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Abstract Decidability and complexity of the satisfiability problem for the logics of
time intervals have been extensively studied in the recent years. Even though most
interval logics turn out to be undecidable, meaningful exceptions exist, such as the
logics of temporal neighborhood and (some of) the logics of the subinterval relation.
In this paper, we explore a different path to decidability: instead of restricting the set
of modalities or imposing severe semantic restrictions, we take the most expressive
interval temporal logic studied so far, namely, Venema’s CDT, and we suitably limit
the negation depth of modalities. The decidability of the satisfiability problem for
the resulting fragment, called CDTBS, over the class of all linear orders, is proved
by embedding it into a well-known decidable quantifier prefix class of first-order
logic, namely, Bernays-Schönfinkel class. In addition, we show that CDTBS is in fact
NP-complete (Bernays-Schönfinkel class is NEXPTIME-complete), and we prove its
expressive completeness with respect to a suitable fragment of Bernays-Schönfinkel
class. Finally, we show that any increase in the negation depth of CDTBS modalities
immediately yields undecidability.
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1 Introduction

In the recent years, the study of temporal reasoning via interval-based (logical)
approaches has been very intensive. Since the seminal work by Halpern and
Shoham [18] and Venema [33], a series of papers on interval temporal logics has
been published, e.g., [5, 6, 9–11, 23, 24, 29]. As an effect, the problem of classifying
all “natural”, genuinely interval-based (that is, all intervals over a linear order
are considered, and no projection principle is applied [17]) logics with respect to
their expressive and computational power has been extensively studied and almost
completely solved.

Propositional interval temporal logics are modal logics, interpreted over linearly-
or partially-ordered sets, whose proposition letters are evaluated over intervals
instead of over points. They differ from each other in the number and type of
basic relations between intervals that are captured by their modalities, by the linear
order(s) over which they are interpreted, and by the inclusion or exclusion of point-
intervals (intervals with coincident endpoints). In the hierarchy of existing interval
temporal logics based on their expressive power, the top element is Venema’s
CDT [33], whose language features three binary modalities, corresponding to the
three possible ways to place a point with respect to the two endpoints of a given
interval, and a modal constant, that identifies point-intervals. The second-highest
logic in the hierarchy is Halpern and Shoham’s HS [19], which features one unary
modality for each Allen’s relation between pairs of intervals [1]. Both in CDT and in
HS, satisfiability turns out to be undecidable, no matters what class of linear orders
is considered (all, discrete, dense, finite, the linear order of natural numbers, and so
on) [19].

In the recent years, some fragments of HS with a better computational behavior
have been identified. Meaningful examples include, but are not limited to, AA (a.k.a.
Propositional Neighborhood Logic, PNL), which features two modalities for Allen’s
relations meets and met by, and is decidable over all meaningful classes of linear
orders [8, 16]; its extension AABB [28], that includes modalities for Allen’s relation’s
starts and started by, and its mirror image AAEE, with additional modalities for
Allen’s relations f inishes and f inished by, which are decidable over the class of finite
linear orders and undecidable everywhere else; and BBDDLL (and its mirror image
EEDDLL), with modalities for Allen’s relations starts, started by, during, contains,
before, and after, which is decidable over dense linear orders [26, 27] and undecidable
over finite and (weakly) discrete linear orders (as a matter of fact, one-modality
logics D and D are already undecidable over the classes of finite and discrete linear
orders [23]).1

1In all these cases, including or excluding point-intervals makes no difference.
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The situation with classical first-order logic is somehow similar. Since it has been
shown that satisfiability for the full language is undecidable, a great effort has been
made in order to identify more and more expressive decidable fragments. At least
three different strategies have been pursued: (i) limiting the number of variables of
the language, (ii) limiting the type of formulas allowed by relativizing quantification
(guarded fragments), and (iii) limiting the structure and the shape of the quantifier
prefix.

First-order logics with a restriction on the number of variables have been already
studied in connection with interval temporal logics. Most notably, AA has been
proved to be expressively equivalent to the two-variable fragment of first-order
logic over linear orders. Such a fragment of first-order logic has been shown to
be NEXPTIME-complete over various classes of linear orders in [30]. Decidability
of AA over the same classes of orders immediately follows. Guarded fragments of
first-order logic (see [2] for an introduction) have been shown to be quite useful to
explain the good computational properties of modal logics, but, to the best of our
knowledge, they have never been considered in the framework of interval temporal
logics. As a matter of fact, mapping interval temporal logics into guarded fragments
of first-order logic would require (i) the use of a relation in the guards which is
(or can be forced to behave as) a linear order, (ii) at least three distinct variables,
(iii) uninterpreted predicates which are at least binary, and (iv) quantifications with
Boolean combinations of atomic formulas as guards. Such requirements are not met
by known decidable guarded fragments of first-order logic.2

In this paper, we explore an original path to decidability of interval temporal
logics, which follows the third strategy: we look for meaningful interval temporal
logics that can be embedded into decidable quantifier prefix classes of first-order
logics. The decidability of the latter family of logics does not depend on the shape
of the quantifier prefix only, but also on the number and the arity of predicate and
function symbols that are allowed in the formulas, and on the presence/absence of
equality. Seven different decidable classes have been identified in the literature (a
survey on quantifier prefix classes of first-order logic can be found in [4]).

We focus our attention on the prefix vocabulary class identified by Bernays and
Schönfinkel in 1928 (a.k.a. Bernays, Schönfinkel, and Ramsey class, as Ramsey
proved that decidability is preserved even when equality is included) [4]. It consists
of all and only formulas in prenex form whose quantifier prefix is of the form
∃x1 . . . ∃xn∀y1 . . . ∀ym and whose matrix may include predicate symbols of any arity
(but no function symbols) and, possibly, equality. It is well known that Bernays-
Schönfinkel fragment of first-order logic is expressive enough to model a linear order
devoid of specific properties such as discreteness or density. Moreover, it can express
simple frame properties, commonly studied in the interval temporal logic literature,
like, for instance, boundedness.

We identify a syntactic fragment of CDT [33], called CDTBS, whose standard
translation fits into Bernays-Schönfinkel class, by limiting the negation depth of the

2Extended guarded fragments includes loosely guarded fragments, which allow guards to be more
complex than simple atoms [3], and guarded fragments with transitive guards (in general, transitivity
cannot be expressed as a guarded formula) [31].
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modalities to one, that is, by constraining temporal operators to occur in the scope
of at most one negation. Decidability of CDTBS, over the class of all linear orders,
immediately follows. Then, a precise characterization of CDTBS expressive power is
given by showing that it is expressively complete with respect to a suitable fragment
of Bernays and Schönfinkel class. A decision procedure for CDTBS is then obtained
by tailoring the non-terminating tableau-based deduction system for CDT developed
in [15] to it. As a by-product, we prove that the satisfiability problem for CDTBS

is NP-complete, in sharp contrast with that of Bernays-Schönfinkel class, which is
NEXPTIME-complete, when relation symbols of unbounded arity are allowed, and
PSPACE, when relation symbols have bounded arity, e.g., only binary relations are
allowed, as it is the case for interval logics. Finally, we show that any increase in the
negation depth of CDTBS modalities immediately yields undecidability.

The paper is structured as follows. In Section 2, we provide background knowl-
edge about Bernays and Schönfinkel fragment of first-order logic. In Section 3,
we define syntax and semantics of CDTBS, and we define its standard translation.
Decidability immediately follows from the inclusion of the resulting set of formulas
in Bernays and Schönfinkel class. Next, in Section 4, we prove the expressive
completeness of CDTBS with respect to a suitable fragment of such a class. In
Section 5, we devise a sound, complete, and terminating tableau method for CDTBS.
Finally, in Section 6, we show that fairly natural extensions of CDTBS do not preserve
decidability. An assessment of the work done and possible future research directions
are given in Section 7.

2 Bernays-Schönfinkel class

Bernays-Schönfinkel prefix vocabulary class, denoted here by FOBS, consists of
all and only those first-order formulas, making use of any relational symbol of
any arity, including equality, that can be put in prenex form by using a quantifier
prefix of the form ∃x∀y, where x = x1 . . . xn and y = y1 . . . ym are (possibly empty)
vectors of first-order variables. It is well known that the satisfiability problem for
FOBS is NEXPTIME-complete [4]. Moreover, FOBS is closed under conjunction and
disjunction, since all its formulas can be thought of as sentences (free variables can
be existentially quantified), but it is not closed under negation.

To simplify the proofs of the results given in the paper, we introduce an alternative
definition of FOBS via the following abstract grammar:

α ::= α∃ | α ∧ α | α ∨ α | ∃x.α | ¬α∃ for α∃ of the form ∃x.α∃ (1)

α∃ ::= A(x) | ¬A(x) | α∃ ∧ α∃ | α∃ ∨ α∃ | ∃x.α∃ (2)

A(x) ::= any relational symbol of arbitrary arity, including equality (3)

Grammar (1) generates a fragment of first-order logic consisting of all and only those
formulas where existential quantifiers can occur in the scope of at most one negation.
While any prenex formula of the form ∃x ∀y β can be generated by grammar (1), the
converse is not true, since grammar (1) can generate also formulas which are not
in prenex form. However, it is not difficult to show that any formula generated by
grammar (1) can be transformed into an equivalent prenex formula of the correct
form, as shown by the following proposition.
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Proposition 1 Any formula generated by grammar (1) can be transformed into a
prenex formula of the form ∃x∀yβ , with β quantif ier-free.

Proof Let α be a formula generated by grammar (1). We show that there exists an
equivalent formula τ(α) of the required form by structural induction. We start with
the set of formulas generated by the sub-grammar for α∃, and we show that each
of them can be transformed into a formula of the form ∃xβ , with β quantifier-free.
The case in which α is a relation or the negation of a relation is trivial. Consider
now the case of formulas α = α∃ ∧ α′

∃. By inductive hypothesis, τ(α∃) = ∃zβ and
τ(α′∃) = ∃wβ ′, for some quantifier-free β and β ′. Without loss of generality, we can
assume z ∩ w = ∅ (if this is not the case, we can apply a suitable variable substitution),
and thus α is equivalent to ∃zw(β ∧ β ′). The case of disjunction is similar, and thus
omitted. Consider now the case of formulas α = ∃x.α∃. By inductive hypothesis,
τ(α∃) = ∃wβ , for some quantifier-free β , with x 	∈ w, and thus α is equivalent to
∃x∃wβ . Let us consider now an arbitrary formula generated by grammar (1). The only
interesting case is the one for the negation of existential quantifiers. Let α = ¬∃x.α∃.
By inductive hypothesis, τ(∃x.α∃) = ∃x∃wβ , for some quantifier-free β , with x 	∈ w.
Hence, α is equivalent to the formula (in prenex form) ∀x∀w¬β . ��

Thanks to the above result, from now on we will assume that any FOBS-formula
has been generated by grammar (1).

3 Decidability of the logic CDTBS over the class of all linear orders

Interval temporal logics are usually interpreted over a linearly ordered set
D = 〈D,<〉. In this setting, an interval on D is an ordered pair [di,d j] with di ≤ d j

(we refer to such a case as the non-strict semantics, in contrast with the strict one,
that excludes degenerate intervals of the form [di,di]). The set of all intervals on D

is denoted by I(D). The variety of all possible relations between any two intervals
has been studied by Allen [1], who identified 12 distinct binary relations plus the
equality relation. Halpern and Shohammodal logic of intervals, abbreviated HS, can
be viewed as the modal logic of Allen’s relations as it features one modality for each
such relation. As we already mentioned, HS turns out to be undecidable over any
meaningful class of linear orders [19]. In [33], the ternary relation chop, depicted
in Fig. 1, has been taken into consideration. The corresponding binary modality C,
together with the two conjugated modalities D (done) and T (to do), and the modal
constant π for point-intervals define the interval temporal logic CDT. It can be
easily shown that CDT subsumes HS (in fact, it is strictly more expressive than HS),
and thus it is undecidable whenever HS is. In [20], Hodkinson et al. systematically
investigate the three fragments of CDT with only one binary modality each (C, D, or
T), showing that each of them is undecidable.

Fig. 1 The ternary relation
chop, splitting the interval
[di,d j] into the subintervals
[di,dk] and [dk,d j] di dk d j

C
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Formulas of CDT are built on a set of proposition letters AP = {p,q, . . .}, the
Boolean connectives ¬ and ∨, the three binary modalities C, D, and T, and the
modal constant π , by the following abstract grammar [33]:

ϕ ::= p | π | ¬ϕ | ϕ ∨ ϕ | ϕ C ϕ | ϕ D ϕ | ϕ T ϕ.

The other Boolean connectives can be viewed as suitable short forms, as usual.
Similarly, universal counterparts of the existential modalities C, D, and T can be
defined by means of negation in the standard way; CDT has not any special notation
for them.

The semantics of CDT-formulas can be given in terms of concrete models of the
form M = 〈I(D),V〉, where V : AP → 2I(D) is a valuation function, as follows:

– M, [di,d j] � p if and only if [di, d j] ∈ V(p),
– M, [di,d j] � π if and only if di = d j,
– M, [di,d j] � ¬ϕ if and only if M, [di,d j] 	� ϕ,
– M, [di,d j] � ϕ ∨ ψ if and only if M, [di, d j] � ϕ or M, [di, d j] � ψ ,
– M, [di,d j] � ϕ C ψ if and only if there exists di ≤ dk ≤ d j such that M, [di,dk] �

ϕ and that M, [dk, d j] � ψ ,
– M, [di,d j] � ϕ D ψ if and only if there exists dk ≤ di such that M, [dk,di] � ϕ

and that M, [dk,d j] � ψ ,
– M, [di,d j] � ϕ T ψ if and only if there exists dk ≥ d j such that M, [d j,dk] � ϕ

and that M, [di,dk] � ψ .

The standard translation is the usual way to express the semantics of a modal or
temporal formula in first-order logic. Let ϕ be a CDT-formula and, for every p ∈
AP , let us denote by the same symbol p the corresponding binary relation. The
standard translation function ST(ϕ)[x, y] is defined as follows:

– ST(ϕ)[x, y] = x ≤ y ∧ ST ′(ϕ)[x, y],

where x, y are two first-order variables and ST ′(ϕ)[x, y] is inductively defined as
follows:

– ST ′(p)[x, y] = p(x, y),
– ST ′(π)[x, y] = (x = y),
– ST ′(¬ϕ)[x, y] = ¬ST ′(ϕ)[x, y],
– ST ′(ϕ ∨ ψ)[x, y] = ST ′(ϕ)[x, y] ∨ ST ′(ψ)[x, y],
– ST ′(ϕ C ψ)[x, y] = ∃z(x ≤ z ≤ y ∧ ST ′(ϕ)[x, z] ∧ ST ′(ψ)[z, y]),
– ST ′(ϕ D ψ)[x, y] = ∃z(z ≤ x ∧ ST ′(ϕ)[z, x] ∧ ST ′(ψ)[z, y]),
– ST ′(ϕ T ψ)[x, y] = ∃z(y ≤ z ∧ ST ′(ϕ)[y, z] ∧ ST ′(ψ)[x, z]).

As a general rule, the standard translation makes it possible to reduce the
satisfiability problem for a modal logic to a first-order satisfiability problem: a modal
formula ϕ is satisfiable if and only if its standard translation, evaluated on a pair of
points x, y, is (first-order) satisfiable. Now, we ask ourselves the following question:
which CDT-formulas are such that their satisfiability problem can be reduced to
a first-order satisfiability problem in Bernays-Schönfinkel class? To answer this
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question, we define an abstract grammar that generates only CDT-formulas suitably
limited in the negation depth of modalities:

ϕ ::= ϕ∃ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ C ϕ | ϕ D ϕ | ϕ T ϕ |
¬(ϕ∃ C ϕ∃) | ¬(ϕ∃ D ϕ∃) | ¬(ϕ∃ T ϕ∃)

(4)

ϕ∃ ::= π | ¬π | p | ¬p | ϕ∃ ∧ ϕ∃ | ϕ∃ ∨ ϕ∃ | ϕ∃ C ϕ∃ | ϕ∃ D ϕ∃ | ϕ∃ T ϕ∃ (5)

The above grammar generates a fragment of CDT, that we call CDTBS, which
consists of all and only those formulas where the modalities C, D, and T can occur
in the scope of at most one negation. The next lemma shows that the above-defined
standard translation maps CDTBS-formulas into Bernays-Schönfinkel class. It is easy
to check that the syntactic limitations of CDTBS do not prevent it from expressing
all HS modalities (it only constrains the way in which they can be composed). As an
example, 〈B〉ϕ is captured by ϕ C ¬π . Similar encodings can be given for the other
HS modalities [33].

Lemma 1 For every CDTBS-formula ϕ, its standard translation ST(ϕ)[x, y] is an
FOBS-formula, with free variables x and y.

Proof The proof is by structural induction. We start with the set of formulas
generated by the sub-grammar for ϕ∃, and we show that the standard translation
of each of these formulas belongs to the sub-grammar for α∃ and it has x, y as its free
variables.

As for the base case, let ϕ∃ = p, for some proposition letter p. By definition,
ST(p)[x, y] = x ≤ y ∧ p(x, y); the thesis immediately follows. The cases ¬p, π ,
and ¬π are similar, and thus omitted. As for the case of conjunction, let ϕ∃ =
ϕ′
∃ ∧ ϕ′′

∃ . By definition, ST(ϕ′
∃ ∧ ϕ′′

∃ )[x, y] = x ≤ y ∧ ST ′(ϕ′
∃)[x, y] ∧ ST ′(ϕ′′

∃ )[x, y]. By
inductive hypothesis, both ST(ϕ′

∃)[x, y] and ST(ϕ′′
∃ )[x, y], and thus ST ′(ϕ′

∃)[x, y] and
ST ′(ϕ′′∃ )[x, y], belong to the sub-grammar for α∃ and have x, y as their free variables.
It immediately follows that ST(ϕ′∃ ∧ ϕ′′∃ )[x, y] has the required form. The case of
disjunction is similar, and thus omitted.

Now, let ϕ∃ = ϕ′
∃Cϕ

′′
∃ . By definition, ST(ϕ′

∃ C ϕ′′
∃ )[x, y] = x ≤ y ∧ ∃z(x ≤ z ≤ y ∧

ST ′(ϕ′
∃) [x, z] ∧ ST ′(ϕ′′

∃ )[z, y]). By inductive hypothesis, ST ′(ϕ′
∃)[x, z] is an α∃-

formula with x, z as its free variables, and ST ′(ϕ′′
∃ )[z, y] is an α∃-formula with

z, y as its free variables. Hence, the formula x ≤ y ∧ ∃z(x ≤ z ≤ y ∧ ST ′(ϕ′∃)[x, z] ∧
ST ′(ϕ′′∃ )[z, y]) is an α∃-formula with x, y as its free variables. The other two cases for
D and T can be dealt with in a similar way.

Let us consider now an arbitrary formula generated by the grammar. The only
interesting cases are those for the negation of modalities. Let ϕ = ¬(ϕ′

∃ C ϕ′′
∃ ).

By definition, ST(¬(ϕ′
∃ C ϕ′′

∃ ))[x, y] = x ≤ y ∧ ¬ST ′(ϕ′
∃ C ϕ′′

∃ )[x, y], and ST ′(ϕ′
∃ C

ϕ′′∃ )[x, y] = ∃z(x ≤ z ≤ y ∧ ST ′(ϕ′∃)[x, z] ∧ ST ′(ϕ′′∃ )[z, y]). We have already shown
that both ST ′(ϕ′∃)[x, z] and ST ′(ϕ′′∃ )[z, y] are α∃-formulas with x, z and z, y as their
free variables, respectively. Hence, ∃z(x ≤ z ≤ y ∧ ST ′(ϕ′∃)[x, z] ∧ ST ′(ϕ′′∃ )[z, y]) is
an α∃-formula with x, y as its free variables. It immediately follows that ¬ST ′(ϕ′

∃ C
ϕ′′
∃ )[x, y] is an α-formula with x, y as its free variables, and thus the thesis, as the

conjunction of two α-formulas is an α-formula. The other two cases can be dealt with
in a similar way. ��
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In order to prove the main theorem, it suffices to observe that the linear order <
is captured by the following axioms [4], whose conjunction � belongs to FOBS:

1. ∀x¬(x < x);
2. ∀x, y(x < y → ¬y < x);
3. ∀x, y, z(x < y ∧ y < z → x < z);
4. ∀x, y(x = y ∨ x < y ∨ y < x).

Theorem 1 The satisf iability problem for CDTBS over the class of all linear orders is
decidable.

Proof By Lemma 1, if ϕ is a CDTBS-formula, then ∃x, yST(ϕ)[x, y] (the existential
closure of ST(ϕ)[x, y]) belongs to Bernays-Schönfinkel class. Satisfiability of ϕ can
thus be reduced to satisfiability of the FOBS-formula � ∧ ∃x, yST(ϕ)[x, y]. Since
the satisfiability problem for FOBS is decidable, decidability of CDTBS immediately
follows. ��

The satisfiability problem for FOBS has been shown to be NEXPTIME-complete.
The proof relies on the observation that an FOBS-formula is satisfiable if and only
if it has a model with a number of elements bounded by the number of existential
quantifiers [4, Proposition 6.2.17]. This immediately leads to a nondeterministic
exponential-time procedure for satisfiability checking. However, when we restrict
our attention to formulas where the arity of relational symbols is bounded (to two, in
our case), the complexity of such a procedure becomes PSPACE, since in this case a
candidate model for the formula can be represented using only a polynomial amount
of memory. Hence, Theorem 1 gives us a PSPACE upper-bound to the complexity
of CDTBS. In Section 5, we will show that this bound is not tight, by providing an NP
decision procedure for the satisfiability of CDTBS.

4 Expressive completeness of CDTBS

In Section 3, we showed that CDTBS formulas can be translated into Bernays-
Schönfinkel class FOBS of first-order logic with equality, thanks to the fact that
the linear order < can be expressed in this fragment. Inspired by the observa-
tion that the translation uses only binary predicates, we now ask ourselves the
following question: for every formula in Bernays-Schönfinkel class of first-order
logic, interpreted over the linear order < and limited to binary predicates, is there
an expressively equivalent CDTBS-formula? Similar expressivity comparison issues
have been already investigated for various point- and interval-based logics. A partial
list includes basic results about the completeness of LTL with respect to the first-
order fragment of monadic second-order logic over Dedekind-complete linear orders
and generalizations (Kamp’s Theorem and its extensions [12–14, 21, 22, 25]), the
completeness of CDT with respect to the three-variable fragment of first-order logic
over linear orders, where at most two variables are free [33], the completeness of
AA with respect to two-variable first-order logic over linear orders [8], and the
completeness of its metric extension, called MPNL, with respect to a fragment of
two-variable first-order logic extended with a successor function over N [7].
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We focus our attention on first-order logic interpreted over the linear order< and
limited to binary predicates, denoted by FO[<]. We will denote by FOn,m[<] the n-
variable fragment of FO[<], where at mostm variables are free, and by FOω,m[<] the
fragment of FO[<] with a denumerable set of variables, where at most m are free.
Since interval logics are interpreted over intervals (represented as pairs of points),
the standard translation of any interval logic formula is a formula with two free
variables, and thus it belongs to FOω,2[<]. By analogy with the case of other interval
logics, e.g., [8, 33], to establish an expressive completeness result for CDTBS, we will
limit the number of variables of the corresponding first-order fragment. We denote
by FOn,m

BS [<] (resp., FOω,m
BS [<]) the n-variable fragment (resp., the fragment with a

denumerable set of variables) of the language defined by grammar (1), where at most
m variables occur free.

In the following, we compare interval and first-order logics with respect to their
ability of expressing properties of a given interval in a model. We distinguish three
cases: (i) the comparison of two interval logics, (ii) the comparison of two fragments
of first-order logic, and (iii) the comparison of an interval logic and a fragment of
first-order logic.

Given two interval logics (resp., fragments of first-order logic) L and L’, we say
that L’ is at least as expressive as L, denoted by L � L′, if there is an (effective)
translation τ from L to L’ such that for every model M, interval [di,d j] (resp., pair
of points di, d j) in M, and formula ϕ of L, M, [di,d j] � ϕ iff M, [di, d j] � τ(ϕ) (resp.,
M |= ϕ(di, d j) iff M |= τ(ϕ)(di,d j)). Furthermore, we say that L’ is as expressive as
L, denoted by L′ ≡ L, if both L′ � L and L � L′, and we say that L’ is strictly more
expressive than L, denoted by L ≺ L′, if L � L′ and L′ 	� L.

To compare the expressive power of an interval logic and a fragment of first-
order logic, we must cope with a technical problem: interval models constrain
interval logic formulas to be evaluated on ordered pairs [di,d j], with di ≤ d j, only,
while relational models do not impose such a constraint. To solve it, we map each
binary relation p of the considered fragment of first-order logic into two distinct
proposition letters p≤ and p≥ of the interval logic. From [8], we borrow the following
definition.

Definition 1 Let M = 〈I(D),VM〉 be an interval model. The corresponding rela-
tional model η(M) is the pair 〈D,Vη(M)〉, where, for every proposition letter p,
Vη(M)(p) = {(a,b ) ∈ D× D : [a, b ] ∈ VM(p)}. Conversely, let M = 〈D,VM〉 be a
relational model. The corresponding interval model ζ(M) is the pair 〈I(D), Vζ(M)〉,
where, for every binary relation p and interval [di,d j], [di,d j] ∈ Vζ(M)(p≤) iff
(di,d j) ∈ VM(p) and [di,d j] ∈ Vζ(M)(p≥) iff (d j, di) ∈ VM(p).

Given an interval logic LI and a fragment of first-order logic LFO, we say that
LFO is at least as expressive as LI , denoted by LI � LFO, if there exists an effective
translation τ from LI to LFO such that for any interval model M, interval [di, d j],
and LI-formula ϕ, M, [di, d j] � ϕ iff η(M) |= τ(ϕ)(di, d j). Conversely, we say that
LI is at least as expressive as LFO, denoted by LFO � LI , if there exists an effective
translation τ ′ from LFO to LI such that, for any relational model M, pair of points
(di,d j), and LFO-formula ϕ, M |= ϕ(di, d j) if and only if ζ(M), [di, d j] � τ ′(ϕ), if
di ≤ d j, or ζ(M), [d j,di] � τ ′(ϕ), otherwise. LI ≡ LFO, LI ≺ LFO, and LFO ≺ LI are
defined as usual.
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In [32], Venema shows that the hierarchy of fragments FOn,2[<], for n ≥ 2, is strict.

Theorem 2 For every n ≥ 2, FOn,2[<] ≺ FOn+1,2[<] (over the class of all linear
orders).

The expressive completeness of the interval logic of temporal neighborhood AA
with respect to FO2,2[<] and of CDT with respect to FO3,2[<] have been proved by
Bresolin et al. [8] and by Venema [33], respectively.

Theorem 3 AA ≡ FO2,2[<].

Theorem 4 CDT ≡ FO3,2[<].

The proof of Theorem 2 shows that, for any given n ≥ 2, there exist two models
M1 and M2 such that M1 and M2 satisfy the same set of FOn,2[<]-formulas, and there
exists an FOn+1,2[<]-formula which is satisfied by M1 and not by M2. Equivalence
of M1 and M2 with respect to FOn,2[<]-formulas is established by a game-theoretic
argument, while the FOn+1,2[<]-formula that differentiates the two models is the
following one:

∃x1∃x2 . . . ∃xn∃xn+1

⎛
⎝ ∧

xi 	=x j

¬p(xi, x j)

⎞
⎠ . (6)

Since such a formula belongs to Bernays-Schönfinkel fragment of first-order logic,
the very same argument can be used to prove that FOn,2

BS [<] ≺ FOn+1,2
BS [<], for any

n ≥ 2. Moreover, by Theorem 4, it holds that FOn,2
BS [<] ≺ FOn,2[<], for every n ≥

3: on the one hand, it trivially holds that FOn,2
BS [<] � FOn,2[<]; on the other hand,

decidability of FOω,2
BS [<] and undecidability of CDT imply that FOn,2[<] 	� FOn,2

BS [<].
Finally, we have that, for every n ≥ 3, FOn,2[<] and FOn+1,2

BS [<] are incomparable: on
the one hand, FOn+1,2

BS [<] 	� FOn,2[<], as formula (6) belongs to FOn+1,2
BS [<] and there

is not an equivalent formula in FOn,2[<]; on the other hand, FOn+1,2
BS [<] is decidable,

while FOn,2[<] is not, and thus FOn,2[<] 	� FOn+1,2
BS [<]. Hence, the following theorem

holds.

Theorem 5 For every n ≥ 3, it holds that:

1. FOn−1,2
BS [<] ≺ FOn,2

BS [<];
2. FOn,2

BS [<] ≺ FOn,2[<];
3. FOn,2[<] and FOn+1,2

BS [<] are incomparable

(over the class of all linear orders).

We conclude the section by showing that CDTBS is expressively complete with
respect to FO3,2

BS[<]. One direction is straightforward: since the standard translation
of CDTBS-formulas given in Section 3 makes use of 3 variables only, it holds that
CDTBS � FO3,2

BS[<].
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We now show that the converse holds as well, that is, FO3,2
BS[<] � CDTBS. By

analogy to the case of the mapping from FO3,2[<] to CDT defined by Venema [33],
as a preliminary step, we provide a suitable characterization of FO3,2

BS[<]-formulas.

Definition 2 Let {i, j,k} ⊆ {1, 2, 3}. The language FO3,2
sp [<] is defined by the follow-

ing abstract grammar:

β(xi, x j) ::= β∃(xi, x j) | β(xi, x j) ∧ β(xi, x j) | β(xi, x j) ∨ β(xi, x j) |
∃xk(β(xi, xk) ∧ β(xk, x j)) | ¬β∃(xi, x j) for β∃(xi, x j)

of the form ∃xk(β∃(xi, xk) ∧ β∃(xk, x j))

(7)

β∃(xi, x j) ::= A(xi, x j) | ¬A(xi, x j) |β∃(xi, x j)∧β∃(xi, x j) |β∃(xi, x j)∨β∃(xi, x j) |
∃xk(β∃(xi, xk) ∧ β∃(xk, x j))

(8)

A(xi, x j) ::= xi=x j | x j=xi | xi=xi | x j=x j | xi<x j | x j<xi | xi<xi | x j<x j |
p(xi, x j) | p(x j, xi) | p(xi, xi) | p(x j, x j)

(9)

Lemma 2 For every formula in FO3,2
BS[<], there is an equivalent formula in FO3,2

sp [<].

Proof We prove the following stronger claim on the 3-variable fragment FO3,3
BS[<],

which includes formulas where all three variables occur free:

for every formula α in FO3,3
BS[<] there is equivalent formula τ(α), which is a

Boolean combination of FO3,2
sp [<]-formulas, with the same free variables as α.

The proof is by structural induction.
The base cases (α is an atomic formula or α is the negation of an atomic formula)

and the case of logical connectives (α is a conjunction or a disjunction of formulas)
are straightforward. In particular, as for the base case, it suffices to remind that
we restricted our attention to fragments of first-order logic with binary predicates
only.

Let α be of the form ∃xkγ (xi, x j, xk). By the inductive hypothesis, γ (xi, x j, xk)
is equivalent to a formula τ(γ (xi, x j, xk)), that we may assume, without loss of
generality, to be a disjunction of conjunctions of formulas in FO3,2

sp [<]. By distrib-
uting the existential quantifier ∃xk over disjunctions, we obtain a formula of the
form

∨m
h=1 ∃xkγh(xi, x j, xk), where each γh(xi, x j, xk) is a conjunction of formulas.

Since only binary predicates are allowed, we can rewrite each γh(xi, x j, xk) as
ξh(xi, x j) ∧ ξh(xi, xk) ∧ ξh(x j, xk). Since variable xk does not occur free in ξh(xi, x j),
we can rewrite ∃xkγh(xi, x j, xk) as ξh(xi, x j) ∧ ∃xk(ξh(xi, xk) ∧ ξh(x j, xk)). This lat-
ter formula is a conjunction of FO3,2

sp [<]-formulas with the same free variables
as α.

The case in which α is of the form ¬∃xkγ (xi, x j, xk) can be dealt with in a very
similar way. ��

We are now ready to define the translation τ from FO3,2
sp [<] to CDTBS. For the

sake of brevity, we write τ i, j for τ [xi, x j], with xi ≤ x j. Translation rules for atomic
and complex formulas are given in Table 1.
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Table 1 The mapping of FO3,2
sp [<] into CDTBS: translation rules

τ i, j(xi = x j) = π τ i, j(¬α(xi, x j)) = ¬τ i, j(α(xi, x j))

τ i, j(x j = xi) = π

τ i, j(xi = xi) = � τ i, j(α(xi, x j) ∧ β(xi, x j)) = τ i, j(α(xi, x j)) ∧ τ i, j(β(xi, x j))

τ i, j(x j = x j) = �
τ i, j(xi < x j) = ¬π τ i, j(α(xi, x j) ∨ β(xi, x j)) = τ i, j(α(xi, x j)) ∨ τ i, j(β(xi, x j))

τ i, j(x j < xi) = ⊥
τ i, j(xi < xi) = ⊥ τ i, j(∃xk(α(xi, xk) ∧ β(xk, x j))) = τk,i(α(xi, xk)) D τk, j(β(xk, x j))

τ i, j(x j < x j) = ⊥ ∨ τ i,k(α(xi, xk)) C τk, j(β(xk, x j))

τ i, j(p(xi, x j)) = p≤ ∨ τ j,k(β(xk, x j)) T τ i,k(α(xi, xk))
τ i, j(p(x j, xi)) = p≥
τ i, j(p(xi, xi)) = (π ∧ p≤) C �
τ i, j(p(x j, x j)) = �C (π ∧ p≤)

Lemma 3 Let α(xi, x j) be an FO3,2
sp [<]-formula. Then, for every pair of points (di, d j),

M |= α(di, d j) if and only if di ≤ d j and ζ(M), [di,d j] � τ i, j(α(xi, x j)), or d j ≤ di and
ζ(M), [d j,di] � τ j,i(α(xi, x j)).

Proof The proof is by induction on the structure of α(xi, x j). The cases of atomic
formulas and Boolean connectives are straightforward.

Once more, the only interesting case is the one of existential quantifiers. Let
α(xi, x j) be the formula ∃xk(β(xi, xk) ∧ γ (xk, x j)) and di ≤ d j. By the semantic clauses
for FO3,2

sp [<], it holds that M |= ∃xk(β(di, xk) ∧ γ (xk,d j)) if and only if there exists a
point dk such that M |= β(di, dk) and M |= γ (dk,d j). Since we are interpreting our
formulas over a linear order, there are three possible ways to place dk with respect
to di and d j: either dk ≤ di, or di ≤ dk ≤ d j, or d j ≤ dk. By the inductive hypothesis,
we have that M |= α(di, d j) if and only if:

(
ζ(M), [dk,di] � τk,i(β(xi, xk)) and ζ(M), [dk,d j] � τk, j(γ (xk, x j))

)

or
(
ζ(M), [di, dk] � τ i,k(β(xi, xk)) and ζ(M), [dk,d j] � τk, j(γ (xk, x j))

)

or
(
ζ(M), [d j,dk] � τ j,k(γ (xk, x j)) and ζ(M), [di, dk] � τ i,k(β(xi, xk))

)
.

By the semantics of theC, D, and T operators, we can conclude that M |= α(di, d j)

if and only if ζ(M), [di, d j] � τ i, j(α(xi, x j)), as required. ��

Theorem 6 CDTBS is as expressive as FO
3,2
BS[<].

Proof By Lemmas 2 and 3, FO3,2
BS [<] � FO3,2

sp [<] � CDTBS. Moreover, by Lemma 1,

CDTBS � FO3,2
BS[<]. Hence, CDTBS ≡ FO3,2

BS [<]. ��

Figure 2 gives a graphical account of the relationships among the considered logics
(interval logics and fragments of first-order logic) in terms of their expressive power
(the contributions of the present work are in boldface).
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Fig. 2 A classification of the
considered interval logics and
fragments of first-order logic
with respect to their
expressive power

FO2,2[<]

FO3,2[<]

FO4,2[<]

. . .

FOω,2[<]

FO3,2
BS [<]

FO4,2
BS [<]

. . .

FOω,2
BS [<]

≡PNL ≡ CDTBS

≡CDT

5 A tableau method for CDTBS

In [15], Goranko et al. propose a tableau method for CDT interpreted over partial
orders with the linear interval property, that is, partial orders in which every interval
is linear (BCDT+ for short). The method provides a semi-decision procedure for
BCDT+ (it is not guaranteed to terminate). This does not come as a surprise as
BCDT+ is undecidable. In this section, we show how to turn the method into an
NP decision procedure for CDTBS. In particular, we show how to exploit CDTBS

syntactic restrictions to guarantee termination.
Let us start with some basic terminology. A f inite tree is a finite directed acyclic

graph in which every node, apart from one (the root), has exactly one incoming edge.
A successor of a node n is a node n′ such that there is an edge from n to n′. A leaf is
a node with no successors. A path is a sequence of nodes n0, . . . ,nk such that, for all
i = 0 . . . k− 1, ni+1 is a successor of ni; a branch is a path from the root to a leaf. The
height of a node n is the maximum length (number of edges) of a path from n to a
leaf, while its depth is the length of the (unique) path from the root to it. If two nodes
n and n′ belong to the same branch and the height of n is less than (resp., less than or
equal to) the height of n′, we write n ≺ n′ (resp., n � n′).

Definition 3 Let D be a finite linear order. A labeled formula over D is a pair
(ψ, [di, d j]), where ψ ∈ CDTBS and [di,d j] ∈ I(D).

Definition 4 Let T be a (finite) tree and let n be a node of T . The decoration ν(n)
of n is a tuple 〈ψ, [di, d j],D, p,u〉, where D is a finite linear order, (ψ, [di,d j]) is a
labeled formula over D, p ∈ {0, 1}, and u is a local f lag function which associates the
values 0 or 1 with every branch B containing n.

Definition 5 A decorated tree is a finite tree T enriched with a decoration ν(n) for
each node n of T , apart from the root.

The tableau construction described below generates a decorated tree T . Given a
branch B and a node n belonging to it, with decoration ν(n), u(B) = 1 means that
n can be expanded on B. Given a branch B, B · (n1 · . . . · nh) is the result of the
expansion of B with the sequence of nodes n1 · . . . · nh (for h = 1, we simply write
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B · n), while B · (n1,1 · . . . · n1,h)| . . . |(nk,1 · . . . · nk,h) is the result of the expansion
of B with k sequences of h nodes (for h = 1, we simply write B · n1| . . . |nk). The
auxiliary flag p has been added to simplify termination and complexity proofs. It
records the nature of formula ψ : if ψ is a ϕ∃-formula, then p = 0; otherwise, p = 1.
Finally, if n is the leaf of a branch B, we denote by DB the finite linear order
in ν(n).

Since in CDTBS negation can occur only in front of proposition letters or modal-
ities, we need to introduce the notion of dual formula of a formula ϕ, denoted by ϕ.
It is inductively defined as follows:

– p = ¬p and ¬p = p, for every p ∈ AP ∪ {π};
– ϕ ∨ ψ = ϕ ∧ ψ ;
– ϕ ∧ ψ = ϕ ∨ ψ ;
– ϕ R ψ = ¬(ϕ R ψ), for R ∈ {C, D,T};
– ¬(ϕ R ψ) = ϕ R ψ , for R ∈ {C, D,T}.

Notice that the dual of a generic CDTBS-formula does not necessarily belong to
CDTBS. This is the case, for instance, with the formula p C ¬(q C r). However, the
following lemma guarantees that dual formulas of ϕ∃-formulas are CDTBS-formulas.
Such a lemma will play a crucial role in the proof of correctness of the tableau
method.

Lemma 4 Let ϕ be a ϕ∃-formula. Then, ϕ is a CDTBS-formula.

Proof The cases of proposition letters and Boolean connectives can be proved
by a straightforward structural induction. To prove that the thesis holds also for
modalities, let us assume ϕ = ψ C τ to be a ϕ∃-formula. By definition, the dual
formula ϕ is¬(ψ C τ). Sinceψ, τ are ϕ∃-formulas, we can conclude that ϕ is a CDTBS-
formula. The other cases can be dealt with in a similar way. ��

The construction of a tableau for a CDTBS-formula ϕ to be checked for sat-
isfiability starts from a three-node tree (initial tableau) consisting of a root and
two leaves with decorations 〈ϕ, [d0, d0], {d0}, 1, 1〉 and 〈ϕ, [d0,d1], {d0 < d1}, 1, 1〉,
respectively. The procedure exploits a set of expansion rules, adapted from those
given in [15], to add new nodes to the tree. In particular, the original rules for
modalities have been revised to restrict the search for possible models to linear
orders only.

Definition 6 Given a tree T , a branch B in T , and a node n ∈ B with decoration
〈ψ, [di,d j], D, pn, un〉 such that un(B) = 1, the branch-expansion rule for B and n
is defined as follows (in all considered cases, un′(B′) = 1 for all new nodes n′ and
branches B′).

R1 If ψ = ξ0 ∧ ξ1, then expand B to B · n0 · n1, where n0 is decorated with
〈ξ0, [di,d j],DB, pn, un0〉 and n1 is decorated with 〈ξ1, [di, d j],DB, pn,un1〉.

R2 If ψ = ξ0 ∨ ξ1, then expand B to B · n0 | n1, where n0 is decorated with
〈ξ0, [di,d j],DB, pn, un0〉 and n1 is decorated with 〈ξ1, [di, d j],DB, pn,un1〉.
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R3 If ψ = ¬(ξ0 C ξ1) and d is a point in DB, with di ≤ d ≤ d j, which has not
been used yet to expand n in B, then expand B to B · n0|n1, where n0

is decorated with 〈ξ0, [di,d],DB, 0,un0〉 and n1 is decorated with 〈ξ1, [d,d j],
DB, 0,un1〉.

R4 If ψ = ¬(ξ0 D ξ1), and d is a point in DB, with d ≤ di, which has not been used
yet to expand n in B, then expand B to B · n0|n1, where n0 is decorated with
〈ξ0, [d, di],DB, 0,un0〉 and n1 is decorated with 〈ξ1, [d, d j],DB, 0,un1〉.

R5 If ψ = ¬(ξ0 T ξ1), and d is a point in DB, with d j ≤ d, which has not been used
yet to expand n in B, then expand B to B · n0|n1, where n0 is decorated with
〈ξ0, [d j,d],DB, 0,un0〉 and n1 is decorated with 〈ξ1, [di, d],DB, 0,un1〉.

R6 If ψ = ξ0 C ξ1, then expand B to B · (ni ·mi)| . . . |(n j ·mj)|(n′i ·m′
i)| . . . |(n′j−1 ·

m′
j−1), where:

(a) for all i ≤ k ≤ j, nk is decorated with 〈ξ0, [di,dk],DB, pn, unk〉 and mk is
decorated with 〈ξ1, [dk,d j],DB, pn,umk 〉;

(b) for all i ≤ k ≤ j− 1, Dk is the linear ordering obtained from DB by
inserting a new point d between dk and dk+1, n′k is decorated with
〈ξ0, [di, d],Dk, pn,un′k 〉 and m′

k is decorated with 〈ξ1, [d, d j],Dk, pn,um′
k
〉.

R7 If ψ = ξ0 D ξ1 and d0 is the least point of DB, then expand B to B · (n0 ·
m0)| . . . |(ni ·mi)|(n′0 ·m′

0)| . . . |(n′i ·m′
i), where:

(a) for all 0 ≤ k ≤ i, nk is decorated with 〈ξ0, [dk,di],DB, pn,unk〉 and mk is
decorated with 〈ξ1, [dk,d j],DB, pn,umk 〉;

(b) for all 0 ≤ k ≤ i, Dk is the linear ordering obtained from DB by inserting a
new point d between dk−1 and dk (for k = 0, d is placed immediately be-
fore d0), n′k is decorated with 〈ξ0, [d, di],Dk, pn, un′k〉 and m′

k is decorated
with 〈ξ1, [d,d j],Dk, pn, um′

k
〉.

R8 If ψ = ξ0 T ξ1 and dN is the greatest point of DB, then expand B to B · (n j ·
mj)| . . . |(nN ·mN)|(n′j ·m′

j)| . . . |(n′N ·m′
N), where:

(a) for all j ≤ k ≤ N, nk is decorated with 〈ξ0, [d j,dk],DB, pn,unk〉 and mk is
decorated with 〈ξ1, [di, dk],DB, pn,umk 〉;

(b) for all j ≤ k ≤ N, Dk is the linear ordering obtained from DB by inserting
a new point d between dk and dk+1 (for k = N, d is placed immediately
after dN), n′k is decorated with 〈ξ0, [d j,d],Dk, pn,un′k〉 andm′

k is decorated
with 〈ξ1, [di,d],Dk, pn, um′

k
〉.

Finally, for each branch B′ extending B, let um(B′) = um(B), for each nodem 	= n
in B, and let un(B′) = 0, unless ψ = ¬(ξ0Cξ1), ψ = ¬(ξ0Dξ1), or ψ = ¬(ξ0Tξ1) (in
such cases un(B′) = 1).

We briefly explain the behavior of the branch-expansion rule in casesR6 (ξ0 C ξ1)
and R3 (¬(ξ0Cξ1)). The corresponding cases for modalities D and T are similar. R6
deals with two possible scenarios: either there exists dk ∈ DB such that ξ0 holds over
[di,dk] and ξ1 holds over [dk, d j], or such a point must be added to DB. The successors
(ni ·mi)| . . . |(n j ·mj) created by the rule cover the former case, while the successors
(n′i ·m′

i)| . . . |(n′j−1 ·m′
j−1) cover the latter case. As for R3, the formula ¬(ξ0 C ξ1)

states that, for all di ≤ d ≤ d j, either ξ0 holds over [di,d] or ξ1 holds over [d, d j].
R3 imposes such a condition for a single point d ∈ DB and keeps the flag equal to 1.
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In such a way, all points in DB are eventually considered, including those points that
will be added in subsequent steps of the tableau construction.

Definition 7 A branch B is closed if one of the following conditions holds:

1. there are two nodes n,n′ in B such that ν(n) = 〈ψ, [di, d j],D, p,u〉 and ν(n′) =
〈ψ, [di, d j],D′, p′,u′〉 for some formula ψ and di, d j ∈ D;

2. there is a node n such that ν(n) = 〈π, [di,d j],D, p,u〉 and di 	= d j;
3. there is a node n such that ν(n) = 〈¬π, [di,d j],D, p,u〉 and di = d j;

If none of the above conditions hold, the branch is open.

Definition 8 The branch-expansion strategy for a branch B in a decorated tree T is
defined as follows:

1. apply the branch-expansion rule to a branch B only if it is open;
2. if B is open, apply the branch-expansion rule to the closest to the root node n

such that un(B) = 1 and the application of the rule generates at least one node
with a new decoration (if any).

Definition 9 A tableau T is any decorated tree obtained from the initial tableau by
the application of the branch-expansion strategy.

root

〈 〉 〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

(¬π D¬π )C¬π , [d0,d0], {d0}, 1, 0

¬π D¬π , [d0,d0], {d0}, 1, 1

¬π , [d0,d0], {d0}, 1, 1

×

(¬π D¬π )C¬π , [d0,d1], {d0 < d1}, 1, 0

¬π D¬π , [d0,d0], {d0 < d1}, 1, 1

¬π , [d0,d1], {d0 < d1}, 1, 1

· · ·

¬π D¬π , [d0,d1], {d0 < d1}, 1, 1

¬π , [d1,d1], {d0 < d1}, 1, 1

×

¬π D¬π , [d0,d2], {d0 < d2 < d1}, 1, 0

¬π , [d2,d1], {d0 < d2 < d1}, 1, 1

¬π , [d0,d2], {d0 < d2 < d1}, 1, 1

¬π , [d0,d0], {d0 < d2 < d1}, 1, 1

×

¬π , [d3,d0], {d3 < d0 < d2 < d1}, 1, 1

¬π , [d3,d2], {d3 < d0 < d2 < d1}, 1, 1

〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

Fig. 3 A portion of an open tableau for the formula (¬π D¬π) C ¬π
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We say that a tableau T is closed if and only if all its branches are closed,
otherwise it is open.

We conclude the section by giving a couple of examples of the application of
the proposed method. As a first example, we consider the satisfiable formula ϕ =
(¬π D¬π) C ¬π . A portion of a tableau for ϕ is given in Fig. 3, where thick edges
highlights an open branch representing a four-point model for the formula. As a
second example, let ψ be the unsatisfiable formula p T ¬(� C p). A closed tableau
for ψ is given in Fig. 4. It is worth pointing out that there is an abuse of notation in
the last component of the node decorations: while it is formally defined as a function
from a set of branches to {0, 1}, in the pictures it is represented as a constant (either
0 or 1). The reason is that in the proposed examples the function is constant for each
node, that is, for each n we have that the value of the function un(B) is the same for
every branch B containing n.

root

〈 pT¬( ⊥

⊥

⊥

⊥

⊥

C p), [d0,d0],{d0}, 1, 0〉

〈 〉

〈 〉

〈 〈 〈〉

〈 〉

〈 〉 〈 〉

〈 〉

〈 〉

〈 〉

〈 〉

〉 〉

p, [d0,d0],{d0}, 1, 1

¬( C p), [d0,d0],{d0}, 1, 1

¬p, [d0,d0],{d0}, 0, 1

×

⊥ , [d0,d0],{d0}, 0, 1

×

p, [d0,d1],{d0 < d1}, 1, 1

〈 〉

〈 〉

⊥

〈 〉

〈 〉

〈 〉

¬( C p), [d0,d1],{d0 < d1}, 1, 1

⊥ , [d0,d1],{d0 < d1}, 0, 1

×

¬ p, [d0,d1],{d0 < d1}, 0, 1

× pT¬( C p), [d0,d1],{d0 < d1}, 1, 0

p, [d1,d1],{d0 < d1}, 1, 1

¬( C p), [d0,d1],{d0 < d1}, 1, 1

¬ p, [d1,d1],{d0 < d1}, 0, 1

×

⊥ , [d0,d1],{d0 < d1}, 0, 1

×

p, [d1,d2],{d0 < d1 < d2}, 1, 1

¬( C p), [d0,d2],{d0 < d1 < d2}, 1, 1

¬p, [d1,d2],{d0 < d1 < d2}, 0, 1

×

⊥ , [d0,d1],{d0 < d1 < d2}, 0, 1

×

Fig. 4 A closed tableau for the formula p T ¬(� C p)
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In the following, we will show that to establish the satisfiability of a CDTBS-
formula ϕ it is sufficient to start with the initial tableau for ϕ, and keep expanding
it for as long as it is possible: if the resulting tableau is open, then ϕ is satisfiable,
otherwise it is not. Moreover, we will prove that this expansion procedure terminates
and it can be executed by a nondeterministic machine that uses only a polynomial
amount of time.

5.1 Soundness

In this subsection, we prove that the proposed tableau method is sound, that is, given
a formula ϕ and a tableauT for it, ifT is closed, then ϕ is not satisfiable. In the next
subsection, we will show that the method is also complete.

Lemma 5 (Soundness) Let ϕ be a CDTBS-formula and T be a tableau for it. If T is
closed, then ϕ is not satisf iable.

Proof Let n be a node in the tableau T , and let Dn = {d0 < . . . < ds} be the linear
ordering from ν(n). We will prove the following claim by induction on the height h
of the node:

if every branch including n is closed, then the set S(n) of all labeled formulas in
the decorations of the nodes between n and the root is neither satisf iable in I(Dn)

nor in any extension of it.

If h = 0, then n is a leaf and the unique branch B containing n is closed. Then,
either S(n) contains both the labeled formulas (ψ, [dk,dl]) and (ψ, [dk,dl]), for
some CDTBS-formula ψ and dk,dl ∈ Dn, or the labeled formula (π, [dk,dl]), for
some dk 	= dl, or the labeled formula (¬π, [dk,dl]), for some dk = dl. Take any
model M = 〈I(D′),V〉, where D

′ extends Dn. It holds that M, [dk,dl] � ψ if and
only if M, [dk,dl] 	� ψ , and, therefore, (ψ, [dk,dl]) and (ψ, [dk,dl]) cannot be jointly
satisfied. Similarly, M, [dk,dl] � π (resp., M, [dk, dl] � ¬π) if and only if dk = dl
(resp., dk 	= dl), and therefore (π, [dk,dl]) (resp., (¬π, [dk,dl])) cannot be satisfied
when dk 	= dl (resp., dk = dl).

Now, suppose that h > 0. Then, either n has been generated as one of the
successors, but not the last one, when applying casesR1,R6,R7, orR8 of the branch-
expansion rule, or the branch-expansion rule has been applied to some labeled
formula (ψ, [dk,dl]) ∈ S(n) \{τ}, where τ is the labeled formula in the decoration
ν(n), to extend the branch at n. We detail the latter case; the former one can be dealt
with in the same way, and thus its analysis is omitted. First, we observe that every
branch passing through any successor of n must be closed. It immediately follows
that the inductive hypothesis applies to all successors of n. We consider the possible
cases for the application of the branch-expansion rule to extend the branch at n,
restricting our attention to the conceptually different ones only (the other cases can
be dealt with in a similar way):

– If ψ = ξ0 ∧ ξ1, R1 has been applied. Then, there are two nodes n0,n1 such that
ν(n0) = 〈ξ0, [dk,dl],D, p0, u0〉, ν(n1) = 〈ξ1, [dk,dl],D, p1, u1〉. Without loss of
generality, we can assume n0 to be the successor of n and n1 to be the successor
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of n0. Since each branch containing n is closed, then each branch containing n1

is closed as well. By the inductive hypothesis (n1 ≺ n), S(n1) is not satisfiable.
Since every model satisfying S(n) must, in particular, satisfy (ξ0 ∧ ξ1, [dk, dl]),
and hence (ξ0, [dk, dl]) and (ξ1, dk,dl]), it follows that S(n), S(n0), and S(n1) are
equi-satisfiable. Therefore, S(n) is not satisfiable.

– Ifψ = ξ1 ∨ ξ2,R2 has been applied. Then, there exist two successor nodes n0 and
n1 of n such that ν(n0) = 〈ξ0, [dk, dl],D, p0, u0〉, ν(n1) = 〈ξ1, [dk,dl],D, p1,u1〉,
and both n0 ≺ n and n1 ≺ n. Since each branch containing n is closed, then each
branch containing n0 or n1 is closed as well. By the inductive hypothesis, S(n0)

and S(n1) are not satisfiable. Since every model satisfying S(n) must also satisfy
(ξ0, [dk,dl]) or (ξ1, [dk,dl]), it follows that S(n) is not satisfiable.

– If ψ = ¬(ξ0 C ξ1), R3 has been applied. For the sake of contradiction, let us
assume S(n) to be satisfiable. Then, since (¬(ξ0 Cξ1), [dk, dl]) ∈ S(n), there is
a model M = 〈I(D′),V〉 such that D′ extends Dn and M, [dk,dl] � ¬(ξ0Cξ1).
Hence, for each dt such that dk ≤ dt ≤ dl, M, [dk, dt] 	� ξ0 or M, [dt, dl] 	� ξ1. By
construction, the two immediate successors of n are two nodes n0 and n1 and
there exists a point dt, with dk ≤ dt ≤ dl , such that (ξ0, [dk,dt]) is in ν(n0) and
(ξ1, [dt, dl]) is in ν(n1). By the inductive hypothesis (both n0 ≺ n and n1 ≺ n),
S(n0) and S(n1) are not satisfiable. But, from the hypothesis of our reductio-ad-
absurdum argument, there is a model M = 〈I(D′),V〉, where D′ is an extension
of Dn, such that M, [dk,dt] � ξ 0 or M, [dt,dl] � ξ 1. Thus, either S(n0) or S(n1) is
satisfiable (by model M), leading to a contradiction.

– If ψ = ξ0 C ξ1, R6 has been applied. For the sake of contradiction, let us assume
S(n) to be satisfiable. Then, there is a model M = 〈I(D′),V〉 such that D′ extends
Dn and M, [dk,dl] � ξ0 C ξ1. Hence, M, [dk,d] � ξ0 and M, [d, dl] � ξ1 for some
dk ≤ d ≤ dl . Two cases are possible:

1. If d ∈ Dn, then d = dt for some dk ≤ dt ≤ dl. By R6, n has a successor,
say it nt, which, in turn, has a successor, say it n′t, with ν(nt) = 〈ξ0,

[dk,dt],Dn, pt,ut〉 and ν(n′t) = 〈ξ1, [dt,dl],Dn, p′t,u′t〉. By the inductive
hypothesis (nt ≺ n and n′t ≺ nt), S(n′t) = S(n) ∪{(ξ0, [dk,dt]), (ξ1, [dt,dl])}
is not satisfiable. But, from the hypothesis of our reductio-ad-absurdum
argument, there is a model M = 〈I(D′),V〉, where D′ is an extension of Dn,
such that M, [dk,dt] � ξ0 and M, [dt,dl] � ξ1. Thus, S(n′t) is satisfiable (by
model M), leading to a contradiction.

2. If d /∈ Dn, then there exists t such that k ≤ t ≤ l − 1 and dt < d < dt+1.
By R6, n has a successor, say it nt, which, in turn, has a successor,
say it n′t, with ν(nt) = 〈ξ0, [dk,d],Dn ∪ {d}, pt, ut〉, ν(n′t) = 〈ξ1, [d, dl],Dn ∪
{d}, p′t, u′t〉. By the inductive hypothesis (nt ≺ n and n′t ≺ nt), S(n′t) = S(n)
∪{(ξ0, [dk, d]), (ξ1, [d,dl])} is not satisfiable, which, as in the previous case,
leads to a contradiction. ��

5.2 Completeness

In this subsection, we prove that the proposed tableau method is complete, that is,
whenever ϕ ∈ CDTBS is valid, every tableau T for ¬ϕ must be closed. To this end,
we need to preliminary prove some partial results.
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Definition 10 Let ϕ be a CDTBS-formula and T0 be the initial tableau for it. The
limit tableauT for φ is the decorated tree generated as follows. For all i ≥ 0, letTi+1

be the tableau generated by the simultaneous application of the branch-expansion
strategy to each branch inTi. If we ignore all flags from the decorations of the nodes
in every Ti, we obtain a chain of decorated trees ordered by inclusion: T1 ⊆ T2 ⊆
. . . ⊆ Tk ⊆ . . .. The limit tableauT is equal to

ω⋃
i=0

Ti.

Notice that the above definition does not prelude the limit tableau from being
infinite. Later on, we will prove that it cannot be the case, that is, the limit tableau is
always finite. Nevertheless, finiteness (of the limit tableau) is not necessary to prove
that the tableau method is complete.

The definitions of open and closed branch and tableau directly apply to the limit
tableau as well. In addition, we introduce the notion of saturated branch and tableau.

Definition 11 A branch in a (limit) tableau is saturated if there are no nodes on that
branch to which the branch-expansion rule is applicable on the branch. A (limit)
tableau is saturated if every open branch in it is saturated.

We now show that the set of all labeled formulas on an open branch in a limit
tableau has the saturation properties of a Hintikka set in first-order logic.

Lemma 6 Every limit tableau is saturated.

Proof Let B be a branch B in the limit tableau T and n be a node in B. We prove
that after every step of the expansion of that branch at which the branch-expansion
rule becomes applicable to n (because n has just been introduced or a new point has
been added) and the application of the rule generates at least a new node, then that
rule is subsequently applied on B to that node. The proof is by induction on depth(n)
(the depth of node n).

Let us assume that depth(n) = l and the branch-expansion rule has become
applicable to n. By the inductive hypothesis, the thesis holds for all nodes with
depth(n) < l. If there are no nodes between the root (including the root) and n
(excluding n) to which the branch-expansion rule is applicable at that moment, the
next application of the branch-expansion rule on B is necessarily to n. Otherwise, let
n∗ be the closest-to-n node between the root and n to which the branch-expansion
rule is applicable, or will become applicable, on B at least once thereafter. (Such a
node exists because there are only finitely many nodes between n and the root.) Since
depth(n∗) < depth(n), by the inductive hypothesis, the branch-expansion rule has
been subsequently applied to n∗. Then, the next application of the branch-expansion
rule on B must have been to n and that completes the induction.

Suppose now that there exists a branch B in a limit tableau which is not saturated.
Let n be the closest-to-the-root node on B to which the branch-expansion rule is
applicable. If the case applicable to n is different from R3, R4, and R5, then the
branch-expansion rule has become applicable to n at the step when n is introduced,
and by the claim above, it has been subsequently applied. Hence, the node has
become unavailable thereafter, which contradicts the assumption. Let us consider
now the case of R3, that is, the formula in ν(n) is ¬(ξ0 C ξ1) (cases R4 and R5 are
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similar, and thus they are omitted). An application of R3 on B would create two
immediate successors with labeled formulas (ξ0, [di,d]) and (ξ1, [d, d j]), at least one
of them new on B. For R3 to be applicable, points di,d j, and d must have been
already introduced at some step of the construction of B. Hence, at the moment
when the three of them, and n, have appeared on the branch, the branch-expansion
rule has become applicable to n. By the above claim, the rule has been subsequently
applied on B and such an application must have introduced the labeled formulas
(ξ0, [di, d]) and (ξ1, [d, d j]) on B, which again contradicts the assumption. ��

Corollary 1 Let ϕ be a CDTBS-formula and T be the limit tableau for ϕ. For every
open branch B in T , the following closure properties hold:

– If there is a node n ∈ B such that ν(n)= (ξ0 ∧ ξ1, [di, d j],D, pn,un), then there are
a node n0 ∈ B such that ν(n0) = (ξ0, [di, d j],D, pn0,un0) and a node n1 ∈ B such
that ν(n1) = (ξ1, [di, d j],D, pn1,un1).

– If there is a node n ∈ B such that ν(n)= (ξ0 ∨ ξ1, [di, d j],D, pn,un), then there are
a node n0 ∈ B such that ν(n0) = (ξ0, [di,d j],D, pn0, un0) or a node n1 ∈ B such
that ν(n1) = (ξ1, [di, d j],D, pn1,un1).

– If there is a node n ∈ B such that ν(n) = (ξ0 C ξ1, [di, d j],D, pn, un), then there
are two nodes n0, n1 ∈ B such that ν(n0) = (ξ0, [di, d],D′, pn0 ,un0) and ν(n1) =
(ξ1, [d, d j],D′, pn0,un0), for some d ∈ DB, with di ≤ d ≤ d j,.

– If there is a node n ∈ B such that ν(n) = (ξ0 D ξ1, [di, d j],D, pn,un), then there
are two nodes n0, n1 ∈ B such that ν(n0) = (ξ0, [d,di],D′, pn0 ,un0) and ν(n1) =
(ξ1, [d, d j],D′, pn0,un0), for some d ∈ DB, with d ≤ di.

– If there is a node n ∈ B such that ν(n) = (ξ0 T ξ1, [di, d j],D, pn,un), then there
are two nodes n0, n1 ∈ B such that ν(n0) = (ξ0, [di, d],D′, pn0 ,un0) and ν(n1) =
(ξ1, [d j, d],D′, pn0,un0), for some d ∈ DB, with d ≥ d j,.

– If there is a node n ∈ B such that ν(n) = (¬(ξ0 C ξ1), [di,d j],D, pn,un), then,
for each d ∈ DB, with di ≤ d ≤ d j, there is a node n′ ∈ B such that ν(n′) =
(ξ0, [di, d],D′, pn′, un′) or a node n′ ∈ B such that ν(n′)= (ξ1, [d, d j],D′, pn′, un′).

– If there is a node n ∈ B such that ν(n) = (¬(ξ0 D ξ1), [di,d j],D, pn, un), then
for each d ∈ DB, with d ≤ di, there is a node n′ ∈ B such that ν(n′) =
(ξ0, [d, di],D′, pn′, un′) or a node n′ ∈ B such that ν(n′)= (ξ1, [d, d j],D′, pn′, un′).

– If there is a node n ∈ B such that ν(n) = (¬(ξ0 T ξ1), [di,d j],D, pn, un), then,
for each d ∈ DB, with d ≥ d j, there is a node n′ ∈ B such that ν(n′) =
(ξ0, [di, d],D′, pn′, un′) or a node n′ ∈ B such that ν(n′)= (ξ1, [d j, d],D′, pn′, un′).

The proof of Corollary 1 is straightforward, and thus it is omitted.

Lemma 7 (Completeness) If the limit tableau for some formula ϕ ∈ CDTBS is closed,
then some f inite tableau for ϕ is closed.

Proof Let us assume the limit tableau for ϕ to be closed. Then, every branch closes
at some finite step of the construction, and then it is not further expanded (it remains
finite). Since the branch-expansion rule always produces finitely many successors,
every finite tableau is finitely branching, and hence so is the limit tableau. Then,
by König’s lemma, the limit tableau, being a finitely branching tree with no infinite
branches, must be finite. This allows us to conclude that its construction stabilizes at
some finite stage. At that stage, a closed tableau for ϕ is constructed. ��
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5.3 Termination and Complexity

In this last subsection, we prove that the proposed tableau method is terminating,
and we determine its computational complexity. The proof rests on a pair of basic
lemmas.

As a preliminary step, we define a counting function Count on B as follows:

Count(B) =
∑
n∈B

|ψn| · pn · un(B),

where ψn and pn are the formula and the p-flag in the decoration of n, respectively.
The following lemma proves that Count is non-increasing with respect to branch
expansions.

Lemma 8 Let ϕ be a CDTBS-formula, B be a branch in a tableau for ϕ, and B′ be
an expansion of B generated by the application of the branch-expansion strategy of
Def inition 8. Then, Count(B′) ≤ Count(B). Moreover, if B′ is obtained from B by
the application of R1, R2, R6, R7, or R8 to a node n with pn in ν(n) equal to 1, then
Count(B′) < Count(B).

Proof LetT be a tableau for ϕ, B be a branch on it, and n be the closest-to-the-root
node for which the branch-expansion rule is applicable. Moreover, let B′ be a branch
obtained by the application of the branch-expansion strategy on B. We consider the
cases of the application of R1, R3, and R6 to n. The missing cases are similar to the
considered ones (R2 is similar to R1, R4 and R5 to R3, R7 and R8 to R6), and thus
they are omitted.

– R1 is applied to n. Then, ν(n) = 〈ξ0 ∧ ξ1, [di, d j],D, pn,un〉 and B′ = B · n′ ·m′,
with ξ0 belonging to ν(n′) and ξ1 belonging to ν(m′). Since pn′ = pm′ = pn,
un′(B′) = um′(B′) = 1, un(B′) = 0, and um(B′) = um(B) for each m 	∈ {n, n′,m′},
Count(B′) = Count(B)− |ξ0 ∧ ξ1| + |ξ0| + |ξ1| < Count(B), when pn = 1, and
Count(B′) = Count(B) when pn = 0.

– R3 is applied to B. Then, ν(n) = 〈¬(ξ0 C ξ1), [di,d j],D, pn,un〉 and B′ = B · n′,
with ξ0 or ξ1 belonging to ν(n′). In both cases, pn′ in ν(n′) is equal to 0, and thus
Count(B′) = Count(B).

– R6 is applied to B. Then, ν(n) = 〈ξ0 C ξ1, [di,d j],D, pn, un〉 and B′ = B · n′ ·m′,
with ξ0 belonging to ν(n′) and ξ1 belonging to ν(m′). Since pn′ = pm′ = pn,
un′(B′) = um′(B′) = 1, un(B′) = 0, and um(B′) = um(B) for each m 	∈ {n, n′,m′},
Count(B′) = Count(B)− |ξ0 C ξ1| + |ξ0| + |ξ1| < Count(B) when pn = 1, and
Count(B′) = Count(B) when pn = 0.

Summing up, whatever Ri one applies, Count(B′) ≤ Count(B). Moreover, when
R1,R2,R6,R7, orR8 are applied to a node nwith pn in ν(n) equal to 1, Count(B′) <
Count(B). ��

Lemma 9 Let ϕ be a CDTBS-formula, T be a tableau for ϕ, and n be a node in T
with decoration ν(n) = 〈ψ, [di, d j],D, pn, un〉. It holds that if pn = 0, then ψ ∈ ϕ∃.

Proof Let n be a node on a branch B in T with decoration ν(n) =
〈ψ, [di,d j],D, pn,un〉. We prove the claim by induction on depth(n).
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Base case. If depth(n) ≤ 2, then n is either the root or one of the leaves of the
initial tableau. In both cases, the claim follows trivially.

Inductive step. Let depth(n) > 2. By the inductive hypothesis, the claim holds for
each ancestor of n in B. Let n′ be the node to which the branch-expansion rule has
been applied during the construction of T to obtain node n. As in the proof of
Lemma 8, we restrict our attention to R1, R3, and R6. The other cases can be dealt
with in a similar way.

– Rule R1 has been applied to n′. Then, ν(n′) = 〈ξ0 ∧ ξ1, [di,d j],D, pn′, un′ 〉 and
either ξ0 or ξ1 belong to ν(n). Let us assume that ξ0 belongs to ν(n) (the case
in which ξ1 belongs to ν(n) is analogous) and pn = 0. By definition of R1, pn′ =
pn = 0. By the inductive hypothesis, ξ0 ∧ ξ1 = ξ0 ∨ ξ1 ∈ ϕ∃. From the grammar
rules for CDTBS, it follows that ξ0 ∈ ϕ∃.

– RuleR3 has been applied to B. Then, ν(n′) = 〈¬(ξ0 C ξ1), [di, d j],D, pn′, un′ 〉 and
either ξ0 or ξ1 belong to ν(n). Let us assume that ξ0 belongs to ν(n) (the case
in which ξ1 belongs to ν(n) is analogous). By definition of R3, pn = 0. By the
grammar rules for CDTBS, it holds that ξ0 ∈ ϕ∃. The thesis immediately follows
from ξ0 = ξ0.

– Rule R6 has been applied to B. Then, ν(n′) = 〈ξ0 C ξ1, [di, d j],D, pn′, un′ 〉 and
either ξ0 or ξ1 belong to ν(n). Let us assume pn′ = 0. By the inductive hypothesis,
it follows that ξ0Cξ1 = ¬(ξ0Cξ1) ∈ ϕ∃ (contradiction). Hence, it holds that pn′ =
1, and thus, by R6, pn = 1. ��

By exploiting Lemmas 8 and 9, we now prove that the length of any branch B of
any tableau for ϕ is polynomially bounded by the length of the formula.

Lemma 10 (Termination) Let ϕ be a CDTBS-formula, T be a tableau for ϕ, and B
be a branch in T . Then, |B| ≤ 2 · |ϕ|3 + 8 · |ϕ|2 + 8 · |ϕ|.

Proof Let B be a branch in a tableau T for ϕ. Given the branch-expansion rule and
the branch-expansion strategy, there cannot be two nodes n, n′ in B such that the
same formula and the same interval belong to both ν(n) and ν(n′). Since for any node
n in B, the formula in ν(n) is either a subformula of ϕ or the dual of a subformula of
ϕ, it holds that |B| ≤ 2 · |ϕ| · |DB|2.

To give a bound on the number of points in DB, it suffices to observe that:

1. only the application of R6, R7, and R8 add new points to DB;
2. by Lemma 9, they can be applied only to nodes where the flag p is equal to 1;
3. by Lemma 8, every application of them strictly decreases the value of Count(B).

Now, let B0 be the two-node prefix of B consisting of the root and one of its
successors labeled with ϕ. Since |DB0 | ≤ 2 and Count(B0) = |ϕ|, |DB| ≤ |ϕ| + 2, and
thus |B| ≤ 2 · |ϕ| · (|ϕ| + 2)2 ≤ 2 · |ϕ|3 + 8 · |ϕ|2 + 8 · |ϕ|. ��

Theorem 7 The proposed tableau method for CDTBS is sound and complete, and the
satisf iability problem for CDTBS is NP-complete.
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Proof By Lemma 5 (soundness) and Lemma 7 (completeness), it holds that sat-
isfiability of a formula ϕ can be reduced to the search for an open limit tableau
for it. A direct consequence of Lemma 10 is that this search can be performed by
a nondeterministic algorithm that guesses an open and saturated branch of the limit
tableau, using only a polynomial amount of time. NP-hardness immediately follows
from that of propositional logic. ��

6 Undecidable extensions of CDTBS

In the previous section, we have proved that the satisfiability problem for CDTBS

is NP-complete. Since the full logic CDT is undecidable, one may wonder whether
CDTBS can be extended preserving decidability. In this section, we show that the
most natural extension of CDTBS is already undecidable.

In CDTBS-formulas, modalities can occur in the scope of at most one negation.We
slightly extend CDTBS by allowing one more nesting of negations and modalities.
The resulting logic includes formulas like ¬(¬(pCq)Cq) or ¬(pC¬(qCr)). In [20],
Hodkinson et al. have shown that CDT is undecidable over the class of all linearly-
ordered domains even if we restrict ourselves to formulas where only one modality
occurs. Undecidability has been proved by reducing the problem of finding a
solution to the octant tiling problem to the satisfiability problem for the logic. The
undecidability proof below is based on the observation that the entire construction
given in [20] exploits formulas where modalities occur in the scope of at most two
negations.

Given a set of tiles T = {t1, . . . ,tk}, the octant tiling problem is the problem of
establishing whether T can tile an octant of the Cartesian plane over the integers.
Let us consider the second octant O = {(p,q) | p,q ∈ N, p ≤ q}. Each tile ti has
four colors, namely, right(ti), lef t(ti), up(ti), and down(ti). Neighboring tiles
must have matching colors. Formally, we say that a set T can tile O if there exists a
function f : O �→ T such that right( f (p,q)) = lef t( f (p+ 1,q)) and up( f (p,q)) =
down( f (p,q+ 1)), where f (p,q) represents the tile to be placed in the position
(p,q), provided that all relevant coordinates ((p,q), (p+ 1,q), etc.) lie in O. Using
König’s lemma, one can prove that a tiling system tiles the second octant if and only if
it tiles arbitrarily large squares if and only if it tiles N×N if and only if it tiles Z× Z.
Undecidability of the first problem immediately follows from that of the last one [4].

Let T = {t1, . . . ,tk} be an instance of the octant tiling problem. We will assume
that AP contains at least the propositional letters u, t1, . . . , tk. CDTBS makes it
possible to define the “somewhere in the future” operator F (we assume future to be
non-strict) as follows:

Fϕ ::= � T (ϕ T �). (10)

The universal operator G can be defined as the dual of F, that is:

Gϕ ::= ¬F¬ϕ. (11)

Making use of G, we set our framework by forcing the existence of unit-intervals
(or u-intervals) working like atomic elements. Such intervals will be denoted by the
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proposition letter u. We force u-intervals to be disposed in an unbounded unique
(uninterrupted) sequence by means of the following formula:

uT� ∧G(u → uT¬u). (12)

Lemma 11 Let M be a model such that M, [d, d′] � (12). Then, there exists an inf inite
sequence of points d0 < d1 < . . ., such that

1. d′ = d0;
2. for every l ∈ N, M, [dl, dl+1] � u.

The following formulas associate a unique tile with every u-interval; moreover,
they guarantee that tiles are placed in such a way that they respect conditions on
colors (a graphical account of the encoding is given in Fig. 5):

G

⎛
⎝u →

|T |∨
i=1

ti

⎞
⎠ , (13)

G
|T |∧

i, j=1,i	= j

¬ (
ti ∧ t j

)
, (14)

G
|T |∧
i=1

⎛
⎝ti → ¬

⎛
⎝uT¬

|T |∨
j=1,up(ti)=down(tj)

t j

⎞
⎠

⎞
⎠ , (15)

G

⎛
⎝u →

|T |∧
i, j=1,right(tj ) 	=left(ti)

¬ (
tiTt j

)
⎞
⎠ . (16)

It is easy to check that, in (12), (13), and (14), modalities occur in the scope of at
most two negations. Moreover, formulas (15) and (16) can be easily rewritten in such

t1

°
°

°t2 t3

t1
u

t2
u

t3

Fig. 5 A pictorial representation of the encoding
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a way that modalities occur in the scope of at most two negations as well. Now, let
ϕT be the following formula:

(12) ∧ (13) ∧ (14) ∧ (15) ∧ (16). (17)

We prove that the encoding is sound and complete.

Lemma 12 LetT = {t1, . . . ,tk} be a set of tiles. It holds that ϕT is satisf iable if and
only if T tiles the second octant O .

Proof (Soundness) Let M, [d, d′] |= ϕT . We show that there exists a tiling function
f : O �→ T . By Lemma 11, we know that there exists an infinite sequence of points
d0 < d1 < . . . such that d′ = d0 and, for every i ∈ N, M, [yl, yl+1] |= u. Now, for each
l,m ∈ N, with l ≤ m, we put:

f (l,m) = t whenever M, [dl, dm+1] |= t.

First, we have to show that f is well-defined, that is, that each f (l,m) is a tile.
We proceed by induction on (m− l). If (m− l) = 0, then, by Lemma 11, we are on a
u-interval and thus, by (13), there exists a tile associated with it. Since by (14) such a
tile is unique, f is well-defined. Suppose now that f (l,m) is a tile wheneverm− l ≤
p, and consider m− l = p+ 1. Since (m− 1)− l ≤ p, by the inductive hypothesis
f (l,m− 1) is a tile, say ti, which means that M, [dl, dm] |= ti. By (15), M, [dl, dm] |=
¬(uT¬∨|T |

j=1,up(ti)=down(tj) t j). Hence, for every d ≥ dm, if M, [dm,d] |= u, then it

must be the case that M, [dl,d] |= ∨|T |
j=1,up(ti)=down(tj)

t j. Since M, [dm, dm+1] |= u, this

applies to the particular case d = dm+1. Thus, we have that M, [dl,dm+1] |= t j, that is,
f (l,m) = tj, for some j such that down(tj) = up(ti) (again, since by (14) such a tile
is unique, f is well-defined). This not only guarantees us that f is well-defined, but
also that it respects the ‘vertical’ condition of a tiling function. To conclude the proof,
we need to show that the ‘horizontal’ condition is respected as well. To this end, let
us consider f (l,m) and f (l + 1,m). By definition, the corresponding tiles are those
associated with [dl,dm+1] and [dl+1, dm+1]. Since, by definition, the interval [dl,dl+1]
is a u-interval, by (16) it cannot be the case that lef t( f (l + 1,m)) 	= right( f (l,m)),
which implies that lef t( f (l + 1,m)) = right( f (l,m)). ��

(Completeness) For simplicity, let us assume the linearly ordered set to be (N,<).
One can force the truth of ϕT over [0, 0] by letting u be true over all intervals
of length 1 and each ti be true over all intervals of the form [l,m+ 1], where
f (l,m) = ti. ��

Theorem 8 The satisf iability problem for any syntactic extension of CDTBS where
modal operators occur in the scope of two negations is undecidable.

Proof The thesis directly follows from Lemma 12. ��

It is worth noticing that only modality T occurs in ϕT . An alternative proof of
Lemma 12 can be given by making use of modality C or of modality D only. This
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shows that any fragment of CDT containing at least onemodality amongC,D, and T,
where modalities are allowed to occur in the scope of two negations, is undecidable.

7 Conclusions and future work

In this paper, we studied a syntactic fragment of Venema’s CDT logic, that we called
CDTBS, whose standard translation to first-order logic fits into Bernays-Schönfinkel
class of quantifier prefix formulas. Decidability of CDTBS directly follows from that
of Bernays-Schönfinkel class.

We first focused our attention on expressiveness issues. We considered the
following question: “can every formula in Bernays-Schönfinkel class of first-order
logic over the linear order <, limited to binary predicates, be turned into a CDTBS-
formula?”. We proved that this is not the case. In [33], Venema showed that CDT
is expressively complete with respect to FO3,2[<]. In this paper, we showed that
CDTBS is expressively complete with respect to the corresponding fragment of
Bernays-Schönfinkel class FO3,2

BS[<]. Next, we developed a tableau-based decision
procedure for CDTBS, and we proved that the satisfiability problem for CDTBS is NP-
complete. Finally, we showed that any natural relaxation of the syntactic restrictions
we imposed on CDTBS yields undecidability, as it makes the resulting logic expressive
enough to encode the (undecidable) octant tiling problem.

The present work can be developed in a number of future research directions.
From a theoretical point of view, one can think of the possibility of identifying the
interval temporal logic counterparts of other decidable classes of first-order formu-
las. Moreover, the relationships between interval temporal logics and (extended)
guarded fragments are still unexplored. For instance, It would be interesting to give
an account of the good computational properties of decidable fragments of CDT and
HS (including CDTBS) in terms of suitable guarded fragments. From amore practical
point of view, we expect CDTBS to be applicable in a variety of areas such as, for
instance, planning and synthesis of plan controllers, temporal description logics, and
sequencing problems in computational genetics.
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