agent Ai , denoted DBi (Step 1). The relevant deadlocks are those that were

7The homogeneity property derives from the fact that the revised deadlocks are similar to the existing
deadlocks they are based on.

Effective deadlock resolution with self-interested partially-rational agents 235

Algorithm 1 Adaptive Restructurer

Input: Acurrent - the current deadlock the system is in; DB - Set of prior deadlock
instances; MinRestructured, α - the minimum number and percentage of agents to
attempt to influence to opt-out first, respectively;

Output: (A1, ..., A|Acurrent |) - the tuple of restructured deadlocks to be presented to the
agents.
// Extract local DB for each agent Ai

1: Set DBi = {A|A ∈ DB ∧ Ai ∈ A}, ∀1 ≤ i ≤ |Acurrent |
2: Set Explore = null; Exploit = null

// Exploration with probability 1/(|DBi |)2, otherwise exploitation
3: for Ai ∈ Acurrent do
4: if rand() < 1/(|DBi |)2 then
5: Add Ai to Explore

6: else
7: Add Ai to Exploit

8: end if
9: end for

//Identify potential deadlocks to be presented to each exploited agent and evaluate
performance

10: for Ai ∈ Exploit do
11: Set MinAi = arg min

A
(A.resolutionT ime|A ∈ DBi ∧ A.resolverAgent = Ai)

12: Set MaxAi = arg max
A

(A.resolutionT ime|A ∈ DBi)

13: Set MaxAi[Ai].processingT ime = MinAi[Ai].processingT ime =
Acurrent [Ai].processingT ime

//Calculate the expected performance when agent Ai is the first to opt-out

14: Set Perf ormancei =
(∑

j �=i

∑
Ak∈Acurrent

sub (Aj ,Ai)
tAk

+ ∑
k �=i tAk

)
+

MinAi.resolutionT ime

15: end for
// Remove infeasible solutions

16: Move the set {Ai |Ai ∈ Exploit ∧ MinAi.resolutionT ime >

min{MaxAj .resolutionT ime|j �= i}} from Exploit to Explore

17: Order Exploit according to Perf ormancei

18: Set k = max(�α|Acurrent |,MinRestructured)

19: Set Ai = MinAi for the top k agents in Exploit and Ai = MaxAi for any other
Ai ∈ Exploit

20: Set Ai = Acurrent for any Ai ∈ Explore

21: return (A1, ..., A|Acurrent |)

actually presented to the agent. The heuristic then executes its exploration versus exploita-
tion phase (Steps 2–9). In this phase, it is decided for each agent whether it will be given
the current deadlock Acurrent as input (i.e., exploration), in an attempt to enlarge the set
of experiences associated with that agent, or a modification of one of the deadlocks it has
already encountered, attempting to exploit the knowledge the system has on this agent. The
decision between exploration and exploitation (Step 4) is made for each agent separately,
based on the number of observations available for this agent (i.e., the size of DBi). Agents
for which exploration needs to take place are added to the Explore list and the others to the

236 N. Sofy, D. Sarne

Exploit list. The probability of choosing to exploit (presenting a restructured deadlock to
the agent) is (|DBi |2 − 1)/|DBi |2, and the probability of choosing to explore (presenting
Acurrent) is 1/|DBi |2 (coinciding with the “least taken” multi-armed bandit algorithm [60],
a variant of the ε-decreasing approach, that results in a faster decrease of the exploration
probability), where |DBi | is the number of different deadlocks stored in the system for that
agent. While we attempt to keep this step simple, several improvements can be considered
when determining exploration and exploitation. For example, exploration can be avoided
completely for an agent for which a deadlock in which that agent opts-out at time t = 0
with certainty was found. Another potential improvement can be obtained by adjusting the
probability to explore or exploit not only based on the number of examples in DBi but also
on the quality of those examples (e.g., if the earliest time an agent was recorded to opt out
is still relatively high, more exploration needs to be done).

In the second phase (Steps 10–16), the heuristic attempts to predict its potential influence
over the agents that are designated to receive a restructured deadlock (i.e., for every agent
in the list Exploit) in terms of the earliest and latest times they are likely to opt-out with
restructured inputs. For the earliest time the agent will opt-out, it considers all the deadlocks
in DBi where that agent was the first to opt-out (Step 11). Here, A.resolverAgent denotes
the identity of the agent that opted-out in deadlock A and A.resolutionT ime denotes the
time at which the agent opted-out. For the latest time, it considers all the deadlocks in
DBi , since the time the agent would have waited in these deadlocks until opting-out is
inevitably greater or equal to the deadlock’s resolution time (Step 12). The deadlock in
which agent Ai opted-out earliest and the one in which agent Ai opted-out (or was still
holding onto its resource) the latest are stored in MinAi and MaxAi , respectively. The pro-
cessing time of each agent in its restructured deadlock (both for the minimum and latest
opt-out time) is overridden by the actual processing time according to Acurrent (Step 13).
This is required since the restructured input is constrained by the requirement to present to
each agent its own true processing time as discussed above. MaxAi[Ai].processingT ime,
MinAi[Ai].processingT ime and Acurrent [Ai].processingT ime denote the proce-
ssing time of agent Ai in the deadlocks MaxAi , MinAi and Acurrent , respectively
(Step 13).

Based on its prediction of the level of influence it can have over each agent’s decision to
opt-out, the heuristic chooses the agents to be influenced to opt-out first. The overall waiting
time when Ai is the first to opt-out, according to its MinAi input, is calculated (based
on (2)) for every Ai ∈ Exploit and stored in Perf ormancei (Step 14). This enables the
system to predict the expected system performance if it successfully manages to influence
Ai to opt-out first. Agents that cannot be influenced to opt-out first, i.e., their predicted opt-
out time if given the MinAi restructured deadlock is greater than at least one agent Aj ’s
predicted opt-out time according to its MaxAj , are removed from the Exploit list. This
is because there is no point in trying to influence those agents to opt-out first. Instead, the
heuristic uses them for exploration (Step 16).

Finally, in the last phase (Steps 17–21), the heuristic chooses the k agents from Exploit

that yield the lowest overall waiting times if they opt-out first, given the deadlock Acurrent .
The reason for attempting to influence more than a single agent to opt-out first through input
restructuring is that there is no guarantee of successfully influencing the agent associated
with the best Perf ormancei (as even though the deadlocks given to the agents are based
on deadlocks retrieved from DB, these deadlocks are different in the values assigned to the
agents’ individual processing time). The value of k is therefore determined as a percent-
age of the number of agents in the deadlock, α, while guaranteeing a pre-defined minimum
of MinRestructured (Step 18). Each of the k agents that are associated with the k-best

Effective deadlock resolution with self-interested partially-rational agents 237

Perf ormancei values in the Exploit list are therefore given the restructured deadlock
according to which it is likely to opt-out as early as possible (Step 19). The remaining agents
in Exploit receive the restructured deadlock according to which they are likely to opt-out
as late as possible (Step 19). The agents in Explore receive the current deadlock Acurrent

unchanged in order to enrich their set of experiences in DB with the new (current) dead-
lock (Step 20). The set of deadlocks to be presented to each agent is returned as an output
(Step 21).

We note that while the approach used by Algorithm 1 attempts to maximize performance
system-wise, it does not address fairness issues. In particular, the attempts to influence
agents to align with the desired behavior, system-wise, may not be evenly spread across the
agents, resulting in having some agents suffer a degradation in their individual performance.
Designing a more balanced solution requires minor changes, mostly in terms of keeping
track of the accumulated effect of the restructuring heuristic on the different agents and
incorporating this information in the decision regarding which agents to try to influence to
opt-out first. This is thoroughly discussed in Section 7.3.

One important condition for the success of the restructuring heuristic presented in this
section, is the ability to identify the agents. This capability is needed in order to corre-
late agents with the set of observations representing former deadlock experiences (Step 1).
This is often possible in real distributed systems, as agents can be identified by the system
through the use of cookies, as well as other diverse enforceable identification methods, and
certainly in operating systems where security and authentication mechanisms are widely
applied [21].

5 Evaluation

The goals set for the evaluation are threefold: First, we wanted to provide evidence of the
ability of a system where deadlocks are resolved distributively by self-interested bounded-
rational agents to eventually reach a steady-state. A steady-state, within this framework,
is one where none of the users believes in her ability to change her agent’s strategy in a
way that will improve performance, given the behavior of other agents. This definition of a
steady-state in a way resembles the notion of a Satisficing equilibria [56], which is a state in
which all agents reach an outcome that is sub-optimal, but is also an acceptable one. Agent
designers in a system that is in a Satisficing equilibria are reluctant to change their agent’s
strategy because they do not know, or do not have the available resources to find a better
strategy and are satisfied with the performance of their current strategy. This definition of
a steady-state is slightly different than the definition of a Nash equilibrium steady-state, in
which none of the users can objectively improve the performance of her agent given the
strategies used by others. The difference between the two also suggests that in a steady-state
of the first type we are likely to observe various different strategies, each yielding different
expected waiting times when in a given deadlock, due to the inherent differences between
different individuals and their beliefs. On the other hand, in the case of the Nash equilibrium
for the problem (any game-theoretic solution of the type discussed above), the symmetry
of the agents’ roles in the different deadlocks suggest that all agents end up with a sim-
ilar average waiting time. The second evaluation goal was to test our hypothesis that the
game-theoretic-based approach will not hold in the distributed deadlock resolution domain,
where agents are rationally-bounded. Finally, we wanted to demonstrate that the system
performance can be substantially improved using the input restructuring approach, and test
the effectiveness of the proposed restructuring heuristic as a possible means of reducing

238 N. Sofy, D. Sarne

individual and average waiting times. As a part of this latter goal, we aimed at demon-
strating the convergence of the system to a steady-state when the restructuring heuristic is
applied and comparing the proposed heuristic with an alternative implementation of input
restructuring (neural-network-based in this case).

5.1 Simulation infrastructure

For these purposes, we developed a system that simulates Coffman deadlocks8 in an oper-
ating system, where the processes are self-interested agents. The agents in the system are
put in a deadlock upon instantiation. They receive the deadlock description as input, which
includes the processing time of every agent in the deadlock, and the order of the agents in
the chain. Each agent used by the system was programmed by a different person (hence-
forth denoted “strategy designer”) based on a generic skeleton, that was only missing its
strategy layer. This separation principle in the design and the use of strategy designers is
common practice in multi-agent research [11, 16, 50]. The only functionality the strategy
designers needed to implement was the decision of whether to opt-out from the deadlock
based on the deadlock description and the time elapsed (in terms of clock ticks) from the
time the deadlock was formed. Deadlocks were generated automatically and assigned with
agents, randomly, allowing repetition.9 Upon initialization, each agent received the dead-
lock description. At each time step, the agent was requested to decide whether to opt-out
from the deadlock or not. Once an agent opted-out, the system terminated and the average
waiting time was calculated according to (2). Due to the discrete nature of the system (which
is tick-based), if two or more agents opted-out at the same time step, then one of them was
randomly chosen to be the first to opt-out. A timeout of several orders of magnitude greater
than the mean processing time was used, in case none of the agents was willing to opt-out
after that time, forcing (randomly) one of the agents to opt-out. The value of the timeout
was known to the strategy designers. It is noteworthy that this timeout was never reached
along the experiment as all strategies in all stages had implemented their own, substantially
lower, timeouts.

The evaluation system included an advanced web-based interface and its architecture is
presented in Fig. 2. The main purpose of this interface was to enable users to update the
agents’ strategies along the different stages of the experiment (Update Strategy module) and
test an agent’s strategy performance based on the most current version of the other agents in
the system (Ad Hoc Simulation module). In addition, the interface included a logging mod-
ule (“Logs”), that enabled the strategy designers, at any stage of the experiment, to access
historical simulation results of their agents (including the deadlocks’ descriptions) and fil-
ter those by different versions of their agent’s strategy. The core of the evaluation system

8A Coffman deadlock [12] is a deadlock satisfying the four conditions outlined at the beginning of Section 2:
Mutual Exclusion, Hold and Wait, No Preemption and Circular Wait. Unfulfillment of any of these conditions
is enough to preclude a deadlock from occurring.
9We allowed repetition in order to simulate two processes that were instantiated based on the same program
running concurrently (or alternatively, a process created based on a fork() system call of another process).
When two instances of the same agent participated in the same deadlock, no communication was allowed
between them. Furthermore, neither of the agents was aware of the existence of two agents that implement
the same strategy.

Effective deadlock resolution with self-interested partially-rational agents 239

Fig. 2 Evaluation System’s Architecture. The system includes three modules providing the required func-
tionality for the agents’ designers: Update Strategy for submitting modified agent strategies, Ad Hoc
Simulation for testing the agent’s performance with the latest version of the other agents and the Logging
module, which displays historical data of deadlocks in which the user’s agent participated. The Simulation
Scheduler provides the functionality of running evaluation sessions. The Simulations Manager is used for
generating random deadlocks and assigning agents to them. The architecture of an agent consists of a skele-
ton which implements all the required functionality, except for the opting-out strategy, which is designed and
programmed by the strategy designers

is the simulation manager that is responsible for generating random deadlocks (simulating
an agents’ platform which detects deadlocks) and assigning them with agents. A designated
restructuring heuristic module received the simulated deadlock description and the IDs of
the agents in it, and restructured the deadlock description each agent received according
to Algorithm 1. In stages where the restructuring heuristic was not applied, the simula-
tion manager presented the generated deadlocks to the agents directly. Finally, a Simulation
Scheduler module enabled us to provide schedules of the dates available for simulations to
the strategy designers, enabling them to prepare for the simulations in advance, as well as
run ad-hoc, unscheduled simulations.

The size of a new generated deadlock (i.e., the number of agents participating in it) was
randomly drawn from the range 2-10 to reflect a large-scale system, where hundreds of
agents execute concurrently, as considered in prior deadlock studies [14, 63]. The processing
times were drawn from an Erlang distribution (a specific case of hyper exponential distri-

bution, where f (x) = λkxk−1e−λx

(k−1)!) with parameters λ = 0.01 and k = 1.5 (see Fig. 3). The
mean value of this distribution is 150. The Erlang distribution was chosen because it qual-
itatively resembles the typical distribution of CPU burst times in operating systems [52].
Both the distribution of processing times, and the range from which the number of agents
in the deadlock is drawn were given to the strategy designers as part of the experiment’s
instructions, and were fixed throughout all the experimental stages.

240 N. Sofy, D. Sarne

Fig. 3 Processing time distribution - Erlang distribution with parameters λ = 0.01 and k = 1.5. The mean is
150. This distribution qualitatively resembles the typical distribution of CPU burst times in operating systems

Based on the deadlock parameter values detailed above, several important theoretical
performance measures can be calculated and several observations can be made:

– Individual performance measures:

– The expected waiting time of an agent Ai , when in a deadlock of size s, given

that another agent Aj opts-out of the deadlock immediately is
s−2∑

k=0

150k
s

=
150(s−2)(s−1)

2s
since the average processing time of each agent is 150 and the

probability of having k agents in Asub(Ai, Aj) is 1
s
, as that agent can be any-

where in the deadlock chain with an equal likelihood. The probability of being
in a deadlock of size 2 ≤ s ≤ 10 is 1

9 as the deadlock size is drawn (uniformly)
from [2,10]. The expected waiting time of an agent that never opts-out first
while all the deadlocks it participates in are resolved immediately, is there-

fore
10∑

s=2

1
9

s−2∑

k=0

150k
s

= 257. This scenario is the most optimistic from a single

agent’s point of view thus the value 257 is used later as the theoretical lower
bound of the average waiting time of an agent.

– The expected waiting time of an agent which opts-out first, when in a dead-
lock of size s is 150(s − 1), as 150 is the mean individual processing time.
The probability of being in a deadlock of size s is 1

9 as detailed above. The
expected waiting time of an agent that is always the first to opt-out is therefore
10∑

s=2

150
9 (s − 1) = 750. This value is used later as the zero score of a strategy,

as it can trivially be achieved by immediately opting-out from every deadlock.

Effective deadlock resolution with self-interested partially-rational agents 241

– The performance of an agent which never opts-out is severely affected by
its results in deadlocks where the other agents use the same strategy or are
instances of that same agent, and is therefore in the order of magnitude of the
timeout set for deadlocks.

– From the system’s point of view, the average waiting time if the agents obey the opti-
mal deadlock resolution scheme (according to (2)) is 366. This value was obtained
empirically based on more than one million simulations whereby the agent for which
the average waiting time is minimized was forced to opt-out.10 This value is a lower
theoretical bound of the system performance, and is in fact what one would expect the
game-theoretic approach to the problem would achieve had the solution been adopted
by all the strategy designers.

These bounds are used later to compare both individual and system performance in the
different experimental stages.

5.2 Methodology

In order to make the evaluation as realistic as possible, the experimentation was carried out
over a few weeks, allowing the strategy designers to adapt their strategies over time, based
on the results of thousands of deadlocks in which their agents participated.11 In particular,
each strategy designer received a timely report, based on a set of scheduled (and from time
to time, ad-hoc unscheduled) system evaluations. Each evaluation included 5000 deadlocks
of the form described above with the agents assigned to each deadlock randomly chosen. A
report summarizing each evaluation was sent to each strategy designer, and included dead-
locks in which her agent participated. Each deadlock record included the description of the
deadlock (the processing times of the agents in the deadlock, though without disclosing the
identity of the other agents), its resolution time and the position of the agent which was the
first to opt-out. In addition to the individual performance of each agent on each evaluation,
the system also stored the system’s average performance (agents’ average waiting time).

The experimentation included four stages (see the experiment’s timeline in Fig. 4). The
following paragraphs give the definition of and methodology used for each stage of the
experiment.

Stage 1 - unknown environment At this stage, participants were introduced to the formal
deadlock model, emphasizing the individual performance calculation principle as outlined
in Section 3. After receiving a detailed explanation regarding the agent development task,
they were requested to devise their own agent’s initial deadlock management strategy. The
set of strategies received at this stage, thus, applies to the case of deadlocks in an environ-
ment which is completely new to all agents. These agents were used for the first evaluation
of individual and system performance.

Stage 2 - convergence to a steady-state At this stage, each strategy designer received the
results of the evaluation of the agent which strategy she designed in the previous stage. The
strategy designers were requested to continuously review the performance of their agents (in

10In this case, the extensive experimentation replaces the direct calculation due to the complexity of the latter.
11As in reality, a programmer is likely to change the deadlock resolution logic of her software, based on data
collected through many experiences in a given computer system.

242 N. Sofy, D. Sarne

Fig. 4 Experimental stages along the timeline. The first stage simulated an environment that is new
(“unknown”) to all agents. The second stage consisted of continuous updates of agent strategies, until con-
verging to a steady-state whereby none of the strategy designers were interested in applying changes to their
agent’s strategy. At this point of the experiment, the restructuring heuristic was applied, leading to a new
sequence of updates to the agent strategies until converging to a new steady-state. Before the game-theoretic
stage the system was reset and a detailed explanation of the game theory principles relevant to this stage
was given to the strategy designers as well as a suggested Nash equilibrium strategy for the deadlock res-
olution problem. This stage, as the two stages before it, simulated an evolving system and ended in a new,
game-theoretic-based, steady-state

terms of average waiting time) and update their strategies accordingly. This stage was facil-
itated by the system interface, that enabled participants not only to review former deadlocks
the agent participated in, but also to generate more deadlocks and to test the performance
of different strategies with other agents that were randomly selected by the system (without
disclosing their identity). The report each strategy designer received after each evaluation
can be considered the equivalent to logs that users can generate in real-life systems. The
main purpose of this stage was to simulate a scenario where agents’ strategies evolve over
time, in response to changes in the strategy used by the other agents in the environment.

This process of repeated strategy updates and evaluations of the agents’ performance
continued until one week without any change made to any of the agents’ strategies elapsed.
We chose this stopping criterion because the time it takes to update an agent’s strategy
is meaningless compared to a week. We also stress that while all strategy designers were
students at the time of the experiment, as described in the following paragraphs, their cur-
riculum varied, and therefore it is very unlikely that an external event made all participants
stop updating their agent’s strategy in the same week. The set of agents stored in the system
at the end of this stage was considered the steady-state strategies and was used as input for
the next stage of the experiment.

Stage 3 - restructuring-based evolving environment The goal of this stage was to allow the
agents’ strategies to evolve with the restructuring mechanism affecting their decisions, until
the system reached a steady-state once again. For this purpose, the restructuring heuristic
was first applied over the steady-state strategies yielding different performances for each
agent in comparison to its performance in the previous stage.12 The use of the restructuring

12The heuristic was used with the values MinRestructured = 2 and α = 0.5 in order to ensure that at least
one of the agents that is influenced to opt-out as early as possible will be the one which will opt-out first.

Effective deadlock resolution with self-interested partially-rational agents 243

heuristic was transparent to the strategy designers, and as far as they were concerned, the
change in their agent’s performance was attributed to changes in other agents’ strategies as
in former evaluations.

The strategy designers continued to review their agent’s results and update their strate-
gies accordingly, while the evaluation was taking place with input restructuring. As in the
preceding stage, the strategy designers were able to continuously run their agent in dead-
locks with other agents in the environment and change its strategy based on its performance.
This process of repeated strategy updates and evaluations of performance again contin-
ued until one week without any change made to any of the agents’ strategies elapsed. The
set of agents stored in the system at the end of this stage was considered the restructured
steady-state strategies.

Stage 4 - nash strategy based environment Finally, the strategy designers were given a
detailed explanation about the game-theoretic-based solution to the problem. For this pur-
pose we used the Nash equilibrium according to which the agent with the longest processing
time in each deadlock would be the one to opt-out. Although this is not the dominating
Nash equilibrium from the systems point of view, this choice was made in order to simplify
coding and to assure that a deviation from the equilibrium strategy would not be the result
of buggy implementations or difficulty in understanding the strategy.13 The expected wait-
ing time of this suggested equilibrium is 406, obtained empirically by means of one million
simulations due to the complexity of the calculation.14 The drawbacks of deviating from
this strategy, assuming all other agents use it, were fully discussed and detailed in the task
description. The use of this strategy was suggested to the strategy designers though it was
made clear to them that there is no centralized mechanism enforcing it (i.e., this strategy is
optional, and up to each strategy designer to decide whether or not to use it).

The strategy designers were requested to program a new strategy for this stage (though
they could have re-submitted any of their strategies from earlier stages) to encourage the
participants to implement the Nash strategy and to ensure that if the strategy designers would
rely on their strategy from the preceding stage it would not be without considering the Nash
strategy. The agents were evaluated without the restructuring heuristic, and the convergence
process was managed as in the two prior stages of the experiment (i.e., continuous strategy
updates and evaluations of performance until one week passes without any strategy updates
made).

5.3 Strategy designers and scoring incentives

The strategy designers were computer science students in a core Operating Systems course.
This group fairly represents future agent developers who are likely to design the deadlock
resolving logic for distributed systems of the type considered in this paper. The experimen-
tation took place after the students became formally familiar with the deadlock concept as
part of the regular course curriculum.

The design of the agent deadlock resolution strategy was offered as a bonus (volunteered)
assignment. Those students who were willing to accept the challenge, were requested to

13The exact implementation (which is practically three lines of pseudo code) was supplied to the students.
14Regardless of the average waiting time guaranteed by the equilibrium, if a strategy designer believes all
the other agents will adopt the equilibrium strategy then so should she, as a deviation from the equilibrium
strategy would result in performance degradation.

244 N. Sofy, D. Sarne

submit an agent based on the skeleton described above, with the goal of minimizing its
expected waiting time given the deadlock parameters detailed above. The grade for the
assignment was fully correlated with the average performance of the agent throughout the
different stages of the experiment. Only students who participated in the first stage of the
experiment (the unknown environment) were allowed to continue and participate in the
subsequent stages. Since the most time-consuming part of the assignment was to understand
the setting and to write the initial strategy, students found it worthy to keep updating their
strategy with the belief that the change may lead to a performance improvement in upcoming
runs. The maximum scoring was set to the theoretical lower bound (257, which is practically
impossible to achieve) and a zero score was received if the performance of the agent was
equal or below the performance of an agent that is always the first to opt-up at time t =
0 (750). We chose this latter strategy’s expected waiting time as the zero score as it is
the most naive strategy one can contemplate, is trivial to implement, and does not reflect
any attempt to perform well in the deadlock resolution domain. An average waiting time
between these two values received a score relative to its position in the interval (e.g., an
average of 503.5 received 50). Participants had to provide documentation describing their
deadlock management logic and were requested not to share any information between each
other since their performance might be affected from doing so. Overall, 66 students chose
to participate in the experiment.

5.4 Handling noise and outliers

As a matter of principle, all agents receiving a zero score when using their steady-state
strategy (a total of 19 agents) were tagged as “dummy” agents. These were mostly agents
that opted-out of any deadlock immediately, or agents that for some deadlock descriptions
waited for a very long time until opting-out. The first exhibit poor performance because
they were always the last to execute their task. The latter exhibit poor performance because
when participating in a deadlock where all other agents use a similar strategy, the deadlock
is resolved after a very long time, causing their performance to degrade substantially. The
natural instinct was to completely remove these agents from the system (e.g., in consecutive
stages), since seemingly there is no explanation for why a strategy designer would not try
to change a strategy yielding a zero score. Yet, such agents are part of any real-life system
(e.g., zombie processes or non-critical processes where their programmer is not concerned
with their deadlock management logic). Even in physical environments it is not rare to find
people who are always the first to back out of a deadlock, even as a matter of courtesy.
Therefore, these agents were kept as part of the pool of agents used by the system. Nonethe-
less, as a means of precaution, their results were filtered from the analysis. We emphasize
that by including the results of these agents in the analysis given below, far better results
are obtained. However, these results would not reflect a correct analysis of the system per-
formance improvement, as a system administrator would rather improve the performance of
agents whose designers actually greatly care about how they perform.15

15The reasons for the great improvement achieved with these agents are that they are easy to identify, and
once identified, their behavior can be accurately predicted. If there are cases (even rare) where these agents
do choose to opt-out early (for those that usually wait a long time) or late (for those that usually opt-out
immediately) then the improvement achieved by restructuring their input is substantial. In fact, including
the dummy agents in the evaluation yields a relative improvement of 83 % in system performance in the
restructured steady-state in comparison to the non-restructured steady-state, compared to a 35 % relative
improvement (as reported in Section 6.3) when excluding the dummy agents from the analysis.

Effective deadlock resolution with self-interested partially-rational agents 245

6 Results analysis

Figure 5 aligns the different experimental stages along the experiment’s actual timeline,
depicting the system performance throughout each stage. From the time all individual
strategies were first constructed (for the unknown environment), 4 weeks elapsed until
a steady-state was reached. Similarly, from the time the restructuring heuristic was first
applied, 3 weeks elapsed until a new steady-state was reached. When starting from scratch,
after suggesting the game-theoretic strategy to the subjects, 3 weeks elapsed until a steady-
state was reached. We re-emphasize that a steady-state in our case does not mean a state
where no individual agent can improve its performance, but rather a state of the system in
which none of the strategy designers believes that she can improve her strategy.

We first present a general analysis of the types of strategies used by the strategy design-
ers for their agents, and their evolvement over the experimental stages. Then, we review
the results obtained by the different classes of strategies along the different stages of the
experiment, and finally the effectiveness of the proposed restructuring heuristic. When-
ever applicable, we use t-test for determining if the performance achieved with one set of
strategies is significantly different from the one achieved with another (e.g., comparing
performance with and without the restructuring heuristic), reporting also the probability of
obtaining a test statistic at least as extreme as the one that was actually observed, assuming
that the null hypothesis is true (i.e., the p − value).

6.1 Agent strategies

The analysis of the strategies used by the strategy designers is based on both the agents’
documentation and the review of the code itself. The first interesting observation based on
the review of the strategies is that none of the 66 agents that were received used, at any stage
of the experiment, a strategy resembling the optimal one which is based on modeling the
distribution of the opt-out time per position in a deadlock and act accordingly, as discussed
in the analysis section. While such a strategy might not be effective in practice as it requires
a very large set of observations of the environment, this strategy was not even tried at any
stage of the experiment. Table 1 details the distribution of non-dummy agent strategies

Fig. 5 System performance evolvement over the experimental stages, aligned to actual timeline (in weeks).
The steady-state, restructured steady-state and game-theoretic steady-state performance are characterized by
a flat curve as none of the agents’ strategies was changed for seven days once these were reached

246 N. Sofy, D. Sarne

Table 1 Distribution of classes of strategies among the non-dummy agents in different experimental stages
(a total of 47 non-dummy agents). See details regarding the different classes in the text

Strategy class Unknown Steady-state Restructured Game- Game-

steady theoretic theoretic

first steady

func(Total) 39 % 43 % 43 % 17 % 26 %

func(Size) 4 % 4 % 4 % 4 % 4 %

func(Total, Size) 19 % 19 % 23 % 29 % 34 %

func(MyTime, Total) 25 % 14 % 11 % 4 % 6 %

func(MyTime, Total, Size) 4 % 7 % 9 % 14 % 15 %

Constant 7 % 11 % 8 % 10 % 9 %

Random 2 % 2 % 2 % 4 % 3 %

Nash 0 % 0 % 0 % 0 % 0 %

Nash with empty threat 0 % 0 % 0 % 18 % 3 %

according to a natural parameter-based classification. Since there are 3 parameters that can
affect the agents’ decision - total processing time (denoted ‘Total’), own processing time
(denoted ’MyTime’) and the size of the deadlock in terms of the number of agents in it
(denoted ’Size’), we first distinguish between the 23 combinations of these three parameters,
each defining a different strategy class. The class in which none of the three parameters
is taken into account is further divided into a ’Constant’ (e.g., “opt-out at t = 3”) and
‘Random’ (e.g., “opt-out at a random time t , where t is drawn from [4,10]”) strategy. Two
additional strategies which are distinguished in the table relate to the game-theoretic-based
strategy. The first (denoted ’Nash’), precisely follows the game-theoretic-based strategy
described in Section 3: release only if MyTime is the longest, otherwise hold infinitely. The
second (denoted ’Nash with Empty Threat’) follows the first part of the strategy (release if
MyTime is the longest) however does not entirely follow the second (keep holding infinitely
otherwise). Instead, after some pre-defined time, the agent using this strategy variant would
choose to opt-out. As can be observed from (their absence in) Table 1, none of the agents,
in any of the experiment stages, used strategies relying solely on the agent’s own time, or
a combination of the agent’s own time and the deadlock size. One possible explanation for
this is that whenever taking into account the agent’s own time, it makes sense to include the
total-time as well, basing the decision on how long the agent’s own time is relative to the
total processing time of a deadlock, rather than basing it on the absolute value of the agent’s
own time parameter.

Figure 6 depicts the individual performance of the different agents (excluding “dum-
mies”), for the unknown environment and for the steady-state with and without the
restructuring heuristic. Since we are interested in the collective behavior rather than indi-
viduals’, the agents in each graph are ordered according to their performance, thus the i-th
agent in each graph does not necessarily represent the same agent. As can be observed from
the figure, the performance of different strategies of the same class highly varies, indicating
substantial differences in the coefficients and thresholds used by different subjects when
basing the decision on the same set of parameters. Based on Fig. 6 and Table 1, several addi-
tional observations relating to strategy evolvement can be made. First, there is a continuous
decrease over time in the use of strategies that rely only on own and total times (denoted

Effective deadlock resolution with self-interested partially-rational agents 247

Fig. 6 Performance according to strategy classes in the unknown, steady-state and restructured steady-state
environments. Agents in each graph are ordered according to their performance

248 N. Sofy, D. Sarne

‘func(MyTime,Total)’). Though according to the graphs, such strategy has potential to per-
form well (as it is used by some of the top-ranked agents), a thorough investigation of the
usage patterns of that strategy reveals some interesting insights. Apparently, there are two
common implementations for this strategy. The first decides whether to opt-out immedi-
ately or to opt-out at a very late constant timeout based on a function of the two parameters
(e.g., “if MyT ime is greater than 150 and T otal is lesser than 400, opt-out immediately,
else wait until a large timeout c passes”), while the second decides when to opt-out based on
these same parameters (e.g., “opt-out after 5 time units if T otal is lesser than 50, else opt-
out at t = MyT ime”). The resulting average waiting times of all the agents using the latter
implementation of the func(MyTime,Total) strategy was substantially smaller than the con-
stant timeouts used by agents using the former implementation of this strategy class. This
distinction makes a great difference in the resulting performance: strategies of the first type
performed poorly, and thus were replaced by others over time. Strategies of the second type
performed initially well and remained competent along time. Overall, the ‘Total’ parame-
ter was used in 83 % of the steady-state strategies, the ‘Size’ parameter was used in 30 %
of the steady-state strategies and the ‘MyTime’ parameter was used in 21 % of the steady-
state strategies. In the restructuring-based steady-state, the numbers are similar with slightly
higher values for total time and size. It is noteworthy that deadlock size and the total time
parameters are inherently correlated (the more agents in the deadlock, the more likely it has
a greater total-time) whereas there is no correlation at all between the deadlock size and own
time parameters when constructing deadlocks. Therefore, the total time seems to also cap-
ture the size of the deadlock and thus explaining its importance. Additional evidence of less
importance of the agent’s own time parameter is the fact that none of the strategy designers
used it as the sole parameter for the decision.

One interesting insight obtained from Table 1 is that only one agent out of the 66 used
randomization as part of its strategy. The importance of this fact is mostly in supporting
our general restructuring approach in the sense that agents are consistent. Meaning that the
agents are not using mixed strategies and a deadlock that was found to be useful in pushing
an agent to opt-out early or late is likely to achieve the same effect if slightly modified or if
used as is once again.

Finally, from reviewing the documentation and code of the agents, we gain two addi-
tional insights. First, we see that most agents that used the func(Total,Size) strategy based
their opt-out time on the average processing time (i.e., T otal/Size). Second, we see that the
effect of the average processing time on the time the deadlock will be resolved is inconclu-
sive. While most of the agents that based their strategy on the average time opt-out earlier
the smaller the average time, a few agents do the exact opposite, i.e., opt-out earlier the
greater the average time. We observe a similar behavior in agents who based their strategy
only on the total time of the deadlock. Most agents opt-out earlier the smaller the total time
is, but some do the opposite. Unlike strategies based on the total time and the deadlock size
(which usually rely on the average processing time) or solely on the total time of the dead-
lock, strategies that use the agent’s own time as one of the decision parameters are more
consistent, as agents opt-out earlier the greater their own time.

6.2 Convergence to a steady-state

Figure 7 comparatively depicts the individual performance of the different agents (exclud-
ing “dummies”), for the unknown environment and for the steady-state with and without
the restructuring heuristic. As in Fig. 6, the i-th data point in each curve represents the
performance of the i-th best agent at that stage. This figure can explain the convergence

Effective deadlock resolution with self-interested partially-rational agents 249

Fig. 7 Comparative performance of the agents in the different experimental stages. The agents are ordered
from the agent with the best performance as number one to the one with the worst performance in each stage

and adaptation of different subjects to the deadlock resolution dynamics in the new envi-
ronment when starting from the unknown environment set of strategies. The convergence
is reflected by the “flattening” of the distribution of individual performance (between
“unknown environment” and “steady-state”). Figure 8 depicts the change in each of the
agents’ performance, measured as the percentage of change in the waiting time overhead
(in comparison to the agent’s individual theoretical lower bound, as defined in Section
5.1) according to (4). As can be observed from the figure, some of the agents managed to
improve their performance by changing their strategies, at the expense of others (see the
discussion on strategy evolvement in the preceding paragraph). Still, from Fig. 5a, we see
that the average waiting time of the system actually decreased from an average waiting time
of 490 at the beginning of the experiment to an average of 475 at the steady-state (before
applying the input restructuring mechanism), reflecting an improvement of 12 % in sys-
tem inefficiency (according to 3). This decrease is not statistically significant (p = 0.14

Fig. 8 Performance improvement of each agent in the steady-state environment, relative to its performance
in the unknown environment. The agents are ordered from the agent who had the highest relative performance
improvement (Agent number 1 in the graph), to the agent that suffered the highest performance decrease in
the steady-state

250 N. Sofy, D. Sarne

for t-test), and indeed, in one of the other convergence situations reported in this paper the
steady-state performance was actually worse than at the beginning of the stage (in the game-
theoretic stage). Also, we observe from Fig. 5a an initial decrease in average waiting time,
then an increase and then again a decrease until no more changes were noted. The first
decrease is partially attributed to the correction of initial inherent inefficiencies of agents’
strategy, while the changes that followed are attributed to adaptation of the strategies to the
environment.

6.3 Convergence with the restructuring heuristic

From Fig. 7 we see that unlike the case of converging from an unknown to a steady
environment, where the distribution of the agents’ performance practically “flattens”, the
convergence to a restructuring-based steady-state has different characteristics. Here, the
distribution actually “shifts down”, improving the performance of most agents. Overall,
applying the restructuring heuristic resulted in a steady-state with an average waiting time
of 446, compared to 475 in the steady-state when the restructuring is not applied, reflecting
an improvement of 35 % in the system inefficiency (according to (3)). Unlike the decrease
in average waiting time from unknown to steady-state, this decrease is statistically signif-
icant (p < 0.001 for t-test). Another difference from convergence to a steady-state from
an unknown environment is that here, the average waiting time constantly decreases over
time (see Fig. 5a). The explanation for this is that at the steady-state, most subjects believed
their individual strategy could not be improved further. Therefore, the strategy designers
whose agents’ performance improved due to the restructuring heuristic were reluctant to
make further changes in their strategy. A total of 12 agents’ performance worsened by the
restructuring heuristic in the first iteration of this stage and only 5 in a significant manner
that reflected a non-negligible decrease in their grade for that iteration. Since the number of
agents whose performance worsened after the heuristic was applied was relatively small, the
effect of the changes in their strategy on the performance of the other agents was not sub-
stantial and thus the other strategy designers did not see any benefit in further revising their
strategy, especially given the substantial improvement in their performance in comparison
to the steady-state.

One important capability of the restructuring heuristic is its ability to effectively control
the agents’ opting-out time (either shortening or extending it in comparison to the non-
restructured case). This capability is affected by the efficiency of the embedded exploration
versus exploitation process, as discussed in Section 4. Figure 9 depicts the average waiting
time (system performance) as a function of the number of deadlocks observed until then
(each data point is the average of 1000 simulations), when applying the restructuring heuris-
tic on the restructuring based steady-state’s strategies. Several observations can be made
based on the graph. First, when the number of observations available in the database is rel-
atively small (less than 100), the improvement in the system performance is trivial as the
quality of predictions is poor.16 As more deadlock records accumulate in the database, the
improvement becomes more obvious and increases at a greater rate until new observations
have little effect on the heuristic’s efficiency and the performance slowly converges to 446.

16Note that the number of deadlocks in the database relates to DB, of which DBi is only a subset. Therefore
the number of records the heuristic bases the prediction on for each agent is smaller.

Effective deadlock resolution with self-interested partially-rational agents 251

Fig. 9 Average waiting time (system performance) with the restructuring heuristic as a function of the num-
ber of deadlocks observed by the system thus far. The set of agents used for this figure is the one representing
the restructured steady-state

We also observe that the main extent of improvement is achieved after 500 iterations, sug-
gesting that the heuristic learns quite effectively which restructured deadlocks are likely to
result in the desired behavior of each agent.

To further illustrate the efficiency of the restructuring heuristic, we performed an offline
learning process in which each agent was assigned to 1000 random deadlocks for each pos-
sible processing time in the range of 1-300 which covers 95 % of the distribution (see Fig. 3),
while all other agents’ strategies were set to waiting indefinitely. Doing so enabled us to
find the ultimate opt-out time minimizing and maximizing restructured deadlocks. These
deadlocks where used in an offline post-experiment evaluation of the system, yielding an
average waiting time of 428 (compared to the theoretical bound of 366). This new value can
be considered an experimental bound, as none of the deadlocks can be resolved in a more
efficient way given the absolute minimum and maximum waiting times of the different
agents strategies (e.g., given the set of agents’ strategies, this is how much the system could
have been improved by the restructuring heuristic when having near perfect knowledge of
the agents’ strategies). Taking the experimental bound as a benchmark for calculating the
reduction in the (system-wise) waiting time overhead achieved with the restructuring heuris-
tic, the reduction from 475 (in steady-state) to 446 (in restructured steady-state) reflects a
reduction (i.e., improvement) of 61 % in the overhead.

Figure 10 depicts the change in each of the agents’ performance in the restructured
steady-state environment, relative to its performance in the non-restructured steady-state
environment, measured as the percentage of change in the waiting time overhead (in
comparison to the agent’s individual theoretical lower bound, as defined in Section 5.1)
according to (4). As observed in the figure, 79 % of the agents improved their performance
due to the application of the restructuring heuristic and the performance of 21 % of the
agents worsened. The average individual improvement, amongst those whose performance
improved, is 22 % (with a maximum of 55 %). The average increase in waiting time over-
head, amongst those whose performance worsened is 33 % (with a maximum of 93 %,
equivalent to a 152 increase in the average waiting time). Overall, the average individual
relative improvement in the agents’ performance (across all agents) is 11 %. This moderate
improvement is not surprising since the goal of the restructuring method is to improve the
system performance rather than the individual performance. For ethical considerations, in
order to avoid reducing a student’s bonus grade due to the use of input restructuring, we did
not include this phase result in the average calculated for those few students who did not

252 N. Sofy, D. Sarne

Fig. 10 Performance improvement of each agent in the restructured steady-state environment, relative to its
performance in the non-restructured steady-state environment. The agents are ordered from the agent who
had the highest relative performance improvement (Agent number 1 in the graph), to the agent that suffered
the highest performance decrease in the steady-state with the restructuring heuristic applied

benefit from the restructuring. In a way, this is equivalent to applying balanced restructur-
ing (see Section 7.3 for details) in order to guarantee that none of the agents lose due to the
use of the method.

6.4 Convergence in the game-theoretic stage

Figure 5b depicts the average performance of the different agents along the “game-
theoretic” part of the experiment, where the use of the game-theoretic approach was
proposed to the subjects. We stress that this stage began with a new set of agents, after dis-
cussing the game-theoretic solution with the subjects. From the figure, and also evidenced
in Table 1, we observe that very few agents actually implemented the suggested game-
theoretic approach, and none applied it completely as is, although the implementation of the
suggested strategy is very simple (opting-out at t = 0 if the agent’s processing time is the
maximum time and otherwise never opting-out) and was supplied as part of the instructions
given. This provides a good indication that the strategy designers did not believe that others
will implement that strategy as is. The theoretical result when the agent associated with the
maximum processing time is always the first to opt-out at time t = 0 is 406 (see Section 5.2).
Note that this value is different than the lower bound for the system performance (366) as
the suggested strategy is not the optimal one, and was chosen due to its simplicity. In our
experiment, the performance of the agents implementing the Nash variants (partial imple-
mentation of the suggested Nash strategy) was substantially worse: 533 at the beginning of
this stage and 591 at the end of it. The partial implementations of the Nash strategy (denoted
’Nash with Empty Threat’) was very quickly abandoned (as evidenced in Table 1) and the
steady-state of that stage includes only 2 agents (3 %) that actually use the game-theoretic
strategy to some extent. It is noteworthy that the difference between the performance of the
agents at the beginning of this stage and the performance of the agents at the first stage of
the experiment (the “unknown environment”) is not statistically significant (p = 0.28 for

Effective deadlock resolution with self-interested partially-rational agents 253

t-test). This strengthens the validity of the Game-Theoretic stage of the experiment, as the
first set of agents used in this stage can be considered, once again, agents designed for an
unknown environment. Overall, the agents at the steady-state of this stage performed sub-
stantially worse in comparison to the steady-state performance with and without the input
restructuring heuristic (p < 0.001 for t-test).

6.5 Effective strategy

The primary focus of this research is on the collective system behavior, hence the primary
measure used is the average waiting time system-wide. Still, based on the set of agents
obtained, complementary agent-level aspects can be investigated. One example of this is
the design of a deadlock resolution strategy for an agent operating in environments of the
type this paper considers. In this section we suggest a deadlock resolution strategy for
the individual agent and demonstrate its effectiveness when applied in the ’unknown’ and
’steady-state’ environments.

As discussed in Section 6.1, the majority of the agents designed by the strategy design-
ers in our experiment, both for the unknown environment and through the convergence
to the steady-state, used strategies whereby the time the agent opts-out positively corre-
lates with the total time and the deadlock size. It is thus a natural choice to use these two
parameters when designing an agent to operate in these environments. Our suggested agent
design normalizes the two parameters according to their means, and emphasizes each of
them according to some power coefficient, resulting in t = (T otal

E(T otal)
)x ∗ (Size

E(Size)
)y as the

preferred opt-out time. While many strategy designers designed a strategy that determines
the opt-out time using a function of the total time and deadlock size, none used a strategy
that resembles the one suggested above. Figure 11 depicts the performance of such an agent
when it is added to an environment populated with the steady-state set of agents given the
values of x and y - the coefficients of the function, and shows that the optimal values are
x = 1.8 and y = 3.6. The graph was generated by iterating over possible values for both
x and y, and running 5000 deadlocks for each combination of x and y values, measuring the
average waiting time of the proposed agent. For the unknown environment, the graph is very
similar and the same values for both x and y coefficients yield the optimal performance.

To analyze the effect of the new agent on the other agents in the system, we ran a system
evaluation with and without the agent, both with the set of agents representing the unknown

Fig. 11 Single agent performance as a function of the coefficients x and y, when operating with the set of
agents used in the steady-state environment

254 N. Sofy, D. Sarne

environment and a set representing the steady-state environment (5000 deadlocks for each
environment), measuring the average waiting time of each agent of the two sets. In the
unknown environment, the inclusion of our proposed agent caused a minor performance
degradation to 29 agents with an average of 2.8 % (maximum degradation of 5.8 %) while
18 agents improved their performance with an average of 2.7 % (maximum improvement
of 5.4 %). In the steady-state environment, the proposed agent caused a minor performance
degradation to 24 agents with an average of 2.7 % (maximum degradation of 5.1 %) while
23 agents improved their performance with an average of 1.9 % (maximum improvement
of 4 %). These results were quite expected, since adding one agent to a system with 66
agents would only have a minor effect on the system. The fact that the individual effect
experienced by each agent due to the inclusion of our proposed agent is minor is important
since this means that its presence would most probably not drive the strategy designers to
change their agent’s strategy (i.e., the system is likely to converge to the same steady-state
with the suggested agent included).

To better evaluate the effectiveness of our proposed heuristic-based agent, a lower bound
for such agent’s expected performance was required. For this purpose, a theoretically-
optimal agent that acts according to the principles outlined in Section 3 (and in particular
in (1)) was implemented. This agent was actually given the function F(A,i)(t) (the percent-
age of agents that opt-out at time t or below when being the i-th agent in deadlock A).
The function F(A,i)(t) was generated by replicating the deadlock, however each time with
a different agent from the set consisting that state (“unknown” or “steady-state”) placed at
position i. All the remaining agents in the deadlock were dummy agents that kept holding
their resource indefinitely. The deadlock was thus solved by having the agent at position i

opt-out eventually. The value of F(A,i)(t) is thus the percentage of instances where the agent
at position i opted out before or at time t .17 This was repeated for all the applicable i values.
Based on the function F(A,i)(t) that was generated for each i value, the theoretically-optimal
agent was able to fine-grain its opt-out time for the current deadlock it encounters.

The theoretically-optimal agent had an average waiting time of 356, compared to 364 of
the heuristic-based agent. The heuristic-based agent is thus highly effective, as it performs
only slightly worse than the theoretically-optimal agent, however it does not require a large
database of experiences. In fact, to demonstrate the dependency of the theoretically-optimal
agent’s performance in having perfect knowledge of the function F(A,i)(t) a complementary
experiment was conducted. In this experiment, instead of enabling the generation of the
function F(A,i)(t) based on all 66 agents in each of the different possible positions, only a
portion of the agents was used for each position. Figure 12 depicts the performance of the
theoretically-optimal agent as a function of the percent of agents that are used for generating
the function F(A,i)(t). As observed in the figure, if less than 50 % of the agents are used,
the performance of the theoretically-optimal agent becomes worse than the performance of
the proposed heuristic-based agent, emphasizing, once again, the effectiveness of the latter.
In addition, we note that while in our experiments the database for generating F(A,i)(t) was
built in an ad-hoc manner, based on the current deadlock, in reality this database would
need to be generated offline (assuming the other agents are available for generating such a
database). Obviously this is impractical, given the numerous possible deadlocks the agent
may run into when executing its task.

17If all agents had used a deterministic strategy then only 66 deadlocks would need to be executed this way
in order to accurately obtain F(A,i)(t). Nevertheless, as indicated in Table 1, one of the agents used some
randomness in its strategy. Therefore for that agent a thousand deadlocks were generated, capturing the
distribution of its opt-out time. These were merged with the remaining 65 observations, weighted accordingly.

Effective deadlock resolution with self-interested partially-rational agents 255

Fig. 12 The average waiting time of the theoretically optimal agent given the percent of agents based on
which the function FAi

(t) was generated for each deadlock. The figure also depicts the performance of the
heuristic-based agent. When the number of agents observed for generating the function drops below 50 %,
the theoretically-optimal agent performs worse than the heuristic-based agent

6.6 Machine learning approach

The performance of the input restructuring approach in the distributed deadlock resolution
domain is principally dependent on the ability to predict the agents’ behaviors in different
deadlocks. This ability enables the restructuring algorithm to influence the agents to act in
a way that the preferred agent according to (2) opts-out as early as possible while the other
agents opt-out at any time after that agent. For this purpose, our heuristic uses a restruc-
tured deadlock that is based on one of the formerly encountered deadlocks, assuming that
with a high probability, the agent’s opt-out time will be similar to what it was in the pre-
viously encountered non-restructured deadlock. A possible alternative to this approach is
the use of legacy machine learning methods, with the premise to approximate functions
based on sample inputs and outputs of that function, which can be found in the literature
(an agent strategy can be modeled as a function that receives the processing times as inputs,
and outputs the opt-out time t). In this section we outline the performance of our proposed
heuristic in comparison to one of the legacy machine learning methods: neural networks.
For this purpose, we have augmented the heuristic described in Algorithm 1, based on a
multi-layered, feed-forward neural network. The new addition and is desinged to replace the
learning and exploitation parts of our heuristic. The multi-layered, feed-forward neural net-
work, also referred to as a multi-layered perceptron, with a sigmoid activation function was
originally proven to be a universal function approximator [13]. Since then, much research
has been carried out on the applications of neural networks for function approximation and
behavior prediction in many domains [20, 43] and hence the choice of neural networks as
a machine learning algorithm for learning agents’ behaviors as a means of prediction is a
natural choice in our case.

The new implementation is based on having the system keep a neural network NNi for
each agent Ai , which is used to predict its assigned agent’s opt-out time given any arbitrary
deadlock (NNi is trained to approximate the function (Size, T otal, MyT ime) → t , which
models the agent’s strategy, where t is the time at which NNi predicts that agent Ai is
going to opt-out given the deadlock parameters). The system trains each neural network yet
again every time an additional set of c deadlocks in which Ai has opted-out is added to

256 N. Sofy, D. Sarne

the database (were c is a constant training interval). The system only considers deadlocks
in which Ai opted-out rather than any deadlock Ai was in, as only in those deadlocks the
actual opt-out time is known and stored in the database. This value is used as the expected
output for the supervised training of NNi . The training dataset’s size increases with time,
as the agents experience new deadlocks. This enables NNi to predict Ai’s behavior more
accurately but also requires more time for the training process.

Once the system has a trained NNi , it can use it to choose a deadlock to be presented
to agent Ai when it is chosen for exploitation. The process of choosing a deadlock in this
latter case is based on randomly generating deadlocks (based on the different parameters’
distributions), in which the processing time of Ai equals its actual processing time in the
current deadlock. The neural network NNi is then used to predict the opt-out time for each
generated deadlock. The deadlock that is eventually presented to the agent is the one that
best fits the design goals outlined in (2) (either the deadlock in which the agent is expected
to opt-out the latest, or the earliest).

Algorithm 2 Neural-Network-Based Exploitation (replacing steps 1-1 in Algorithm 1)

1: for Ai ∈ Exploit do
2: Set MinAi = null, P redictedT imeMinAi

= null, MaxAi =
null, P redictedT imeMaxAi

= null

// Generate a total of RandomDeadlocks random deadlocks according to the
parameters distributions (with the actual processing time of agent Ai) and evaluate
them

3: for j = 1 To RandomDeadlocks do
4: Set d=RandomDeadlock()

// Use the neural network assigned to agent Ai to predict its opt-out time for d ,
according to the deadlock size, the total processing time of all agents in the
deadlock and agent Ai’s own processing time

5: Set predictedT ime = NNi.predict (d.size, d.totalT ime, d[Ai].processing

T ime)

6: if predictedT ime < PredictedT imeMinAi
then

7: Set PredictedT imeMinAi
= predictedT ime

8: Set MinAi = d

9: else if predictedT ime > PredictedT imeMaxAi
then

10: Set PredictedT imeMaxAi
= predictedT ime

11: Set MaxAi = d

12: end if
13: end for

// Calculate the expected performance when agent Ai opts-out first, given the
expected resolution time in its minimal deadlock MinAi

14: Set Perf ormancei =
(∑

j �=i

∑
Ak∈Acurrent

sub (Aj ,Ai)
tAk

+ ∑
k �=i tAk

)
+

PredictedT imeMinAi

15: end for

The use of the neural-network-based deadlock selection is described in pseudo code
in Algorithm 2. For clarity, Algorithm 2 specifies only the part that needs to be replaced
in Algorithm 1 (steps 1-1), i.e., the learning of the agents’ behaviors and exploiting that
knowledge. Unlike Algorithm 1 where the previously encountered maximal and minimal

Effective deadlock resolution with self-interested partially-rational agents 257

deadlocks of an agent are restructured in order to control its behavior, the neural-network-
based solution generates a set of random deadlocks (RandomDeadlocks) for every agent
Ai ∈ Exploit . The value of RandomDeadlocks is part of the input and defines the num-
ber of new deadlocks that will be generated and evaluated for each agent that is planned to
be exploited. Any increase in RandomDeadlocks will further improve the chance of find-
ing a more preferable deadlock for the agent, however it will also require investing more
computational resources in the evaluation of the additional deadlocks. The randomly gener-
ated deadlocks are generated according to the parameters distributions used by the system,
except for the processing time of the agent that is exploited, which is set to its actual pro-
cessing time in the current deadlock (Step 4). The algorithm then uses NNi to predict the
time the agent is expected to opt-out when in the current randomly generated deadlock d

(Step 5). Finally, MinAi and MaxAi are selected according to the predicted opt-out times
for each randomly generated deadlock (Steps 6-12). While the learning part of the proposed
restructuring heuristic consists only of adding the deadlock result to the database when the
opting-out agent is explored, the neural-network-based solution requires an additional step
of training the neural network of any agent Ai , every time a new set of c deadlocks in which
Ai opted-out first are added to the database.18

The implementation of the neural-network-based solution was based on the Neuroph
open source library [29]. Each network was implemented using a multi-layered perceptron
with the backpropogation learning algorithm [61], and had one hidden layer with 20 neurons
and a sigmoid activation function. This perceptron architecture yielded the best predictive
accuracy based on an empirical comparison of different architectures, ranging from 1 to 3
hidden layers and 1-100 neurons per hidden layer. Each neural network Ai was trained every
time additional 10 deadlocks in which agent Ai opted-out first were added to the database
(i.e., c=10). Using a smaller learning interval would improve intermediate results, but would
not improve the overall convergence pattern nor the performance after convergence. The
number of random deadlocks that were generated and evaluated for each agent as part of
the exploitation phase was 1000. Note that the typical number of deadlocks in DBi , which
is the number of observations that were available to the proposed restructuring heuristic for
learning agent Ai’s behavior, is much smaller than 1000 and thus our experimental setting
gives the neural-network-based solution an advantage of a larger pool of deadlocks that
could be used for exploitation.

Figure 13 comparatively depicts the average waiting time (system performance) as a
function of the number of deadlocks observed by the system (each data point is the average
of 1000 simulations with the 66 agents). From Fig. 13 we observe that although the neural-
network-based solution performs almost as good as the proposed restructuring heuristic
once it converges, it requires substantially more observations to converge (about 5 times
the observations the proposed restructuring heuristic requires). This is because the neural
networks require a large amount of training samples to accurately learn to predict agents’
behaviors, while the proposed restructuring heuristic manages to produce qualitative predic-
tion with substantially less observations due to the use of a more domain-specific approach.
Another advantage of using the proposed restructuring heuristic over the machine-learning-
based algorithm, which naturally cannot be reflected in the figure, is the amount of resources
the neural networks training process requires. While running 1000 simulations with the

18The use of c = 1 suggests continuous training, however requires investing substantial computational power
for training on each deadlock.

258 N. Sofy, D. Sarne

Fig. 13 Average waiting time (system performance) as a function of the deadlocks observed by the system
(in comparison to the neural-network-based restructuring heuristic). Both algorithms reach an almost iden-
tical performance after convergence, however the proposed restructuring heuristic converges substantially
faster

proposed restructuring heuristic takes only a few minutes, running the same amount of sim-
ulations with the machine-learning-based algorithm takes about 3 days, when most of the
time is spent on the neural networks’ training.

7 Complementary experimentation

In this section we report the results of three complementary experiments, aiming to highlight
some additional aspects of the distributed deadlock resolution through the input restruc-
turing approach. The first attempts to identify the source of improvement, distinguishing
between the deadlock resolution time and the choice of the agent to opt-out first. The sec-
ond aims to investigate the usefulness of supplying the agents deadlock-related information
in the first place. The third, acknowledges the fact that the improvement in system perfor-
mance is also accompanied by a decrease in some of the agents’ individual performance.
It therefore evaluates the ability to apply some balancing, favoring agents that were first to
opt-out in prior deadlocks.

7.1 Source of improvement

We note that the system’s average waiting time is affected by two factors. The first is
the time at which deadlocks are resolved. The second is the choice of the agent resolv-
ing the deadlock (and in particular, its characteristics, such as its position in the deadlock
and processing time). In order to test our hypothesis that the latter factor is more crucial
to the performance of the system, we designed an experiment in which each deadlock was
injected with a dummy agent in a random position, that always opts out at time t = 0.
This simulates an environment in which each deadlock is always resolved immediately, and
the agent resolving it is in a random position within the deadlock. Note that the goal of
the restructuring heuristic is to optimize the system performance by controlling the agent
that resolves each deadlock rather than to optimize the resolution time of each deadlock

Effective deadlock resolution with self-interested partially-rational agents 259

(the restructuring heuristic attempts to influence the agent that minimizes the average wait-
ing time (according to (2)) to opt-out as quickly as possible, but does not always succeed
in influencing it to opt-out at time t = 0). It is also noteworthy that in this experiment,
the strategies of the other agents are irrelevant, as the deadlocks are always resolved by
the injected agents at time t = 0. The average waiting time of the system in this experi-
ment, obtained as an average of 5000 simulated deadlocks, was 506, compared to 446 in the
restructured steady-state environment, which reflects a substantial difference of 57 % in the
system performance. We thus conclude that while the resolution time of deadlocks affects
the system performance, the dominant factor is the choice of the agent that resolves each
deadlock.

7.2 The usefulness of information disclosure

The underlying assumption of the deadlock model this paper considers is that subjects
receive the deadlock description as input. While the results achieved with the restructuring
heuristic for this case are encouraging, one may wonder if the idea of supplying the agents
the deadlock description in the first place is useful. It is possible that without the dead-
lock parameters the system’s steady-state performance would have been initially better than
in our case. For this purpose, a complementary experiment was conducted, in an attempt
to evaluate the steady-state system performance when agents do not receive any informa-
tion about the current deadlock as input. In order to avoid a carryover effect, a separate
set of 25 subjects participated in the experiment. The subjects were given the exact same
instructions with all the details relating to the parameters’ distributions. This time, how-
ever, the subjects were merely requested to supply their opt-out time, with no knowledge
about the current deadlock they are in. In this experiment we followed the same method-
ology of converging to steady-state, and thus the subjects were allowed to change their
strategy as many times as they desired while the system and individual evaluations took
place.

The average waiting time in the resulting steady-state in this experiment was 630, com-
pared to 475 reported for the steady-state in the case where agents receive the deadlock
description as input (statistically significant for p < 0.02 in t-test). In comparison to
the restructuring based steady-state, the difference in performance is substantially greater
(statistically significant for p < 0.001). Restructuring the input in the case where no
information is supplied to the agents is, of course, inapplicable. We thus conclude that
the approach of disclosing information about formed deadlocks, such as their size and
processing times of the different agents in the deadlock, dominates the approach of
not supplying any information other than notifying the agents that the system is in a
deadlock.

7.3 Balancing between system and individual performance

Overall, the restructuring heuristic is designed to resolve the deadlock in a way that the total
waiting time is minimized, by attempting to increase the probability of having the agents,
which, by opting-out, yield the minimal average waiting times (system-wise) according to
Perf ormancei (Step 14 in Algorithm 1), indeed opt-out first. This is achieved by urging
these agents to opt-out as early as possible and at the same time, trying to influence the
other exploited agents to opt-out as late as possible. While this is beneficial system-wise,
it may result in a decrease in the performance of some individual agents. Therefore, for
cases where the system designer prefers some tradeoff between system performance and

260 N. Sofy, D. Sarne

individual performance, a more balanced restructuring heuristic may be considered. In its
balancing version, the heuristic keeps track of agents that were more affected by the restruc-
turing that took place until then (i.e., ended up opting-out more frequently than other agents)
in former deadlocks by managing a counter Ci that is incremented whenever an agent opts-
out first after it is presented with a restructured deadlock. The agents that were more affected
by the restructuring heuristic, will now be assigned a decreased exploitation probability
in future deadlocks (this can be done by modifying Step 4 of Algorithm 1 in a way that
increases Ai’s exploration probability the bigger Ci is).

The extent of using balancing can be controlled by assigning a probability Pb for
choosing whether to apply balancing, which means using the Ci values for increasing the
exploration probability for all exploited agents in the deadlock, or ignoring the Ci values
for all exploited agents in the deadlock (this can be achieved by adding a step before Step 3,
where, with a probability of Pb, we choose whether or not to apply balancing to all exploited
agents in the current deadlock). The greater the value of Pb, the lower the improvement
achieved in system performance. This is due to the fact that the balancing restructuring
heuristic will try to balance its effects on the agents more often, in an attempt to influ-
ence agents to opt-out first sub-optimally, which does not align with the desirable behavior
system-wise (e.g., when the best agent to opt-out according to (2) has already been exploited
many times compared to the other agents, the heuristic tries to influence another agent to
opt-out first although this is sub-optimal system-wise). For similar reasons, the greater the
value of Pb the smaller the degradation in individual performance.

The use of balanced restructuring enables achieving an all-win result, where all agents
improve their expected individual performance, however with the price of a substantially
lower overall system improvement. Still, controlling the value of Pb, a substantial system
improvement can be achieved while dramatically decreasing the individual loss due to the
restructuring: for example, in our experiments with balancing we managed to balance the
loss such that, although the number of agents experiencing loss slightly increased, the aver-
age and maximum individual loss was substantially decreased. In particular, we managed
to achieve 55 % of the system-wise improvement reported in the former section (i.e., the
improvement compared to steady-state with no restructuring) while reducing the average
individual performance reduction for those agents that suffer from the restructuring by 67 %,
and reduce the maximum individual loss by 63 %.

8 Related work

Relevant literature is cited wherever applicable throughout the paper. In this section we
introduce additional work that is relevant to the methodology used in this paper, and
emphasize the differences between these works and ours.

Deadlock management has been studied in negotiation, tasks assignment and various
other research domains [18, 57, 62]. The majority of deadlock research is associated with
Operating Systems [2, 42, 52, 55] as it is a fundamental issue in that area. The main
strategies used for dealing with deadlocks include simply ignoring the deadlock problem
altogether (the Ostrich approach), detecting deadlocks and when they occur, taking steps
to recover (Detection and Recovery) using a centralized mechanism [35, 36] or using a
distributed protocol [41, 51, 55] to avoid deadlocks by carefully allocating resources or
negating the conditions for their occurrence (Deadlock Avoidance) [6, 32, 37]. Yet, as
discussed earlier in the paper, most of the research in this area assumes that agents are inher-
ently cooperative and therefore the solutions proposed are preemption-based [6, 32, 37] or

Effective deadlock resolution with self-interested partially-rational agents 261

based on pre-defined protocols for determining the agent to opt-out to which all agents con-
sent and act accordingly [35, 36, 41, 51, 55].19 In the type of systems this paper considers,
in wherein the agents are self-interested and bounded-rational, however, agents would only
act according to a preferred protocol as long as they believe the other agents deem that the
protocol serves their interests (and even if the protocol does serve their interest, the agents
would still have to be convinced of this fact because of their bounded-rational nature). To
the best of our knowledge, no prior work has considered the deadlock resolution problem in
a fully distributed setting with self-interested bounded-rational agents as considered in this
paper.

As discussed in the preceding sections, an optimal solution to the problem may be
designed using game theory principles. While game-theoretic approaches are widely used
in studying conflict situations, there is extensive evidence in literature of the failure of such
approaches in settings where the main players are people or bounded-rational agents [4, 7,
40, 64]. People are known to be bounded-rational [53], cannot be trusted to exhibit optimal
behavior [46] and often tend not to use the optimal strategy even when one is provided [33].
On the other hand, works that report the successful use of game-theoretic approaches, in
particular in repeated interaction domains [1, 15, 22, 39, 45] can also be found. Therefore,
the success of such approaches in the deadlocks domain is a priori inconclusive and thus the
experimental evidence given in this paper as to the failure of the approach in this domain is
of great significance.

Diversified work has addressed the challenge of improving people’s decision-making,
mainly by developing decision support systems to assist users in gathering, merging, ana-
lyzing, and using information to assess risks and make recommendations in situations that
may require a tremendous amount of the users’ time and attention [17, 65]. Recently, several
approaches have been proposed that attempt to reconstruct the decision-making problem
[4, 31, 50, 58] instead of attempting to change people’s decision-making strategies directly.
None of the prior work, however, involves strategic settings where an agent’s strategy is
influenced by the strategies of others, as well as evolving settings. Furthermore, all these
work considered a single decision maker instead of a multi-party setting, in which the col-
lective behavior should be optimized and thus are irrelevant to the settings considered in
this paper.

The use of agents programmed by people to test multi-agent mechanisms has become
quite common in recent years [9, 40]. Much effort in multi-agent systems research has
been dedicated to examining people’s use of agents designed to represent them and act on
their behalf [8, 38, 40, 48, 49]. For example, Kasba [11] is a virtual marketplace on the
Web where people create autonomous agents in order to buy and sell goods on their behalf.
Various research has involved programming agents in the decision-theoretic framework of
the Colored-Trails game [23]. In this game the agents had to reason about other agents’
personalities in environments in which agents are uncertain about each other’s resources.
Unlike this line of work, where the platform is used for enabling people’s representation by
automatic agents, our work uses agents programmed by people as bounded-rational agents
in general, and focuses on developing a means of actively affecting their decisions in order
to improve the overall system performance.

19Same holds for multi-agent settings in general, where agents are commonly fully cooperative or have the
same goal [24].

262 N. Sofy, D. Sarne

9 Discussion, conclusions and future work

The deadlock problem is inherent in physical and virtual environments, whenever resources
are limited and decision makers are self-interested. The problem is challenging for the
most part when the decision makers are bounded-rational (or pre-programmed with dif-
ferent deadlock handling logics, as in our case). Here, the many deadlock management
solutions that were designed in prior literature either for centrally-managed or fully dis-
tributed systems are not effective, as they all rely on the agents’ cooperation whereas in our
case the system designer cannot enforce the desired collective behavior. Instead, each indi-
vidual agent needs to be incentivized to comply with the behavior desired by the system
designer. To the best of our knowledge, we are the first to address the distributed deadlock
management problem with bounded-rational self-interested agents.

One possible solution discussed in the paper for the deadlock problem is game-theoretic-
based. Its importance is in its potential to achieve optimal performance, as such a solution,
if successfully applied, guarantees the best system performance even though the agents are
not fully cooperative (i.e., each attempts to minimize its own expected waiting time). The
evidence given in our experiments of the failure of the game-theoretic-based approach is not
surprising. Earlier literature from other domains has often shown that such solutions do not
hold whenever people or rationality bounded agents are concerned. Still, it is interesting to
see that none of the participants in our experiments actually implemented the game-theoretic
equilibrium strategy, despite the fact that it was practically given to them and its principles
were thoroughly explained.

The experimental design used in this paper places strong emphasis on convergence to a
steady state. Throughout the experiments, the system converged to a steady state four times
(from an unknown environment to a steady-state, from a steady-state to a restructuring-
based steady-state, in the game-theoretic stage and in the complementary experiment
reported in Section 7.2). It is noted that such convergence cannot be taken for granted, as
discussed in the related work section. The importance of having the system converge to
a steady state is primarily in strengthening the significance of the results achieved, as the
improvement is measured at a point where the strategies are not likely to further change.
In particular, it is important when considering the improvement achieved with the restruc-
turing heuristic, as it suggests that the improvement reported is not momentary but one that
will last.

The uniqueness of the restructuring heuristic used in this paper, in comparison to other
approaches for deadlock management reported in the literature, is that it does not explicitly
require the agents’ cooperation. Instead, it indirectly influences the agents’ deadlock-related
decisions in a way that improves the overall system performance. This saves the trouble
of constructing the appropriate incentives for the self-interested agents, needed in order to
gain their cooperation, and eliminates the need to use argumentation, to convince the agents
as to the benefits of the suggested cooperation (in case they do not realize it due to their
bounded rationality or limited computational capabilities). It is also very useful whenever
the agents’ strategy is pre-set and cannot be changed externally, unless it is re-programmed.
In such cases, it is the only way available to influence the decisions the agents make. Despite
its many advantages, the use of input restructuring needs to be carefully handled, since
agents may not always react to the restructured information the way we would expect them
to. In particular, in our case, unlike in prior attempts to use input restructuring in other
domains, the idea is to affect the collective behavior of a group of agents rather than a
single agent, by supplying a revised input to each agent separately. The risk in doing so is
that the resulting change in the performance of any individual agent in the system, either

Effective deadlock resolution with self-interested partially-rational agents 263

due to restructuring its own input or due to changes in the behaviors of others, may cause
that agent’s designer/owner to re-design and make further changes in its strategy and the
system may ends up doing worse than with the original agents’ strategies. In this sense, the
results reported in this paper are highly encouraging as they show that with the restructuring
heuristic the system converges to a steady state in which the system performance as well as
individual performance substantially improves.

Alongside its many advantages, the restructuring approach presented in this paper has
some limitations. First, the applicability of the approach depends on the ability to identify
the agents. This capability typically exists in real systems, by means of cookies, as well as
various other enforceable identification methods, as discussed in Section 4. Second, the per-
formance of the restructuring approach highly depends on the size of the database of prior
experiences of the agents that can be utilized for generating the restructured inputs. Our
experiment, comparing the method with neural-network-based implementations, demon-
strates the efficiency of the proposed solution in the sense that the suggested heuristic
produces restructured inputs that effectively affect the agents using a substantially smaller
amount of such data. Finally, as in all prior work that considers problem restructuring, the
fact that the input received is restructured (i.e., the deadlock presented may be different in
large from the real one) should not be disclosed to the agents and their strategy designers,
as the idea is that they will act according to what they believe is the best response to the
input they receive. The question of whether or not providing restructured information can
be justified if it serves a good purpose (e.g., tell someone we go to dinner when we are actu-
ally taking him to a surprise party thrown to him or tell a child that the tooth fairy exists
to protect her innocence), is beyond the scope of this paper. The paper merely establishes
that whenever such a requirement is feasible, the improvement achieved with the proposed
method (both system-wise and individually), as demonstrated in this paper, is substantial.
Furthermore, with the use of balancing, as reported in Section 7.3, we can guarantee that
none of the agents will suffer individually when applying this approach. We believe this is
feasible in open systems where there is no binding commitment of the hosting operating
system of any kind.

Overall, the restructuring approach used in the paper can potentially be used in any of
the domains where prior work has considered input restructuring for a single agent (see
references throughout the paper). It is particularly useful in strategic settings whenever the
goal is to affect the collective behavior of a group of agents. Furthermore, there is much
work on influencing the decision of a group of self-interested agents that must reach an
agreement on a joint action. For example, convincing a group of people who share an office
to agree on an economy mode of the air-conditioning and low light intensity (e.g., [26]). The
agents in this line of work are taken to be self-interested but taking the agents to be people
or bounded-rational agents is as much realistic and in such setting the methods developed
in our paper can be of much use.

There are several directions that we would like to explore for future research based on
the work reported in this paper. The first is the possibility of improving the restructuring
heuristic by integrating a classifier in it to classify agents according to their deadlock man-
agement decisions over time. Such classification could be then used to augment the set of
deadlock experiences of an agent by adding experiences of other agents of the same class.
Another possible extension is to improve the heuristic-based agent by taking into account
other deadlock related parameters in addition to the total time and size parameters, such as
the distribution of the processing times.

Finally, we note that the model used in this paper considers a quite standard deadlock set-
ting (e.g., a cyclic deadlock). While this typically characterizes most deadlocks occurring in

264 N. Sofy, D. Sarne

operating systems, multi-agent systems in general are more complex and agents have plenty
of different resources, alternatives and actions. The choice of the deadlock model made in
this research was motivated primarily by the tradeoff between the complexity and richness
of the deadlock model and the overhead and utilization of the resources available for the
experiments as well as the ability to properly control the different affecting parameters. We
believe that many of the ideas given in the paper carry over to more complex MAS settings,
with the most apparent change being that a larger database of prior experiences is required
to effectively predict the influence of different problem setting over individual agents’ deci-
sions. As such, we see much room for applying our approach and experimenting with more
complex deadlock settings, e.g., deadlocks that involve several resources held by each agent
or settings where an agent may be involved in more than a single deadlock at the same time.

Acknowledgments Our results concerning the failure of the game-theoretic approach in the distributed
deadlock resolution domain appear in the proceedings of AAMAS 2012 [54].

References

1. Abreu, D., Rubinstein, A.: The structure of nash equilibrium in repeated games with finite automata.
Econometrica 56(6), 1259–1281 (1988)

2. Agrawal, R., Carey, M., Mcvoy, L.: The performance of alternative strategies for dealing with deadlocks
in database management systems. IEEE Trans. Softw. Eng. 13(12), 1348–1363 (1987)

3. Auer, P., Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn.
47(2–3), 235–256 (2002)

4. Azaria, A., Rabinovich, Z., Kraus, S., Goldman, C.: Strategic information disclosure to people with
multiple alternatives. In: proceedings of AAAI, pp. 594–600 (2011)

5. Azoulay-Schwartz, R., Kraus, S., Wilkenfeld, J.: Exploitation vs. exploration: choosing a supplier in
an environment of incomplete information. Int. J. Decis. Support. Syst. Electron. Commer. 38(1), 1–18
(2004)

6. Bensalem, S., Fernandez, J., Havelund, K.: Confirmation of deadlock potentials detected by runtime
analysis. In: proceedings of PADTAD, pp. 41–50 (2006)

7. Bo, P., Frechette, G.: The evolution of cooperation in infinitely repeated games: Experimental evidence.
Am. Econ. Rev. 101(1), 411–429 (2011)

8. Chalamish, M., Sarne, D., Kraus, S.: Programming agents as a means of capturing self-strategy. In:
proceedings of AAMAS, pp. 1161–1168 (2008)

9. Chalamish, M., Sarne, D., Lin, R.: Enhancing parking simulations using peer-designed agents. IEEE
Trans. Intell. Transp. Syst. 13(4), 1–7 (2012)

10. Chandy, K., Misra, J., Haas, L.: Distributed deadlock detection. ACM Trans. Comput. Syst. 1(2), 144–
156 (1983)

11. Chavez, A., Kasbah, P.Maes.: An agent marketplace for buying and selling goods In: proceedings of
PAAM, pp. 75–90 (1996)

12. Coffman, E., Elphick, M., Shoshani, A.: System deadlocks. ACM Comput. Surv. 3(2), 67–78 (1971)
13. Cybeko, G.: Approximations by superpositions of sigmoidal functions. Math. Control Signals Syst. 5(4),

455–455 (1992)
14. Cysneiros, L., Yu, E.: Requirements engineering for large-scale multi-agent systems. In: Proceedings of

Software Engineering for Large-Scale Multi-Agent Systems, pp. 39–56 (2002)
15. Duffy, J., Hopkins, E.: Learning, information and sorting in market entry games: Theory and evidence.

ESE Discussion Papers 78. University of Edinburgh (2004)
16. Elmalech, A., Sarne, D.: Evaluating the applicability of peer-designed agents in mechanisms evaluation.

In: Proceedings of IAT (2012)
17. Elmaliach, Y., Kaminka, G.: Robust multi-robot formations under human supervision and control. J.

Phys. Agents 2(1), 31 (2008)
18. Endriss, U.: Monotonic concession protocols for multilateral negotiation. In: Proceedings of AAMAS,

pp. 392–399 (2006)
19. Erez, I., Roth, A.: Predicting how people play games: Reinforcement learning in experimental games

with unique, mixed strategy equilibria. Am. Econ. Rev. 88(4), 848–881 (1998)

Effective deadlock resolution with self-interested partially-rational agents 265

20. Ferrari, S.: Smooth function approximation using neural networks. IEEE Trans. Neural Netw. 16(1), 24–
38 (2005)

21. Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The digital distributed system security architec-
ture. In: Proceedings of National Computer Security Conference, 305–319 (1989)

22. Gmytrasiewicz, P., Durfee, E.: Rational coordination in multi-agent environments. J. Auton. Agents.
Multi-Agent Syst. 2(4), 319–350 (2000)

23. Grosz, B., Kraus, S., Talman, S., Stossel, B., Havlin, M.: The influence of social dependencies on
decision-making: Initial investigations with a new game. In: proceedings of AAMAS, pp. 780–787
(2004)

24. Hadad, M., Kraus, S., Hartman, I.B.-A., Rosenfeld, A.: Group planning with time constraints. Ann.
Math. Artif. Intell., 1–49 (2013)

25. Hajaj, C., Hazon, N., Sarne, D., Elmalech, A.: Search more, disclose less. In Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence (2013)

26. Hazon, N., Lin, R., Kraus, S.: How to Change a Group’s Collective Decision? In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, pp. 198–205. AAAI
Press (2013)

27. Hirayama, K., Toyoda, J.: Forming coalitions for breaking deadlocks. In: proceedings of AAAI, pp.
155–162 (1995)

28. Hornick, M., Zdonik, S.: A shared, segmented memory system for an object-oriented database. ACM
Trans. Inf. Syst. 5(1), 70–95 (1987)

29. http://neuroph.sourceforge.net.
30. Isloor, S., Marsland, T.: The deadlock problem: An overview. IEEE Comput. 13(9), 58–78 (1980)
31. Iyengar, S.: The Art of Choosing. Twelve (2010)
32. Jager, M., Nebel, B.: Decentralized collision avoidance, deadlock detection, and deadlock resolution for

multiple mobile robots. In: proceedings of IEEE Intelligent Robots and Systems, pp. 1213–1219 (2001)
33. Kahneman, D., Tversky, A.: Choices, Values, and Frames. Cambridge University Press (2000)
34. Kaveh, N., Emmerich, W.: Deadlock detection in distributed object systems. In: proceedings of ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pp. 44–51 (2001)
35. Kshemkalyani, A., Singhal, M.: Efficient detection and resolution of generalized distributed deadlocks.

IEEE Trans. Softw. Eng. 20(1), 43–54 (1994)
36. Lee, S.: Fast, centralized detection and resolution of distributed deadlocks in the generalized model.

IEEE Trans. Softw. Eng. 30(9), 561–573 (2004)
37. Li, P., Agrawal, K., Buhler, J., Chamberlain, R., Lancaster, J.: Deadlock-avoidance for streaming appli-

cations with split-join structure: Two case studies. In: proceedings of IEEE Application-specific Systems
Architectures and Processors, pp. 333–336 (2010)

38. Lin, R., Kraus, S., Oshrat, Y., Gal, Y.: Facilitating the evaluation of automated negotiators using peer
designed agents. In: proceedings of AAAI, pp. 817–822 (2010)

39. Mailath, G.: Do people play nash equilibrium? lessons from evolutionary game theory. J. Econ. Lit.
36(3), 1347–1374 (1998)

40. Manisterski, E., Lin, R., Kraus, S.: Understanding how people design trading agents over time. In:
proceedings of AAMAS, pp. 1593–1596 (2008)

41. Mitchell, D., Merritt, M.: Distributed algorithm for deadlock detection and resolution. In: proceedings
of ACM Symposium on Principles of Distributed Computing, pp. 282–284 (1984)

42. Mohan, C., Lindsay, B., Obermarck, R.: Transaction management in the r* distributed database
management system. ACM Trans. Database Syst. 11(4), 378–396 (1986)

43. Narendra, K.: Adaptive control using neural networks and approximate models. IEEE Trans. Neural
Netw. 8(3), 475–485 (1997)

44. Nguyen, T., Roos, M., Rothe, J.: A survey of approximability and inapproximability results for social
welfare optimization in multiagent resource allocation. Ann. Math. Artif. Intell., 1–26 (2013)

45. Parameswaran, M., Rui, H., Sayin, S.: A game theoretic model and empirical analysis of spammer
strategies. In: proceedings of Collaboration, Electronic Messaging, AntiAbuse and Spam (2010)

46. Rabin, M.: Psychology and economics. J. Econ. Lit. 36(1), 11–46 (1998)
47. Roesler, M., Burkhard, W.: Resolution of deadlocks in object-oriented distributed systems. IEEE Trans.

Comput. 38(8), 1212–1224 (1989)
48. Rosenfeld, A., Kraus, S.: Modeling agents through bounded rationality theories. In: proceedings of

IJCAI, pp. 264–271 (2009)
49. Rosenfeld, A., Kraus, S.: Modeling agents based on aspiration adaptation theory. J. Auton. Agents.

Multi-Agent Syst. 24(2), 221–254 (2012)
50. Sarne, D., Elmalech, A., Grosz, B., Geva, M.: Less is more: Restructuring decisions to improve agent

search. In: proceedings of AAMAS, pp. 431–438 (2011)

http://neuroph.sourceforge.net.

266 N. Sofy, D. Sarne

51. Selvaraj, S., Ramasamy, R.: An efficient detection and resolution of generalized deadlocks in distributed
systems. Int. J. Comput. Appl. 1(1), 1–7 (2010)

53. Simon, A.: Theories of bounded rationality. In: McGuire, C.B., Radner, R. (eds.): Decision and
Organization. Amsterdam, North Holland (1972)

54. Sofy, N., Sarne, D.: On the failure of game theoretic approach for distributed deadlock resolution. In:
Proceedings of AAMAS, pp. 1445–1446 (2012)

55. Srinivasan, S., Rajaram, R.: A decentralized deadlock detection and resolution algorithm for generalized
model in distributed systems. Distrib. Parallel Databases 29(4), 261–276 (2011)

56. Stirling, W., Goodrich, M., Packard, D.: Satisficing equilibria: a non-classical theory of games and
decisions. J. Auton. Agents. Multi-Agent Sys. 5(3), 305–328 (2002)

57. Sujit, P., Sinha, A., Ghose, D.: Multiple uav task allocation using negotiation. In: proceedings of
AAMAS, pp. 471–478 (2006)

58. Thaler, R., Sunstein, C.: Nudge: Improving decisions about Health, Wealth, and Happiness. Yale
University Press (2008)

59. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice. Sci. 211(4481),
453–458 (1981)

60. Vermorel, J., Mohri, M.: Multi-armed bandit algorithms and empirical evaluation. In: proceedings of
European Conference on Machine Learning, pp. 437–448 (2005)

61. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560
(1990)

62. Weyns, D., Boucke, N., Holvoet, T.: A field-based versus a protocol-based approach for adaptive task
assignment. J. Auton. Agents. Multi-Agent Sys. 17(2), 288–319 (2008)

63. Wijngaards, N., Overeinder, B., Steen, M.V., Brazier, F.: Supporting internet-scale multi-agent systems.
Data Knowl. Eng. 41, 229–245 (2002)

64. Wright, J., Brown, K.: Beyond equilibrium: Predicting human behavior in normal-form games. In:
proceedings of AAAI, pp. 901–907 (2010)

65. Yu, E.: Evolving and messaging decision-making agents. In: proceedings of AGENTS, pp. 449–456
(2001)

52. Silberschatz, A., Gagne, G., Galvin, P., 8th edn Operating System Concepts. Wiley (2008)

	Effective deadlock resolution with self-interested partially-rational agents
	Abstract
	Introduction
	The deadlock model
	Analysis
	Restructuring heuristic
	Evaluation
	Simulation infrastructure
	Methodology
	Stage 1 - unknown environment
	Stage 2 - convergence to a steady-state
	Stage 3 - restructuring-based evolving environment
	Stage 4 - nash strategy based environment

	Strategy designers and scoring incentives
	Handling noise and outliers

	Results analysis
	Agent strategies
	Convergence to a steady-state
	Convergence with the restructuring heuristic
	Convergence in the game-theoretic stage
	Effective strategy
	Machine learning approach

	Complementary experimentation
	Source of improvement
	The usefulness of information disclosure
	Balancing between system and individual performance

	Related work
	Discussion, conclusions and future work
	Acknowledgments
	References

