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Abstract Inductive conformal predictors have been designed to overcome the
computational inefficiency exhibited by conformal predictors for many underlying
prediction algorithms. Whereas computationally efficient, inductive conformal pre-
dictors sacrifice different parts of the training set at different stages of prediction,
which affects their informational efficiency. This paper introduces the method of
cross-conformal prediction, which is a hybrid of the methods of inductive conformal
prediction and cross-validation, and studies its validity and informational efficiency
empirically. The computational efficiency of cross-conformal predictors is compara-
ble to that of inductive conformal predictors, and they produce valid predictions in
our empirical studies.
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1 Introduction

The method of conformal prediction produces set predictions that are automatically
valid in the sense of their unconditional coverage probability being equal to or ex-
ceeding a preset confidence level ([21], Chapter 2). A more computationally efficient
method of this kind is that of inductive conformal prediction ([16, 21], Section 4.1;
[13]). However, inductive conformal predictors are typically less informationally
efficient, in the sense of producing larger prediction sets as compared with conformal
predictors. Motivated by the method of cross-validation [15, 18], this paper explores
a hybrid method, which we call cross-conformal prediction.

We are mainly interested in the problems of classification and regression, in
which we are given a training set consisting of examples, each example consisting
of an object and a label, and asked to predict the label of a new test object; in the
problem of classification labels are elements of a given finite set, and in the problem
of regression labels are real numbers. (Our experimental results will involve only
classification problems.) If we are asked to predict labels for more than one test
object, the same prediction procedure can be applied to each test object separately.
In this introductory section and in most of our empirical studies we consider the
problem of binary classification, in which labels can take only two values, which
we will encode as 0 and 1. We always assume that the examples (both the training
examples and the test examples, consisting of given objects and unknown labels)
are generated from an exchangeable probability measure (i.e., a probability measure
that is invariant under permuting the examples). This exchangeability assumption is
slightly weaker than the assumption of randomness that the examples are generated
independently from the same probability measure.

The idea of conformal prediction is to try the two different labels, 0 and 1, for the
test object, and for either postulated label to test the assumption of exchangeability
by checking how well the test example conforms to the training set; the output of the
procedure is the corresponding p-values p0 and p1. Two standard ways to package
the pair (p0, p1) are:

– Report the predicted label argmaxy∈{0,1} py, conf idence 1 − min(p0, p1), and cred-
ibility max(p0, p1).

– For a given significance level ε ∈ (0, 1) output the corresponding prediction set
{y | py > ε}.

The prediction sets output by conformal predictors make an error, i.e., fail to cover
the true label, with probability at most ε. In empirical studies this shows as the
calibration plot (the plot of the percentage of errors against ε ∈ (0, 1)) being at or
below the bisector of the first quadrant, to within statistical fluctuations; in practice,
calibration plots are usually very close to the bisector of the first quadrant.

In inductive conformal prediction, discussed in Section 2 of this paper, the training
set is split into two parts, the proper training set and the calibration set. The two p-
values p0 and p1 are computed by checking how well the test example conforms to
the calibration set. The way of checking conformity is based on a prediction rule
found from the proper training set and produces, for each example in the calibration
set and for the test example, the corresponding “conformity score”. The conformity
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score of the test example is then calibrated to the conformity scores of the calibration
set to obtain the p-value. For details, see Section 2.

Inductive conformal predictors are usually much more computationally efficient
than the corresponding conformal predictors (also discussed in Section 2). However,
they are less informationally efficient: they use only the proper training set when
developing the prediction rule and only the calibration set when calibrating the
conformity score of the test example, whereas conformal predictors use the full
training set for both purposes.

Cross-conformal prediction (Section 3) modifies inductive conformal prediction in
order to use the full training set for calibration and significant parts of the training set
(such as 80 % or 90 %) for developing prediction rules. The training set is split into
K folds of equal (or almost equal) size; in our experiments we use K = 5 or K = 10.
For each k = 1, . . . , K we construct a separate inductive conformal predictor using
the kth fold as the calibration set and the rest of the training set as the proper training
set. Let (p0k, p

1
k) be the corresponding p-values. Next the two sets of p-values, p0k

and p1k, are merged into combined p-values p0 and p1, which are the result of the
procedure. In the method of cross-conformal prediction we, essentially, combine p-
values by averaging them.

Empirical studies reported in Section 3 show that cross-conformal predictors are
valid in the sense of their calibration plots being close to the bisector of the first
quadrant (in this case we also say that their predictions are well calibrated). In
our empirical studies in this paper we mainly use the well-known Spambase data
set. The underlying algorithm that we use is Freedman’s gradient boosting (also
known as MART), which performs particularly well on the Spambase data set [11];
however, because of its computational inefficiency, it is utterly infeasible to use it in
combination with conformal prediction. We use the same data set to demonstrate the
informational efficiency of cross-conformal predictors as compared with inductive
conformal predictors. (It is customary to omit “informational” in “informational
efficiency”: see, e.g., [21]; however, we will rarely do so in this paper to avoid
confusion with computational efficiency.)

Besides the Spambase data set we use another well-known dataset, the USPS data
set of hand-written digits, in combination with the 1-Nearest Neighbour algorithm
for tangent distance, which is one of the best performing algorithms on this data
set. Now it becomes computationally feasible to use conformal prediction, and we
show that cross-conformal prediction works almost as well as conformal prediction.
Our experiments on the USPS data set also confirm the empirical validity of cross-
conformal predictors and their greater informational efficiency as compared with
inductive conformal predictors.

Inductive conformal predictors guarantee, and Section 3 studies empirically, the
notion of validity that we call unconditional validity since it is a guarantee on
unconditional coverage probability. Section 4 introduces a conditional version of
cross-conformal predictors and studies empirically its conditional validity. Section 5
concludes.

Appendix A discusses the intuition behind an extreme case of cross-conformal
prediction that we call leave-one-out conformal prediction. It explains why cross-
conformal predictors do not enjoy the same theoretical guarantee of unconditional
validity as inductive conformal predictors.
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Appendix B reports results of empirical studies on the Spambase data set of two
bootstrap versions of conformal prediction. The basic version is empirically valid
but somewhat less informationally efficient than cross-conformal predictors. The
randomized version is not empirically valid.

In Appendix C we consider the method of cross-conformal prediction in which
averaging p-values is replaced by the most standard way of combining p-values,
Fisher’s method [6]. However, this method produces badly miscalibrated results.
Fisher’s method assumes the independence of the p-values being combined, and the
poor calibration suggests that in this case they are heavily dependent.

2 Conformal predictors and inductive conformal predictors

We fix two measurable spaces: X, called the object space, and Y, called the label
space. The Cartesian product Z := X × Y is the example space. A training set is a
sequence (z1, . . . , zl) ∈ Zl of examples zi = (xi, yi), where xi ∈ X are the objects and
yi ∈ Y are the labels.

A conformity measure is a measurable function A : Z∗ × Z → R such that A(ζ, z)
does not depend on the order of the elements of ζ ∈ Z∗. The idea behind the
conformity score A(ζ, z) is that it should measure how well the example z conforms
to the examples in the sequence ζ . The conformal predictor (CP) corresponding to
A is defined as the set predictor

�ε(z1, . . . , zl, x) := {y | py > ε}, (1)

where ε ∈ (0, 1) is the chosen signif icance level (1 − ε is known as the conf idence
level), the p-values py, y ∈ Y, are defined by

py := |{i ∈ {1, . . . , l} | αi ≤ αy}| + 1

l + 1
, (2)

and

αi := A((z1, . . . , zi−1, zi+1, . . . , zl, z), zi), i ∈ {1, . . . , l},
αy := A((z1, . . . , zl), (x, y)) (3)

are the conformity scores of the training and test examples. Given the training set
and a test object x the CP predicts its label y; it makes an error (at significance level
ε) if y /∈ �ε(z1, . . . , zl, x).

In this paper we will use the 1-Nearest Neighbour conformity measure

A(((x1, y1), . . . , (xn, yn)), (x, y)) := mini=1,...,n:yi �=y d(x, xi)
mini=1,...,n:yi=y d(x, xi)

, (4)

where d : X2 → [0,∞) is a measure of distance between two points (often, but not
necessarily, a metric). The intuition behind (4) is that an example conforms to a set
of examples if it is much closer to an example in the set with the same label than to
any example with a different label.

For S ⊆ {1, . . . , l}, we let zS stand for the sequence (zs1 , . . . , zsn), where s1, . . . , sn
is the sequence of all elements of S listed in the increasing order (so that n := |S|).

In the method of inductive conformal prediction, we split the training set into two
non-empty parts, the proper training set zT and the calibration set zC, where (T,C) is
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a partition of {1, . . . , l}. Let A be a conformity measure (it would be possible to drop
the requirement that A(ζ, z) do not depend on the order of the elements of ζ in the
case of inductive conformal predictors and cross-conformal predictors, but we will
not pursue this possibility). The conformity score A(zT , z) will be used to measure
how well the example z conforms to the proper training set zT . A standard choice is

A(zT , (x, y)) := �(y, f (x)), (5)

where f : X → Y′ is a prediction rule found from zT as the training set and � :
Y × Y′ → R is a measure of similarity between a label and a prediction. Allowing
Y′ to be different from Y (usually Y′ ⊃ Y) may be useful when the underlying
prediction method gives additional information to the predicted label; e.g., the
MART procedure used later in the paper gives the logit of the predicted probability
that the label is 1.

The inductive conformal predictor (ICP) corresponding to a conformity measure
A is defined as the set predictor (1), where the p-values py, y ∈ Y, are now defined
by

py := |{i ∈ C | αi ≤ αy}| + 1

|C| + 1
, (6)

and the conformity scores are

αi := A(zT , zi), i ∈ C, αy := A(zT , (x, y)). (7)

The random variables whose realizations are xi, yi, zi, x, y, z will be denoted by the
corresponding upper case letters (Xi, Yi, Zi, X, Y, Z , respectively). The following
proposition of unconditional validity is almost obvious.

Proposition 1 ([21], Propositions 2.3 and 4.1) Let � be a conformal predictor or
an inductive conformal predictor. If random examples Z1, . . . , Zl, Z = (X,Y) are
exchangeable (i.e., their distribution is invariant under their permutations), the proba-
bility of error Y /∈ �ε(Z1, . . . , Zl, X) does not exceed ε for any ε.

We call the property of conformal predictors and inductive conformal predictors
asserted in Proposition 1 unconditional validity since it is about the unconditional
probability of error; we often abbreviate it to “validity” omitting “unconditional”.
Various conditional properties of validity are discussed in [14] and, in more de-
tail, [20].

To check the validity of a family (�ε) of set predictors, such as a conformal
predictor or an inductive conformal predictor, empirically on given training and test
sets one can use the calibration plot: the function mapping each significance level
ε to the percentage of erroneous predictions made by the set predictor �ε on the
test set. However, Proposition 1 does not guarantee that at each significance level
ε with high probability the calibration plot of a conformal predictor or an inductive
conformal predictor will be close to or below the bisector of the first quadrant, even
when the test set is large: errors on different test examples are not independent, since
predictions are computed from the same training set.

Figure 1 shows the calibration plots for a conformal predictor and an inductive
conformal predictor on the USPS data set. The data set, which consists of 9,298
labelled hand-written images of the digits 0–9, has been divided randomly into a
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Fig. 1 Left panel: the calibration plots on the USPS data set for the conformal predictor and the
first 8 seeds, 0–7, for the pseudorandom number generator. Right panel: the analogous plots for the
inductive conformal predictor

training set of size 7,200 and a test set of size 2,098 (we cannot use the original split
into the training and test sets as it violates the exchangeability assumption: see, e.g.,
[21], Section 7.1). The conformity measure used for both the CP and the ICP is (4)
with d tangent distance [17]. In the case of the ICP, the training set is randomly
divided into a proper training set and a calibration set in proportion 2:1, as discussed
below. The experiments are repeated 8 times to get an idea of how much their results
are affected by the random splits.

The plots in Fig. 1 indicate that both kinds of predictors are empirically well
calibrated (this phenomenon was first observed in [19]). In the case of inductive
conformal predictors a theoretical explanation can be found in [20] (Proposition 2a):
with a high probability, the conditional probability of error given the training set will
be close to ε. Since errors on different test examples are conditionally independent
given the training set, this implies good calibration: at each significance level ε with
high probability the calibration plot of an inductive conformal predictor will be close
to or below the bisector of the first quadrant (assuming the test set is large enough).

The family of prediction sets �ε(z1, . . . , zl, x), ε ∈ (0, 1), is just one possible way of
packaging the p-values py. Another way, already discussed in Section 1 in the context
of binary classification, is to report the predicted label argmaxy∈Y py, conf idence
1 − p, where p is the second largest p-value among py, and the credibility maxy py.
In the case of binary classification the predicted label, confidence, and credibility
carry the same information as the full set {py | y ∈ Y} of p-values, but this is not
true in general. It is clear that the notion of confidence is likely to be useful only in
classification problems.

Confidence and credibility can be used for assessing the informational efficiency
and validity of predictors: high confidence values are a sign of informational
efficiency, and a mean credibility slightly above 0.5 over a large test set is a sign
of validity.

14



Cross-conformal predictors

Table 1 Mean (over the test set) confidence and credibility for the ICP and the 5-fold and 10-fold
CCP on the Spambase data set

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Mean confidence, ICP 99.25 99.23 . . . 99.14 99.158 0.149
Mean credibility, ICP 51.31 50.38 . . . 51.44 50.922 1.144
Mean confidence, K = 5 99.22 99.17 . . . 99.28 99.232 0.061
Mean credibility, K = 5 51.11 49.75 . . . 50.78 50.745 0.910
Mean confidence, K = 10 99.24 99.20 . . . 99.31 99.253 0.055
Mean credibility, K = 10 51.08 49.74 . . . 50.70 50.735 0.928

The results are given for various values of the seed for the pseudorandom number generator; column
“Average” gives the average of all the 100 values for the seeds 0–99, and column “St. dev.” gives the
estimate of the standard deviation computed from those 100 values

In our experiments reported in this and the following sections we split the training
set into the proper training set and the calibration set in proportion 2 : 1. This is the
most standard proportion (cf. [11], p. 222, where the validation set plays a similar
role to our calibration set), but the ideal proportion depends on the learning curve
for the given problem of prediction (cf. [11], Fig. 7.8). Too small a calibration set
leads to a high variance of confidence (since calibrating conformity scores becomes
unreliable) and too small a proper training set leads to a downward bias in confidence
(conformity scores based on a small proper training set cannot produce confident
predictions). In the next section we will see that using cross-conformal predictors
improves both bias and variance (cf. Table 1).

3 Cross-conformal predictors

Cross-conformal predictors (CCPs) are defined as follows. The training set is split
into K non-empty subsets (folds) zSk , k = 1, . . . , K, where K ∈ {2, 3, . . .} is a pa-
rameter of the algorithm and (S1, . . . , SK) is a partition of {1, . . . , l}. For each
k ∈ {1, . . . , K} and each potential label y ∈ Y of the test object x find the conformity
scores of the examples in zSk and of (x, y) by

αi,k := A(zS−k , zi), i ∈ Sk, α
y
k := A(zS−k , (x, y)), (8)

where S−k := ∪ j�=kS j = {1, . . . , l} \ Sk and A is a given conformity measure. The
corresponding p-values are defined by

py :=
∑K

k=1

∣
∣
{
i ∈ Sk | αi,k ≤ α

y
k

}∣
∣ + 1

l + 1
. (9)

Confidence and credibility are now defined as before; the set predictor �ε is also
defined as before, by (1), where the significance level ε > 0 is another parameter.

The definition of CCPs parallels that of ICPs, except that we now use the whole
training set for calibration. The conformity scores (8) are computed as in (7) but
using the current fold as the calibration set and the union of all the folds except for
the current one as the proper training set. Calibration (9) is done by combining the
ranks of the test example (x, y) with a postulated label in all the folds.
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If we define the separate p-value

py
k :=

∣
∣
{
i ∈ Sk | αi,k ≤ α

y
k

}∣
∣ + 1

|Sk| + 1
(10)

for each fold, we can see that py is essentially an average of py
k. In particular, if each

fold has the same size, |S1| = · · · = |SK|, a simple calculation gives

py = p̄y + K − 1

l + 1

(
p̄y − 1

) ≈ p̄y, (11)

where p̄y := 1
K

∑K
k=1 p

y
k is the arithmetic mean of py

k and the ≈ assumes K  l.
In this paper we give calibration plots for 10-fold cross-conformal prediction;

calibration plots for 5-fold cross-conformal prediction are part of Online Resource 1.
We take K ∈ {5, 10} following the advice for cross-validation in [11], who refer
to Breiman and Spector [3] and Kohavi [12]. (Our setting, however, is somewhat
different from cross-validation, and it is not obvious whether K ∈ {5, 10} remains a
good choice.) In the experiments of this section we use the Spambase and USPS data
sets. The size of the Spambase data set is 4,601, and there are two labels: email,
encoded as 0, and spam, encoded as 1. As already mentioned, the USPS data set is
bigger, 9,298 examples, and multilabel (0–9).

The conformity measure used in the case of the Spambase data set is (5), where f
is output by MART ([11], Chapter 10) and

�(y, f (x)) :=
{
f (x) if y = 1

− f (x) if y = 0.
(12)

MART’s output f (x) models the log-odds of spam vs email,

f (x) = log
P(1 | x)
P(0 | x) ,

which makes the interpretation of (12) as conformity score very natural. In the case of
the USPS data set, we always use the conformity measure (4) with d tangent distance
(with the exception of Table 3).

The R and MATLAB programs used in the experiments described in this paper
are available as Online Resource 2. The R programs, used for processing the
Spambase data set, rely on the gbm package with virtually all parameters set to
the default values (given in the description provided in response to help("gbm")).
The only parameter that has been modified is n.trees, the number of trees, which
should be as large as possible and whose default value was clearly insufficient. The
MATLAB programs, used for processing the USPS data set, rely on the C program
for computing tangent distance (with one-sided distance and all tangents) written by
Daniel Keysers.

Figure 2 (the two top panels) gives the calibration plots for the CCP and for 8
random splits of the data sets into a training set (of size 3,600 for Spambase and
7,200 for USPS) and a test set (of size 1,001 for Spambase and 2,098 for USPS) and
of the training set into 10 folds of equal size. In the case of Spambase, there is a
further source of randomness as the MART procedure is itself randomized. The two
bottom panels of Fig. 2 give the lower left corners of the plots in the top panels:
these are the most important parts of calibration plots in applications. The analogous
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Fig. 2 Top panels: the calibration plots on the Spambase (left panel) and USPS (right panel) data sets
for the cross-conformal predictor with K = 10 folds and the first 8 seeds, 0–7, for the pseudorandom
number generators. Bottom panels: the lower left corner of the corresponding top panel

plots for 5 folds are given in Online Resource 1. Visually, all plots are well calibrated
(close to the bisector of the first quadrant). Since the USPS data set is bigger, the
corresponding plots are closer to the bisector of the first quadrant.

As for the informational efficiency of the CCP on the Spambase data set, see
Table 1, which gives some statistics for the confidence and credibility output by
the ICP (with the 2:1 split into the proper training and calibration sets, as already
mentioned) and the 5-fold and 10-fold CCP. The columns labelled “0” to “99”
give the mean values of confidence and credibility over the test set for various

17



V. Vovk

Table 2 Mean confidence and credibility for the ICP, 5- and 10-fold CCP, and CP based on tangent
distance on the USPS data set

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Mean confidence, ICP 99.85 99.79 . . . 99.79 99.823 0.044
Mean credibility, ICP 50.31 49.72 . . . 51.15 50.135 0.932
Mean confidence, K = 5 99.88 99.85 . . . 99.85 99.846 0.018
Mean credibility, K = 5 50.39 50.40 . . . 50.79 50.059 0.748
Mean confidence, K = 10 99.90 99.87 . . . 99.86 99.855 0.017
Mean credibility, K = 10 50.39 50.30 . . . 50.82 50.045 0.757
Mean confidence, CP 99.91 99.87 . . . 99.87 99.860 0.017
Mean credibility, CP 50.92 51.46 . . . 51.44 50.893 0.755

The results are given for various values of the seed for the pseudorandom number generator; columns
“Average” and “St. dev.” give the averages and estimates of standard deviations as in Table 1

values of the seed for the pseudorandom number generator. The column labelled
“Average” gives the average v̄ := 1

100

∑99
i=0 vi of all the 100 values (which we denote

v0, . . . , v99) for the seeds 0 to 99, and the column labelled “St. dev.” gives the estimate
( 1
99

∑99
i=0(vi − v̄)2)1/2 of the standard deviation of the mean values computed from

v0, . . . , v99 (the square root of the standard unbiased estimate of the variance of the
mean values). The advantage of the CCP over the ICP that can be seen from the
table is that it gives higher and more stable mean confidence values: see the last
two columns.

Similar results for the USPS data set are given in Table 2. This table, however,
also contains information about the CP, which becomes feasible in the case of the 1-
Nearest Neighbour underlying algorithm that we use for the USPS data set. The CCP
is almost as informationally efficient as the CP (especially in the case of 10 folds) and
significantly more informationally efficient than the ICP.

Tables 1 and 2 are based on underlying algorithms that are among the best for their
respective data sets (MART for Spambase and 1-Nearest Neighbour with tangent
distance for USPS). Table 3 is the analogue of Table 2 for Euclidean distance and
so is based on a clearly suboptimal underlying algorithm: it is well known that the
performance of the 1-Nearest Neighbour algorithm improves greatly when Euclidean
distance is replaced by tangent distance. We can see that the 10-fold CCP is still
almost as informationally efficient as the CP, even though it is significantly less
informationally efficient than the predictors based on tangent distance.

Table 3 The analogue of Table 2 for Euclidean distance

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Mean confidence, ICP 99.76 99.65 . . . 99.65 99.716 0.052
Mean credibility, ICP 50.58 50.16 . . . 50.75 50.208 0.855
Mean confidence, K = 5 99.78 99.72 . . . 99.75 99.740 0.023
Mean credibility, K = 5 50.29 50.91 . . . 50.69 50.132 0.749
Mean confidence, K = 10 99.81 99.75 . . . 99.77 99.760 0.020
Mean credibility, K = 10 50.24 50.80 . . . 50.68 50.121 0.757
Mean confidence, CP 99.82 99.78 . . . 99.79 99.779 0.019
Mean credibility, CP 50.25 50.81 . . . 50.63 50.124 0.756
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4 Conditional cross-conformal predictors

There are several natural kinds of conditional validity for set predictors: see, e.g.,
[20, Fig. 1]. Achieving some of these kinds (such as label and object conditional
validity, in the terminology of [20]) requires modifying the definition of conformal
predictors. Another kind (training conditional validity) is achieved automatically,
at least in some cases: see [20, Section 3]. In this paper we only discuss the label
conditional version of conformal predictors and their variants, which ensures the
validity conditional on the label of the test example. As will be discussed later,
the property of label conditional validity is particularly important in applications
where different kinds of errors have different significance, such as automatic spam
filtering.

The only difference of label conditional conformal predictors from CPs is that (2)
is replaced by

py := |{i ∈ {1, . . . , l} | yi = y & αi ≤ αy}| + 1

|{i ∈ {1, . . . , l} | yi = y}| + 1
.

And the only difference of label conditional inductive conformal predictors from ICPs
is that (6) is replaced by

py := |{i ∈ C | yi = y & αi ≤ αy}| + 1

|{i ∈ C | yi = y}| + 1
.

The following proposition is the label conditional version of Proposition 1.

Proposition 2 ([21], Proposition 4.10) Let � be a label conditional conformal
predictor or a label conditional inductive conformal predictor. If random exam-
ples Z1, . . . , Zl, Z = (X,Y) are exchangeable, the conditional probability of error
Y /∈ �ε(Z1, . . . , Zl, X) given Y does not exceed ε for any ε.

Label conditional cross-conformal predictors (abbreviated to CCCP, as this is the
only kind of conditional CCP that we consider) are defined as CCPs except that (9)
is replaced by

py :=
∑K

k=1

∣
∣
{
i ∈ Sk | yi = y & αi,k ≤ α

y
k

}∣
∣ + 1

∑K
k=1 |{i ∈ Sk | yi = y}| + 1

.

All experiments in this section are run on the Spambase data set. First we check
empirically whether CCCPs are well calibrated. Figure 3 shows separate calibration
plots for the test examples labelled as email and spam, both for K = 10 folds. Both
plots are close to the bisector of the first quadrant. This is important as we are not
really interested in the overall error rate: for example, when using the predictor for
spam filtering, first of all we want to get the amount of email classified as spam down
to an admissible low level, and only after that we try to optimize the amount of spam
classified as email. Moreover, in the case of label conditional predictors nothing
prevents us from having different significance levels for email and spam: we can
replace the ε in (1) by εy allowing the significance level εy to depend on the label
y ∈ Y.

Figure 4 gives the scatter plot of the pairs (p0, p1) for all test examples, where p0

is the p-value when the example is labelled as email and p1 is the p-value when it is
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Fig. 3 Top panels: the separate calibration plots for the CCCP with K = 10 for the examples labelled
as email (left) and spam (right) in the test set and for the first 8 seeds of the pseudorandom number
generator. Bottom panels: the lower left corner of the corresponding top panel

labelled as spam. The following two tables (Tables 4 and 5) will give some summary
information for the data represented in this figure. It has been shown in [20, see, e.g.,
Fig. 8] that in the case of ICPs there is a close connection between scatter plots of
p-values and empirical ROC curves. Figure 4 (and especially its right panel) shows
that there are no similar close connections in the case of CCPs.

Table 4 shows the “confusion matrices” for email and spam for the first 100
seeds of the pseudorandom number generator. It shows the mean p-values for email
in the test set when classified as email, for email in the test set when classified as
spam, for spam in the test set when classified as email, and for spam in the test

20



Cross-conformal predictors

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

email

sp
am

0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

email
sp

am

Fig. 4 The scatter plot of (p0, p1) for the CCCP with K = 10 folds, all examples in the test set, and
seed 0 of the pseudorandom number generator. Email is shown as noughts and spam as crosses. Left
panel: the full scatter plot (with spam drawn before email). Right panel: its lower left corner

Table 4 Mean (over the test set) p-values for email if classified as email, for email if classified as
spam, for spam if classified as email, and for spam if classified as spam

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Email as email 50.24 48.61 . . . 49.41 50.021 1.133
Email as spam 1.44 1.38 . . . 1.45 1.590 0.206
Spam as email 1.66 1.56 . . . 1.63 1.591 0.251
Spam as spam 50.68 49.93 . . . 50.97 50.044 1.644

The results are given for 100 values of the seed for the pseudorandom number generator; column
“Average” gives the averages of the means over the 100 seeds 0–99, and column “St. dev.” gives the
estimates of the standard deviations of the means

Table 5 The percentage of misclassified email and spam in the test set for the spam filters based on
conditional cross-conformal prediction

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Email at 1 % 0.97 0 . . . 1.16 0.999 0.443
Spam at 1 % 23.64 26.14 . . . 16.88 20.275 2.582
Email at 2 % 1.79 1.81 . . . 1.82 1.993 0.617
Spam at 2 % 12.47 12.94 . . . 10.08 12.211 1.620
Email at 5 % 4.55 5.11 . . . 4.30 4.861 0.889
Spam at 5 % 4.68 5.08 . . . 5.04 5.543 0.954

The results are given for various values of the seed for the pseudorandom number generator; the last
two columns give the averages and estimates of standard deviations
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set when classified as spam. The p-values for email when classified as email and
for spam when classified as spam are distributed approximately uniformly in the
interval [0, 1], and so their means should be approximately 50 %; this is what Table 4
shows, confirming the approximate validity of the method. The p-values for email
when classified as spam and for spam when classified as email should be small for
informationally efficient prediction methods, and we can see that indeed they never
exceed 2 % in Table 4 (and very rarely exceed 2 % if the table is expanded by adding
the missing values for the seeds 2–98).

Table 5 demonstrates the validity and informational efficiency of spam filters
based on 10-fold CCCPs with target probabilities 1 %, 2 %, and 5 % of mistaking
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Fig. 5 Top panels: the percentages of errors made by the spam filter based on the CCCP with K = 10
on email (left) and spam (right) for different target percentages of errors made on email and for the
first 8 seeds of the pseudorandom number generator. Bottom panels: the lower left corner of the
corresponding top panel
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email for spam. For a given target probability ε ∈ {0.01, 0.02, 0.05} the spam filter
classifies a test object as spam if and only if p0 ≤ ε (ignoring p1; remember that 0
encodes email and 1 spam). The table confirms the validity of the CCCP conditional
on the label being email and gives an indication of its informational efficiency (the
amount of spam let in).

Figure 5 gives similar information about validity and informational efficiency
for all target probabilities ε ∈ (0, 1): the left panels confirm the label conditional
validity of our spam filters and the right panels can be regarded as measuring their
informational efficiency. (Notice that the left panels of Figs. 3 and 5 are identical.)

5 Conclusion

Conformal prediction and inductive conformal prediction are two approaches to the
theory of tolerance regions (see, e.g., [7]). The known validity results for conformal
and inductive conformal predictors can be expressed by saying that they are 1 − ε

expectation tolerance regions, where ε is the significance level (see Proposition 1
above). It is also known ([20], Proposition 2a) that inductive conformal predictors are
1 − δ tolerance regions for a proportion 1 − ε for suitable δ and ε. On the other hand,
at this time there are no theoretical results about the validity of cross-conformal
predictors, and it is an interesting open problem to establish such results.
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Appendix A: Leave-one-out conformal prediction

In this appendix we consider the extreme case where the number of folds is equal to
the size of the training set, K = l. This special case of cross-conformal prediction will
be called leave-one-out conformal prediction, and the corresponding predictors will
be called leave-one-out conformal predictors (LOOCPs).

The method of leave-one-out conformal prediction is likely to have two disad-
vantages as compared with 5-fold or 10-fold cross-conformal prediction: first, it
is computationally less efficient, and second, it may lead to loss of informational
efficiency because of high variance caused by the similarity of the folds (as in the
standard method of cross-validation [3, 12]). We discuss it in this appendix because
of its conceptual simplicity; in particular, we will see that already in this case the
analogue of Proposition 1 fails.

Let l := 9 and consider the exchangeable probability measure assigning the same
probability 1/10! to each of the 10! permutations of a given sequence of 10 distinct
examples z1, . . . , z10. The first 9 examples in a random permutation are assigned
to the training set and the last example is the test example. Suppose the chosen
conformity measure A is such that

A((z′
1, . . . , z

′
8), z

′
9) �= A((z′

1, . . . , z
′
8), z

′
10)
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for any permutation z′
1, . . . , z

′
10 of z1, . . . , z10. We will sometimes write A(ζ ′, z) for

A(ζ, z) where ζ ′ is the (multi)set consisting of all elements of ζ . (This notation will
be used only when all elements of ζ are distinct.)

With the sequence z1, . . . , z10 and the conformity measure A we can associate the
10 × 10 matrix B having 1 on the main diagonal and the off-diagonal elements

Bi, j :=
{
1 if A({z1, . . . , z10} \ {zi, z j}, zi) ≥ A({z1, . . . , z10} \ {zi, z j}, z j)

0 otherwise.

The binary relation with adjacency matrix B is reflexive, antisymmetric, and total, but
not necessarily transitive; we will identify B and this binary relation. The probability
of error of �ε , where � is the corresponding LOOCP and ε ∈ (0, 1), is the percentage
of rows in B whose percentage of 1s is at most ε.

If the matrix B is transitive, it is a total order, and we can permute the examples
in such a way that it becomes

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)

This shows that corresponding LOOCPs are unconditionally valid under our proba-
bility measure. On the other hand, it is easy to give an example of a non-transitive B
that leads to a LOOCP that is not unconditionally valid: take, e.g.,

B :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

(reflecting a triangle in the lower left corner in the main diagonal of (13)). Corre-
sponding LOOCPs make an error with probability 1 when ε = 0.6. It is clear that the
idea works for any value of l.

We have just seen that unconditional validity can be violated for LOOCPs, but it
can be argued that in our example it is violated in a non-interesting way: in practice
people are interested in small values of ε. To see that unconditional validity can be
violated for small values of ε, take the analogue of (13) of size 100 × 100. Replacing
the upper left 10 × 10 submatrix by (14), we obtain a probability measure and a
LOOCP that makes an error with probability 10 % when ε = 6 %.
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Fig. 6 Left panel: the calibration plots for the 10-fold BCP, the Spambase data set, and the first 8
seeds for the pseudorandom number generator. Right panel: the lower left corner of the left panel

Appendix B: Bootstrap conformal prediction

In this appendix we study empirically the modification of the CCP based on bootstrap
([4, 5, 11], Section 7.11). In the bootstrap conformal predictor (BCP), the following
procedure is repeated K times, for k = 1, . . . , K. A sample σ k = (σ k

1 , . . . , σ k
l ) ∈

{1, . . . , l}l of size l (with replacement) is chosen from the index set {1, . . . , l} of the
training set z1, . . . , zl and used to compute the conformity scores

αi,k := A(zσ k , zi), i ∈ {1, . . . , l} \ 	k, α
y
k := A(zσ k , (x, y)),

for each potential label y ∈ Y, where z(σ1,...,σl) := (zσ1 , . . . , zσl ), 	
k is the set of chosen

indices 	k := {σ k
1 , . . . , σ k

l } (as 	k is a set, all repetitions among its elements are
eliminated), and A is a given conformity measure. The corresponding p-values are
defined by

py :=
∑K

k=1

∣
∣
{
i ∈ {1, . . . , l} \ 	k | αi,k ≤ α

y
k

}∣
∣ + T/ l

T + T/ l
, (15)

where T := ∑K
k=1(l −

∣
∣	k

∣
∣) is the total size of the calibration sets z{1,...,l}\	k . (Notice

that in (15) we have scaled up the constant 1 in (9) in proportion to the increase in
the total size of the calibration sets from l to T. For completeness, we define (15)
to be 1 in the rare cases where T = 0.) Confidence and credibility are now defined
as usual.

Table 6 The analogue of part of Table 1 for the BCP

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Mean confidence, K = 10 99.17 99.21 . . . 99.23 99.166 0.061
Mean credibility, K = 10 50.96 49.78 . . . 50.74 50.791 0.912
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Table 7 The analogue of Table 1 for the randomized BCP

Seed 0 (%) 1 (%) . . . 99 (%) Average (%) St. dev. (%)

Mean confidence, K = 10 98.94 98.92 . . . 98.91 98.917 0.073
Mean credibility, K = 10 51.68 50.12 . . . 50.51 50.925 0.820

Figure 6 shows that the BCP with K = 10 samples is, like the CCP, empirically
well calibrated on our data set (for the analogous plots corresponding to K = 5
folds in this and following figures, see Online Resource 1). For results about the
informational efficiency of the BCP see Table 6. They are not as good as for the CCP
in Table 1, and comparable to the results for the ICP. Increasing the number K of
samples might improve the informational efficiency but would adversely affect the
computational efficiency.

A popular modification of bootstrap is its randomized version ([5], Section 4).
The randomized version of the BCP is defined similarly: the only difference from the
basic version described earlier is that the labels of the examples in the bootstrap
sample zσ k are flipped with probability 0.1 independently before computing the
conformity scores. (This assumes a binary classification problem, which is the case
for the Spambase data set, and flipping a label means replacing it by the other label.)
The randomized version is even less informationally efficient than the basic version
(cf. Tables 6 and 7), but it is interesting that the randomization affects not only the
efficiency but also validity of the BCP: the lack of calibration in Fig. 7 is obvious
(although far from being as pronounced as in Fig. 8 below). Figure 7 also explains
the lack of informational efficiency of randomized BCPs as compared to basic BCPs:
the former are overly conservative for small significance levels.
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Fig. 7 The analogue of Fig. 6 for the 10-fold randomized BCP
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Fig. 8 The analogue of Fig. 6 for the 10-fold naive CCP

Appendix C: An approach based on Fisher’s method

In this appendix we will briefly discuss an approach to cross-conformal prediction
leading to badly miscalibrated set predictions. Fisher’s method [6] of combining
p-values p1, . . . , pK, valid when the K p-values are independent and distributed
uniformly on [0, 1], combines them into one statistic −2

∑K
k=1 ln pk having the chi-

squared distribution with 2K degrees of freedom. The corresponding p-value will be
denoted F(p1, . . . , pK):

F(p1, . . . , pK) := P

(

χ2 ≥ −2
K∑

k=1

ln pk

)

, (16)

where χ2 is a random variable having the chi-squared distribution with 2K degrees
of freedom. Even when the independent p-values are not distributed uniformly on
[0, 1] (i.e., they can be conservative, as is the case in our applications), F(p1, . . . , pK)

will still be a valid (perhaps conservative) p-value. See [2, Section 3], for a review of
various methods of combining p-values.

Naive cross-conformal predictors are defined as follows. The training set is split
into K subsets, as in the case of CCPs. For each k ∈ {1, . . . , K} find the p-values py

k
via (10). Define py := F(py

1, . . . , p
y
K), and then define confidence, credibility, and set

predictors (1) as before. In other words, naive CCPs are defined in the same way as
CCPs except that the function F is defined by (16) rather than by the expression
following the = in (11) (assuming equally-sized folds). Figure 8 is the analogue of
the two left panels of Fig. 2 for naive CCPs. The set predictions are very poorly
calibrated, since the p-values computed from different folds are heavily dependent.
We do not give the results about informational efficiency (such as those given in
Table 1) for the naive CCP since efficiency without validity (at least approximate) is
meaningless.

Applying methods of combining independent p-values to dependent p-values
does not always lead to poor calibration: see, e.g., [1, Chapter 5], and [2], where
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p-values extracted from visual and audio inputs are combined. Such p-values are
somewhat dependent (in the statistical sense), but the empirical results reported in
[2, Section 4], show that we still have approximate validity for several standard
methods of combining independent p-values (including the method referred to as
ECF in [2] and corresponding to Fisher’s method). But as Fig. 8 shows, Fisher’s
method leads to gross miscalibration in the context of cross-conformal prediction.
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