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Abstract Computing functional dependencies from a relation is an important database
topic, with many applications in database management, reverse engineering and query opti-
mization. Whereas it has been deeply investigated in those fields, strong links exist with
the mathematical framework of Formal Concept Analysis. Considering the discovery of
functional dependencies, it is indeed known that a relation can be expressed as the binary
relation of a formal context, whose implications are equivalent to those dependencies. How-
ever, this leads to a new data representation that is quadratic in the number of objects w.r.t.
the original data. Here, we present an alternative avoiding such a data representation and
show how to characterize functional dependencies using the formalism of pattern structures,
an extension of classical FCA to handle complex data. We also show how another class of
dependencies can be characterized with that framework, namely, degenerated multivalued
dependencies. Finally, we discuss and compare the performances of our new approach in a
series of experiments on classical benchmark datasets.
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1 Introduction

The discovery of functional dependencies is an important topic in the database field since
they represent the fact that the value of one or several attributes is uniquely (function-
ally) determined by the values of other attributes. As such, they are valuable in order to
explain the normalization of a database schema in the Relational Database Model. For exam-
ple, consider the relation AddressBook(id, name, street, ZIP, City): it entails the functional
dependencies stating that any two tuples of this relation that have the same value of ZIP
code, also have the same value for the attribute City. Formally, given a relation schema U ,
i.e. a set of attributes to describe some objects or tuples, a functional dependency is denoted
by X → Y,X, Y ⊆ U and means that the objects that take the same values for the attributes
in X take also the same values for the attributes in Y . Table 1 in Section 2 is a tabular repre-
sentation of a relation. Rows denote objects (or tuples) and columns denote attributes of the
schema. There, the functional dependency a → d holds: when t1 and t3 take the same value
for the attribute a, they also take a same value for the attribute d . In the relational database
model there are different types of dependencies (conditional [15], impurity [34], DMVDs
[33], etc., see [21] for a more detailed survey), although functional dependencies are among
the most popular, and have been widely studied [1, 28, 32, 35, 39].

Besides, functional dependencies, and dependencies in general, are closely linked to
attribute implications in Formal Concept Analysis [17]. FCA is an important mathemati-
cal framework rooted in lattice theory that is also used for data-analysis purposes (deeply
described in [17]). Among other, it aims at discovering implicit relations between objects
and their attributes. It starts with a triple (G,M, I), called a formal context, where G is a
set of objects, M a set of attributes and I a binary relation such as I ⊆ G × M . The tab-
ular representation of a binary relation is given in Fig. 1 in Section 2, where rows denote
objects, columns denote attributes, and a cross denotes an element of the relation. So-called
implications are expressions of the form X → Y , X, Y ⊆ M stating that when an object has
attributes in X, then it has also attributes in Y . In the formal context of Fig. 1, the implication
m1 → m2 is the only one that holds.

As such, functional dependencies (FDs) and attribute implications are expressions of
the same form, i.e. X → Y , defined over a set of attributes. However, in the first case,
FDs are defined on numerical or categorical attributes, while implications are defined on
binary attributes. Thus, to show an equivalence (or just links) between FDs and implications,
the original data in which FDs hold have to be transformed into a formal context, whose
implications can then be compared to FDs. This was actually presented in the book of FCA
(see [17], page 92) and as well in [27]. It was shown how to build a formal context from the
original data and that the implications in this formal context are syntactically equivalent to
the FDs of the original data. The second table in Fig. 2 shows the formal context obtained
from the original data in Table 1: whereas the procedure is explained later, one should
notice that indeed the implication a → d holds, which is also a FD in the original data.

Table 1 An example of a table
T , i.e. a set of tuples id a b c d

t1 1 3 4 1

t2 4 3 4 3

t3 1 8 4 1

t4 4 3 7 3
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Fig. 1 A formal context and its
concept lattice

Unfortunately, the number of objects of the resulting context is quadratic w.r.t. the original,
which does not allow this method to be applied on large datasets.

The previous remark is actually the motivation of the present work leading to the fol-
lowing question: Can we characterize with FCA functional dependencies as implications,
avoiding a significantly larger data representation? We positively answer this question by
introducing a method based on Pattern Structures [16]. A pattern structure can be understood
as a generalization of standard FCA to handle complex data (say, non binary): instead of a
binary relation between some objects and their attributes, it applies on a relation between
objects and their descriptions that form a particular partially ordered set. Our approach con-
sists in considering that the attributes from the original relation schema U can be described
by a partition over the set of tuples, and that the set of partitions forms a lattice. As such,
so-called partition pattern structures are introduced in this paper, and we show that the
implications they hold are equivalent to the functional dependencies, as well as the attribute
implications holding in the formal context introduced in the previous section.

Consequently, our contribution is three-fold:

– Firstly, we present a new conceptual structure, called partition pattern structure.
– Secondly, we show how such a structure can be built from a numerical dataset to char-

acterize functional dependencies: The interest is to prove that pattern structures are a
flexible mechanism within FCA to encode the semantics of the dependencies without a
heavy data representation.

– Finally, we show that this method allows one, with a minor variation, to characterize
another kind of dependencies called degenerated multi-valued dependencies (DMVDs,
introduced later). We also propose experiments showing that our conceptual structure
has better computational properties than the classical FCA approach.

The paper is organized as follows. Basics on functional dependencies are presented in
Section 2. Formal Concept Analysis and its usage to characterize functional dependencies
is described in Section 3. We discuss data transformation with FCA in Section 3.3. It is
followed by our main contribution which consists in characterizing functional dependencies

Fig. 2 Characterizing FDs with FCA: from a set of tuples to a formal context and its concept lattice
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with pattern structures (Section 4). Section 5 handles the case of degenerated multivalued
dependencies. Before concluding, we compare our new approach in a series of experiments
on classical benchmark datasets in Section 6.

2 Functional and degenerated multivalued dependencies

We first introduce functional dependencies (FDs). Let U be a set of attributes, and let Dom

be a set of values (a domain). For sake of simplicity, we assume that Dom is a numerical
set. A tuple t is a function t : U �→ Dom, and a table T is a set of tuples. Usually tables are
presented as a matrix, as in Table 1, where the set of tuples (or objects) is T = {t1, t2, t3, t4}
and U = {a, b, c, d} is the set of attributes. We use table, dataset, set of tuples as equivalent
terms. We overload the functional notation of a tuple in such a way that, given a tuple t ∈ T ,
we say that t (X) (for all X ⊆ U ) is a tuple with the values of t in the attributes xi ∈ X:

t (X) = 〈t (x1), t (x2), . . . , t (xn)〉

For example, we have that t2({a, c}) = 〈t2(a), t2(c)〉 = 〈4, 4〉. In the paper, the set
notation is dropped: instead of {a, b} we use ab.

Definition 1 ([39]) Let T be a set of tuples, and X,Y ⊆ U . A functional dependency
(FD) X → Y holds in T if:

∀t, t ′ ∈ T : t (X) = t ′(X) =⇒ t (Y ) = t ′(Y )

For instance, the functional dependencies a → d and d → a hold in T , whereas the
functional dependency a → c does not hold since t2(a) = t4(a) but t2(c) �= t4(c).

We now present a generalization of functional dependencies: degenerated multivalued
dependencies.

Definition 2 ([33]) Let X, Y,Z ⊆ U of a table T , such that X ∩ Y = X ∩ Z = Y ∩ Z = ∅
and X∪Y∪Z = U . We say that a degenerated multivalued dependency (DMVD) X → Y

holds in T if and only if:

∀t, t ′ ∈ T : t (X) = t ′(X) =⇒ t (Y ) = t ′(Y ) or t (U \ X \ Y) = t ′(U \ X \Y)

For instance, we have that a → b holds in the example table T , since t1(a) = t3(a)

and t1(cd) = t3(cd), and t2(a) = t4(a) and t2(b) = t4(b). We remark that the functional
dependency a → b does not hold in T , because of the pair of tuples t1, t3. Degenerated
multivalued dependencies are a generalization of functional dependencies: if we drop the
clause t (U \ X \ Y) = t ′(U \ X \ Y), we have the definition of functional dependencies.
Therefore, if the functional dependency X → Y holds, then, the degenerated multivalued
dependencies X → Y and X → U \ X \ Y hold as well, whereas the opposite is not
necessarily true, as the previous example shows.

Dependencies have a set of axioms stating which dependencies hold given an arbitrary set
of dependencies of the same kind. The set of dependencies � closed under their own set of
axioms is denoted by�+. A minimal set of dependencies from which all other dependencies
can be deduced by means of those axioms is called a minimal generating set.
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Let U be the set of attributes of a relational table. The axioms for functional dependencies
follow Armstrong rules [39] for all X,Y, Z ⊆ U :

Y ⊆ X

X → Y

X → Y

X ∪ Z → Y

X → Y, Y → Z

X → Z

These axioms are respectively called reflexivity, augmentation and transitivity. Impli-
cations also share the same axioms [17]. On the other hand, the axioms for degenerated
multivalued dependencies (DMVDs) are reflexivity, complementation or symmetry, aug-
mentation and transitivity, i.e. for all X,Y, Z, V,W ⊆ U :

Y ⊆ X

X → Y

X → Y

X → U \ Y \X
X → Y, V ⊆ W

W ∪X → V ∪ Y

X → Y, Y → Z

X → Z \ Y
These axioms are also shared by multivalued dependencies, a well-known kind of

dependencies in the relational database model [33].
In this paper, we will use pattern structures to characterize a set of functional dependen-

cies (and DMVDs) that hold in data table. In fact, it is not an arbitrary �, but precisely �+.
Firstly, we recall how such characterization is classically done in the FCA literature.

3 The characterization of functional dependencies within FCA

In this section, we firstly present the mathematical framework of FCA. Then, we show a
way to transform a set of tuples into a binary relation which allows to characterize functional
dependencies in that framework.

3.1 Formal concept analysis

Formal Concept Analysis (FCA) is a mathematical framework allowing to build a concept
lattice from a binary relation between objects and their attributes. The concept lattice can be
represented by a diagram where classes of objects/attributes and ordering relations between
classes can be drawn, interpreted and used for data-mining, knowledge management and
discovery [41, 42].

We use standard definitions from [17]. Let G and M be arbitrary sets and I ⊆ G × M

be an arbitrary binary relation between G and M . The triple (G,M, I) is called a formal
context. Each g ∈ G is interpreted as an object, each m ∈ M is interpreted as an attribute.
The statement (g,m) ∈ I is interpreted as “g has attribute m”. The two following derivation
operators (·)′:

A′ = {m ∈ M | ∀g ∈ A : gIm} f or A ⊆ G,

B ′ = {g ∈ G | ∀m ∈ B : gIm} f or B ⊆ M

define a Galois connection between the powersets of G and M . The derivation operators
{(·)′, (·)′} put in relation elements of the lattices (℘(G),⊆) of objects and (℘(M),⊆) of
attributes and reciprocally. A Galois connection induces closure operators (·)′′ and real-
izes a one-to-one correspondence between all closed sets of objects and all closed sets of
attributes. For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and B ′ = A, is called a
formal concept. Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔
B2 ⊆ B1). (A1, B1) is a sub-concept of (A2, B2), while the latter is a super-concept of
(A1, B1). With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G,M, I), i.e. any subset of concepts
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has both a supremum (join ∨) and an infimum (meet ∧) [17]. For a concept (A,B) the set
A is called the extent and the set B the intent of the concept. The set of all concepts of a
formal context (G,M, I) is denoted by B(G,M, I) while the concept lattice is denoted by
B(G,M, I).

Theorem 1 (The basic theorem on concept lattices [17]) The concept lattice of a context
(G,M, I) is a complete lattice in which infimum and supremum are given by:

An implication of a formal context (G,M, I) is denoted by X → Y , X,Y ⊆ M and
means that all objects from G having the attributes in X also have also the attributes in Y ,
i.e. X′ ⊆ Y ′. Implications obey the Amstrong rules (reflexivity, augmentation, transitivity).
A minimal subset of implications (in sense of its cardinality) from which all implications
can be deduced with Amstrong rules is called the Duquenne-Guigues basis [19].

Objects described by non binary attributes can be represented in FCA as a many-valued
context (G,M,W, I) with a set of objects G, a set of attributes M , a set of attribute values
W and a ternary relation I ⊆ G×M×W . The statement (g,m,w) ∈ I , also written g(m) =
w, means that “the value of attribute m taken by object g is w”. The relation I verifies
that g(m) = w and g(m) = v always implies w = v. For applying the FCA machinery,
a many-valued context can be transformed into a formal context with a conceptual scaling.
The choice of a scale should be wisely done w.r.t. data and goals since it affects the size, the
interpretation, and the computation of the resulting concept lattice.

Example Figure 1 shows a formal context and its concept lattice. Starting from an arbitrary
set of objects, say {g3}, one obtains concept ({g3}′′, {g3}′) = ({g3, g4}, {m2,m3}). The dia-
gram shows the resulting concept lattice: each node denotes a concept while a line denotes
an order relation between two concepts. The top (resp. bottom) concept is the highest (resp.
lowest) concept w.r.t. the partial ordering of concepts (≤).

Reduced labeling avoids to display the whole concept extents and intents. The extent of a
concept has to be considered as composed of all objects attached to it and its sub-concepts;
the intent of a concept is composed of all attributes attached to it and its super-concepts.1

In this example, the implication m1 → m2 holds, since m′
1 ⊆ m′

2, i.e. {g2} ⊆ {g2, g3, g4}.
Intuitively, implications can be read on the line diagram, as attributes labeling one concept
implying attributes labeling itself or its super-concepts.

3.2 Functional dependencies as implications

We now recall with an example how functional dependencies can be characterized using
FCA (see [4] and [17], page 92). The main idea behind this method consists in transforming
a man-valued context into a formal context, whose concept lattice characterizes functional
dependencies.

1The lattice drawing is done with the ConExp software: conexp.sourceforge.net
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Starting from a tuple table T with attributes U taking values in Dom, we build the formal
context K = (B2(G),M, I), where G = T and M = U to respect the FCA notations
from [17]. B2(G) = {(ti , tj ) | i < j and ti , tj ∈ T } is the set of pairs of tuples from G.
Then, the relation I is defined as

(ti , tj )I m ⇔ ti(m) = tj (m), for m ∈ M

This binary relation between pairs of tuples and attributes is reflexive, symmetric and
transitive, and, therefore, it is an equivalence relation. The objects of K correspond to the
set of all pairs of tuples from T (excluding symmetry and reflexivity to avoid redundancy),
while attributes remain the same. ((ti, tj ),m) ∈ I means that the tuples ti and tj agree on
the value taken by the attribute m ∈ M . Figure 2 illustrates the transformation of the initial
data to build a formal context and its concept lattice. It should be noticed that the number of
objects of the formal context is in the range of O(|T 2|) (where |T | is the number of tuples),
so it can be significantly larger than the original set of tuples T .

We now explain how this concept lattice characterizes the set of all functional dependen-
cies that hold in the table T with the following proposition:

Proposition 1 ([4, 17]) A functional dependency X → Y holds in a table T if and only if
{X}′′ = {X, Y }′′ in the formal context K = (B2(G),M, I).

This proposition states how to test that a FD holds using the concept lattice that has been
computed. For instance, let us suppose that we want to test whether a functional dependency
a → b holds in the formal context of Fig. 2. We should test in the corresponding concept
lattice if {a}′′ = {a, b}′′. In this particular case, we have that {a}′′ = {a, d} and {a, b}′′ =
{a, b, d}, which means that this dependency does not hold in T . On the other hand, the
dependency ac → d holds, since {a, c}′′ = {a, c, d} and {a, c, d}′′ = {a, c, d}.

An interesting consequence is that the set of implications that hold in the formal context
K = (B2(G),M, I) is syntactically equivalent to the set of functional dependencies that
hold in a table T [4, 17]. By syntactically we mean that whenever an implication X → Y

holds in K, then the functional dependency X → Y holds in T (though not left-reduced).
Equivalently, the minimal generating set of functional dependencies that hold in T is the
same as the Duquenne-Guigues basis of the implications that hold in K. Going back to
our example, the concept lattice given in Fig. 2 characterizes the implications a → d and
d → a, which form the Duquenne-Guigues basis.

3.3 Conceptual scaling and FDs

Before introducing our method based on pattern structures to characterize functional depen-
dencies, we investigate another aspect of the original data transformation into a formal
context. In FCA, a way to turn a numerical table into a formal context is to use a concep-
tual scale (see Chapter 1.3 of [17]). Conceptual scaling consists in turning the many-valued
attributes into binary attributes following rules given by the scale. For example, the ordi-
nal scale states that, for a numerical attribute m, a pair object-attribute (g,m) taking value
x ∈ N should be derived into binary attributes “≤ y”, for any y ≥ x of the attribute domain,
i.e. (g, “ ≤ y”) ∈ I . This means that the original dataset is turned into a formal context
having the same set of objects and a larger set of binary attributes.

In the previous subsection, the data transformation we presented is not a conceptual scal-
ing: the set of attributes remains the same after the transformation, whereas the set of objects
is changed and its size is increased. Indeed, we replace objects by pairs of objects, and,
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given n objects, there are n(n − 1)/2 potential pairs of objects. By contrast, we investigate
in this section whether, given a data table T , it is possible to define a conceptual scaling
applied to attributes and allowing to derive a formal context KT with the same set of objects
and such that the set of FDs holding in T is syntactically equivalent to the set of attribute
implications holding in KT .

We show in the following example that this is not possible by constructing a simple
and suitable counter-example. Let us consider the n × m numerical data table given in
Fig. 3 (left), based on n = 4 rows (objects) and m = 4 columns (attributes). Here the
fact that n = m here does not affect generality. The binarization, i.e. the transformation
applied to objects (that could be termed as “vertical scaling”), yields n(n− 1)/2 = 6 rows.
The singularity of this example is that for any attribute, all objects share the same value
except one (no empty row in the binary table), and this particular object is different for each
attribute.

Actually, the context in Fig. 3 (middle) is “clarified” and “reduced”. Recall that a formal
context (G,M, I) is clarified if ∀g, h ∈ G, g′ = h′ implies g = h (and similarly for
the attributes). Moreover, an element x in a lattice L is ∨-irreducible (resp. ∧-irreducible)
if x �= ⊥ (resp. x �= �) and x = a ∨ b (resp. x = a ∧ b) implies x = a or x = b

for all a, b ∈ L [12]. Then in terms of FCA, a clarified context (G,M, I) is reduced
when it is row-reduced (i.e. every object-concept is ∨-irreducible) and column-reduced (i.e.
every attribute-concept is ∧-irreducible) [17]. In addition, the number j ir of ∨-irreducible
concepts in a concept lattice is less than or equal to the number of objects |G|, and the
numbermir of ∧-irreducible concepts is less than or equal to the number of attributes. There
is equality when the formal context is clarified and reduced. For example, for the context
given in Fig. 3 (middle) and the associated concept lattice given in Fig. 3 (right), we can
observe that mir = 4 and j ir = 6.

Now, scaling the data table T in Fig. 3 (left) keeping unchanged the set of objects
G = T returns a formal context, say (G, M̂, Î ), where |M̂| ≥ |M|, i.e. the number of scaled
attributes is greater than or equal to the initial number of attributes. Then, the number of
∧-irreducible elements mir in the concept lattice B(G, M̂, Î ) should verify mir ≥ 4, as
scaling separates attributes rather than merging them. In the same way, the number of ∨-
irreducible elements j ir in B(G, M̂, Î ) should verify j ir ≤ 4. By contrast, mir = 4 and
j ir = 6 for the lattice B(B2(G),M, I). Then, it is not possible to find any scaling yielding
a concept lattice B(G, M̂, Î ) isomorphic to B(B2(G),M, I) –and thus with the same impli-
cation basis– as ∨-irreducible and ∧-irreducible elements are preserved by the isomorphism.
Thus, binarization should be necessarily applied to objects and not to attributes.

Fig. 3 A data table T (left) with its associated formal context (B2(G),M, I ) (middle). In the concept lattice
diagram, nodes labeled with attributes (upper level) are ∧-irreducible concepts while nodes labeled with
objects (lower level) are ∨-irreducible concepts (right)
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4 Characterizing FDs with pattern structures

In the previous section, we showed how to turn a set of tuples T into a formal context
K = (B2(G),M, I), whose concept lattice allows to characterize functional dependencies.
However, the number of objects |B2(G)| in the resulting context is quadratic with respect to
the number of tuples. As shown later in the experiments, this is not viable for real datasets.
Thus, we propose to use the formalism of pattern structures to obtain an equivalent concept
lattice, avoiding a transformation leading to a quadratic number of objects. Pattern structures
can be understood as a generalization of FCA able to directly deal with complex data i.e.
objects taking descriptions in a partially ordered set.

4.1 Pattern structures

A pattern structure is defined as a generalization of a formal context describing complex
data [16]. Formally, let G be a set of objects, let (D,�) be a meet-semi-lattice of potential
object descriptions and let δ : G −→ D be a mapping associating each object with its
description. Then (G, (D,�), δ) is a pattern structure. Elements of D are patterns and are
ordered thanks to a subsumption relation �: ∀c, d ∈ D, c � d ⇐⇒ c � d = c.

A pattern structure (G, (D,�), δ) is based on two derivation operators (·)�:

A� =
�

g∈A
δ(g) f or A ⊆ G

d� = {g ∈ G|d � δ(g)} f or d ∈ (D,�).
These operators form a Galois connection between (℘(G),⊆) and (D,�). Pattern con-

cepts of (G, (D,�), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,�), such that
A� = d and A = d�. For a pattern concept (A, d), d is a pattern intent and is the
common description of all objects in A, the pattern extent. When partially ordered by
(A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 � d1), the set of all concepts forms a complete
lattice called pattern concept lattice.

As for formal contexts, implications can be defined. For c, d ∈ D, the pattern implication
c → d holds if c� ⊆ d�, i.e. the pattern d occurs in an object description if the pattern c

does. Similarly, for A,B ⊆ G, the object implication A → B holds if A� � B�, meaning
that all patterns that occur in all objects from the set A also occur in all objects in the set
B [16].

Finally, it can be noticed that existing FCA algorithms [26] can be reused with slight
modifications to compute pattern structures, in order to extract and classify concepts [22].

4.2 The partition lattice as a space of descriptions

In order to construct the meet-semi-lattice of potential object descriptions of a pattern struc-
ture, we recall well-known definitions of the partitions of a set and the so-called partition
lattice. In the examples that follow, we consider a set E = {1, 2, 3, 4}.

Partition of a set A partition over a given set E is a set P ⊆ ℘(E) s.t.:

–
⋃

pi∈P
pi = E

– pi ∩ pj = ∅, for any pi, pj ∈ P with i �= j .

In other words, a partition covers E and is composed of disjoint subsets of E.
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Equivalence relation There is a bijection between the sets of partitions and the set of
equivalence relations of a set. This 1-1-correspondence between P and RP is given by
(e, e′) ∈ RP iff e and e′ belongs to the same equivalence class of P [11, 18]. For exam-
ple, given P = {{1, 2, 3}, {4}}, one has the relation RP = {(1, 2), (1, 3), (2, 3), (1, 1),
(2,2), (3,3), (4,4)} (omitting symmetry for the sake of readability).

The set of equivalence relations on any set T can be ordered by inclusion, if we consider
a relation as a set of pairs of T , or also as the natural order on partitions, if we take the
partition notation for the relations.

Ordering relation A partition P1 is finer than a partition P2 (P2 is coarser than P1), written
P1 � P2 if any subset of P1 is a subset of a subset in P2. For example,

{{1, 3}, {2}, {4}} � {{1, 2, 3}, {4}}
In fact, the sets of equivalence relations of a set T , or the set of partitions of T , is a lattice.

The unit element (top) of this lattice denotes the fact that all objects are equivalent, i.e. all
the attributes are in one class, while in the zero element (bottom) there are no two equivalent
elements, i.e. each single element forms an equivalence class (|T | classes of equivalence).
Seen as sets of pairs T × T , the top element contains precisely T × T , whereas the zero
element contains the sets {(x, x) | ∀x ∈ T }.

We can define the meet of two equivalence relations, or two partitions, as follows:

Meet of two partitions It is defined as the coarsest common refinement of two partitions. In
other words, it is the intersection of the respective equivalence relations (omitting reflexivity
for the sake of readability):

{{1, 3}, {2, 4}} � {{1, 2, 3}, {4}} = {{1, 3}, {2}, {4}}
or {(1, 3), (2,4)} ∩ {(1, 2), (1,3), (2,3)}

The meet of two partitions is identical to the intersection of two equivalence relations
seen as sets of pairs of tuples. Likewise, we can also define the join of two equivalence
relations or partitions, which, again, can be seen as the union of two sets of pairs:

Join of two partitions It is defined as the finest common coarsening of two partitions. In
other words, it is the transitive closure of the union of the respective equivalence relations.

{{1, 3}, {2}, {4}} � {{1, 2}, {3}, {4}} = {{1, 2, 3}, {4}}
or transitive closure({(1,3)} ∪ {(1,2)}) = {(1,2), (1,3), (2,3)}

Finally, one should notice that the property P1 � P2 = P1 ⇔ P1 � P2 naturally holds
(and the dual for join). Since the set of all partitions over a set forms a lattice (D,�,�), it
can be used as a description space of a pattern structure.

4.3 Partition pattern structure

Consider a tuple table T as a many-valued context (G,M,W, J ) where G = T corresponds
to the set of objects (“rows”), M = U to the set of attributes (“columns”), W = Dom the
data domain (“all distinct values of the table”) and J ⊆ G × M × W a relation such that
(g,m,w) ∈ J also written m(g) = w means that attribute m takes the value w for the object
g [17]. In Table 4 (left), we have d(t4) = 3.

We show how a partition pattern structure can be defined from a many-valued context
(G,M,W, J ) and show that its concept lattice is equivalent to the concept lattice of K =



Characterizing functional dependencies in FCA 139

(B2(G),M, I) introduced above. Intuitively, formal objects of the pattern structure are the
attributes of the many-valued context (G,M,W, J ). Then, given an attribute m ∈ M , its
description δ(m) is given by a partition over G such that any two elements g, h of the same
class take the same values for the attribute m, i.e. m(g) = m(h). The result is given in Fig. 4
(middle). As such, descriptions obey the ordering of a partition lattice as described above.
It follows that (G,M,W, J ) can be represented as a pattern structure (M, (D,�), δ) where
M is the set of original attributes, and (D,�) is the set of partitions over G provided with
the partition intersection operation �. An example of concept formation is given as follows,
starting from set {a, d} ⊆ M:

{a, d}� = δ(a) � δ(d)

= {{t1, t3}, {t2, t4}} � {{t1, t3}, {t2, t4}}
= {{t1, t3}, {t2, t4}}

{{t1, t3}, {t2, t4}}� = {m ∈ M|{{t1, t3}, {t2, t4} � δ(m)}
= {a, d}

Hence, ({a, d}, {{t1, t3}, {t2, t4}}) is a pattern concept. The resulting pattern concept
lattice is given in Fig. 4 (right).

In the previous section, a many-valued context (G,M,W, J ) was derived as the formal
context (B2(G),M, I) where B2(G) represents any pair of objects, and ((g, h),m) ∈ I

means that m(g) = m(h). The resulting concept lattice is used to characterize the set of FDs
[17]. A new result is that both structures (B2(G),M, I) and (M, (D,�), δ) are equivalent,
i.e. both collections of concepts are in 1-1-correspondence.

Proposition 2 (B,A) is a pattern concept of the partition pattern structure (M, (D,�), δ)
if and only if (A,B) is a formal concept of the formal context (B2(G),M, I) for all B ⊆
M,A ⊆ B2(G) (equivalently A is a partition on G).

Proof We first notice that a pattern A ∈ D is a partition of the set of tuples, whereas
elements of B2(G) are sets of pairs of tuples. Yet, as we have seen in Section 3.2, objects
in B2(G) form an equivalence relation, and, therefore, partitions, which means that they
correspond to patterns in D.

Consider now that the concept lattices of the contexts (B2(G),M, I) and (M,B2(G), I)

are equivalent, as they are built with “symmetric concepts”: if (A,B) belongs to the first,

Fig. 4 The original data (left), the resulting pattern structure (middle) and its pattern concept lattice (right)
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(B,A) belongs to the second. With the context (M,B2(G), I) and the pattern structure
(M, (D,�), δ), the proposition holds since B ′ = B� for all B ⊆ M:

B� =
�

m∈B
δ(m)

=
⋂

m∈B
{(t, t ′) | t (m) = t ′(m)} ∀t, t ′ ∈ T

= {(t, t ′) | t (B) = t ′(B)} ∀t, t ′ ∈ T

= B ′

And symmetrically, A′ = A� for all A ∈ D, A ⊆ B2(G):

A� = {m ∈ M | A � δ(m)}
= {m ∈ M | ∀(t, t ′) ∈ A : (t, t ′) ∈ δ(m)} ∀t, t ′ ∈ T

= {m ∈ M | ∀(t, t ′) ∈ A : t (m) = t ′(m)} ∀t, t ′ ∈ T

= A′

Example The pattern concept ({b}, {{1, 2, 4}, {3}}) is equivalent to the formal concept
({(1,2), (1,4), (2,4)}, {b}). One should remark that pattern structures offer more concise
intent representation when the set of tuples becomes very large, i.e. storing a partition
instead of all pairs of objects that are together in a same class of the partition.

Moreover, there is an isomorphism between the concept lattice of (G,M, I) and the
pattern concept lattice of (G, (D,�), δ). Then, the following proposition states that FDs can
be characterized within the pattern concept lattice.

Proposition 3 A functional dependency X → Y holds in a table T if and only if: {X}� =
{XY }� in the partition pattern structure (M, (D,�), δ).

Proof First of all, we notice that (t, t ′) ∈ X� if and only if t (X) = t ′(X), i.e. ∀x ∈ X :
t (x) = t ′(x). We also notice that {X, Y }� ⊆ {X}�, as {X} ⊆ {X,Y }.

(⇒) We prove that if X → Y holds in T , then, {X}� = {X,Y }�, i.e. {X}� ⊆ {X,Y }�.
We take an arbitrary pair (t, t ′) ∈ {X}�, i.e. t (X) = t ′(X). Since X → Y holds, it implies
that t (XY) = t ′(XY), and this implies that (t, t ′) ∈ {X,Y }�.

(⇐) We take an arbitrary pair t, t ′ ∈ T such that t (X) = t ′(X). Therefore, we have that
(t, t ′) ∈ X�, and by hypothesis, (t, t ′) ∈ XY�, i.e. t (XY) = t ′(XY). Since this is true for
all pairs t, t ′ ∈ T such that t (X) = t ′(X), it comes that X → Y holds in T .

Example We consider a FD that holds in Table 1: a → d . It is characterized from
(B2(G),M, I) as an attribute implication. It holds as well in (M,B2(G), I) and
(M, (D,�), δ) as an object implication.

Therefore, a naive algorithm that computes {X → XY | {X}� = {XY }�} for all
X,Y ⊆ U would compute the Functional Dependencies that hold in a table. Alternatives
are discussed in Sections 6 and 7.
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5 Characterizing DMVDs with pattern structures

In order to show the flexibility of pattern structures to characterize dependencies, we now
introduce how to handle a more general type of dependencies: degenerated multivalued
dependencies (DMVDs). We have seen that the computation of functional dependencies is
based on the equivalence relations (partitions) that are induced by an attribute. In order to
compute DMVDs we consider now a tolerance relation. This relation is different from an
equivalence relation in that it is symmetric and reflexive but not necessarily transitive. We
define a tolerance relation on the set of tuples of a relation induced by an attribute:

Definition 3 Let a ∈ U and let a = U \ {a}. The tolerance relation RT in a table T induced
by a is:

RT(a) = {(ti , tj ) ∈ T × T | i < j and ti(a) = tj (a) or ti (a) = tj (a)}
With the restriction i < j we prevent pairs such as (ti , ti ), or two symmetric pairs (ti , tj )

and (tj , ti) from appearing in the representation of a relation, because, since symmetry and
reflexivity hold, their presence is redundant. Note that the difference w.r.t. the definition of
functional dependencies is the addition of the conjunctive clause ti (a) = tj (a).

Since tolerance relations are sets of pairs of tuples, if we define the meet and join between
two tolerance relations as their set intersection and union, and order them by set inclusion,
we have that the set of all possible tolerance relations is a complete lattice.

Given a tolerance relation, so called blocks of tolerance are defined as maximal sets of
pairwise elements in correspondence (see [25] in FCA settings):

Definition 4 Given a set G, a subset K ⊆ G, and a tolerance relation I on G, K is a block
of tolerance if:

(i) ∀x, y ∈ K xIy (pairwise in correspondence)
(ii) ∀z �∈ K, ∃u ∈ K ¬(zIu) (maximality)

For instance, the tolerance block {t1, t2, t4} represents the set of pairs {(t1, t2), (t1, t4),
(t2, t4)}. An attribute m ∈ M is no longer described by a partition over the set of objects as
in the previous section, but rather by a set of tolerance blocks. The pattern structure that we
obtain, denoted by (M, (D,�), δ), is such that δ(m) maps an attribute m ∈ M to the set of
tolerance blocks of the relation RT(m). The description space (D,�) admits the same meet
� and the same ordering relation � as the partition lattice. Then, an example of concept
formation is given as follows, starting from the set {a, b} ⊆ M:

{a, b}� = δ(a) � δ(b)

= {{t1, t3}, {t2, t4}} � {{t1, t2, t4}, {t1, t3}}
= {{t1, t3}, {t2, t4}}

{{t1, t3}, {t2, t4}}� = {m ∈ M | {{t1, t3}, {t2, t4}} � δ(m)}
= {a, b, c, d}
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Fig. 5 Characterizing DMVDs with a pattern concept lattice: the pattern structure (on the left) obtained by
transforming Table 1 and its pattern concept lattice (on the right)

The resulting pattern structure along with its pattern concept lattice is given in Fig. 5.
It can be noticed that, as for functional dependencies, a formal context can be built to

characterize DMVDs, whose concept lattice is equivalent. The formal context can be writ-
ten as (M,B2(G),R) where (m, (ti , tj )) ∈ R ⇐⇒ (ti, tj ) ∈ RT(m). The resulting formal
context of our example and its concept lattice are given in Fig. 6. Here again, pattern struc-
tures offer more concise object descriptions with sets of blocks of tolerance instead of sets
of pairs of tuples.

Now we can state how a DMVD X → Y holds in T according to the pattern structure
(M, (D,�), δ).
Theorem 2 Let Z = U \ X \ Y . A DMVD X → Y holds in T if and only if

{X}� = {XY }� ∪ {XZ}�

Proof We assume that (t, t ′) ∈ X� and X′ ⊆ X implies that (t, t ′) ∈ X′�. We also have
that Z = U \ X \ Y .

(⇒) We take two different tuples t, t ′ ∈ X�. We have two different options:

1. t (X) �= t ′(X). This implies, necessarily, that there is a subset of attributes W ⊆ X such
that t (W) �= t ′(W), which implies that t (W) = t ′(W). In this case, since YZ ⊆ X

we have that for all x ∈ YZ : (t, t ′) ∈ δ(x), and, therefore, (t, t ′) ∈ XYZ�, i.e.
(t, t ′) ∈ {XY }� ∪ {XZ}�.

Fig. 6 Characterizing DMVDs with FCA
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2. t (X) = t ′(X). Since X → Y holds in T , we have that t (Y ) = t ′(Y ) or t (Z) = t ′(Z).
In the first case, we have that, for all y ∈ Y : t (y) = t ′(y), and then, (t, t ′) ∈ δ(y). This
yields that (t, t ′) ∈ XY�. The case t (Z) = t ′(Z) is symmetric.

In both cases we have that (t, t ′) ∈ {XY }� ∪ {XZ}�.
(⇐) We take two different tuples (t, t ′) such that t (X) = t ′(X). This implies that

(t, t ′) ∈ X�, and, therefore, by hypothesis, that (t, t ′) ∈ XY� or (t, t ′) ∈ XZ�. Both cases
are symmetric, and we take the former one: (t, t ′) ∈ XY�, and in this case we have two
different cases:

1. There is a subset of attributes W ∈ Y such that t (W) �= t ′(W). In this case, we have that
necessarily t (W) = t ′(W). Since Z ⊆ Y , then, t (Z) = t ′(Z) and the DMVD X → Y

holds in T (by symmetry).
2. We have that t (Y ) = t ′(Y ), in which case the DMVD X → Y holds in T .

We find here a method to check whether a DMVD holds in a table, similar to that
described in Section 3. For instance, if we want to check if a → b we check if
a� = ab� ∪ acd�, which is true since a� = {(t1, t3), (t2, t4)}, ab� = {(t1, t3), (t2, t4)}
and acd� = {(t1, t3), (t2, t4)}. If we want to test whether c → a, we see that
c� = {(t1, t2), (t1, t3), (t2, t3), (t2, t4)} whereas ac� = {(t1, t3), (t2, t4)} and bcd� =
{(t1, t3), (t2, t4)} which implies that c� �= ac� ∪ bcd�, and by Theorem 2 means that
c → a does not hold in T .

As we did in the previous section, we do not discuss how to enumerate all the DMVDs
that hold in a table, although Theorem 2 states that a naive algorithm that computes {X →
XY | {X}� = {XY }� ∪ {XZ}�} for all X, Y ⊆ U would be enough.

6 Experiments

We showed how pattern structures can alternatively represent the formal context
(M,B2(G), I), or equivalently (B2(G),M, I), by means of partition patterns. Both concept
lattices are equivalent and thus can be used to characterize FDs. To assess the usefulness
of introducing partition pattern structures, we applied both methods to well known UCI
datasets.2

To compute with formal contexts, we wrote a simple procedure to transform a many-
valued context (G,M,W, J ), or table T , into a formal context, and applied the (C++) closed
itemset mining algorithm LCM (version 2 [40]). Whereas this algorithm only computes
concept intents, it is known to be one of the most efficient for that task. We also consider
clarified contexts (B2(G),M, I): clarifying the objects of a context consists in keeping only
one object among those that have the same closure. It is known that both original, say non-
clarified, and clarified contexts give rise to equivalent concept lattices that hold the same
implications, hence the same functional dependencies. However, the number of objects of
the clarified context can be smaller in several orders of magnitude.

To compute with pattern structures, we turned a many-valued context into a set of parti-
tions over G (one for each attribute m ∈ M) and applied a slight (Java) modification of the
algorithm CloseByOne [26]. Indeed, the latter can be easily adapted by changing the def-
inition of both intersection and subsumption test, used for closure computation (a detailed

2http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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Table 2 Datasets and their characteristics (K stands four thousands, M for millions)

(G,M,W, I) (B2(G),MI)

Dataset |G| |M| |B2(G)| Avg. |g′| Density |B2(G)|clarified

iris 150 5 4,3K 1.38 27 % 26

hepatitis 155 20 11K 9.02 45 % 6,071

glass 214 10 19K 1.74 17 % 105

imports-85 205 26 20K 6.24 24 % 2,767

balance-scale 625 5 143K 1.67 33 % 29

crx 690 16 236K 5.53 43 % 4,398

flare 1,066 13 567K 8.79 67 % 1,551

abalone 4,177 9 3,7M 1.19 13 % 240

krkopt-25 % 7,013 7 20M 1.84 26 % 125

krkopt-50 % 14,027 7 76M 1.72 24 % 125

krkopt-75 % 21,040 7 171M 1.66 24 % 125

krkopt-100 % 28,056 7 299M 1.67 23 % 125

adult-25 % 8,140 14 33M 6.32 42 % 7,795

adult-50 % 16,280 14 132M 6.34 42 % 8,709

adult-75 % 24,320 14 295M 6.34 42 % 9,192

adult-100 % 32,561 14 530M 6.33 42 % 9,554

explanation for another instance of pattern structures can be found in [22, 23]). As such,
this method computes pattern concepts, i.e. both pattern extents and intents.

Table 2 gives the details of the datasets and their derived formal contexts. It can
be noticed that in column |B2(G)|, formal objects (g, h) with empty description, i.e.
{(g, h)}′ = ∅ for any g, h ∈ G, are not taken into account. The same applies for the last col-
umn (right-most) where we count the number of unique non-empty object descriptions only,
i.e. after clarifying the objects. It can be noticed that the number of objects after clarification
is much smaller (less than 3 % in average on all datasets).

Table 3 gives the execution time of both methods. For pattern structures, execution times
include the reading of the data, their process to a set of partitions and the CloseByOne
execution. Concerning formal contexts, we evaluate the performances of LCM without and
with object clarification: (i) execution times include data reading and process with LCM
while the time to build the formal context is not taken into account, (ii) clarification and
LCM processing are monitored separately.

In both cases, algorithms only output the number of patterns. The experiments were
carried out on an Intel Core i7 CPU 2.40 Ghz machine with 4 GB RAM.

From Table 3, it can be observed than computing with formal contexts is faster for the
smallest datasets, even abalone that holds more than 3 millions of objects. However, with
bigger datasets, from 20 to 530 millions of objects, partition pattern structures are the only
method able to compute the set of concepts. This holds for 7 numerical attributes already,
and is accentuated with 15. It is indeed already known that complexity of computing FDs is
highly related to the number of numerical attributes M .

Now, as we noticed before, after the object clarification it remains a very small proportion
of objects, hence leading to a very fast computation with LCM, which outperforms Close-
ByOne on pattern structures. However, the time required for clarifying the context makes
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Table 3 Comparing pattern structures and formal context representations

Number of Time Time Time Time LCM

Dataset intents CloseByOne LCM clarification after clar.

no clar.

iris 26 ≤ 1 ≤ 1 ≤ 1 ≤ 1

balance-scale 30 ≤ 1 ≤ 1 ≤ 1 ≤ 1

flare 4,096 ≤ 1 ≤ 1 ≤ 1 ≤ 1

glass 133 ≤ 1 ≤ 1 ≤ 1 ≤ 1

crx 9,528 4 ≤ 1 ≤ 1 ≤ 1

abalone 252 5 ≤ 1 ≤ 1 ≤ 1

hepatitis 95,576 11 ≤ 1 ≤ 1 ≤ 1

imports85 205,623 228 ≤ 1 ≤ 1 ≤ 1

krkopt-25 % 126 ≤ 1 6 4 ≤ 1

krkopt-50 % 126 ≤ 1 N/A 16 ≤ 1

krkopt-75 % 126 ≤ 1 N/A 36 ≤ 1

krkopt-100 % 126 ≤ 1 N/A 64 ≤ 1

adult-25 % 10,881 4 N/A 24 ≤ 1

adult-50 % 12,398 5 N/A 95 ≤ 1

adult-75 % 13,133 10 N/A 213 ≤ 1

adult-100 % 13,356 12 N/A 414 ≤ 1

Execution times are given in seconds. N/A means that the computation was intractable for memory issues

CloseByOne still an efficient alternative. Indeed, one still needs to generate |G|×|G| object
descriptions and to keep the unique object descriptions. As such, the scaling processes each
pair of objects, i.e. builds its description, and the later is added in a sorted set data-structure
(ensuring log(n) time cost, hence n2log(n) in total). When all pairs have been considered,
the resulting clarified formal context is processed with LCM which runs faster on a reduced
set of objects.

As already suggested in [16, 22] in different settings, the trade-off of performances
between the process of formal contexts and pattern structures is explained as follows. When
working with simple descriptions (i.e. vectors of bits), computing an intersection is more
efficient than when working with more complex descriptions. Indeed, partitions are encoded
in our algorithm as vectors of bitvectors (i.e. partitions) and both intersections or inclusion
test computation require to consider all pairs of sets between the two partitions in argu-
ment. Although we used optimizations avoiding an exhaustive computation between all
pairs (by considering a lectic order on parts), these operations are more complex than stan-
dard intersections and inclusion tests between sets. However, we need to compute much
less intersections, thus the following trade-off. Pattern structures perform better with larger
datasets. Formal objects (numerical attributes) are mapped into concise descriptions (par-
titions) whereas they are mapped with the equivalence class of the same partitions in the
case of formal contexts. Consequently, pattern structures are preferred to formal contexts
when the number of possible pairs of objects that agree for one or more attributes is high
(|B2(G)|).
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7 Related work

Dependency theory is an important subject of database theory for more than twenty years.
Several types of dependencies have been proposed, capturing different semantics, and use-
ful for different tasks among which query optimization, normalization, data cleaning, error
detection, etc. We draw attention on functional dependencies and degenerated multi-valued
dependencies in the present article, while several works studied also equality generating
dependencies (that generalize FDs) [8], constraint generating dependencies (where equal-
ity is replaced by others constraints) [6] or closely related, differential dependencies [36],
conditional functional dependencies (that hold in instances of the relation) [10, 13, 29, 30],
association rules (that hold on particular values of attributes) [2], matching dependencies
and dependencies in fuzzy settings (to cope with uncertainty) [9, 14, 37], etc.

Most of the existing algorithms allowing to discover dependencies from an arbitrary rela-
tion rely on a level-wise exploration of the attribute set lattice [2]. For example, TANE is
an algorithm for computing functional dependencies [20]. It performs a bottom-up explo-
ration of the attribute lattice, combined with a pruning strategy applied when computing a
new level. For each set of attributes, it computes the partition associated to each set X ⊆ U .
This partition is computed as a product of two previously computed partitions. This product
stands for the intersection of computed partitions seen as set of pairs, that is, as an equiva-
lence relation. The difference with respect to our approach (i.e. computing a pattern concept
lattice) is that instead of keeping the sets that compose a pattern concept lattice, the TANE
algorithm keeps only the set of minimal functional dependencies. Yet, in order to compute
those dependencies, it is needed to compute the partitions for the required sets of attributes.
Therefore, even if the output is not the same (sets of dependencies instead of a pattern con-
cept lattice), the result is equivalent. As such, it is not fair to compare our pattern structure
algorithm with TANE. However, we performed a few experiments on the same benchmark
dataset, showing that pattern structures form a good candidate for a further investigation on
computing functional dependencies, and also other kind of dependencies.

Depth-first approaches have also been considered, e.g. with the heuristic driven approach
realized by the algorithm FastFDs [43]. Finally, to deal with the issues of very large het-
erogeneous databases and uncertainty, approximate approaches (greedy and randomized
approaches with approximation bounds on errors) are also developed [38].

The characterization of functional dependencies with FCA has been dealt with in [4,
29, 30] and in [17], as it was explained in Section 3. Medina and Nourine [29] shows that
association rules (ARs), functional dependencies (FDs), and conditional functional depen-
dencies (CFDs) follow a hierarchy: FDs are the union of CFDs, the latter are the union of
ARs. This work is extended in [30] where a lattice characterization of CFDs is proposed.
We address a comparison with this formalism for CFDs in perspectives. FCA allows also to
draw complexity results on dependency theory, e.g. recently, where the problem of recogniz-
ing whether a subset of attributes is a premise of a minimal cover of functional dependencies
of a relation is shown to be coNP-complete [3].

An FCA characterization of DMVDs is presented and discussed in [5]. Other more
sophisticated dependencies, such as multivalued dependencies and acyclic join dependen-
cies are dealt with in [4], The characterization consists in the creation of a formal context
(G,M, I) such that G is formed by combining tuples of the original table, and M is formed
also by combining the original attribute set of the table. The process is similar to the one
described in Section 3, i.e. no implicit transformation of the original data was performed,
but the size of the resulting context is proportional to the size of the original data, leading
to the same problem found in computing FDs with FCA.
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Defining a concept lattice where objects take their descriptions in the lattice of partitions
of a given set has also introduced in [31]. After introducing so called agree concept lattice,
the authors highlight its possible usage for the discovery of functional dependencies, but
also to tackle the problem of skyline computation in databases (the notion of agree sets
was introduced in [7]). This structure is equivalent to the partition concept lattice. Indeed,
working with partitions has been early identified as a key element for the computing of
functional dependencies (see e.g. [20, 27]). The main difference in our work is to show that
pattern structures can be directly applied, and one does not need to prove that (.)�� is a
closure operator (Galois connection). Hence, pattern structures appear to be a flexible way
to handle dependencies (as we showed for handling FDs and DMVDs).

In this article, we consider the problem of characterizing FDs with implications in FCA.
In [24], the inverse reduction was given: For a context K = (G,M, I) one can construct a
many-valued context (relational table) KW such that an implication X → Y holds iff Y is
functionally dependent on X in KW .

8 Conclusion

On one hand, the discovery of functional dependencies is an important topic in the field of
databases. On the other hand, the discovery of implications is an attracting topic in formal
concept analysis. We started our investigation from a known result that links both fields:
functional dependencies can be characterized with formal concept analysis after a data trans-
formation leading to a heavy data representation. Accordingly, we tackled the problem of
avoiding such transformation by introducing partition pattern structures, a new conceptual
structure that allows an equivalent characterization, but coming with better computational
properties. Indeed, the empirical results show that, although the classical FCA approach
performs well for small datasets, it is not scalable compared to partition pattern structures.
Since real-world datasets become larger and larger, this scalability is a more important
feature than the speed concern for small datasets.

We think that the above results, on the formalization and the computation of dependen-
cies, open the possibility to adapt pattern structures to other kinds of dependencies, namely,
multi-valued dependencies and similar constraints that may be found in different fields.
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