Ann Math Artif Intell (2014) 72:45-71
DOI 10.1007/s10472-014-9418-6

Hermes: a simple and efficient algorithm for building
the AOC-poset of a binary relation

Anne Berry - Alain Gutierrez - Marianne Huchard -
Amedeo Napoli - Alain Sigayret

Published online: 30 May 2014
© Springer International Publishing Switzerland 2014

Abstract Given a relation R € O x A on a set O of objects and a set A of attributes,
the AOC-poset (Attribute/Object Concept poset), is the partial order defined on the “intro-
ducers” of objects and attributes in the corresponding concept lattice. In this paper, we
present HERMES, a simple and efficient algorithm for building an AOC-poset which runs
in O(min{nm, n*}), where n is the number of objects plus the number of attributes, m
is the size of the relation, and n® is the time required to perform matrix multiplication
(currently o = 2.376). Finally, we compare the runtime of HERMES with the runtime of
other algorithms computing the AOC-poset: ARES, CERES and PLUTON. We characterize
the cases where each algorithm is the more relevant.

Keywords Order - Lattices - Ordered algebraic structures - Graph theory

Mathematics Subject Classifications (2010) 06-A99 - 68R10

A. Berry (B4) - A. Sigayret

LIMOS (CNRS UMR 6158 - Université Clermont-Ferrand II),
Clermont-Ferrand, France

e-mail: berry @isima.fr

A. Sigayret

e-mail: sigayret @isima.fr

A. Gutierrez - M. Huchard
LIRMM (CNRS UMR 5506 — Université de Montpellier II),
Montpellier, France

A. Gutierrez
e-mail: alain.gutierrez@lirmm.fr

M. Huchard
e-mail: marianne.huchard @lirmm.fr

A. Napoli

LORIA (CNRS UMR 7503 — Inria Nancy Grand Est — Université de Lorraine),
Vandoeuvre-les-Nancy, France

e-mail: amedeo.napoli @loria.fr

@ Springer

mailto:berry@isima.fr
mailto:sigayret@isima.fr
mailto:alain.gutierrez@lirmm.fr
mailto:marianne.huchard@lirmm.fr
mailto:amedeo.napoli@loria.fr

46 A. Berry et al.

1 Introduction

A concept lattice—also called a Galois lattice [3]—provides a powerful support for data
analysis and knowledge discovery. Such a lattice is built w.r.t. a binary relation between a
set of objects and a set of attributes. However, the concept lattice may have an exponen-
tial size in the number of objects or attributes. A canonical sub-order of the lattice is the
so-called AOC-poset for Attribute/Object Concept poset (the term was coined in [27, 29]),
which is of much smaller size. Thus, it can be recommended in some specific applications,
as it contains all the relevant information for retrieving all formal concepts. In the general
case, it can be used to save space and simplify visualization. The AOC-poset is based on the
key elements of the lattice: object-concepts and attribute-concepts [16], also called intro-
ducers in the rest of this paper. The number of introducers is at most equal to the number
of objects plus the number of attributes (denoted by n hereafter). Furthermore, the AOC-
poset includes all the join-irreducible and the meet-irreducible elements of the concept
lattice.

Depending on the background of the authors, several names were given for denot-
ing the same structures, as Galois lattice and concept lattice, Galois sub-hierarchy and
AOC-poset. Some other names were also used such as knowledge space in [25] for
knowledge representation purposes, pruned concept hierarchy in [18] for class inheritance
hierarchy restructuring, Galois sub-hierarchy in [11] again for class inheritance hierarchy
restructuring and property sharing, and finally AOC-poset in [26, 27, 29] for building clas-
sifications from linguistic data and in [19] for applications of Formal Concept Analysis
(FCA) to non-monotonic reasoning.

In this work, we decided to use the expression AOC-poset as it gives a direct idea and
image of the structure that is actually built by the algorithm discussed in this paper. Three
algorithms for building AOC-posets already exist, namely ARES [10], CERES [22], and
PLUTON [5]. Each of them has a time complexity of O(n?) and is somewhat complex
to implement. A comparison of their experimental running times was investigated in [2].
Following and completing this line of work, we present in this paper a new algorithm for
building the AOC-poset of a binary relation, called HERMES, which has a better complexity.
HERMES runs in O (nm) time, where m is the size of the relation, and is easy to under-
stand and to implement. With more effort invested in the implementation, HERMES can be
made to run in O (n%) (currently @ = 2.376) time, which is the time for performing matrix
multiplication. HERMES works by simplifying and then extending the input relation into a
relation which contains in a compact form all the necessary information on the elements of
the AOC-poset.

In this paper, we also conduct a comparative analysis of the running time of the four algo-
rithms on randomly generated binary relations as well as on some real case studies. Lessons
are learned from this analysis, and we propose, for each algorithm, a characterization of the
cases where it is more efficient that the others.

The paper is organized as follows: after this introduction, we give some notations and
definitions. Section 3 motivates the use of AOC-posets by some representative applications.
Section 4 proves some preliminary results and presents the algorithmic tools necessary to
ensure our good complexity. Section 5 describes and analyzes in detail the successive steps
of our algorithmic process. Section 6 briefly outlines how previous algorithms work and
compares their complexity with that of HERMES. Section 7 describes the special case for
chordal bipartite relations, where the final relation can easily be obtained in O (n?) time.
In Section 8, we compare the runtimes of the existing algorithms that compute the AOC-
poset and we provide the most relevant application cases for each algorithm. We conclude

@ Springer

Hermes: new algorithm for building AOC-poset 47

in Section 9. An Appendix gives more details about the runtimes through representative
graphics.

2 Definitions and notations

In this section, we specify the notations that are used in the paper. Given a finite set O of
objects and a finite set A of attributes, a binary relation R € O x A indicates which objects
of O are associated with which attributes of A. O is called the starting set of the relation.
The cardinal of a set X is denoted by | X| and then n = |O|+|.A| and m = |R|. The relation
between objects and attributes through R is written as follows:

— For (x,y) € R, we say that x is an antecedent of y and that y is an image of x.
— Forx e O,R(x)={y € A| (x,y) € R} is the image set (row) of x,

- Forye A, Ry ={xeO|(x,y) e R} is the antecedent set (column) of y.
— ForXCO,R(X)={ye A|Vx € X, (x,y) € R}is the image set of X,

- ForY CARNY)={x e O|Vy eV, (x,y) € R} is the antecedent set of Y.

Regarding notations, it can be noticed that in [16] the notation x’ is used for R(x) and
y’ for R~!(y), and that the triple (O, A, R) is called a formal context (see the comparison
below). Actually, the relation R can be considered from four points of view as discussed in
[13, 14, 37], and the way R is considered here and in FCA is one of these four points of
view.

A maximal rectangle X x Y of R is such that Vx € X, Vy € Y, (x,y) € R and
Ywe O—-X,AyeY|(w,y) ¢ RandVz € A—Y,3x € X | (x,z) € R. Such a maximal
rectangle X x Y is also called a formal concept and denoted by (X, Y) in [16], where X
is called the extent and Y the intent of the concept (X, Y). In the following, the extent
and the intent of a concept C are also denoted by Extent(C) and Intent(C). The concepts,
ordered by inclusion of their extents—or dually of their intents—form a complete lattice
L(R) called a concept lattice or a Galois lattice. For two concepts C and C’, C <z) C’
means that Extent (C) C Extent(C’) (dually Intent (C") C Intent(C)). A concept lattice
is represented by its Hasse diagram, where reflexivity and transitivity edges are omitted.

The object-concept of the object x is a concept denoted by C which introduces x, i.e.,
x is in the extent of C, but is not in the extent of any smaller concept C <z (r) Cy. Dually,
the attribute-concept of the attribute y is a concept denoted by C, which introduces y, i.e.,
vy is in the intent of Cy, but is not in the intent of any greater concept C > £ (r) Cy. Actually,
the intent of the object-concept C, corresponds to 7R (x) and the extent of the attribute-
concept Cy corresponds to R~1(y). The expressions object-concept and attribute-concept
were introduced in [16], where the object-concept is denoted by yx = (x”, x") and the
attribute-concept by wy = (y’, y”). Based on the correspondences x’ = R(x) and y’ =
R~1(y), it comes that yx = (R~ (R(x)), R(x)) while uy = (R™1(y), R(R~' (y))).

Object-concepts and attribute-concepts are called in the present paper introducer con-
cepts or simply introducers. Objects are introduced from bottom to top and attributes from
top to bottom in £(R), meaning that once an attribute is introduced, it is inherited by all
concepts which are below. Dually, once an object is introduced, it is “inherited” by all con-
cepts which are above: actually this is also related to reduced notation of concept lattices. A
given concept may introduce several objects and/or attributes. In addition, it can be noticed
that in [16] the so-called arrow relations are used to characterize the relationship between
attribute-concepts and object-concepts, but without referring to AOC-posets.

@ Springer

48 A. Berry et al.

A relation is said to be clarified when it has no identical lines (row or column, and here-
after, the term line is indifferently used for row and column). A relation is said to be reduced
when it is clarified and has no row which is the intersection of several other rows, and no
column which is the intersection of several other columns (“clarification” and “reduction”
are taken from [16]). When a relation is reduced, the introducers exactly correspond to meet-
irreducible and join-irreducible elements, to which we should add the top if it introduces an
attribute, and the bottom if it introduces an object. In a non-reduced relation there are extra
introducers. Recall that a meet-irreducible (resp. join-irreducible) element x in a lattice is
not the meet (resp. join) of any subset of elements not containing x.

Running example. Figure 1 shows the Rla|blc|d]e]|f|g
concept lattice £(R) (as drawn by Concept 1] x X | X | X X
Explorer [38]) and the AOC-poset AOC(R) of 2 | x X | x | x
relation R. In £(R), concept (1,acdeg) intro- 3| x [x| x| x X | x
duces 1 (reduced label: 1), concept (1346, c) 4 X X
introduces ¢ (reduced label: ¢), and concept 5 X

(3, abcdf g) introduces 3 and b (reduced label: 6 X | x

3,b). All these concepts are in AOC(R); con- 7 | x X ><
cept (13, acdg) introduces nothing (reduced la- 3 | x X | x | x

bel empty) and as such is not in AOC(R).

AOC(R) denotes the AOC-poset of relation R, defined by the set of introducers con-
cepts ordered as in L(R), i.e., AOC(R) is a sub-order of L(R). The elements of AOC(R)
are labeled by the objects and/or attributes that they introduce and they define the reduced
labeling, that can be applied to L(R) [16]. In reduced labeling, some concepts may have
an empty label. The symbol < 40¢(r) denotes the partial ordering used to compare two
elements of AOC(R), as < (r) is used for L(R). Finally, a linear extension of a partially
ordered set P is a total order in which P is included.

Below, we present the correspondences between FCA notations and the HERMES nota-
tions (the two last notations are discussed in Section 4.1).

FCA notations HERMES notations
context (G, M, I) context (O, A, R)
x € G and x’ x € O and R(x)
XCGand X’ X € O and R(X)
y € M and y’ ye Aand R (y)
Y CMandY’ Y € Aand R™1(Y)

object-concept yx = (x”,x") yx = (R™HR(x)), R(x))
attribute-concept 1y = (y',y") ny = (R7'(»), R(R™'(y)))
x € G and x” Domo(x)

y € M and y” Dom 4(y)

3 State of the art and motivation for studying the AOC-poset

In this section, we discuss preceding work on the AOC-poset and related applications that
motivated its definition and use.

@ Springer

Hermes: new algorithm for building AOC-poset 49

Mineau et al. [25] introduced the term of knowledge space in the context of conceptual
clustering of conceptual graphs, to designate the AOC-poset built w.r.t. a relation associating
objects and triples representing edges of the conceptual graph and generalizations of these
edges (with a joker symbol). To the best of our knowledge, this is the first paper using this
structure, and this is done in a specific case where each object owns a specific attribute (not
owned by the other objects).

The notion of “knowledge space” was then reused in [17] in an object-oriented software
engineering context. The knowledge space is called in [18] a pruned concept hierarchy
or a pruned concept inheritance hierarchy when the labels are reduced. In these papers,
a class inheritance hierarchy is flattened into a table that associates the classes with their
members (class properties and methods). The pruned concept hierarchy is used to under-
stand the structure of the sub-typing relations and to restructure the class inheritance
hierarchy, so that it is better factorized, eliminating redundancies. The term Galois
sub-hierarchy was introduced in [9, 10] when the ARES algorithm was defined. Galois sub-
hierarchies were also used in object-oriented software engineering for restructuring class
inheritance hierarchies [11]. A state of the art paper [21] shows that several approaches
used in software engineering actually build the AOC-poset or characteristic parts of it,
often without mentioning at all concept lattices, revealing that the AOC-poset appears as a
natural partial ordering for the targeted applications. This can be explained by the fact that
a class inheritance hierarchy corresponds to a conceptual structure where useful attributes
such as variables and methods are introduced. In our experience, proposing new classes to a
designer in order to remove redundancy is appreciated and often reveals hidden abstractions,
whereas proposing new classes that only merge some inherited properties and methods is
rarely useful.

The term AOC-poset was introduced in [27, 29]. AOC-posets were also used in appli-
cations of FCA to non-monotonic reasoning and domain theory [19], and to produce
classifications from linguistic data [26, 27, 29], because of their capability to structure
knowledge. Specific parts of the AOC-poset—mainly attribute-concepts—were used in
several works, including refactoring of a class hierarchy (e.g., [18] as already mentioned),
and more recently for extracting a feature tree from a set of products variants in Software
Product Lines [31]. It appears that Formal Concept Analysis and AOC-posets are very use-
ful in this research area [23, 35, 36] as the problem is to find in a set of software variant
commonalities, differences, as well as exclusion and implication constraints that can be
extracted from the associated concept lattice.

In a recent work [12], authors use AOC-posets—and the HERMES algorithm—instead
of concept lattices in the context of Relational Concept Analysis [30], for extracting all the
implication rules having a single element in the left hand side within a large database on
river streams. A low computation time is needed for providing quick answers to domain
experts during working sessions and for rapidly analyzing several datasets coming from the
whole database.

AOC-posets also help classifying components in subtyping-based directories [1].
Classification and retrieval operations in directories based on AOC-posets versus directories
based on concept lattices are compared. Results show the efficiency and availability of the
AOC-poset in real case studies, while concept lattices often are too complex and too large to
be entirely computed and traversed, especially in dynamic environments when components
are added and removed on-the-fly.

In the case of knowledge representation and class inheritance hierarchy applications,
the concepts and the covering relation are needed because they are transformed as

@ Springer

50 A. Berry et al.

syntactical primitives including classes/objects, attributes, method declarations (concepts),
or inheritance declarations (class covering relation). In software product line applica-
tions, the concepts coming from the formal context mapping products to features are used
for building variation points, while the covering relation captures relations between the
variation points.

Three algorithms have been proposed [2, 10, 22], whose principles and complexity are
discussed in Section 6. In [2], an experimental comparison of these three algorithms was
provided, which is discussed and compared with the current work in Section 8.

4 The structure of the AOC-poset

We now present the basis of HERMES, our new algorithm for computing an AOC-poset,
which works in a simple way. It computes the inclusion order in the set of attributes and con-
catenates this information with the input relation, providing the whole information required
to extract the corresponding AOC-poset.

4.1 The domination relation on attributes and objects

First, we need to compare the introducers and to order them. We rely on the following propo-
sitions, which transpose to AOC-posets well-known results for concept lattices presented
in [16].

Proposition 1 Let C be the introducer of x € O and Cy be the introducer of y € A. Then:

- Cx =aocmr) Cyiff (x,y) € R.
- IfCx > a0c(r) Cy then (x,y) € R.
— Conversely, if (x,y) ¢ R with Cx and Cy comparable then Cx > g0c(Rr) Cy.

In the first case, Cx <40cR) Cy means that the intent of C, (corresponding to R(x))
contains the intent of C, which itself includes y, and thus y € R(x) or (x,y) € R. In the
second case, Cy > 40c(r) Cy means that x is not in the extent of any smaller concept, and
thus not in the extent of Cy, i.e., x & Ry or(x,y) ¢ R.

In [32], the notion of domination is introduced, which originates from graph theory:
domination in a relation stemmed from the notion of domination in the co-bipartite graph
which is the complement of the bipartite graph induced by the relation.

An attribute y € A is said to dominate an attribute z € A in R if the antecedent set of
y is included in the antecedent set of z, i.e., R! (y) € R-1 (z); the corresponding relation
is denoted Dom 4. When the inclusion is strict, the domination is said to be strict. For
y e A Doma(y) ={z € AR~ (y) € R™1(z)} is the set of all attributes dominated by
y. Actually, Dom 4 defines the way how attributes are labeling the concepts of AOC(R)
from the bottom—the dominating attributes—to the top—the dominated attributes. In the
running example, RYb) = 3} ¢ R~Y(a) = {1,2,3,7,8}, ie., attribute » dominates
attribute a and the introducer of b is smaller than the introducer of a, as shown in Fig. 1.
Dom 4(b) = {a, b, c,d, f, g}. Recall that in FCA notations, y’ corresponds to R’l(y) and
thus Dom 4(y) corresponds to y”.

@ Springer

Hermes: new algorithm for building AOC-poset 51

AOC(R)

Fig. 1 Lattice £L(R) and AOC-poset AOC(R), both with the reduced labeling, for our running example

A domination relation, Dom o, can also be defined between objects by inclusion of their
image sets: Vx € O, Domop(x) = {w € O|R(x) € R(w)} is the set of all objects
dominated by x. The label of AOC(R) will be set from top (the dominating objects) to
bottom (the dominated objects), according to the dual behavior of objects and attributes
in concepts. In our running example, R(6) = {c,d} C R(1) = {a,c,d, e, g}; object 6
dominates object 1 and the introducer of 6 is greater than the introducer of 1. Dom (6) =
{1, 3, 6}. Again, Recall that in FCA notations, x” corresponds to R(x) and thus Dom o (x)
corresponds to x”.

We can summarize the above discussion by the following proposition (see also [6]):

Proposition 2

— Endowed with the domination relation Dom 4, the set of attribute-concepts of R forms
a sub-order of AOC(R): for y, z € A, the introducer of y is smaller than or equal to
the introducer of z iff y dominates z (or z € Dom 4(y)).

— Endowed with the domination relation Dom o, the set of object-concepts of R forms a
sub-order of AOC(R): for x, w € O, the introducer of x is greater than or equal to
the introducer of w iff x dominates w (or w € Domp(x)).

4.2 Computing the domination relation

We will need two operations for establishing the complexity results related to our
algorithm. The first operation is to efficiently recognize lines of a relation which are identi-
cal, which corresponds to the clarification of context (O, A, R). This can be done in linear
time O (]R]) by a partition refinement, as proved by [20] for undirected graphs, and detailed
as applied to relations [4]. Thus, in linear time, one can merge all sets of lines which are
identical. It can be noticed that after this merging operation, the domination on attributes
(resp. objects) will be a strict order.

The second operation we use extensively enables us to decide which lines (rows or
columns) are properly included in another, or in other words determine a domination order.

@ Springer

52 A. Berry et al.

This can be done using the tripartite directed graph introduced by Bordat [7]. This
graph is a directed graph denoted by BT with three vertex sets which is constructed as
follows:

— A first copy of the attribute set, namely .4, and the object set O describe R: y; € A
“sees” x € O if and only if (x, y;) € R.

— A second copy of the attribute set .4, is added and then an object x € O “sees” an
attribute y; € Ay if and only if (x, y;) is not in R.

Then computing the domination relation proceeds in the following way. For a,b € A,
we have R(a) C R(b), i.e., a dominates b, only when there is no path from a to b in the
BT graph. If there exists such a path, call it axb, then (x, a) € R, and (x, b) ¢ R, and thus
R(a) ¢ R(b)).

Determining all paths in G from A; to A, can be accomplished in O (nm) time by
performing a graph search from each vertex of 4. Computing the graph BT x BT such that
all pairs of vertexes at distance 2 in BT are linked by an edge can be done in O (n%) where
«a is currently equal to 2.376 [8]. Computing the transitive edges of this graph provides the
domination order on objects or attributes, depending on how the graph is initially defined
[4]. Computing the transitive closure of a graph can be performed in the same time as matrix
multiplication, with a time complexity of O (n%). However, this O (n%376) algorithm for
matrix multiplication is not often used, as it is difficult to implement. By contrast, a direct
approach computes the domination order in O (nm) time, as each line can be compared to
all the other lines in linear time.

The last step of our algorithm requires a transitive reduction which consists in removing
all the transitivity edges of a partial order. This problem has the same time complexity as
the equivalent problem of transitivity closure and can also be performed in the same time as
matrix multiplication.

5 The Hermes algorithm
The algorithm works within five steps:

1. Clarify the input relation R € O x A into a relation R, where no two lines—rows or
columns—are identical in order to avoid redundancy.

2. Compute the domination relation Dom 4 between attributes, i.e., check which columns
of R, are included in the other columns.

3. Compute a new relation R, obtained by appending Dom 4 to R, and simplify R,
into R.s where no two rows are identical. This simplification merges an attribute and
an object whenever they are introduced by the same concept.

4. Extract from Re; the elements of AOC(R), whose intents actually are the rows of
Rces and whose reduced labels are the labels of these rows in R ;.

5. Construct the Hasse diagram of AOC(R) from these intents.

It can be noticed that objects and attributes play symmetric roles, then the algorithm can

dually use domination on objects instead of domination on attributes. The choice may result
from an unbalanced number of objects with respect to the number of attributes.

@ Springer

Hermes: new algorithm for building AOC-poset 53

5.1 Clarifying R into R,

Some objects (resp. attributes) may have the same image set (resp. antecedent set) and will
then appear in the same concepts and share the same introducer. Then we merge identical
lines of R to obtain a clarified relation R, which can be done in linear O (|R|) time (as
already discussed in Section 4.2).

Example. In relation R of our running ex- Re|lag|b|lc|d|el]f
ample, attributes a and g have the same 1 X X | X | X
2,8 X X X

antecedent set {1,2,3,7,8}, objects 2 and z
8 have the same image set {a,e, f,g}. The 1
corresponding clarified relation R is pre- 5 %
6
7

sented on the right. R. and R have iso-
morphic concept lattices and AOC-posets.

5.2 Computing Dom 4 from R,

The domination relation on attributes Dom 4 is computed using clarified relation R, as
input. Dom 4 is a sub-order of the AOC-poset where only the elements having an attribute
in their reduced labels are preserved [6]. As discussed in Section 4.2, this can be done in
O(|Artr|®) orin O (] A|.|R.|) time.

Example. The domination order Dom 4 of R is rep-
resented here as a sub-order of AOC(R). a and g have ag
been grouped by the clarification operation. Then

b strictly dominates ag, f, d, and c¢: Dom4(b) = W
{ag, f,d, c,b}, and e strictly dominates ag: Dom_4(e) = e b
{ag,e}.

5.3 Constructing relation R, and its simplification R s

We now compute relation R, which is the juxtaposition of R, with Dom 4. The formal
definition of Re, € (O U A) x A is as follows: Vx € O, Vy € A, (x,y) € R iff
(x,y) € Re,and Vy, z € A, (y,2) € Ree iff (v,2) € Dom 4.

Now relation R, may have identical rows. As the input relation has already been clari-
fied, this can only occur when an object has the same image set (in R.) as an attribute (in
Dom). We merge these lines of R, to obtain a new relation R.s. We show in the next
section that this last process associates the rows of R ..s with the elements of AOC(R) (see
Fig. 2).

This simplification, as the clarification of Step 1, can be obtained in linear time. How-
ever, the process now only compares objects with attributes. It can be noticed that the initial
clarification into R, could be delayed and integrated into this step, but the more redundan-
cies the initial relation contains, the more time the computation of Dom 4 will require. Thus
a better running time is thus obtained by separating these steps.

@ Springer

54 A. Berry et al.

e Re+ Dom g = Ree

Re a,g b c d e f
1 X X X X
58 = = ~ Ree a,g b c d e f
2 1 X X X X
3 X X X X X
1 < < 2,8 X X X
5 ~ 3 X X X X X
4 X X
6 X X
7 X X 5 at
6 X X
| p— 7 X X
Doma a,g b ¢ d e f &g X
g > b X X X X X
b X X | X | x X ; s
c X s
J < e X X
e X X f a
f X
® Ree =+ Rees
Ree a,g b c d e f
1 X X X X
58 = = < Rees a,g b c d e f
3 X X X X X ! x x x X
7 < ™ 2,8 X X X
5 < 4 X X
5 ~ ~ 6 X X
> a,g X
a7g i x 3,b X X X X X
- c X
lca X X i X X 5.d <
d < 7.e X X
e X X f X
f X

Fig. 2 From R t0 Rees

Example R.(3) = Dom 4(b), so 3 and b are merged in R, as 5 with d, and 7 with e.
5.4 Extracting the elements of AOC(R) from R,

We now prove that the starting set of R yields exactly the elements of AOC(R), because
of our two-step merging process. Step 1 grouped together separately equivalent objects or
equivalent attributes which correspond to objects or attributes having the same introducer.
Step 3 grouped together an object and an attribute whenever they have the same intro-
ducer, as this is stated in Proposition 3. Thus the labels of the rows of R are the reduced
labels of AOC(R), and for each row, its elements yield the intent of the corresponding
concept, as this is stated in Proposition 4. No extra computation is thus needed for this
step.

Example The starting set of R is: { {1}, {2,8}, {4}, {6}, {a, g}, {3.D}, {c}, {5.d}, {7.e},
{f}}. Its elements correspond exactly to the reduced labels of the elements of AOC (R) pre-
sented in Fig. 1. The rows represent the intents of these elements: for example, the complete
labeling of the introducer of 2 would be ({2,8},{a, g, e, f}).

@ Springer

Hermes: new algorithm for building AOC-poset 55

Proposition 3 Given a relation R € O x A, the introducer of x € O and the introducer
of y € A are the same if and only if Ree(x) = Ree(¥).

Rce is composed of R.+ Dom 4. A row in R corresponds to the intent of the introducer
of an object and a row in Dom 4 corresponds to the intent of the introducer of an attribute.
Then, if object x and attribute y have the same introducer, i.e., Cx = C,, this means that
the row of Cy is identical to the row of Cy, in Re.

The next step is to merge these two identical rows in the final relation R..s, which
supports the ordering of the elements of AOC(R).

Proposition 4 The rows of Rees are in a one-to-one correspondence with the elements
of AOC(R). Moreover, each element of the starting set provides the reduced label of the
corresponding element of AOC(R).

When two elements, object or attribute, have the same introducer, they determine the
same line in R... Then, these lines are merged in R qs. Thus, R.s provide the complete
and non redundant set of introducers, i.e., all elements of AOC (R) with their labels.

It can be noticed that the use of Dom 4 gives the intents of the elements of AOC(R).
The use of Dome instead would give the extents. However, the use of both Dom 4 and
Dom, as proposed in [6], is less efficient for computing the elements of AOC(R).

5.5 Constructing the Hasse diagram of AOC(R)

Now, it remains to build the Hasse diagram of AOC(R) by determining the ordering by
inclusion of the elements of AOC(R) w.r.t. their intents. This can be done in O ((|O] +
|A|)¥) time by removing all transitivity edges from Ry, as discussed in Section 4.2.

6 Discussion about complexity

The complexity of the algorithm is bounded in Steps 2 and 5 with a time in O((|O| +
[A].IR]) or O((|O|+]|.A])%), depending on the chosen implementation. There is little hope
of lowering the complexity, as Step 2 is equivalent to computing the neighborhood inclusion
order in a graph, which is a well-researched graph problem, whose complexity is currently
that of matrix multiplication [34].

We now analyze the previously published algorithms for building AOC-posets. They all
run in O(n?) time, recalling that n stands for the number of objects plus the number of
attributes in the input relation, i.e., n = |O| + | A|), and that m stands for the size of the
relation, i.e., m = |R|. The reader is referred to the corresponding publications for detailed
descriptions of these algorithms and to [2] for a comparative experimental study.

1. PLUTON [2]. This algorithm is composed of three successive processes: TomThumb,
ToLinext, and TOGSH. TomThumb [5] produces in linear O (m) time an ordered list
of the reduced labels of extents and intents, which is mapped to a linear extension of
the AOC-poset. ToLinext then searches this list to merge consecutive pairs consisting
of a reduced extent and a reduced intent belonging to the same concept, in time O (n%)
as detailed in [5]. Finally, TOGSH computes the edges of the Hasse diagram of the
AOC-poset, which is accomplished in time O (n?) also.

@ Springer

36 A. Berry et al.

2. CERES [22]. This algorithm computes at the same time the elements of the AOC-poset
and its Hasse diagram. The elements are computed in an order which is mapped to
a linear extension of the AOC-poset. In a first stage, the columns of the relation are
sorted by decreasing extent size of the introducers, which can be done in O (m+nlogn)
time. In the second stage, the strategy is twofold: compute the attribute-concepts by
groups sharing the same extent, and add object-concepts when their intent is covered
by the intents of the attribute-concepts already computed. The edges of the hierarchy
are determined on-the-fly. Since at each step an element is compared to O (n) already
computed elements and since there are O (n) steps and each comparison requires O (n)
time, the overall time is in O (n3).

3. ARES [10]. This algorithm is incremental: given the Hasse diagram of an AOC-poset
and a new object with its attribute set S, the diagram is modified to include this new
object. To accomplish this, the initial diagram is traversed using a linear extension. If
I denotes the intent of the current visited concept, then four main cases may occur
and the diagram will be updated accordingly: I = S, I C S, 1 D S,or [and §
are not comparable by set inclusion. If during exploration, the algorithm did not find
an initial concept whose intent is S, a new concept is created. For every modification
of the Hasse diagram, the algorithm removes newly created transitivity edges. At the
same time, for each modified intent, the algorithm checks for concepts with an empty
reduced label and removes them. Here, as in CERES, at each step an element is com-
pared to O(n) already computed elements, and since there are O(n) steps and each
comparison requires O (n) time, the overall time is in on?).

7 Specialized input: chordal-bipartite relations

A special class of relations should be mentioned in this context: relations which correspond
to chordal-bipartite graphs, which are bipartite graphs containing no chordless cycle of
length six or more. This is a superclass of the relations which have a planar lattice, but the
lattice of a chordal-bipartite relation remains of polynomial size [15].

A relation whose corresponding bipartite graph is chordal-bipartite can be re-ordered
so that its matrix becomes I'-free. A T" in a matrix is a sub-matrix on 4 elements, with
a unique zero in the right-hand lower corner, i.e., in matrix M, there is a pair (h,i) of
rows, h < i, and a pair (j, k) of columns, j < k, such that M(h, j) = M(h, k) =
M@, j) = 1 and M(i,k) = 0). This I'-free form is obtained by computing a Double
Lexical Ordering (DLO) [24]. A DLO is an ordering of the matrix such that the binary
words read from bottom to top for columns are in increasing lexical order, and likewise
for rows, the binary words read from right to left are in increasing order from bottom to
top.

In the example below, the column a has word 01001 (from bottom to top) which is
smaller than 10000 the word of b (from bottom to top), and likewise the word of object 2,
10000 (from right to left) is smaller than the word of object 3, 10100 (from right to left).

Any matrix can be re-ordered to be DLO, and this re-ordering can be done in time
O(min{mlogn, n?}) [28, 33]. The DLO matrix is -free if and only if the relation is
chordal bipartite [24]. When a relation is in such a DLO and I'-free form, it is easy to com-
pute Dom 4: take each attribute from left to right; for each attribute y, let x be the first
object (from top to bottom) in the column of y (i.e., the first x such that (x,y) € R);
then y dominates exactly the attributes z which are to its right and that are on row x (i.e.,

(x,2) € R).

@ Springer

Hermes: new algorithm for building AOC-poset 57

This is a consequence of the DL O and I'-free form: in a DLO matrix, a given column
cannot be included in any column to its left; and in a I"-free matrix, if w is the first row with
a one in column y, for any column z at the right of y which has a one in the row of w, if
column y is not included in column z, as the rows of y above w all have zeros, this might
only be because of a row x after w with a one in column y and a zero in column z, i.e.,
because of a I" in the matrix formed by rows w and x, and columns y and z.

Example. The following matrix is ordered in a Rla|blc|d]e
double lexical fashion and is I'-free. Attribute a ; ! ! i
is processed first; its first one is on row 1, so a 3 1 I
dominates all the attributes to its right which has 11 111
a one on row 1: a dominates d. 5 1111

Attribute b is processed next; its first one is on row 5, which has ones at the right of b
for ¢, d and e, b dominates ¢, d and e. Attribute c: highest one in row 3, ¢ dominates e.
Attribute d: highest one in row 1, no one at the right, no domination. Attribute e is last and
therefore can dominate no other attribute.

When relation R is chordal-bipartite, R..s can then be constructed in O(nz). We
conjecture that the Hasse diagram can be extracted at no extra cost.

8 Experiments

In this section, we present experiments, where we compare the running time of Java
implementations of four algorithms for building the AOC-poset, namely ARES, CERES,
PLUTON and HERMES. Our objective is to characterize the cases where an algorithm is
more efficient than another, and to give general guidelines for using the various algorithms.
First we detail the experimental setting (Section 8.1), and then we report the lessons learned
from the experiments (Section 8.2). The details of the evaluation on data from different
sources, real-world data and randomly generated data, are given in Appendix A. In a given
implementation (and even in algorithms), objects and attributes are not considered sym-
metrically In ARES, objects (given with their attribute set) are added one by one. At each
object addition, the poset is traversed. This means that the best cases for ARES are met
when the object number is small, w.r.t. the number of attributes. CERES spends most of its
time computing the attribute-concepts by grouping near-contiguous columns, and adding an
object-concept is immediate. We can expect that it is efficient when there are many object-
concepts and many attributes with the same object set (i.e., many groups). At first glance,
PLUTON behaves symmetrically (regarding objects versus attributes) on concept construc-
tion. But concerning the building of the Hasse diagram, introducing an object-concept under
an attribute-concept is efficiently done. HERMES spends more time on concept construction
(steps 2—4) when there are more attributes. The Hasse diagram is built using the intents. This
explains that the behavior of the algorithms may be significantly different when keeping
constant the number of attributes versus the number of objects. Alternative implementations
can be proposed: each algorithm can be implemented in a dual way as objects and attributes
are playing dual roles in the construction. Besides, a given implementation can be applied
to transpose data in order to improve the performances. Here we take into account only
one implementation of each algorithm. Another strategy could be to have two dual imple-
mentations of each algorithm (changing the respective roles of objects and attributes), then,
depending on the shape of the data, the best algorithm would be chosen.

@ Springer

58 A. Berry et al.

8.1 Experimental setting
8.1.1 Runs

The tests were performed on a processor Intel® Core™ i7-3520M CPU 2.90GHz, with an
operating system Windows 7 (ver. 6.1, 64bits). We developed the four algorithms in Java
(ver. 1.7.0 09). A single developer was in charge of the development, ensuring uniformity of
the main implementation decisions. To obtain the running time of an algorithm, a program
runs the algorithm seven times and removes the two first results, to avoid including the
time for loading the Java virtual machine. This is especially important for the small binary
relations where the running time is short. We thus compute the average of the next five
results.

8.1.2 Implementations

Previous implementations of ARES, CERES and PLUTON are compared in [2] as modules
of the Galicia framework. Here we consider the new implementations which are designed
especially for these experiments. A systematic comparison of the results obtained by the
four algorithms was automatically done on a large set of binary relations of different size to
control the correctness of the implementations.

Three implementations of each algorithm have been carried out, each one being based
on an alternative data-structure from TROVE API:! BitSet which implements dynamic
vectors of bits, HashSet which implements hash tables, and TIntHashSet which imple-
ments sets of integers with hash tables. Unless stated differently, graphics correspond to the
BitSet implementation which proved to be the most efficient and stable implementation.

The binary relations are implemented by a list of BitSet (resp. HashSet or
TIntHashSet) for rows and a list of BitSet (resp. HashSet or TIntHashSet)
for columns. Thus the binary relations are stored two times in memory, and this did not
appear to be a problem in our experiments. On the other hand this implementation allows
us efficient operations, including efficient comparison of rows and columns (for equality or
inclusion for example).

The experimental results obtained in the paper benefit from the use of efficient opera-
tions on bitset data structures in clarification and rows (resp. columns) inclusion. Rather
than using the fast algorithm [8] for matrix multiplication, in the four implementations
we build the Hasse diagram of the partial order between concepts with a similar process,
based on the fact that concepts are given, built or traversed w.r.t. a linear extension of
the AOC-poset (a total ordering which is compatible with the AOC-poset). In PLUTON,
the concepts are computed with respect to such a linear extension. In HERMES, the linear
extension is obtained by sorting the context which can be done in an efficient way with
the chosen data structure. In CERES, the concepts and the Hasse diagram are computed
at the same time, in an order which can be mapped to a linear extension of the AOC-
poset. In ARES, the initial AOC-poset is traversed using a linear extension. Besides, some
order relations between concepts can be computed in O (1) time only by looking at the
relation R.

Thttp://sourceforge.net/projects/trove4j/

@ Springer

http://sourceforge.net/projects/trove4j/

Hermes: new algorithm for building AOC-poset 59

8.1.3 Data
We compared the four algorithms on two kinds of data:

— randomly generated binary relations obtained by varying the number of objects, the
number of attributes and the density of the relation defined as [R|/(]O] + |A]). A
uniform distribution has been used to generate the binary relation. The Random Java
class has been used.

— real binary relations coming from two different sources: Tables built by reverse
engineering on the open source software ArgoUML? and tables taken from the Koblenz
Network Collection.’

All graphics (from which the representative graphics presented in this paper have been
chosen), tables and the Java archive containing the implementation are available.*

8.2 Profiles of the algorithms

From the experiments (see Appendix for details), we learn that:

— ARES is especially interesting in specific situations such as: a very small number of
objects (roughly 10/20 objects) and a low (roughly < 0.2) or a very high (roughly
> 0.9) density (the more there are objects, the more the density has to be high to have
ARES more efficient than the others); or the number of attributes is large compared to
the number of objects (5 times more) and the density is low (< 0.01); we also observed
that ARES often is suitable for very high densities;

— CERES has a larger set of relevant application cases: large number of objects w.r.t. the
number of attributes (5 times more), with a low density (< 0.1), or a very high density
(= 0.99); large number of attributes compared to the number of objects (5 times more),
with various non extremal densities (from 0.2 up to 0.8); square contexts, with a very
low density (< 0.01 and this is confirmed in the real case study).

— HERMES is useful in the following situations: large number of objects compared to the
number of attributes (5 times more) or the inverse, with various non extremal densities
(from 0.2 up to 0.9); large number of attributes compared to the number of objects,
with medium to high densities from 0.5 to 1); square contexts and relatively low to high
density (from 0.1 up to 1).

— PLUTON is pertinent when we have: large number of objects compared to the number of
attributes or the reverse, with various medium (non extremum) densities (depending if
object versus attributes are the most numerous 0.2 up to 0.8), as HERMES; square con-
texts and small to high density (0.1 up to 0.9), as HERMES. Let us notice that HERMES is
often better that PLUTON, except with specific cases of HashSet implementations
(not shown in the paper).

Besides, the running time for the low and high densities is much lower than for the
medium densities. We can extrapolate this observation by considering that a good per-
formance for the low and high densities is less important in practice, since the absolute

2http://argouml.tigris.org/
3KONECT: http://konect.uni-koblenz.de/
“http://www.lirmm.fr/~huchard/AOC-poset-builder/AOC- poset-algorithms.html

@ Springer

http://argouml.tigris.org/
http:// konect.uni-koblenz.de/
http://www.lirmm.fr/~huchard/AOC-poset-builder/AOC-poset-algorithms.html

A. Berry et al.

runtimes are low anyway. Figure 3 provides an overview of relevant application cases for
the algorithms, based on results obtained on randomly generated contexts.

This can be put in perspective with the algorithmic schemes:

ARES is incremental and adds the objects successively. It is better than the others when
there is a few objects (and then a few intent comparisons) and AOC-poset traversals
have to be done. Another good case appears when there is a small number of objects
w.r.t. the number of attributes. In this case we can assume that the cost of AOC-poset
traversals and intent comparisons is lower than in the other algorithms. Furthermore,
ARES is interesting in cases where density is very high and with many similar objects.
PLUTON computes the concepts very efficiently when there is a balance number of
objects and attributes, or non extremal densities. The algorithm spends more time in
building the Hasse diagram than in building the concepts.

HERMES is efficient in the same situations as PLUTON. It may spend more time in
concept computation, but when it occurs, the time needed for building the Hasse
diagram is reduced.

CERES is efficient when there are many significant groups of attributes and many
object-concepts to be introduced. This may happen with many attributes and medium
densities (significant groups of attributes), or when there are many objects (potentially
many object-concepts).

To conclude this experimental section, we compare our current results with those of [2],

where ARES, CERES and PLUTON were compared.

[O~IA|
|Oland |A| ? (square context)
R density ?

0 <0.01<01 <1

ICeresl I Hermes |
Pluton

unbalanced

|A] << 0| |A]>> 0|

R density ? R density ?

U012 < UY<0Ry T 0<001<01<05<099 < 1

[ceres] | Hermes | [ceresl | Ares| [ceres |
Pluton Ares [Hermes |
Hermes
> Pluton
|A| very small |O| very small
R density ? R density ?
0<02<03<07<08<09<0.99 <1 0<02<03<08<09<1
|Ceres | | Ares | I Ares | I ceresl [Aresl
|Her mes Pluton |

Fig. 3 Classification of the four algorithms w.r.t. the characteristics of contexts

@ Springer

Hermes: new algorithm for building AOC-poset 61

— PLUTON was the best for square contexts (dimensions are 500 x 500 and density varies
from 2% to 82%). This is confirmed in the new experiments.

— ARES was the best with a number of objects larger than the number of attributes
(medium density 0.5), followed by PLUTON. This is not confirmed, because in this
specific case, the new implementations of HERMES and PLUTON are the best. In the
current results, with a number of objects larger than the number of attributes, ARES is
efficient when density is very high.

— CERES was the best with a number of attributes larger than the number of objects
(medium density 0.5). This remains true.

9 Conclusion

We have presented a new, simple and efficient algorithm, called HERMES, for building the
AOC-poset of a relation. We have compared its running time in practice to that of the other
known algorithms, ARES, CERES and PLUTON, on several datasets. From this experience,
we have learned relevant application cases for each algorithm. The four implementations
are available in a public Java archive. HERMES, besides its simplicity, has a large range of
situations where it is more efficient than the others, or where it is close to the more efficient
algorithm.

Algorithm HERMES could be reconsidered as an incremental algorithm, which may
be interesting for on-line applications such as updating hierarchies in object-oriented
languages. A next step is to implement a version of Relational Concept Analysis (RCA,
citerouanel3a) based on AOC-posets rather than on concept lattices. Such a RCA version
will need an efficient incremental algorithm for updating the AOC-posets at each step.

Acknowledgments The authors would like to thank Lhouari Nourine for fruitful discussions on the
construction of the AOC-poset.

Appendix: Evaluation and results
A.1 Results on randomly generated binary relations

Varying the number of objects To study the effect of a variation in the number of objects, we
consider three possibilities for the number of attributes (10, 20 or 100). For each possibility,
we evaluate several densities: {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99,
0.999}. In each density case, the number of objects varies from 500 to 5000.

We illustrate typical cases, which are obtained with 100 attributes. With low densities
(e.g 0.01, Fig. 4) CERES is the best algorithm. With high densities (e.g 0.999, Fig. 5),
ARES is often the best, sometimes challenged by CERES. With medium densities (e.g 0.5,
Fig. 6), HERMES and PLUTON are the best, showing similar running time, HERMES being
often better than PLUTON.

Observing all the figures, we infer that when the object number is much greater than the
number of attributes, the better choices are:

— with medium densities: HERMES or PLUTON
— with low densities: CERES
— with high density value: ARES or CERES

@ Springer

62 A. Berry et al.

Varying number of objects, 100 attributes, density 0.01
400

data structure : bitset
350

300

250

bl

1000 1500 2000 2500 3000 3500 4000 4500 5000
BMARES [ICERES MHERMES [IPLUTON objects

time (ms)
[
o
o

I
o
o

Fig.4 Varying the number of objects; 100 attributes; density = 0.01. Computation times are in milliseconds

Varying the number of attributes To study the effect of a variation in the number of
attributes, as above, we consider three possibilities for the number of objects (10, 20 or 100).
For each possibility, we evaluate several densities: {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99, 0.999}. In each density case, the number of attributes evolves from 500
to 5000.

Varying number of objects, 100 attributes, density 0.999
10000
data structure : bitset
8000
6000
7
E
Q
E
=
4000
1000 1500 2000 2500 3000 3500 4000 4500 5000
BARES [ICERES EMHERMES [IPLUTON objects

Fig. 5 Varying the number of objects; 100 attributes; density = 0.999

@ Springer

Hermes: new algorithm for building AOC-poset 63

45000
Varying number of objects, 100 attributes, density 0.5
data structure : bitset
40000
35000
30000 N
% 25000
E
Q
.§ 20000 | =
15000
10000
- h:] |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BARES [CICERES BHERMES [1PLUTON objects

Fig. 6 Varying the number of objects; 100 attributes; density = 0.5

We illustrate typical cases, which are obtained with 100 objects. With low densities
(e.g.,0.01, Fig. 7) ARES is the best algorithm. With high densities (e.g 0.999, Fig. 8), HER-
MES is the best algorithm. With medium densities (e.g., 0.5, Figs. 9 or 10), CERES or
HERMES or PLUTON are the best algorithms.

Varying number of attributes, 100 objects, density 0.01

data structure : bitset
200

150

iﬂmmﬁmﬂj

1000 1500 2000 2500 3000 3500 4000 ‘ 4500 5000
BARES [CCERES BHERMES [IPLUTON attributes

time (ms)
=
o
o

Fig. 7 Varying the number of attributes; 100 objects; density = 0.01

@ Springer

64 A. Berry et al.

Varying number of attributes, 100 objects, density 0.999

data structure : bitset

1200
1000
800
n
E
o 600
£
400 -
200
o | M ‘
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
WARES [CICERES MHERMES [IPLUTON attributes

Fig. 8 Varying the number of attributes; 100 objects; density = 0.999

Varying number of attributes, 100 objects, density 0.5

data structure : bitset

200000

150000
@
£
" 100000
E

50000

0 | B I I LL
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
WARES [CERES EMHERMES [IPLUTON attributes

Fig. 9 Varying the number of attributes; 100 objects; density = 0.5

@ Springer

Hermes: new algorithm for building AOC-poset 65

Varying number of attributes, 100 objects, density 0.5 (without ARES)
data structure : bitset

5000
4000
3000 —
E
o
E
2000 — —
) m |—I_| |
N - m | [
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
CCERES WHERMES [IPLUTON attributes

Fig. 10 Varying the number of attributes; 100 objects; density = 0.5, without ARES

Varying number of attributes, 10 objects, density 0.999
30
data structure : bitset

25

20

15 -

time (ms)

10

. (] b (e

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
MARES CCERES BHERMES OPLUTON attributes

Fig. 11 Varying the number of attributes; 10 objects; density = 0.999

@ Springer

66 A. Berry et al.

Varying density of square matrices
50000
data structure : bitset
40000
30000
5
E
o
E
=
20000 = -
B h:
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BARES [ICERES MHERMES [PLUTON density
Fig. 12 Results on square contexts (1000 x 1000)
Varying density of square matrices
logarithmic scale
data structure : bitset
10 000
1000
0
£
L
E
s
100
10
1 L
0.01 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9
WARES [ICERES BHERMES CPLUTON density

Fig. 13 Results on square contexts (1000 x 1000), log. scale

@ Springer

Hermes: new algorithm for building AOC-poset 67

When the number of objects is very small, e.g., equals to 10 and density is very low
(0.001) or very high (0.999), ARES becomes the best algorithm (see Fig. 11 for the 0.999
density).

Observing all the figures, we infer that when the attribute number is much greater than
the number of objects, the better choices are:

— with medium densities: CERES, HERMES or PLUTON

— with low densities: ARES

— with high density value: HERMES (except when the number of objects is very small,
cases where ARES is the best, then HERMES)

Square context with varying density Figure 12 (or Fig. 13 with logarithmic scale) shows
a typical situation with randomly generated square contexts (such that the number of
rows is equal to the number of columns). With a low density (0.01), we do not notice a
large difference between the four algorithms. But as the density grows, the gap between
the running time of ARES and CERES, on one side, and of HERMES and PLUTON, on
the other side, strongly increases. The running time of HERMES versus PLUTON gives a
slight advantage to HERMES. Furthermore, with very low densities (see Fig. 14), which
corresponds to the real cases that we found, CERES is the best algorithm, followed
by HERMES.

A.2 Effect of changing the data structures
As mentioned before, three alternative data-structures, BitSet, HashSet and TInt-

HashSet, have been used to examine what is the effect of the data-structure principle and
implementation on the runtime. In most of the cases, the runtimes of the four algorithms

Very low densities M

data structure : bitset

800
700 ’V
600

500

time (ms)

F-3
o
o

300

200 - ERER R ER E IR B

o.El:.:c-:H]I:i]I:i:l

0.00001 0.00005 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
B ARES [ICERES MHERMES [PLUTON density

Fig. 14 Results on square contexts (2000 x 2000) and very low density

@ Springer

68 A. Berry et al.

Varying number of objects and data structure, 100 attributes, density 0.5

250000
200000
. 150000
1)
£
[
£
]
100000
50000 | l
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
W Ares/BITSET B Ares/HASHSET B Ares/TROVE HASHSET objects
DOCeres/BITSET O Ceres/HASHSET [Ceres/TROVE HASHSET
mHermes/BITSET B Hermes/HASHSET B Hermes/TROVE HASHSET
OPluton/BITSET O Pluton/HASHSET O Pluton/TROVE HASHSET

Fig. 15 An example of the effect of using alternative data-structures

keep the same relative positions: e.g., in Fig. 15, ARES has the worst running time, followed
by CERES, then by HERMES and PLUTON which have close running time. A view of their

Varying number of objects and data structure, 100 attributes, density 0.5

logarithmic scale
100000

10000 1 H H H

1000 - 1

time (ms)

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
B Ares/BITSET B Ares/HASHSET B Ares/TROVE HASHSET objects
D Ceres/BITSET O Ceres/HASHSET D Ceres/TROVE HASHSET
W Hermes/BITSET B Hermes/HASHSET W Hermes/TROVE HASHSET
O Pluton/BITSET O Pluton/HASHSET O Pluton/TROVE HASHSET

Fig. 16 An example of the effect of using alternative data-structures (log. scale)

@ Springer

Hermes: new algorithm for building AOC-poset 69

behavior is given with a logarithmic scale in Fig. 16. But we can notice, in this representative
example, that with the BitSet data-structure, the difference between ARES and CERES
is not as important as for the two other data-structures.

A.3 Results on real binary relations

We also applied the four algorithms with the three alternative data-structures to real binary
relations, from several domains. Our first case study was composed of data extracted
from three versions of the ArgoUML software: rows are various versions of the software
(10 versions), while columns are source code elements (between 10426 and 78 003) appear-
ing in these versions (many were common to several versions), and density is about 0.95.
It was interesting to notice in this case that the HashSet implementations were very bad
for HERMES (e.g., in version 1, more than 175 s), while the use of BitSet was good
(e.g., in version 1, a few seconds). For this first case study, PLUTON and ARES appear
as good implementations. This dataset corresponds to few objects, many attributes, and
a high density, where we noticed, in the case of randomly generated data that HERMES,
PLUTON and ARES are the best.

9000
Real vs random
data structure : bitset
8000
7000
14000
Differentimplementations
6000 -
12000
S 5000
10000 E
Q
-.§, 4000 |
= 8000
E
H 3000
S 6000
2000 —
4000
1000 +—
2000
o 1
0 .
BITSET HASHSET TROVE HASHSET Openflights Random
BARES [JCERES HHERMES [JPLUTON W ARES OCERES B HERMES [OPLUTON
«“ : 9
(a) “Openflights (b) Random

Fig. 17 Varying the number of objects; 100 attributes; density = 0.01. Computation times are in millisec-
onds. Effects of the data structure on a representative real relation “Openflights” (a) and its comparison
with random relation with same dimensions and density (b). Square context “Openflights” is taken from
http://konect.uni-koblenz.de/networks/opsahl-openflights. The BitSet implementation has been used in
both relations

@ Springer

http://konect.uni-koblenz.de/networks/opsahl-openflights

70 A. Berry et al.

Our second case study was a subset of source code elements of ArgoUML with a similar-
ity relationship giving a square context (1505 objects and attributes) with a medium density
(about 0.5). PLUTON is always the best for this second case, followed by CERES, and then
HERMES, while in the randomly generated relations, HERMES then PLUTON were the best.

Then we tested the implementations on eight binary contexts with different numbers of
objects and attributes, square or almost square, with various dimensions and a very low
density, taken from the Koblenz Network Collection. Figure 17a gives a representative
example and typical results for the three data-structures: CERES always is the best, followed
by HERMES, then by PLUTON. Figure 17b (bitset implementation) is compared with the
results of the algorithms on randomly generated binary relations with same dimension and
same density (Fig. 17). The relative positions of the algorithms are the same.

For the first use case, with the ArgoUML dataset, which has a few objects, many
attributes, and a high density, we notice that Hermes and Ares are the best (cf Fig. 10).
We have similar results for randomly generated data than for real data. For the second use
case, where we have a square context and a medium density: the results are not significantly
different between Pluton and Hermes. The dataset has a good profile for Ceres, with sig-
nificant attribute group size, explaining its performance. For the other use cases, of which
the open-fligth dataset is representative, as shows the Fig. 14, the algorithms have different
computation times, but their compared positions are the same.

References

1. Aboud, N., Arévalo, G., Bendavid, O., Falleri, J.-R., Haderer, N., Huchard, M., Tibermacine, C.,
Urtado, C., Vauttier, S.: Building hierarchical typed component directories using formal concept analysis.
Submitted (2014)

2. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of Galois sub-hierarchy-
building algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA, Volume 4390 of Lecture Notes in
Computer Science, pp. 166—180. Springer, Berlin (2007)

3. Barbut, M., Monjardet, B.: Ordre et Classification — Algebre et Combinatoire. Hachette, Paris (1970)

4. Berry, A., Bordat, J.P, Sigayret, A.: A local approach to concept generation. Ann. Math. Artif. Intell.
49(1-4), 117-136 (2007)

5. Berry, A., Huchard, M., McConnell, R.M., Sigayret, A., Spinrad, J.P.: Efficiently computing a linear
extension of the sub-hierarchy of a concept lattice. In: Ganter, B., Godin, R. (eds.) ICFCA, Volume 3403
of Lecture Notes in Computer Science, pp. 208-222. Springer, Berlin (2005)

6. Berry, A., Sigayret, A.: Maintaining class membership information. In: Bruel, J.-M., Bellahsene,
Z. (eds.) OOIS Workshops, Volume 2426 of Lecture Notes in Computer Science, pp. 13-23. Springer,
Berlin (2002)

7. Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Math. Inform. Sci. Hum. 96,
31-47 (1986)

8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Aho, A.V. (ed.)
STOC, pp. 1-6. ACM (1987)

9. Dicky, H., Dony, C., Huchard, M., Libourel, T.: Ares, un algorithme d’ajout avec restructuration dans
les hiérarchies de classes. In: Proceedings of LMO’94, pp. 125-136 (1994)

10. Dicky, H., Dony, C., Huchard, M., Libourel, T.: ARES, adding a class and REStructuring inheritance
hierarchies. In: Proceedings of BDA’95, pp. 25-42 (1995)

11. Dicky, H., Dony, C., Huchard, M., Libourel, T.: On automatic class insertion with overloading. In:
Anderson, L., Coplien, J. (eds.) OOPSLA, pp. 251-267. ACM (1996)

12. Dolques, X., Le Ber, F., Huchard, M.: AOC-Posets: a scalable alternative to concept lattices for relational
concept analysis. In: Proceedings of the Tenth International Conference on Concept Lattices and Their
Applications (CLA 2013), pp. 129-140 (2013)

13. Dubois, D., Dupin de Saint Cyr Bannay, F., Prade, H.: A possibilty-theoretic view of formal concept
analysis. Fundam. Inform. 75(1-4), 195-213 (2007)

@ Springer

Hermes: new algorithm for building AOC-poset 71

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.
29.

30.

31.

37.

38.

Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis
and possibility theory. Log. Universalis 6(1-2), 149-169 (2012)

Eschen, E.M., Pinet, N., Sigayret, A.: Consecutive-ones: handling lattice planarity efficiently. In:
Proceedings of CLA 2007 (Concept Lattices and Applications), CEUR WS, vol. 331, paper 12 (2007)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois lattices.
In: Proceedings of OOPSLA 93, vol. 28, pp. 394410 (1993)

Godin, R., Mili, H., Mineau, G.W., Missaoui, R., Arfi, A., Chau, T.-T.: Design of class hierarchies based
on concept (Galois) lattices. Theory Appl. Object Syst. 4(2), 117-134 (1998)

Hitzler, P.: Default reasoning over domains and concept hierarchies. In: Proceedings of KI 2004, Volume
3238 of LNCS, pp. 351-365. Springer (2004)

Hsu, W.-L., Ma, T.-H.: Fast and simple algorithms for recognizing chordal comparability graphs and
interval graphs. SIAM J. Comput. 28(3), 1004-1020 (1999)

Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify algorithms building class
hierarchies. Theory Inform. Appl. 34, 521-548 (2000)

Leblanc, H.: Sous-hiérarchies de Galois: un Modele pour la Construction et L’évolution des Hiérarchies
d’objets (in french). PhD thesis, Université Montpellier IT (2000)

Loesch, F., Ploedereder, E.: Restructuring variability in software product lines using concept analysis of
product configurations. In: Krikhaar, R.L., Verhoef, C., Lucca, G.A.D. (eds.) Proceedings of the 11th
European Conference on Software Maintenance and Reengineering, pp. 159-170. IEEE, Amsterdam
(2007)

Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput. 16(5), 854-879 (1987)

Mineau, G.W., Gecsei, J., Godin, R.: Structuring knowledge bases using automatic learning. In: ICDE,
pp. 274-280. IEEE Computer Society (1990)

Osswald, R., Petersen, W.: Induction of classifications from linguistic data. In: Proceedings of ECAI’02
Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases (2002)
Osswald, R., Petersen, W.: A logical approach to data-driven classification. In: Proceedings of the 26th
Annual German Conference on Advances in Artificial Intelligence KI 2003, Volume 2821 of LNCS, pp.
267-281. Springer (2003)

Paige, R., Tarjan, R.E.: Three partition algorithms refinement. SIAM J. Comput. 16(6), 973-989 (1987)
Petersen, W.: A set-theoretical approach for the induction of inheritance hierarchies. In: Proceedings
of the Joint Conference on Formal Grammar and Mathematics of Language (FG/MOL-01), Electronic
Notes in Theoretical in Computer Science, vol. 53, pp. 296-308. Elsevier (2001)

Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept
lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81-108 (2013)

Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Schaefer,
1., John, L., Schmid, K. (eds.) SPLC Workshops, p. 4. ACM (2011)

. Sigayret, A.: Data mining: une approche par les graphes (in french). PhD thesis, Université Blaise Pascal

(Clermont-Ferrand, France) (2002)

. Spinrad, J.P.: Doubly lexical ordering of dense 0-1 matrices. Inf. Process. Lett. 45(5), 229-235 (1993)
. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society (AMS), Paris (2003)
. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants. In: Proceedings of

the 19th Working Conference on Reverse Engineering, pp. 145-154. IEEE (2012)

. Yang, Y., Peng, X., Zhao, W.: Domain feature model recovery from multiple applications using data

access semantics and formal concept analysis. In: Zaidman, A., Antoniol, G., Ducasse, S. (eds.)
Proceedings of the 16th Working Conference on Reverse Engineering, pp. 215-224. IEEE (2009)

Yao, Y.: A comparative study of formal concept analysis and rough set theory in data analysis.
In: Tsumoto, S., Slowinski, R., Komorowski, H.J., Grzymala-Busse, J.W. (eds.) Rough Sets and Current
Trends in Computing, Volume 3066 of Lecture Notes in Computer Science, pp. 59-68. Springer, Berlin
(2004)

Yevtushenko, S.A.: System of data analysis “Concept Explorer” (In Russian). In: Proceedings of the 7th
National Conference on Artificial Intelligence KII-2000, Russia, pp. 127-134 (2000)

@ Springer

	Hermes: new algorithm for building AOC-poset
	Abstract
	Introduction
	Definitions and notations
	State of the art and motivation for studying the AOC-poset
	The structure of the AOC-poset
	The domination relation on attributes and objects
	Computing the domination relation

	The Hermes algorithm
	Clarifying R into Rc
	Computing DomA from Rc
	Constructing relation Rce and its simplification Rces
	Example

	Extracting the elements of AOC(R) from Rces
	Example

	Constructing the Hasse diagram of AOC(R)

	Discussion about complexity
	Specialized input: chordal-bipartite relations
	Experiments
	Experimental setting
	Runs
	Implementations
	Data

	Profiles of the algorithms

	Conclusion
	Acknowledgments
	Appendix: Evaluation and results
	A.1 Results on randomly generated binary relations
	Varying the number of objects
	Varying the number of attributes
	Square context with varying density

	A.2 Effect of changing the data structures
	A.3 Results on real binary relations
	References

