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Abstract In the context of voting, manipulation and control refer to attempts to
influence the outcome of elections by either setting some of the votes strategically
(i.e., by reporting untruthful preferences) or by altering the structure of elections via
adding, deleting, or partitioning either candidates or voters. Since by the celebrated
Gibbard–Satterthwaite theorem (and other results expanding its scope) all reason-
able voting systems are manipulable in principle and since many voting systems are in
principle susceptible to many control types modeling natural control scenarios, much
work has been done to use computational complexity as a shield to protect elections
against manipulation and control. However, most of this work has merely yielded
NP-hardness results, showing that certain voting systems resist certain types of ma-
nipulation or control only in the worst case. Various approaches, including studies of
the typical case (where votes are given according to some natural distribution), pose
serious challenges to such worst-case complexity results and might allow successful
manipulation or control attempts, despite the NP-hardness of the corresponding
problems. We survey and discuss some recent results on these challenges to com-
plexity results for manipulation and control, including typical-case analyses and ex-
periments, fixed-parameter tractability, domain restrictions (single-peakedness), and
approximability.
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1 Introduction

In the emerging area of computational social choice, manipulation and control have
been intensely studied from a computational point of view. Manipulation refers to
strategic voting—voters who report untruthful preferences so as to either make their
favorite candidate win or prevent their most despised candidate’s victory. By the
celebrated Gibbard–Satterthwaite theorem [64, 102] and other results expanding
its scope (see, e.g., the work by Duggan and Schwartz [35]), all reasonable voting
systems are manipulable in principle. This fact motivated Bartholdi and Orlin [3]
and Bartholdi et al. [4] to study the complexity of manipulation problems in order
to protect voting systems against manipulation via such complexity shields. Their
work triggered a rich line of research on the computational aspects of manipulation
problems, both regarding their classical complexity (see, e.g., the work of Conitzer
and Sandholm [26], Conitzer et al. [28], Elkind and Lipmaa [38], Hemaspaandra
and Hemaspaandra [66], Faliszewski et al. [54, 55], Betzler et al. [13], and Davies
et al. [30]) and regarding other computational approaches (see, e.g., the work of
Conitzer and Sandholm [27], Procaccia and Rosenschein [98], Friedgut et al. [58, 59],
Dobzinsky and Procaccia [32], Isaksson et al. [74, 75], Mossel and Rácz [91], Xia and
Conitzer [113, 114], and Zuckerman et al. [118]), and we will cover some of this work
in this paper. Recent surveys by Conitzer [24], Faliszewski et al. [48, 52], Faliszewski
and Procaccia [56] and Mossel and Rácz [90] summarize the state of the art in our
ongoing “war on manipulation.”

Electoral control, on the other hand, refers to attempts of an external actor,
commonly called the “chair,” to influence the outcome of elections by altering their
structure. The common control types, each modeling some natural control scenario,
include adding, deleting, and partitioning either candidates or voters. These control
types have been introduced and studied by Bartholdi et al. [6] and Hemaspaandra
et al. [70]. Although some voting systems are immune to some types of control
(i.e., the chair never succeeds in making a favorite candidate win or prevent a
most despised candidate’s victory), many voting systems have been shown to be
susceptible (i.e., not immune) to many control types. Again, this fact motivated
Bartholdi et al. [6] to use complexity shields to protect voting systems against
electoral control, which triggered many more results on the complexity of control
problems (see, e.g., the papers by Hemaspaandra et al. [70, 71], Meir et al. [88],
Faliszewski et al. [50, 51], Liu et al. [83], Liu and Zhu [84], Brandt et al. [18],
Erdélyi and Fellows [39], Erdélyi et al. [44, 45] and Rothe and Schend [100]), and
we will cover some of this work here. Recent surveys by Faliszewski et al. [52] and
Baumeister et al. [7] summarize the state of the art in our ongoing “war on control.”

The overwhelming number of results on using complexity shields against manip-
ulation or control are NP-hardness results. NP-hardness of some given (decision)
problem Y is usually shown by a polynomial-time many-one reduction from a
problem X already known to be NP-hard. Such a reduction is implemented by a
polynomial-time computable function r transforming any (yes or no) instance x of X
into an instance y = r(x) of Y such that x ∈ X if and only if y ∈ Y.

Undoubtedly, P (deterministic polynomial time) and NP (nondeterministic polyno-
mial time) are the best known and most central complexity classes; the annoyingly
intractable “P = NP?” problem has been the most important open question of
theoretical computer science for decades (see also Gasarch’s “P vs. NP?” poll [62],
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whose tenth anniversary will be celebrated by conducting a new poll), and the many
thousands of important problems that by now are known to be NP-complete (i.e., NP-
hard and a member of NP) witness the centrality of the theory of NP-completeness
[61]. Thus, the first thing to do when one encounters a seemingly hard problem is to
try to prove its NP-hardness. However, NP is defined in the worst-case complexity
model. All we can say about the computational hardness of NP-hard problems is that
they are hard to solve on some instances, and that, unless P = NP, no polynomial-
time heuristic can solve the problem correctly on all but a sparse set of instances (i.e.,
on all but a polynomial number of strings at each length), as has been conjectured
by Schöning [103] and has been proven by Ogiwara and Watanabe [95] (for further
insights and a more detailed discussion regarding this line of research, the reader is
referred to the interesting survey by Hemaspaandra and Williams [72]).

This still leaves open the possibility that a polynomial-time heuristic might, for
each input size k, correctly solve an NP-hard problem on exponentially (in k) many
instances, and even on a vast majority of its instances. Note further that the instances
that are really hard to solve might even never occur in practice. That is why manip-
ulability and controllability of voting systems have recently also been investigated,
both theoretically and experimentally, with respect to typical-case instances, seeking
to circumvent NP-hardness of manipulation and control problems by showing that
these problems can be solved by efficient heuristics, or are even exactly polynomial-
time solvable for certain typical special cases. Many of these attacks on NP-hardness
are very interesting, promising approaches. But are they a real threat? What can be
concluded about their success in practice?

We survey and discuss some known results on various challenges to com-
plexity results for manipulation and control, including typical-case analyses (such
as some recently published results on analyzing control problems experimentally
[100, 101]), fixed-parameter tractability, domain restrictions (single-peakedness),
frequency analyses of manipulable instances, probabilistic analyses of degrees of
strategyproofness, and approximability.

2 Elections and voting systems

An election is given by a set C of candidates and a list V of voters each having
strict preferences over the candidates, which is also referred to as a preference
prof ile. A voting rule (synonymously, voting system) is a function mapping any given
preference profile (say, over the candidates in C) to a subset of C, the (possibly
empty) set of winners. In social choice theory, such a mapping is termed a social
choice correspondence. As is most common, preferences are represented by linear
orderings, i.e., complete rankings of the candidates. This representation will be used
for the following voting systems.

Scoring rules are a very central class of voting systems. For m candidates, a scoring
rule is given by a scoring vector of nonnegative integers, α = (α1, α2, . . . , αm), such
that α1 ≥ α2 ≥ · · · ≥ αm. Every candidate gets α j points for each vote where c is
ranked on the jth position, and all candidates with the most points are winners.
Many important voting rules can be described by families of scoring vectors (one
for each m). For example, plurality has scoring vectors of the form (1, 0, . . . , 0); veto
(a.k.a. anti-plurality) has scoring vectors of the form (1, . . . , 1, 0); Borda has scoring
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vectors of the form (m − 1, m − 2, . . . , 1, 0) for m candidates; and k-approval has
scoring vectors of the form (1, . . . , 1

︸ ︷︷ ︸

k

, 0, . . . , 0).

Single transferable vote (STV) proceeds in rounds, at most as many as there are
candidates. Each candidate gets a point for each top position in the votes. In each
round, if there is a candidate with a strict majority of points, she wins. Otherwise, a
candidate with the smallest number of points is deleted (where ties, when they occur,
are broken by a beforehand fixed tie-breaking rule), transferring her points to the
candidate placed next, and the procedure is repeated until only one winner remains.1

Plurality with runof f proceeds in two rounds. In the first round, each candidate
gets a point for each top position in the votes, and the two candidates with the
most points (where ties again are broken by some rule if needed) move on to the
second round, the “runoff,” where their points are compared after deleting all other
candidates. The candidate with the most points wins (again breaking ties if needed).

Other voting rules are based on pairwise contests between the candidates. In
Condorcet voting, the winner is a candidate who is preferred to all other candidates
by a strict majority of votes [22]. Note that Condorcet winners don’t always exist
(due to the Condorcet paradox), but when they exist, they are unique. A number
of voting systems respect the Condorcet winner but avoid the Condorcet paradox,
i.e., Condorcet winners win in these systems and there always is at least one winner.
For example, in maximin (a.k.a. Simpson’s rule), let N(c, d) be the number of votes
preferring c to d. The Simpson score of a candidate c ∈ C is defined as mind �=c N(c, d),
and all candidates with maximum Simpson score win. In Copelandα voting with α be-
ing a rational number in [0, 1], the score of a candidate c ∈ C is defined as ‖{d ∈ C −
{c} | N(c, d) > N(d, c)}‖ + α‖{d ∈ C − {c} | N(d, c) = N(c, d)}‖, i.e., c gets one point
for each d defeated and α points for each tie. This definition is due to Faliszewski
et al. [51]. The original definition of Copeland voting, which is obtained by setting
α = 1/2, is due to Copeland [29]. Nanson’s and Baldwin’s rules are based on the Borda
rule, but unlike this rule, they do respect the Condorcet winner. Nanson’s rule pro-
ceeds in rounds, where in each round all candidates with less than the average Borda
score are deleted, and this procedure is repeated until only one winner remains [92].
Baldwin’s rule successively deletes a candidate with the lowest Borda score in each
round until only a single candidate is left, again using a tie-breaking rule if needed [1].

The ranked pairs method, introduced by Tideman [107], is also based on pairwise
comparisons of the candidates and proceeds in two steps to generate a complete
ranking of the candidates: In the first step, all pairs of candidates (a, b ) are ordered
descendingly with respect to the number of voters preferring a to b . In the second
step, beginning with an empty ranking, all pairs in the above ordering are considered
one by one to be added to the ranking. If adding the candidates in the order they are
given in the considered pair does not create a cycle, the candidates are added to the
ranking. If a cycle would occur, the pair is disregarded and the next pair in the order-
ing is considered. When the ranking is completed, the top choice is the ranked pairs
winner. Tideman suggested that whenever ties occur in either step, all candidates that

1Note that the complexity of winner determination in STV strongly depends on the tie-handling. As
defined here, the procedure has a deterministic polynomial runtime. Without a fixed tie-breaking
rule, however, winner determination can become NP-hard, see the work of Conitzer et al. [25]. A
similar distinction has to be made for the ranked pairs method, as will be seen later on.
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win for some tie-breaking rule are ranked pairs winners—a model Conitzer et al. [25]
refer to as parallel universes tie-breaking. While this tie-handling ensures neutrality
of this voting rule, which was the intention of Tideman’s suggestion, it causes winner
determination of this voting rule to be NP-hard, as shown by Brill and Fischer [20].
Breaking ties (whenever they occur) by a previously fixed tie-breaking rule does
simplify winner determination to be in P, but only at the cost of neutrality.

Bucklin’s rule proceeds in rounds (or levels). The level i score of a candidate c ∈ C
is defined as the number of votes from V that rank c among their top i positions. The
Bucklin score of c is the smallest level i such that c’s level i score strictly exceeds ‖V‖/2.
All candidates with a smallest Bucklin score, say j, and a largest level j score win.

Brams and Fishburn [16] proposed approval voting, a system that unlike the voting
systems above doesn’t expect linear preference orders as votes, but rather 0-1 vectors
of length ‖C‖: Every voter approves (“1”) or disapproves (“0”) of each candidate,
and all candidates with the most approvals win. Brams and Sanver [17] proposed
a hybrid system, called fallback voting, that combines Bucklin with approval voting
as follows: All voters approve or disapprove of each candidate, and in addition rank
their approved candidates (only those contribute to the level i scores). Every Bucklin
winner in these partial rankings is also a fallback winner. However, if there exists
none (due to disapprovals), then every approval winner is also a fallback winner.

3 Challenges to complexity results for manipulation

Manipulation in the context of voting refers to actions of voters who seek to make
their favorite candidate win (in the constructive case introduced by Bartholdi et al.
[4]) or to prevent their most despised candidate’s victory (in the destructive case
introduced by Conitzer et al. [28]), by reporting insincere preferences. Formally, for
any voting system E , constructive coalitional weighted manipulation is modeled by
the following decision problem:

Constructive Coalitional Weighted Manipulation (CCWM)
Given: A set C of candidates, a list V of nonmanipulative voters over C each

having a nonnegative integer weight, a list of the weights of the
manipulators in S (whose votes over C are still unspecified) with
V ∩ S = ∅, and a distinguished candidate c ∈ C.

Question: Can the preferences of the voters in S be set such that c is an E winner
of (C, V ∪ S)?

We assume that the strategic voters have complete knowledge of the sincere
votes of all nonmanipulators. By asking whether c can be made an E winner of
the election (C, V ∪ S) with strategic votes, we have defined the above problem in
the so-called co-winner model (a.k.a. the nonunique-winner or simply the winner
model). In this model, a manipulation is considered to be successful whenever the
designated candidate wins, possibly among other winning candidates. By contrast,
the unique-winner model requires that the designated candidate alone wins the
manipulated election for a manipulation to be successful. Alternatively, some papers
implicitly use the unique-winner model by requiring that ties among several winners,
whenever they occur, are broken adversarially to the designated candidate (see, e.g.,
Remark 2.2 in the paper by Zuckerman et al. [118]), or they employ the co-winner
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model by requiring that ties among several winners, whenever they occur, are broken
in favor of the designated candidate. As most results we cover in this section on
manipulation are in the co-winner model, we use this model by default, and will
explicitly state for which results the unique-winner model is used instead.

As special cases of the above problem, Constructive Coalitional Unweighted
Manipulation (CCUM) is defined as an analogous problem, except that all weights
are set to one, and constructive unweighted manipulation by a single manipula-
tor (CUM) is defined by setting the coalition size ‖S‖ in CCUM to one. The de-
structive variants of these problems are obtained by asking whether the preferences
of the voters in S can be set such that c is not an E winner of (C, V ∪ S) in the co-
winner model (respectively, such that c is not a unique E winner of (C, V ∪ S) in the
unique-winner model).

Bartholdi et al. [4] were the first to analyze the manipulation complexity for voting
systems, more precisely, the complexity of constructive unweighted manipulation by
a single manipulator. They show that for a large group of voting systems including po-
sitional scoring rules, Copeland, and maximin, this problem is efficiently solvable by a
simple greedy algorithm. Furthermore, they show NP-hardness of the CUM problem
for second-order Copeland, where “second-order” refers to the way ties between
several Copeland winners are broken. In a follow-up paper, Bartholdi and Orlin [3]
investigate the STV system and show that it is NP-hard to manipulate by a single ma-
nipulator. Although the NP-hardness reduction presented in their paper is incorrect,
their result holds true, since a small adjustment of the “garbage collector” candidates
in some of the votes fixes this problem. The only other natural voting system with
a polynomial-time winner determination that is known to have an intractable CUM
problem is ranked pairs with a fixed tie-breaking rule, as shown by Xia et al. [116].2

For the ranked pairs method (as originally defined by Tideman [107]), all variants of
manipulation are trivially NP-hard, since winner determination is NP-hard.

As has been stated before, weighted coalitional manipulation has been introduced
by Conitzer et al. [28], who show that for many voting rules this problem is NP-
hard even for elections with few candidates. In particular, they show NP-hardness
of CCWM for Copeland and maximin elections with at least four candidates and
for STV elections with at least three candidates. For the latter system, they even
show NP-hardness in the destructive case. For positional scoring rules except plu-
rality, they also prove NP-hardness for elections with at least three candidates.
Independently, Hemaspaandra and Hemaspaandra [66] established a similar re-
sult: CCWM is NP-hard for positional scoring rules defined by a scoring vector
α′ = (α1, α2 . . . , αm) that satisfies ‖{αi | 2 ≤ i ≤ m}‖ ≥ 2. This property is known as
“diversity of dislike,” since it means that not all “disliked” candidates (who are
ranked behind the top candidate) are assigned the same number of points.

Faliszewski et al. [54, 55] study the unweighted case of coalitional manipulation
and show NP-hardness for Copelandα with α ∈ [0, 1] − {0.5}, leaving the complexity
of CCUM for Copeland0.5 open. Xia et al. [116] show that CCUM is NP-hard for
maximin and ranked pairs, and they extend their results to a certain family of
positional scoring rules α∗ (see their paper [115, p. 8] for the exact definition, which is

2Xia et al. actually showed this result for the version of ranked pairs where winner determination
is NP-hard, but it also holds when ties are broken by a previously fixed tie-breaking rule, see [20,
footnote 10].
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somewhat involved). Recently, one of the most glaring open problems in this realm
has been solved, independently by Betzler et al. [13] and Davies et al. [30]: Un-
weighted coalitional manipulation is NP-hard for the Borda rule, even for only two
manipulators.

The complexity of manipulation in Bucklin was studied by Xia et al. [116], who
provide a polynomial-time algorithm for this problem in the unweighted case, and by
Reisch [99], who proves NP-completeness in the weighted case.

Table 1 gives an overview of the above-mentioned complexity results for construc-
tive manipulation problems, and shows one open problem.

A manipulator facing an NP-hard problem, however, does not have to despair!
After all, NP-hardness merely shows that this problem is hard to solve in the worst
case, and the (often technically sophisticated) reductions used to prove NP-hardness
usually provide very particular instances—elections that are unlikely to appear in
real-world elections. In this section we survey some of the recent approaches to
and advances in tackling NP-hard manipulation problems, including approaches that
apply to “typical-case” elections.

3.1 Efficient heuristics for junta distributions

One of the first typical-case challenges to NP-hard manipulation problems is due to
Procaccia and Rosenschein [98], who introduced so-called “junta distributions” that
focus much weight on hard problem instances and are very light on the remaining
ones. Intuitively put, they argue that when a problem is easy to solve relative to
a junta distribution, it will be easy to solve relative to every typical distribution.
To achieve this goal in a more formal way, they define the notion of “heuristic
polynomial time” relative to a junta. We state these notions only informally here.
A distribution μ is said to be a junta if it satisfies the following properties:

1. Hardness: Given an NP-hard problem X , the restriction X|μ of X to μ (i.e., X|μ
contains the members of X having positive probability weight under μ) is also
NP-hard. That is, X’s hardness is not hidden by μ putting zero weight on the
hard instances.

Table 1 Overview of complexity results for constructive manipulation problems

CCWM CCUM CUM

Bucklin NP-complete P P
Second-order Copeland NP-complete NP-complete NP-complete
Copelandα , α ∈ [0, 1] − {0.5} NP-complete NP-complete P
Copeland0.5 NP-complete ? P
Maximin NP-complete NP-complete P
STV NP-complete NP-complete NP-complete
Ranked pairs NP-complete NP-complete NP-complete
Plurality with runoff NP-complete P P
Veto NP-complete P P
Borda NP-complete NP-complete P
Family of scoring rules α∗ NP-complete NP-complete P
Scoring rules of type α′ NP-complete NP-complete P

α∗ denotes the family of scoring rules rweird defined by Xia et al. [115, p. 8], α′ denotes scoring
vectors defined by Hemaspaandra and Hemaspaandra [66, p. 12]
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2. Balance: Asymptotically, the probability of x being a yes-instance of X is neither
too close to zero nor too close to one.

3. Dichotomy: There is a polynomial p such that for all n and for all instances x
of length n, either μn(x) ≥ 2−p(n) or μn(x) = 0. That is, the probability weight of
each instance that is nonzero exceeds a certain threshold.

4. Symmetry: If X is a manipulation problem for a voting system that expects linear
preference orderings as votes, then for each nonmanipulator v ∈ V, for any two
candidates a and b distinct from the distinguished candidate c, and for each
position i in the votes, v ranks a and b at position i with the same probability.
In this sense, all candidates distinct from c are treated symmetrically by μ.

5. Refinement: If X is a coalitional manipulation problem, then for any length n in-
put string x with μn(x) > 0, if all manipulators voted identically, the distinguished
candidate c would not be a winner. (Note that Procaccia and Rosenschein [98]
restrict themselves to the case of constructive manipulation.)

A distributional problem (X,μ) is a (decision or search) problem X on �∗
paired with a distribution function μ : �∗ → [0, 1], i.e., μ is a nondecreasing function
converging to one: μ(0) ≥ 0, μ(x) ≤ μ(y) for each x and y with x lexicographically
preceding y, and limx→∞ μ(x) = 1. Procaccia and Rosenschein [98] define a heuristic
polynomial-time algorithm for (X,μ) to be a polynomial-time algorithm A for which
there is a polynomial q of degree at least one and a constant n0 ∈ N such that for each
n ≥ n0,

Prμn [x �∈ X if and only if A accepts x] <
1

q(n)
. (1)

Procaccia and Rosenschein [98] show that for each scoring rule with vector
α = (α1, α2, . . . , αm) satifying α1 ≥ α2 ≥ · · · ≥ αm−1 > αm = 0, there exists a junta
distribution μ∗ such that CCWM can be solved in heuristic polynomial time with
respect to μ∗. Their heuristic polynomial-time algorithm proceeds greedily. Roughly
speaking, it ranks the distinguished candidate on top of the votes of the manipulators,
and in each iteration it ranks the remaining candidates by their current scores:
a candidate with lowest current score is ranked highest. Their junta distribution
μ∗ = {μn}n∈N is defined by the following sampling procedure:

1. For each manipulator s ∈ S, randomly and independently choose the weight of s
to be a value in [0, 1] (up to O(log n) bits of precision).

2. For each candidate d distinct from the distinguished candidate c, randomly and
independently choose the votes of the nonmanipulators such that the initial score
of d (before the manipulators cast their votes) is in the range [(α1 − α2)W, α1W]
(again, up to O(log n) bits of precision), where W is the total weight of the
manipulators.
In addition, c is ranked last by each nonmanipulator.

Adapting this greedy algorithm appropriately, it can also be used to show similar
results for other voting systems, such as the maximin and the Copeland system with
respect to a junta distribution defined similar to μ∗.

These very interesting results have been discussed by Erdélyi et al. [43], who
consider basic junta distributions (defined just as junta distributions but disregarding
symmetry and refinement, as these two properties are specific to manipulation
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problems) for general NP-hard problems, i.e., not restricted to manipulation prob-
lems. They show that very many NP-hard sets, even problems such as SAT (when
suitably encoded) that are widely believed to be “really” hard problems (not only
in the worst case), can be solved in heuristic polynomial time with high probability
weight of correctness with respect to basic junta distributions (in the sense of (1)).
They conclude that “if one were to hope to effectively use on typical NP-complete
sets the notion of juntas and of heuristic polynomial time with respect to juntas,
one would almost certainly have to go beyond the basic three conditions and add
additional conditions” [43, p. 3996]. That is to say that the notion of (basic) junta
and the related notion of heuristic polynomial time is not really appropriate to show
that NP-hard problems can be easy to solve on typical-case instances: These notions
appear to be too broad and unspecific to distinguish “typically hard” from “typically
easy” among the NP-hard problems. Nonetheless, Erdélyi et al. [43] stress that the
approach of Procaccia and Rosenschein [98], which is restricted to manipulation
problems only and isn’t meant to speak to general NP-hard problems, is very
interesting indeed and should be further pursued and appropriately refined.

Erdélyi et al. [43] also discuss the related but different notion of average poly-
nomial time, which—somewhat misleadingly—has been used in the literature for
typical-case studies, such as that of Procaccia and Rosenschein [98], that actually
concern the frequency of correctness of heuristics with respect to underlying distrib-
utions. The theory of average-case complexity was initiated by Levin [81]; see also the
surveys by Goldreich [65] and Wang [111, 112]. Crucially, average polynomial time
refers to taking an average of running times over the inputs according to some under-
lying distribution such that this average running time is low: Informally put, AvgP is
the class of distributional problems (X,μ) for which there is an algorithm A solving
X such that the running time T of A is polynomial on the average with respect to
distribution μ.

By contrast, heuristic polynomial time with respect to a junta refers to the prob-
ability weight according to some underlying distribution for which the heuristic is
correct. Note that merely a probability weight of 1 − (1/q(n)) is required for all except
a finite number of length n inputs, for some polynomial q. As the remaining inputs
with probability weight 1/q(n) have no guarantee as to whether the heuristic solves
them correctly, they need to be solved by brute force, which requires exponential
time and so destroys any hope of getting a real average polynomial-time algorithm;
see the more detailed discussion in [41, Appendix C]. A related discussion can be
found in [49, Section 6], see also [42, 73].

A related typical-case approach is due to Homan and Hemaspaandra [73] (see also
[86]), who introduce the notion of “frequently self-knowingly correct algorithm.”3

They provide such an algorithm that (under certain plausible hypotheses) determines

3By the term self-knowingly correct, Homan and Hemaspaandra [73] refer to heuristic algorithms
that can make errors, but that also “know” with certainty that some of their outputs are correct.
When such an algorithm computes a function, it outputs either “definitely” or “maybe” in addition
to the value computed, and all computed values with a “definitely” are guaranteed to be correct
function values.
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the Dodgson winner in a given election with high success probability according to the
uniform distribution. This problem (albeit, of course, not a manipulation problem)
is known to be NP-hard by a result of Bartholdi et al. [5], and even complete for
the complexity class PNP

|| that captures “parallel access to NP” [68].4 Erdélyi et al.
[42] compare the notion of frequently self-knowingly correct algorithm with average
polynomial time, and show that, with respect to the uniform distribution, every (dis-
tributional) problem in AvgP has such an algorithm, whereas the converse, provably,
does not hold.

3.2 Frequency and probability of manipulable instances

Contemporary to Procaccia and Rosenschein’s work [98], Conitzer and Sandholm
[27] proposed a different approach to analyzing the hardness of manipulation
problems beyond worst-case complexity measures. They show that it is impossible to
find a voting rule for which manipulation instances are “usually” hard to solve if the
voting rule is required to satisfy certain conditions, namely that for a large fraction
of manipulable instances it holds that (a) they are weakly monotonic,5 and (b) the
manipulators can make one of exactly two candidates win by strategic voting. While
the first property is satisfied by all monotonic— and thus by many commonly used—
voting rules, the second property might seem more arguable. However, the authors
carefully justify its relevance both theoretically and empirically, and their empirical
results show that many voting rules indeed satisfy the second property on instances
that are generated according to the distribution model used.

In order to prove an impossibility result, the authors chose to use a stronger
definition of the manipulation problem than the version originally suggested by
Bartholdi et al. [4]. They formulate a search problem where the manipulators have
to find all candidates that can be made winners by manipulating the election and
the corresponding manipulation action for each candidate has to be computed. An
election is said to be manipulable in this context if the manipulators can make more
than one candidate win. For this definition of manipulation, the authors provide an
efficient algorithm6 that always finds a successful manipulation, provided that the
given election satisfies the two properties (a) and (b).

4PNP|| is defined to be the class of problems solvable by a deterministic polynomial-time Turing
machine that can access an NP oracle set in a “parallel” manner (technically speaking, via a so-
called polynomial-time truth-table reduction [78]), i.e., it first computes all oracle queries and
then asks them all at once in parallel and evaluates the answer vector returned by the oracle—
in such a nonadaptive oracle access, new oracle queries do not depend on previously given oracle
answers. By definition, PNP

|| lies inbetween the first and the second level of the polynomial hierarchy.

Hemaspaandra et al. [69] survey various results on raising NP-hardness to PNP|| -hardness lower
bounds.
5A voting rule is weakly monotonic if for every pair of candidates, a and b , either (1) b does not win
for any manipulative votes, or (2) a does not win if all manipulators rank b first and a last.
6If winner determination for the considered voting rule is in P, then the algorithm runs in determin-
istic polynomial time as well.
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Experimentally, the following monotonic voting rules are investigated: plurality,
Borda, veto, Copeland, maximin, and all voting rules respecting the Condorcet win-
ner. For these voting rules, all instances are monotonic, so the analysis is confined to
the occurrence of the second property in manipulable instances. Nonmonotonic rules
that are investigated and for which both properties have to be analyzed are STV and
plurality with runoff.

To conduct the experiments, random instances have to be generated, and the
authors chose the following distribution that is due to Condorcet [22]: Assuming a
correct ranking of the candidates, the preference for each voter is constructed by
deciding for each pair of distinct candidates the order they will have in the prefer-
ence. With probability p they have the same order as in the correct ranking, and with
probability 1 − p they are ranked the opposite way. When cycles occur, the vote has
to be reconstructed. The distribution of the votes can be varied by the parameter p;
for p = 0.5, for example, the generated votes are independently and uniformly
distributed. For each election size, 1,000 manipulable instances are generated where
the number of candidates varies from three to five, the number of nonmanipulative
voters is between zero and at most 600, and the number of manipulators is either
one or five (these are the election sizes for which results are presented in the paper).
For the distribution parameter p, the values 0.5 and 0.6 are chosen. The decision
whether a generated instance is manipulable, and thus can be used for further testing,
is based on testing sufficient (but not necessary) conditions, and thus the results of the
experiments can only give a lower bound.

The results show that in instances with three candidates where one manipulator
can be successful, the fraction of instances satisfying both properties goes to one if the
distribution parameter is p = 0.6, and is still very large when varying it to p = 0.5.
Increasing the number of manipulators to five shows essentially the same results,
but the values for smaller nonmanipulative voter sets are smaller. The same can be
observed when the candidate set is enlarged to five candidates, except that the STV
rule breaks out by showing very small values whenever property (b) is satisfied.

Since this analysis is based on a stronger definition of manipulation than that
due to Bartholdi et al. [4], these results can only give a lower bound for the more
common definition of manipulation. As for all experimental studies, further work
could be done, for example, by conducting more experiments with larger elections
and different vote distributions.

Friedgut et al. [58, 59] introduce a “quantitative version” of the famous Gibbard–
Satterthwaite theorem. Their work is motivated by the question about the fraction
of profiles needed for a profitable manipulation to actually exist. Just as Conitzer
and Sandholm [27], they also alter the definition of a successful manipulation: In
this context, a manipulation attempt is successful (or prof itable) if the winner of the
manipulated election is more preferred by the manipulators than the winner of the
original election. This implies that the winner of the altered election has not to be
the top choice of the manipulators and that there is no designated candidate given
in the instance that has to be made the winner. In this technically challenging work,
the authors show the following very interesting result for neutral voting rules that are
“far” from being a dictatorship (see footnote 8): Assuming that the preferences in a
given election with three candidates are uniformly distributed, a single manipulator
can successfully manipulate it with nonnegligible probability (i.e., with a probability
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that is at least inverse-polynomially small in the number of voters), by altering her
preference to a randomly chosen one.

Dobzinsky and Procaccia [32] follow up this line of research and show that for
Pareto-optimal voting rules,7 the previous result by Friedgut et al. [58, 59] can be
generalized to elections that have more than three candidates. The number of voters,
however, is limited to two in this result. The authors strongly suspect that it can be
generalized to larger voter sets.

Isaksson et al. [74, 75] solve one of the main open problems raised by Friedgut
et al. [58], by giving a general quantitative version of the Gibbard–Satterthwaite
theorem, which holds for more than three candidates and more than two voters
when the voting rule is assumed to be neutral. More recently, Mossel and Rácz [91]
were able to further generalize these previous results by proving that the neutrality
assumption is in fact not needed: For voting rules on m candidates and n voters that
are not neutral and ε-far from a dictatorship,8 a voter profile chosen uniformly at
random can be successfully manipulated with a probability of at least ε15

/1039n67m166.
Certainly, these approaches are still somewhat limited with respect to their impli-

cations for real-world elections, since some technical assumptions (e.g., regarding the
distribution of preferences, the number of voters or candidates, or the properties of
the voting rule used) that are required for the proof to work might not hold. More-
over, the notion of “nonnegligible probability” must be interpreted carefully: Even
if, by definition, the probability of a successful random manipulation is large enough
that it cannot be disregarded technically, it still might be too small to be practically
relevant in real-world elections.

Based on the work of Procaccia and Rosenschein [97], Xia and Conitzer [113] an-
alyze the probability of a successful manipulating coalition depending on the number
of voters and manipulators. They generalize previous work (see also the studies of
Slinko [104–106]) by showing results for a new class of voting rules, so-called gener-
alized scoring rules, which contain many commonly used voting rules such as STV,
Copeland, positional scoring rules, and ranked pairs.

Assuming that the preferences of the nonmanipulative voters are independently
and identically distributed, they show that the probability that a random election
can be manipulated by O(np) manipulators (where n is the total number of non-
manipulative and manipulative voters in the election and 0 ≤ p ≤ 1/2) is O(np−1/2),
and thus very small. On the other hand, if the manipulative coalition is of size o(n)

and �(np) for 1/2 < p < 1, then the manipulators can make every candidate win with
probability 1 − O(e−�(n2 p−1)), which implies that manipulative coalitions of this size
are all-powerful. For coalition sizes of order

√
n, no results regarding the probability

of manipulable instances are known.

3.3 Approximation algorithms

Another approach to challenge NP-hard manipulation problems in practice is due
to Zuckerman et al. [118], who reformulate this as an optimization problem in

7A voting rule E is said to be Pareto-optimal if, for all elections, it holds that a candidate a is not an
E winner whenever there exists a candidate b that is ranked before a in every vote.
8A voting rule E is said to be ε-far from a dictatorship if the fraction of uniformly chosen voter
profiles on which E differs from dictatorial voting rules is at least ε.
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the constructive, unweighted case for coalitions of manipulators and then seek to
approximate a solution to this optimization problem:

Constructive Coalitional Unweighted Optimization (CCUO)
Input: A set C of candidates, a list V of nonmanipulative voters over C, and a

distinguished candidate c ∈ C.
Output: The minimal n such that a coalition S of size n of (unweighted) manipu-

lators can make c the unique winner in (C, V ∪ S) by casting insincere
votes.

We state this problem in the unique-winner model by default, but note that some
authors investigate it in the co-winner model. We will always explicitly state when the
presented results are in the co-winner model instead of the unique-winner model.

Zuckerman et al. [118] investigate this problem for scoring rules, Borda, and
maximin, and they design greedy algorithms that approximate the corresponding
problems within a certain factor, i.e., they analyze the algorithms’ windows of error.
In particular, they show with a series of involved technical proofs that CCUO can be
efficiently approximated up to an additive constant of 1 for Borda (i.e., one additional
manipulator suffices) by an algorithm called Reverse. We illustrate this algorithm in
the following example.

Example 1 We have a Borda election (C, V) with seven candidates, C =
{a, b , c, d, e, f, g}, and five voters with the following preferences. Three voters vote
g > f > e > d > c > a > b and two voters have the preference c > d > e > f > g >

a > b . The Borda scores of the candidates in (C, V) are shown in the first row of
Table 2 and we see that candidate g is the unique Borda winner in this election.

Suppose that the manipulators want candidate a to be the unique Borda winner.
The algorithm Reverse then constructs the manipulators’ votes consecutively as
follows. The distinguished candidate a is always positioned in first place, while the
remaining candidates are ranked in ascending order with respect to their current
Borda scores. So the first manipulator m1 constructed by the algorithm has the
preference a > b > c > d > e > f > g. We set S1 = {m1} and compute the Borda
scores in the new election (C, V ∪ S1) (see row 2 of Table 2).

Since the distinguished candidate is not yet a unique Borda winner, a second ma-
nipulator m2 has to be added with a preference constructed as above. This preference
might be, e.g., a > b > c > d > e > f > g. Note that the candidates c, d, e, f, and g
can be ordered arbitrarily behind candidates a and b , since they all have the same

Table 2 Borda scores over different voter sets constructed by the algorithm Reverse (rows 1 to 6)
and the scores in an optimally manipulated election (row 7)

a b c d e f g

(C, V) 5 0 18 19 20 21 22
(C, V ∪ S1) 11 5 22 22 22 22 22
(C, V ∪ S2) 17 10 26 25 24 23 22
(C, V ∪ S3) 23 15 26 26 26 26 26
(C, V ∪ S4) 29 20 30 29 28 27 26
(C, V ∪ S5) 35 25 30 30 30 30 30
(C, V ∪ S′) 29 20 28 28 28 28 28
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Borda score. We add this manipulator m2 to the set of manipulators, denoted here
by S2 = S1 ∪ {m2}, and compute again the Borda scores in the election (C, V ∪ S2)

(see row 3 in Table 2).
The algorithm continues constructing manipulators in this way until the dis-

tinguished candidate is the unique winner. In this example, five manipulators
m1, . . . , m5 with the following preferences are constructed:

m1 : a > b > c > d > e > f > g m4 : a > b > c > d > e > f > g
m2 : a > b > c > d > e > f > g m5 : a > b > g > f > e > d > c
m3 : a > b > g > f > e > d > c

The scores in elections (C, V ∪ S3) to (C, V ∪ S5) are shown in rows 4 to 6 in
Table 2. We see that candidate a is the unique Borda winner in election (C, V ∪ S5),
but a was not a unique Borda winner in an earlier stage of the construction. Thus the
algorithm computes a successful manipulation with five manipulators.

However, for this election the following four manipulating voters S′ =
{m′

1, m′
2, m′

3, m′
4} would actually suffice to exert a successful manipulation:

m′
1 : a > b > c > d > e > f > g m′

3 : a > b > c > d > e > f > g
m′

2 : a > b > f > g > c > d > e m′
4 : a > b > e > g > d > f > g

As can be seen in row 7 of Table 2, candidate a is the unique Borda winner in the
election (C, V ∪ S′). This example shows that Reverse might construct manipulating
coalitions with one more manipulator than optimally needed.

Similarly, manipulation in maximin can be efficiently approximated within a factor
of 2 (i.e., doubling the optimal number of manipulators suffices in the worst case).

On the other hand, Zuckerman et al. provide algorithms that solve the unweighted
decision problem CCUM efficiently for plurality with runoff and for veto.

Note that these algorithms also apply to the weighted case and make errors
only on very few configurations of voters’ weights. In particular, the approximation
algorithm for Borda improves the error analysis implicit in the above-mentioned
more general result that Procaccia and Rosenschein [98] achieve for a certain familiy
of scoring rules and CCWM with respect to junta distributions when tailored to
Borda only (which, of course, satisfies the required condition α1 ≥ α2 ≥ · · · ≥ αm−1 >

αm = 0).
By reducing the manipulation problem to a scheduling problem, Xia et al. [115]

were able to approximate both the weighted and the unweighted manipulation
problem for general positional scoring rules to an additive term of m − 2, i.e., the
algorithm proposed finds a successful manipulation (if some exists for the given
election) with at most m − 2 additional manipulators.

Davies et al. [30] propose two other approximation algorithms, Largest Fit
and Average Fit, to find optimal manipulations for the Borda rule and compare
them both theoretically and experimentally (the latter approach will be treated in
more detail later on) with the above-mentioned algorithm Reverse introduced by
Zuckerman et al. [118]. Largest Fit and Average Fit use ideas from bin packing
and multiprocessor scheduling and solve the manipulation problem in the co-winner
model. The theoretical analysis shows that both are incomparable with Reverse in
the sense that an infinite family of instances can be found where Reverse performs
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better than either of them, and in turn there is an infinite familiy of instances where
Reverse does not find the optimal solution but the other algorithms do.

Zuckerman et al. [117] improve the approximation error of 2 for maximin in
CCUO to a factor of 5/3. In addition, they prove that no approximation factor for
this problem can be better than 3/2, unless P = NP. A 5/3-approximation has great
theoretical value, but for practical applications this factor might be unsatisfying.
Together with the inapproximability result one can conclude that, from a practical
point of view, approximation does not seem to be appropriate to attack maximin’s
resistance to manipulation. In particular, these results show that maximin in some
sense is “safer” against manipulation attempts than Borda.

In general, however, this approach is very promising and should definitely be pur-
sued and further explored, for example, for other voting systems. In particular, addi-
tional inapproximability results such as the one mentioned in the previous paragraph
would be especially beneficial, as they add to the evidence of protection complexity
theory can provide against manipulation.

A more general approach for approximating manipulation problems is presented
by Brelsford et al. [19]. They use a different objective function in their problem
definition, leading to a different definition of successful manipulation attempts. In
this setting, a legal manipulation is a manipulation that respects the parameters given
in the instance such as, for example, weight constraints for the manipulators in a
weighted election. Here, a manipulation is said to be successful if the “performance”
of the distinguished candidate is improved by the manipulators’ strategic votes, and
the goal is to maximize the increase of the distinguished candidate’s performance.
The performance of a candidate is defined to be the difference between her score and
the maximal score of any other candidate. Thus, in this setting it is not crucial that
the designated candidate wins in the resulting election (considering the constructive
case); rather, she has to be “closer to winning” than in the original election. For
this more general definition of manipulation, Brelsford et al. [19] provide both
approximability and inapproximability results for the family of scoring protocols. For
those scoring rules whose scoring vector α = (α1, α2, . . . , αm) satisfies the condition
α1 > α2, the authors give a fully polynomial-time approximation scheme (FPTAS) for
the weighted coalitional manipulation problem, defined as the above maximization
problem. That is, for each rational number ε with 0 < ε < 1, there exists a (1 − ε)-
approximation algorithm Aε for this maximization problem that, given an instance I
of the manipulation problem, provides a legal solution (that is, a legal manipulation)
and runs in time polynomial both in |I| and in 1/ε. On the other hand, for the veto rule,
k-approval (equivalently, (m − k)-veto for m candidates), and generalized versions
of k-approval9 with k ≥ 2, they show that, unless P = NP, no FPTAS can exist for
this variant of weighted coalitional manipulation.

Procaccia [96] suggests a completely different approach to protect elections
against manipulation by using approximation methods. The idea is not to analyze
the approximability of the manipulation problem for a given voting system but to

9Generalized variants of k-approval are defined by scoring vectors (α1, . . . , αk
︸ ︷︷ ︸

k

, 0, . . . , 0) where values

other than 1 are allowed for α1, α2, . . . , αk as long as they satisfy α1 ≥ α2 ≥ · · · ≥ αk.
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secure the voting system itself against manipulation by approximating it with a strate-
gyproof (i.e., nonmanipulable) randomized voting rule. Procaccia [96] proposes such
randomized voting rules providing approximations of score-based voting systems.
A strategyproof randomized voting rule f is said to approximate a given score-
based voting rule within an approximation ratio of γ if the expected score of the
winner that f chooses is at least γ · s, where s is the maximal score. It is shown
that for m candidates, positional scoring rules can be approximated by strategyproof
randomized voting rules within a factor of �(1/

√
m), and that for plurality voting

this is, asymptotically, the best approximation possible. For the Borda rule, on
the other hand, it is proven that a ((1/2) + �(1/m))-approximation can be achieved.
Furthermore, Copelandα and maximin are analyzed. Interestingly, maximin cannot
be approximated nontrivially, which means that no strategyproof randomized voting
rule exists that provides a better approximation of maximin than the trivial approx-
imation, namely choosing a winner at random. For Copelandα with α ∈ [1/2, 1], a
lower bound of 1/2 + �(1/m) can be shown, whereas for α ∈ [0, 1] the analysis provides
an upper bound of 1/2 + O(1/m). Certainly, in real-life elections, human electorates
might have difficulties accepting randomized voting rules, so this approach is clearly
limited. But then again, in many other applications of voting systems, for example,
multiagent systems, where the computational aspects of manipulation are especially
important, since the software agents (the voters) have computational power on their
own, acceptance of randomized voting rules is not an issue at all.

3.4 Fixed-parameter tractability

What is “typically” the source of complexity of NP-hard manipulation problems?
Does the problem remain hard when there are a fixed number of candidates or
voters or when the number of manipulators is bounded by a constant? Parameterized
complexity theory—a field pioneered by Downey and Fellows [34], see also [57, 94]—
considers questions like that.

While classical complexity theory measures the complexity of problems only in
terms of input size, parameterized complexity analyzes a problem’s complexity in
terms of the input parameters. Typical input parameters for manipulation problems
are the number of candidates, the number of voters, and the number of manipula-
tors.10 Accordingly, such a multivariate analysis seeks to confine to the parameters
the seemingly unavoidable combinatorial explosion in NP-hard problems. Techni-
cally, a parameterized problem L ⊆ �∗×N, whose instances are pairs (I, k) such
that k is a parameter, is fixed-parameter tractable (or in the class FPT) if it can be
decided in time f (k)‖I‖O(1) whether (I, k) is a yes-instance, where f is a computable
function of the parameter k, yet independent of ‖I‖. Intuitively, if the parameter k of
an NP-hard but fixed-parameter tractable problem is bounded by a small constant for
instances typically occurring in practice, then this problem can be solved efficiently
in practice.

10Already Bartholdi et al. [5], who proved that the Dodgson winner problem is NP-hard (see [68]
for a stronger result), considered these parameters and proved that this problem can be solved in
polynomial time when the number of candidates or voters is fixed; see also [11].
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Downey and Fellows [34] also introduced concepts that are useful to capture
parameterized intractability, including the notions of parameterized reducibility,
parameterized hardness, and the W-hierarchy. Most important here are the first two
classes of this hierarchy, W[1] and W[2]. We don’t give the rather involved definition
of these classes here, but refer to the literature [34, 57, 94]. An early treatise of
parameterized complexity applied to problems from computational social choice is
due to Lindner and Rothe [82]; a more recent one is due to Betzler et al. [10].

Bartholdi et al. [4] showed that when there is only a single manipulator, many
unweighted voting systems—including plurality, Borda, Copeland, and maximin—
can be manipulated by a greedy algorithm in polynomial time. STV, by contrast, is
NP-hard to manipulate by a single strategic voter already in the unweighted case
[3]. However, Conitzer et al. [28] proved that this problem, parameterized by the
number m of candidates, is fixed-parameter tractable. Their FPT algorithm runs in
time O(1.62m · p(n, m)), where n is the number of votes and p a polynomial. As
mentioned earlier, CCUM is NP-complete for Borda, even for only two manipulators
[13, 30]. However, when parameterized by the number of candidates, this problem
is fixed-parameter tractable. This follows from a more general approach of Betzler
et al. [12] who study the parameterized complexity of the Possible Winner problem,
which was introduced by Konczak and Lang [76] and generalizes the unweighted
coalitional manipulation problem. This problem asks, given an election with only
partial preference orderings, whether a distinguished candidate can be made win by
extending the partial orders to complete orders.11 Betzler et al. [13] observe another
fixed-parameter tractability result for this problem and a different parameter related
to “instance tightness.”

While these results are very interesting from a theoretical point of view, one
should keep in mind, first, that parameterized hardness shares with NP-hardness the
feature of being a worst-case measure of complexity and, second, that many of the
algorithms showing fixed-parameter tractability are too slow for practical purposes,
even for small values of the parameter. Just as in classical algorithmics, an important
task is to improve these algorithms.

Many manipulation problems have been classified in terms of classical complexity
by now. A detailed multivariate complexity analysis focusing on various specific
parameters occurring in practice is still missing for many manipulation scenarios and
voting systems. In particular, the number of manipulators seems to be an appealing
parameter, especially in light of the approximation algorithms described above that
seek to approximate this number. It would also be interesting to obtain parameter-
ized intractability results, such as W[1]- and W[2]-hardness, for certain manipulation
problems in suitable parameterizations.

3.5 Single-peaked preferences

What is a “typical” election? Well, it depends. In general, it is a nontrivial problem to
say how votes in an election are “typically” distributed. However, there are certain

11In addition, Betzler et al. [12] and Betzler [9] obtain FPT results for Possible Winner in Borda, k-
approval, and Copelandα voting for different parameters, such as the total number of undetermined
candidate pairs. Dorn and Schlotter [33] establish FPT results for an even more general problem,
Swap Bribery, which was introduced and studied in terms of classical complexity by Elkind et al. [37].
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special cases that may occur in real-world elections and that may outright be easy to
solve. For example, suppose society votes on a single issue (such as taxes or health
care or war on terror, etc.) that can be nicely embedded in a left-right spectrum. That
is, there exists a linear (societal) ordering of candidates on this spectrum (e.g., if taxes
are the issue to be voted on, a left-wing candidate would stand for high taxes and a
right-wing candidate would stand for low taxes), and relative to this linear ordering,
all voters’ preference utility curves raise to a single peak (representing this voter’s
most preferred position on this spectrum) and then fall, or just raise, or just fall. This
model of single-peaked preferences is a central concept in political science and has
been introduced by Black [15]; see also, e.g., [2, 60, 80] for more recent social-choice-
theoretic work on single-peakedness.

Formally, an election (C, V) is said to be single-peaked if there exists a linear
ordering L on C such that for each vote vi ∈ V (individually represented by a linear
ordering >i on C) and for each triple of candidates, c, d, and e in C, if c L d L e or
e L d L c then c >i d implies d >i e for each i. In other words, for each triple of
candidates ordered according to L, it can never happen in an individual vote that the
“middle” candidate is ranked last.

Restricting an electorate to only single-peaked preferences may or may not change
the computational properties and the complexity of the associated manipulation
problems. Such restrictions have only recently be considered (e.g., by Escoffier et al.
[47] and Conitzer [23]) from a computational point of view, although the concept in
political science is well-established for more than a half century now. In particular,
Walsh [108] shows that the weighted manipulation problem for STV for at least three
candidates remains NP-complete, even when the given election is restricted to be
single-peaked. Here, the underlying linear ordering L of candidates relative to which
the votes of the nonmanipulators are single-peaked is part of the input, and the ma-
nipulators’ votes are supposed to be single-peaked relative to the same ordering L.

Faliszewski et al. [53] prove that, depending on the voting system used, NP-
hardness of CCWM can vanish or can remain in place. For example, one of their
results says that CCWM for 3-candidate Borda elections is in P when restricted to
single-peaked electorates (whereas it is NP-complete in the unrestricted case), while
it remains NP-complete for 4-candidate Borda elections, even when restricted to
single-peaked electorates (just as in the general case).

Remarkably, for m-candidate 3-veto elections, this manipulation problem is in P
whenever m ≤ 4 or m ≥ 6, but is NP-complete for m = 5 [53]. That is, due to single-
peakedness, the complexity of the problem drops down to polynomial time, although
the number of candidates is incremented from five to six or more.

Faliszewski et al. [53] also show that (for a certain artificial voting system)
restricting the electorate to the single-peaked case may even increase the complexity
of manipulation. In addition, they prove a dichotomy result for single-peaked
electorates when a scoring rule with vector α = (α1, α2, α3) is used: CCWM is NP-
complete whenever α1 − α3 > 2(α2 − α3) > 0; otherwise, it is in P. This dichotomy
result has been generalized by Brandt et al. [18] to scoring rules with any (fixed)
number of candidates. For further results, see the work of Faliszewski et al. [49].

But, again, one may wonder how “typical” single-peaked elections are in the real
world. Just as only “few” (in the sense of subexponentially many) hard instances
per length might cause a problem to be hard in the worst-case model (even though
it might be easy to solve for all other instances), only a few bad votes might
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destroy single-peakedness for any societal ordering of candidates (although, for some
such ordering, all other votes might be single-peaked). On the other hand, many
researchers in political science feel that electorates often are “essentially” single-
peaked, even though perhaps not completely. To capture that intuition formally,
Faliszewski et al. [49] introduce the notion of nearly single-peaked electorates in
various settings, making the notion more flexible and more broadly applicable. They
prove, for example, that for nearly single-peaked societies the above manipulation
problem for 3-candidate Borda, and also for 3-candidate veto, is NP-complete (just as
in the general case). On the other hand, they also provide examples where going from
single-peaked to nearly single-peaked electorates does not raise the complexity of the
manipulative actions.

Mattei [85] empirically investigates huge data sets from real-world elections
(drawn from the Netflix Prize data set) with respect to properties such as how likely
the Condorcet paradox is to appear and how often single-peaked preference profiles
are to occur. In particular, his experiments indicate that single-peaked preferences
only very rarely occur in practice.

3.6 Experimental analysis

Another recent line of research studies experimental simulation and evaluates
heuristics for solving NP-hard manipulation problems empirically. These investi-
gations were initiated by Walsh [109, 110], who experimentally studied NP-hard
manipulation problems for veto and STV, and showed that for many instances the
elections generated can be manipulated quickly.

Generating elections for experimental analysis can be done in various ways
depending on the electorates one wants to model. The possibility and frequency of
successful manipulation can vary greatly for different vote distributions.

For the veto rule, Walsh [109] investigates the problem CCWM restricted to
elections with three candidates, which can be directly reduced to 2-Way-Number
Partitioning. This reduction allows to make use of known efficient algorithms for
the latter problem, such as the CKK algorithm by Korf [77], to solve the manipulation
problem.

The votes in the tested elections are generated by randomly choosing one of the
three candidates to be vetoed, and the vetoes carry randomly drawn weights as well.
The electorate’s distribution is varied by the generation of the voters’ weights. To
generate uniform votes, the weights of the voters are drawn uniformly and inde-
pendently at random from a given interval. Similarly, normally distributed votes are
generated by drawing the voters’ weights independently from a normal distribution.

The weight of the manipulating coalition is crucial for the complexity of deter-
mining whether a given election is manipulable or not. If the weight is too small,
the coalition is hopeless, whereas manipulation is trivially possible if the weight is
too big. Instances where the manipulative coalition’s weight is between these trivial
cases are conjectured to be the hard ones, so this so-called “critical” region is of most
interest in the results obtained from the conducted experiments.

Similar results were found for uniformly and for normally distributed votes: Even
in the critical region, the decision whether the tested election is manipulable or not
could be made with low computational costs. The probability curves for successful
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manipulation show in both distributions a smooth phase transition in this critical
area, similarly to the phase transition observed for polynomial-time solvable decision
problems.

Complementary to this setting, electorates with correlated votes have been in-
vestigated as well. For the veto system, so-called “hung” elections were generated
where the manipulative coalition is twice as heavy as the nonmanipulative voters’
total weight, but all nonmanipulators veto the distinguished candidate the coalition
wants to make win. This finely balanced situation is exactly what the reduction of
Conitzer et al. [28] produces from a given Partition instance in their proof of NP-
hardness of the manipulation problem. Not surprisingly, generating such instances
at random leads to higher computational costs for deciding them in the critical
region. Furthermore, the probability curves resulting from these instances show a
typical sharp phase transition, similar to that of other hard decision problems, namely
around (log k)/m ≈ 1, where m is the number of manipulators and their weights are ran-
domly chosen from (0, k]. Interestingly, one randomly vetoing voter in an otherwise
perfectly hung election suffices to at least empirically make the problem easier.

Furthermore, the results show that in elections with uniform votes the sizes of the
voters’ weights do not influence the manipulability of the tested elections, confirming
empirically the theoretical conjectures by Procaccia and Rosenschein [97] and Xia
and Conitzer [113].

For preference-based voting systems such as STV and Borda, the votes are given
by linear orders over all candidates and thus are permutations of the candidates.
To generate uniformly distributed votes for these voting systems, each vote is drawn
uniformly and independently from an urn containing all possible votes. This is the so-
called Impartial Culture (IC) model in which each vote is equally likely to occur. To
model correlated votes, Walsh [110] uses the Pólya–Eggenberger urn model (PE)—
described, e.g., by Berg [8] —in the following sense: The first vote is drawn from
an urn containing all possible votes; there are m! different permutations of the m
candidates. Before drawing the second vote, m! votes identical to the first one are
put back to the urn. Before drawing the third vote, m! votes identical to the second
vote are put back to the urn, and so on.12

In the literature of social choice theory, the PE model is the standard model
to generate electorates with different levels of homogeneity and has been used to
investigate the correlation between various interesting properties of voting rules such
as similarities regarding the chosen winner or Condorcet efficiency and the homo-
geneity of the voters’ preferences (see, e.g. [63, 87]). An interesting new approach
could be to define homogeneity in a more “fragmented” manner meaning that two
correlated preferences do not have to be entirely identical but, e.g., have the same
candidates on the first, say, � positions but the remaining positions may differ.

For the conducted experiments, an improved version of an algorithm given
by Conitzer et al. [28] is used. The experiments show that independent of the

12This procedure generates highly correlated votes and models how homogeneity varies in society.
By differently choosing the number of votes that are put back in each step, the correlation can be
varied. Here we have that the second vote is the same as the first vote with probability 1/2. This
probability can be de- or increased by putting back less or more votes in each step.
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underlying model a successful manipulation action for a single manipulator can easily
be computed in elections where the number of candidates is not higher than 128.
For coalitions of manipulators casting identical votes, the computational cost of
deciding whether manipulation is possible depends on the coalition size. Increasing
the number of manipulators increases the manipulability of the tested elections.

Complementary to the testing on random elections where no votes exist that are
never cast, Walsh [110] also samples real elections: An election to determine a trajec-
tory for NASA’s Marine spacecraft and the votes cast in a faculty hiring committee at
the University of Irvine (for details see [31, 36]). The sampled elections show similar
results as the randomly generated elections.13 Deciding whether a manipulator can
successfully change the outcome of the election or not is easy for up to 128 candidates
and voters.

Davies et al. [30] use the experimental approach introduced by Walsh [109, 110]
to analyze their approximation algorithms, Largest Fit and Average Fit, for the
Borda system and compare them with the algorithm Reverse of Zuckerman et al.
[118]. Random elections for their experiments are generated in the IC model and the
PE model, and the optimal solution for a given instance is computed with the solver
Gecode after having modeled the manipulation problem as a constraint satisfaction
problem.14 The results show that the Largest Fit algorithm finds an optimal solution
in roughly 83 % of the elections with uniform votes and in roughly 42 % of the
elections generated with the PE model. The Average Fit algorithm, on the other
hand, finds an optimal solution in almost all (roughly 99 %) of the tested elections
independent of the distribution. Thus, Largest Fit and Average Fit behave better
than Reverse for Borda in both distribution models, as Reverse finds an optimal
manipulation in roughly 76 % of the tested elections only.

Narodytska et al. [93] study unweighted and weighted manipulation of Nanson’s
and Baldwin’s rules. In the unweighted case, they prove that both rules are NP-hard
to manipulate, even for just one manipulator. In the weighted case, they show that
coalitional manipulation is NP-hard for Nanson when there are four candidates and is
in P for three candidates. Since Coleman and Teague [21] have shown NP-hardness of
this problem for Baldwin already for three candidates, Baldwin’s rule appears to be
computationally more resistant to manipulation than Nanson’s rule, as Narodytska
et al. [93] point out, at least when restricted to three candidates (and of course
assuming that P �= NP).

Narodytska et al. [93] also conduct experiments for these two rules, using the same
approximation algorithms as Davies et al. [30], Largest Fit and Average Fit, and

13For comparison, the sampled elections should have the same number of candidates and voters
as the randomly generated elections. To obtain this, candidate or voter sets containing too many
elements are reduced by randomly choosing appropriate subsets. If the list of voters has to be
extended, votes are uniformly and independently chosen from the given votes. If the candidate set is
too small, the candidates are duplicated and the ranking between the clone and the original candidate
is chosen randomly.
14The timeout is set to one hour and the variable-ordering heuristic used is the “domain over weight
degree.”
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two more, Eliminate and Reverse Eliminate. Their results suggest that, at least for
the algorithms studied, Nanson’s and Baldwin’s rules are harder to manipulate on
random elections than Borda’s rule.

For Nanson and Baldwin, Reverse works slightly better than Largest Fit and Av-
erage Fit, which in turn outperform Eliminate and Reverse Eliminate, especially
when the number of candidates is large.

For a deeper experimental analysis following the presented approach, possible
future work could be to conduct experiments with larger election sizes, different
voter distribution models, or different (and especially larger) real-life elections.

4 Challenges to complexity results for control

Electoral control models structural changes an election’s chair (who seeks to
influence the outcome of an election—again, we assume that the chair knows all
the votes) can make by adding, deleting, or partitioning either candidates or voters.
These control actions model real-world election issues such as campaign advertise-
ment, get-out-the-vote-drives, vote suppression, and gerrymandering. Bartholdi et al.
[6] introduced seven constructive control types. Hemaspaandra et al. [70] extended
this study by introducing destructive control types as well, and also by adding two
natural tie-handling rules for the partitioning cases.

Analogously to the formal definition of manipulation, two winner models can be
used to define control formally. By default, we will consider control problems in the
unique-winner model where a control action is successful only if the designated can-
didate alone wins the resulting election. The reason for this choice is that the results
to be presented in this section typically are in this model, unless stated otherwise. In
the other model, the co-winner model, the designated candidate is allowed to be a
winner amongst others and the corresponding control action is still considered to be
successful.

Control actions can be formalized by decision problems whose instances always
contain a distinguished candidate c and an initial election (C, V), and the question
always is whether c can be made the (unique) winner by modifying (C, V) according
to the control action at hand. We start by defining the constructive control types. For
Constructive Control by Adding Voters (CCAV), we in addition are given a list of
as yet unregistered votes from which the chair can choose which to add, and a bound
on the number of voters that may be added. Similarly, for Constructive Control
by Adding Candidates (CCAC), the instances additionally contain a set of spoiler
candidates and a bound on the number of candidates that may be added. Note that
Bartholdi et al. [6] actually defined this problem without a given bound (and we refer
to their control problem as CCAUC, where the U stands for Unlimited). As we will
see later on in Table 3, this distinction can be important. For example, in Copeland0

and Copeland1 elections, adding this bound to the instance increases the complexity
of the problem from P membership to NP-completeness. In the scenarios describing
constructive control by deleting either candidates or voters (denoted by CCDC and
CCDV), only the limiting bound is given in addition to the initial election and the
distinguished candidate.
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Table 3 Overview of NP-hardness and tractability results regarding control

Condorcet Plurality Copelandα Approval Bucklin Fallback

C D C D C D C D C D C D

CAUC I V R R V, α ∈ {0, 1} V I V R R R R
R, α �∈ {0, 1}

CAC I V R R R V I V R R R R
CDC V I R R R V V I R R R R
CPC-TE V I R R R V V I R R R R
CRPC-TE V R R V R R
CPC-TP V I R R R V I I R R R R
CRPC-TP V R R I R R
CAV R V V V R R R V R V R V
CDV R V V V R R R V R V R V
CPV-TE R V V V R R R V R R R R
CPV-TP R V V V R R R V R U R R

Key: R = resistance, which means NP-hardness; V = vulnerability, which means P membership; I =
immunity, which means that control is impossible; U = unsolved, which means that control is possible
but P membership/NP-hardness is not known

Partitioning either candidates or voters changes an election’s course by transform-
ing it into a two-stage election with one (or two) pre-round election(s) and one final-
stage election. The two tie-handling rules mentioned above are Ties Eliminate (TE),
where only unique pre-round winners move on to the final round, and Ties Promote
(TP), where all pre-round winners participate in the final stage. Which of these two
tie-handling rules is more natural depends on the winner model chosen: TE better
matches the unique-winner model, whereas TP better fits the co-winner model. As
an example, we formally define one of these problems explicitly:

Constructive Control by Partition of Candidates (CCPC)
Given: An election (C, V) and a distinguished candidate c ∈ C.
Question: Is it possible to partition C into C1 and C2 such that c is the unique

winner (under the election system at hand) of election (W1 ∪ C2, V),
where W1 is the set of winners of subelection (C1, V) surviving the tie-
handling rule?

In Constructive Control by Runoff Partition of Candidates (CCRPC), there
are two pre-rounds, (C1, V) and (C2, V), and the final stage is the subelection (W1 ∪
W2, V), where Wi, i ∈ {1, 2}, is the set of winners of subelection (Ci, V) surviving the
tie-handling rule. When the list of voters is partitioned (yielding the problem CCPV),
the pre-round of the resulting two-stage election consists of two subelections where
the voters of each sublist vote over all candidates and those candidates surviving the
tie-handling rule run against each other in the final round, considering all votes.

The destructive variants are defined analogously: DCAC, DCAUC, DCAV,
DCDC, DCDV, DCPC, DCRPC, and DCPV. Altogether, a total of 22 standard
types of control have been defined and studied in the literature (see, e.g., the survey
by Baumeister et al. [7] for the formal definitions and the motivation of each single
type). However, building on work of Faliszewski et al. [51], Hemaspaandra et al. [67]
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have recently observed that these are actually only 20 distinct types of control, as
the destructive variants of control by partition and runoff partition of candidates
collapse to just one type for both tie-handling rules: DCPC-TE = DCRPC-TE and
DCPC-TP = DCRPC-TP, regardless of the voting system.

Bartholdi et al. [6] initiated the study of control complexity by analyzing con-
structive control for plurality voting and the Condorcet voting system and showed
that plurality elections are fully resistant to constructive candidate control, i.e., the
control problems are NP-hard, whereas the constructive voter control problems are
all in P. In Condorcet elections, however, the voter control problems are NP-hard and
the candidate cases yield in some sense mixed results: Control by adding candidates
can never be exerted successfully in Condorcet elections—this property is called
immunity. For the remaining candidate control problems, deterministic polynomial-
time algorithms could be found. (Note that immunity results imply P membership
as well because the corresponding decision problem can trivially be decided, since
the answer is always “no.” However, if a voting system is immune to some type of
control, it is in fact irrelevant that the control problem can be solved efficiently, as
control simply is not possible.)

Hemaspaandra et al. [70] completed the study for plurality and Condorcet and
additionally analyzed control complexity in approval elections. They showed that
destructive candidate control in plurality elections is NP-hard while the destructive
voter control cases can be solved in deterministic polynomial time. For the Condorcet
system, on the other hand, voter control becomes tractable when changing the
control action from the constructive to the destructive case. Approval voting behaves
similarly to Condorcet as it is fully resistant to constructive voter control and the
destructive voter control cases are easy to solve. Also the results for the candidate
cases are consistent with those for Condorcet voting except that approval voting is
also immune to constructive control by partition and runoff partition of candidates
in model TP.

The family of Copelandα systems has been studied in depth by Faliszewski et al.
[51], who showed that Copelandα is fully resistant to voter control for all (rational)
values of α ∈ [0, 1] and is fully resistant to constructive control whenever α ∈ (0, 1).
However, the destructive candidate control cases can be solved in deterministic poly-
nomial time. They also showed that the complexity of CCAUC strongly depends on
the value of α: For α ∈ {0, 1}, the problem can be solved efficiently, but for all other
values of α in [0, 1], the problem is intractable. Another interesting point to note here
is that for Copelandα with α ∈ {0, 1}, CCAUC is in P, yet CCAC is NP-complete.

Erdélyi and Rothe [46] and Erdélyi et al. [45] studied the control complexity in
Bucklin and fallback elections and showed that both voting systems are fully resistant
to both candidate control and to constructive voter control. Only destructive control
by deleting and adding voters is known to be solvable efficiently for both voting sys-
tems. The remaining voter control problems are each NP-complete in fallback voting,
and also in Bucklin voting with the exception of destructive control by partition of
voters in model TP which is still an open problem.

Table 3 shows the just presented control complexity results for those voting
systems that will be further discussed in the following sections. A number of follow-
up papers were concerned with the control complexity of further voting systems and
other aspects of control—see, e.g., [44, 50, 71, 88] and the surveys by Faliszewski et al.
[48, 52] and Baumeister et al. [7].
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Many of the arguments in the previous section on manipulation apply also to
control, so an election’s chair does not have to despair either when facing an NP-
hard control problem. However, some approaches—such as those of Zuckerman
et al. [117, 118] that have been proposed for manipulation—may be less suited for
control problems.

4.1 Fixed-parameter tractability

Typical parameters for all standard control types are again the number of candidates
and the number of voters. For example, Faliszewski et al. [51] establish FPT results
for all NP-complete control problems for Copelandα voting when the number of
candidates or voters is bounded by a fixed constant, except certain cases of candidate
control when the number of voters is bounded. To this end, they employ Lenstra’s
algorithm for bounded-variable-cardinality integer programming [79]. Betzler and
Uhlmann [14] proved NP-completeness for control by adding and deleting candi-
dates when the number of voters is bounded.

Unfortunately, the number of candidates and the number of voters in an election
may be large, and in such cases an FPT result is not of much value. Betzler and
Uhlmann [14] also consider the parameters “number of candidates added” (in
constructive control by adding candidates) and “number of candidates deleted” (in
constructive control by deleting candidates). They show that these parameterized
problems are equivalent under parameterized reductions to certain digraph prob-
lems, parameterized by the minimum indegree or the maximum outdegree, and
establish W[2]-completeness results for constructive control by adding and by delet-
ing candidates with respect to the output parameters (e.g., “number of candidates
added” for constructive control by adding candidates) in Copelandα voting.

For plurality voting and with respect to the output parameters, W[2]-hardness
of constructive control by adding candidates is due to (the proofs of15) Bartholdi
et al. [6] and Liu et al. [83], and W[2]-hardness of destructive control by adding
candidates is due to (the proof of) Hemaspaandra et al. [70]. Betzler and Uhlmann
[14] prove W[2]-hardness for constructive and W[1]-hardness for destructive control
by deleting candidates. For all these parameterized problems, a proof of an upper
bound (membership in W[2] or W[1]) is still missing. Further fixed-parameter
tractability and parameterized intractability results concerning control in different
voting systems—including approval, maximin, Bucklin, and fallback voting—are due
to Liu et al. [83], Liu and Zhu [84] and Erdélyi and Fellows [39] (see also [40]).

4.2 Single-peaked preferences

Regarding the restriction of electorates to single-peaked preferences, Faliszewski
et al. [53] showed that the control problem can be solved in polynomial time in all
cases in which plurality and approval voting are in general NP-hard to control by
adding or deleting either candidates or voters. Brandt et al. [18] achieved similar
results for other voting systems as well, in particular those that satisfy the weak

15By this we mean that these W[2]-hardness results may not be explicitly stated in these papers but
follow immediately from the NP-hardness reductions given there.
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Condorcet criterion, and in addition for the case of constructive control by partition
of voters.

4.3 Experimental analysis

Among natural voting systems with efficient winner determination, fallback voting is
currently known to have the most NP-hardness results (i.e., resistances) with respect
to the standard control scenarios,16 and Bucklin voting behaves almost as well [45].

For plurality, Bucklin, and fallback voting, Rothe and Schend [100] have per-
formed an extensive experimental study on the frequency of controllability17 for
randomly generated elections. Inspired by the experimental setup of Walsh [109, 110]
described in the section about experimental approaches regarding manipulation, one
model used for the vote distribution is the IC model. To simulate correlated votes,
however, Rothe and Schend [100] introduce an adaption of the PE model, which they
call the Two Mainstreams (TM) model:

1. Two votes v1, v2 are drawn independently from an urn containing all possible,
say t, votes.

2. Each of the votes drawn is put back into the urn with t additional identical votes,
and the list of votes is then drawn uniformly at random from this urn. Thus, each
voter has with probability 1/3 the same preference as v1, with probability 1/3 the
same preference as v2, and again with probability 1/3 a different preference.

The votes v1 and v2 model two mainstreams, such as liberal and conservative, a
society may have. Note that, just as the PE model, also this model could be modified
so as to allow more deviation by requiring that not exact copies of v1 and v2 but only
similar preferences (say, with the first � positions being identical but deviating on the
remaining ones) are put back into the urn.

Rothe and Schend [100, 101] did not use the variant of the PE model employed
by Walsh [109, 110] because of the high probability that all or many preferences in
the generated election are identical (see footnote 12). In a manipulation context, this
does not cause too much of a problem, since the manipulators can change their votes
and can be in some sense independent of the distribution. Control actions, however,
do not allow direct modifications of the preferences, and in electorates where, say,
all voters have the same preference, for most control types it would then be trivially
easy to decide whether or not control is possible.

With these two distributions, random elections are generated, letting the number
of candidates and votes, m and n, vary in powers of 2 between 4 and 128. For each
data point (i.e., for each pair of m and n), 500 elections are tested.

The algorithms implemented to solve the control problems for the different voting
systems apply a heuristic approach: A successful control action for a given election
is searched for by basically testing all possible control actions of the given type.

16Shortly after the results for Bucklin and fallback voting were published by Erdélyi et al. [40],
Menton [89] showed that the voting system normalized range voting draws level with fallback voting
in terms of the number of resistances to control.
17The experiments have been conducted for each of the three voting systems in the NP-hard control
cases only, with one exception: DCPV in model TP has nonetheless been studied experimentally for
Bucklin voting, as the complexity of this control problem is still unknown.
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This testing process is systematized by preordering the candidates or voters such
that promising control actions are tested first. To ensure practicability, the algorithm
aborts the computation after a fixed timeout, indicating the inconclusive result by its
output.

The results of Rothe and Schend [100] allow a fine-grained analysis of those
control types the three considered voting systems are resistant to (for a complete col-
lection of results for these experiments, see the corresponding technical report [101]).

So far, the results for both constructive and destructive control by partition of
candidates in model TE for Bucklin and fallback voting align with the conclusions
arrived at by Rothe and Schend [100] for other control scenarios, which can be
summarized as follows.

Comparing the two distribution models used, for all investigated control types
and in all voting systems considered, elections generated with the IC model show a
higher overall number of yes-instances than elections generated in the TM model. At
the same time, the number of timeouts is higher for elections generated with the TM
model.

Bucklin and fallback voting show the same tendencies both theoretically (re-
garding NP-hardness versus membership in P) and experimentally. Note that the
complexity status of DCPV in model TP is still open, whereas this problem is known
to be NP-complete for fallback voting [45]. Since Bucklin and fallback voting behave
empirically very similarly with respect to this control type, we conjecture that this
control problem is NP-complete for Bucklin voting as well.

Comparing Figs. 1 and 2 affirms the intuition that destructive control is easier
to exert than constructive control: For some election sizes, up to 100 % of the
tested elections are controllable by certrain destructive control types, whereas for
the constructive cases, especially regarding candidate control, the number of yes-
instances is much smaller.

Further comparisons accross the different control types show that in the construc-
tive cases voter control seems to be easier to exert in practice than candidate control.
Control by adding candidates and by partition of candidates show particularly few
yes-instances for all three voting systems, indicating that these may be the hardest
control types investigated. The results also show that more of the tested elections are
controllable by deleting voters than by adding voters, and the same can be observed
regarding candidate control. But, of course, one should keep in mind that all
conclusions drawn from these experiments strongly depend on the specific algorithm

Fig. 1 Experimental results
for fallback voting in the TM
model for CCPC in model TE,
for a fixed number of
candidates
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Fig. 2 Experimental results
for Bucklin voting in the IC
model for DCPC in model TE,
for a fixed number of
candidates

used. Further improved algorithms might provide new insights, especially regarding
those cases where only few controllable instances were observed. Furthermore, it
is clear that this first approach of an experimental analysis is not exhaustive and
should be seen simply as launching this line of research. There certainly are many
possibilities for improvement using, for example, more sophisticated algorithms,
other voter distribution models, or tests on real data.
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