
Ann Math Artif Intell (2012) 64:73–107
DOI 10.1007/s10472-012-9282-1

Exception diagnosis in multiagent contract executions

Özgür Kafalı · Paolo Torroni

Published online: 8 March 2012
© Springer Science+Business Media B.V. 2012

Abstract We propose a diagnosis procedure that agents can use to explain ex-
ceptions to contract executions. Contracts are expressed by social commitments
associated with temporal constraints. The procedure reasons from the relations
among such commitments, and returns one amongst different possible mismatches
that may have caused an exception. In particular, we consider two possibilities:
misalignment, when two agents have two different views of the same commitment,
and misbehavior, when there is no misalignment, but a debtor agent fails to oblige.
We also provide a realignment policy that can be applied in case of a misalignment.
Our formalization uses a reactive form of Event Calculus. We illustrate the workings
of our approach by discussing a delivery process from e-commerce as a case study.

Keywords Commitments · Exception diagnosis · Alignment · Event calculus

Mathematics Subject Classifications (2000) 68T42 · 68T27 · 68T30

1 Introduction

Contracts are a traditional means to regulate and secure business transactions in
open electronic markets. In such markets, agents may take on different roles such
as buyers, sellers, auditors, information vendors, financial institutions and other
intermediaries. Contracts make the dependencies between the contract participants
explicit, and contain the norms that govern relevant interaction [35].

Ö. Kafalı
Department of Computer Engineering, Boğaziçi University, 34342, Bebek, İstanbul, Turkey
e-mail: ozgurkafali@gmail.com

P. Torroni (B)
DEIS, University of Bologna, V.le Risorgimento, 2, 40136, Bologna, Italy
e-mail: paolo.torroni@unibo.it

74 Ö. Kafalı, P. Torroni

Social commitments [47] are an increasingly common way of representing con-
tracts among software agents. A social commitment (or simply, a commitment) is
formed by a debtor agent towards a creditor agent about a specific property of
interest. In realistic environments, a commitment is associated with a deadline, telling
that its property has to be brought about within that time bound [48]. Otherwise, a
violation occurs regarding that commitment. A violation of a commitment means an
exception for its creditor.

In order to prevent a commitment violation, it is essential that agents have some
kind of control over their trading partners (e.g., the creditor agent works with a
trustworthy debtor as the contractor of its commitment). However, it is not possible
to predict the behavior of the agents in open multiagent systems. Moreover, the
environment can also be unpredictable, and cause a mismatch between the agents’
contracts even though the agents are trustworthy. Therefore, we need to monitor and
handle exceptions in order to ensure safe contract execution.

Contracts are manipulated in two phases; contract negotiation and contract
execution [26, 35]. Contract negotiation is out of the scope of this paper. Rather, we
assume that agents start executing the protocol with predetermined (and possibly
negotiated) contracts. For contract execution, we do not consider an authority
that supervises the interactions of the agents regarding their contracts. Instead,
agents may run distributed/local monitoring on the environment, and verify their
contracts accordingly. Another thing to consider about contract violation is sanc-
tions. That is, once a commitment is violated, a suitable penalty is applied to
the debtor. In order for sanctions to function properly, timely monitoring/diagno-
sis is required, since there may be deadlines associated with issuing sanctioning
procedures.

In a distributed contract-based setting, each agent keeps track of its own commit-
ments. Thus, the cause of an exception is often a misalignment between the debtor
and the creditor’s individual copies of the same commitment. Example 1 presents
such a scenario from a real-life delivery process.

Example 1 The customer, the bank, the store and its courier: a book’s online purchase.
Let us consider a scenario with a customer, Federico, who wishes to buy a copy
of a book, “Harry Potter and the Deathly Hallows” (HP7), from an online store
(Amazon). The transaction needs two additional parties: a bank (HSBC) to carry
out the payment and a courier (UPS) to deliver HP7 to Federico.

The process begins with Federico paying for HP7 using HSBC on Monday.
The contract between Federico and Amazon states that HP7 will be delivered in
five business days as of the time HSBC verifies Federico’s payment. Assume that
HSBC verifies Federico’s payment on Wednesday. Now, Federico expects a delivery
by the following Wednesday. But what if HSBC does not notify Amazon about
the verification of Federico’s payment until Friday? When Amazon receives the
notification, it infers the deadline for delivery as the following Friday (two days
later than Federico has previously inferred!). When Federico does not receive HP7
on Wednesday, he contacts Amazon to ask the reason of the delay. Amazon tells
Federico that there are two more days until the deadline. At this point, Federico
understands that there is a mismatch between their copies of the contracts. He has to
decide what to do next. One such possibility is to align his contract with Amazon’s,
by changing his deadline, and wait a bit longer.

Exception diagnosis in multiagent contract executions 75

One key point in Example 1 is the ability of parties to reason about contractual
obligations, based on contractual clauses, i.e., implications and facts that specify the
contract, and on relevant events that occur at specific points in time. The presence
of domain-related as well as general-purpose knowledge that agents can use to make
inferences about the state of their commitments is a common setting in realistic e-
commerce scenarios. It is also important to stress that parts of such knowledge, such
as contract specifications, are agreed upon, shared, by the interested agents, whereas
other parts of it, such as knowledge about the occurrence of relevant events, depend
on observations made by agents autonomously and independently, and are thus a
potential source of mismatch.

For instance, at some point Federico becomes aware of a mismatch between
Amazon’s understanding of the commitment about HP7 and his own. In particular,
he realizes that they are inferring different deadlines. That is a typical misalignment
of commitments, due to differences between the debtor’s and the creditor’s observa-
tions [17].

Another possible mismatch can be due to the debtor’s misbehavior, e.g., Amazon
delegates its commitment to UPS but then gives a wrong deadline. Finally, a
mismatch may be caused by a simple misunderstanding among agents, e.g., Federico
receives another book instead of HP7. Schroeder and Schweimeier [45] study such
misunderstandings using negotiation and argumentation theory. In this work, we
only consider misalignment caused by different observations of the agents, and
misbehavior caused by the debtor failing to oblige.1

Among the few related works, Chopra and Singh [17] formalize commitment
alignment in multiagent systems. They consider misalignment of commitments that
arise from different observations of the debtor and the creditor. They show how the
creditor can prevent misalignments, by informing the debtor when the condition of
each conditional commitment is satisfied, so that debtor and creditor can infer the
same base-level commitments. This approach requires extra communication. If we
assume exceptions to be rare events in process executions, such a communication
overhead may be unjustified. Accordingly, we choose to verify alignment on demand,
i.e., when an exception occurs. Besides, Chopra and Singh do not formalize commit-
ment deadlines. We instead accommodate time-aware commitments.

Accordingly, we propose a distributed collaborative process to diagnose excep-
tions due to misalignment or misbehavior. When the creditor agent detects that
one of its commitments is violated, it initiates the diagnosis process by making
a diagnosis request to the commitment’s debtor. As diagnosis proceeds, agents
exchange information about relevant commitments. In Example 1, Federico makes a
diagnosis request to Amazon about his violated commitment. The diagnosis process
may involve a larger set of agents, e.g., Amazon may have delegated its commitment
to UPS. In the end, such a process results in one of the following outcomes:

1. a misalignment is found, with a possible commitment to be aligned with (if any
exists), or

2. a misbehavior is found, with the identification of a “culprit” agent.

1Here, “misbehavior” must be literally intended as a failure to function correctly. We do not mean to
imply intentionality in such failures. The question why an agent misbehaves is entirely outside of the
scope of this paper.

76 Ö. Kafalı, P. Torroni

There are two cases of misalignment: (1) the one described by Chopra and
Singh [17] where the creditor infers the commitment, but the debtor does not,
and (2) a temporal misalignment which we describe here, where the debtor infers
a later deadline for the commitment than the creditor. In the case of a temporal
misalignment, the agents can maintain alignment via an alignment policy described
by a set of commitment update rules. This is often the case for real-life delivery
scenarios; the customer may accept to wait a bit longer, if it is a matter of adjusting
a deadline. Alternatively, agents can start negotiating about what to do next.
That can solve both situations of misalignment and misbehavior. More elaborate
solutions are indeed possible. We do not address negotiation in this paper, and
this trivial form of automatic realignment is simply a by-product of our diagnosis
procedure.

Our diagnosis architecture includes “coupled” knowledge-bases, in which agents
store the protocol rules and contracts they agree upon. That is, a part of
a protocol formalization concerning two agents is stored in a knowledge-base
containing agreed-upon protocol rules, that are accessible by and thus shared
between these two agents. Similarly, a contract is contained in the knowledge-
base shared between its participants. In particular, these coupled knowledge-bases
contain commitment and protocol rules and facts agreed upon by the interested
parties. They do not contain an extensional description of the commitments,
e.g., the current states of the commitments. These are elaborated individually by
the agents.

Each agent has a separate trace of happened events according to what it observes.
Thus, an agent can only track down the status of its own commitments. We assume
that agents are always honest and collaborative during diagnosis. That is, when an
agent is requested to take part in the diagnosis process, it does so. It is worthwhile
stressing that identifying an agent as being a culprit for misbehavior does not neces-
sarily make that agent dishonest or malicious. The agent may have unintentionally
caused an exception, but it can still be motivated to help identifying its cause, e.g., in
order to keep its good reputation.

The procedure we propose always terminates, is sound and, if associated with
suitable agent policies, is capable of removing misalignment whenever possible. We
discuss these and other results. In order to evaluate our approach, we extend the
scenario described in Example 1 by presenting, as a case study, two different traces
of events that lead to separate diagnosis results.

We formalize the agents’ interactions in REC [5, 8], a reactive form of Event
Calculus [36]. We shall emphasize that our diagnosis framework is orthogonal to the
choice of commitment specification language. In particular, we could have used any
other specification language that enables modeling time-aware commitments with
metric time. However, REC turned out to be the simplest such language. Besides,
REC’s embedding in an existing tool for run-time commitment monitoring [9, 49]
allowed us to test our method and evaluate it empirically.

The rest of the paper is structured as follows. Section 2 reviews related work in
multiagent diagnosis literature. Section 3 describes commitments. Section 4 describes
the delivery process running example. Section 5 describes similarity relations used by
the diagnosis procedure, which is explained in Section 6. Section 7 illustrates the case
study, and Section 8 concludes the paper.

Exception diagnosis in multiagent contract executions 77

2 Related work

Our work relates to three important research directions. The first one is towards
exception handling in contract-based multiagent systems (e.g., e-commerce and e-
business applications). A business process can be designed as a single protocol, or
a composition of protocols, each describing a certain transaction amongst some of
its participants. One of the key properties of business protocols is privacy, which is
preserved by agents’ policies [21]. In multi-party business processes, the compliance
level of agents to their protocols determines how often exceptions arise. Roughly,
compliance is related to conformance and interoperability [15, 24]. First, the agent’s
design must conform to the protocol’s standards. However, this is a necessary, but
not sufficient, condition. The agent should also be interoperable with other agents
whom it interacts with. An agent’s conformance to its protocol can be determined
regarding the path it follows in its protocol. Nevertheless, an agent can conform
to its role without following the exact protocol path it is supposed to follow, as
long as it satisfies all of its commitments. This flexibility is due to commitment
protocols.

Exception handling in business processes is a multi-disciplinary task which at-
tracts the attention of computer science, management, economics, and several other
disciplines. The MIT Process Handbook provides a knowledge source on business
processes that aims at combining the efforts developed so far by separate disciplines
[34]. It proposes a taxonomy of business processes, and proposes dependence
relations between them; (1) f low, if a process consumes the resource produced by
another process; (2) f it, if two processes together produce a resource; and (3) sharing,
if two processes consume the same resource. In this paper, we have chosen a delivery
process since it mimics the exception-prone structure we look for. The distributed
nature of the delivery protocol enables us to define role-based protocols for each
business party, and reason on exceptions with partial knowledge. The delivery
process consists of flow type dependencies. That is, the process evolves sequentially
among the participants. The details of the process are given in Section 4.

The MIT Exception Repository is an extension to the MIT Process Handbook
whose aim is to relate exception handling with business processes, and make ex-
ception expertise available to each process [33]. The repository focuses on coor-
dination based exceptions which are initiated from dependency relations among
processes. Similar to the process taxonomy, an exception taxonomy describes the
types of exceptions from the most general to the most specialized. Related with
each coordination mechanism in the process handbook is a set of exception types
described in the exception repository. Associated with each exception type, there
is an exception handling process used to recover from the exception. In contrast to
such static recovery schemes, where all the faults are predetermined at design-time,
here we deal with run-time exceptions that need to be detected and diagnosed during
execution.

The second direction is towards diagnosis. Diagnosis is a process that starts from
observing a deviation from the expected behavior of a given system, and whose pur-
pose is to identify the reason of the exception, i.e., to locate those subsystems whose
abnormal behavior accounts for the observed behavior [38]. In multiagent systems,
diagnosis is typically initiated by one specific agent, who detects an exception in

78 Ö. Kafalı, P. Torroni

the system, and interacts with other agents in order to isolate a problem in its own
behavior or in the behavior of other agents.

The diagnosis problem is in general a hard one. For example, component-based
diagnosis is in the worst case exponential in the number of annotated components
[7]. Multiagent diagnosis presents additional problems, depending on the setting. In
closed systems, such as teams, we may need to avoid information flooding. In open
domain, such as e-commerce settings, we may care for privacy of information and for
the trust we put on autonomous, unknown agents.

There are two fundamentally different approaches to diagnostic reasoning: heuris-
tic approaches, such as fault-based diagnosis (FBD) and diagnosis from the first
principles or model-based diagnosis (MBD) [38]. In FBD, the idea is to encode the
diagnostic reasoning of human experts in a given domain. The real-world system
is not modeled. All known faults are instead modeled. Conversely, MBD starts
from a model of the structure (components and their connections) and function (or
behavior) of the system, and a set of observations indicating an abnormal behavior.
A system is faulty if the observed behavior of the system contradicts the behavior
predicted by assuming that all of its components are correct [18].

As pointed out by Kalech and Kaminka following Micalizio et al. [40], fault-
based techniques [20, 25, 37, 41], in which faults are modeled in advance, cannot
be used for multiagent diagnosis, because the interactions in multiagent systems are
unpredictable. For this reason, multiagent diagnosis is typically model-based. This is
especially true in open systems, where the idea of social commitments is precisely to
avoid enumerating all possible ways agents can interact in order to fulfill a contract,
thus providing agents with more flexibility and opportunities [46].

Thus in recent years, the MBD approach has been applied to MAS diagnosis
by several research groups, including Console et al. [19] with applications in the
automotive industry [42], Roos et al. [44, 51] for plan diagnosis, and Kalech and
Kaminka [29, 30] for coordination failures in agent teams. These are in general
closed systems. For example, in [29], a coordination model is described by way of
concurrency and mutual exclusion constraints. The approach assumes that each agent
has knowledge of all the possible behaviors available to each team-member, i.e., their
behavior library. In this way, each observing agent creates a model of other agents
in the team. Transitions between one behavior to another are described in terms of
preconditions and termination conditions. Then, a “social” diagnosis is initiated as a
collaborative process aimed at finding causes of failures to maintain designer-specific
social relationships [31]. More specifically to the case of team-work, a diagnosis is
a set of contradictions in beliefs that accounts for the selection of different team
behaviors by different agents [29]. MBD has also been used by Ardissono et al. to
enable Web services with diagnostic capabilities [3]. Thus when defining complex
Web services, each component (a simple Web service) is associated with a local
diagnoser, whereas the complex Web service is associated with a global diagnoser
service. Differently from Web service compositions, multi-agent interaction is not
orchestrated (as in BPEL programs), but autonomous. Diagnosis exception in such
an open and flexible setting calls for new approaches, such as the one we present
here.

The final direction is towards commitment protocols and misalignment. Com-
mitments are widely used to model agent interactions. They are live objects that
change state based on occurring events or on actions being executed [47]. In its

Exception diagnosis in multiagent contract executions 79

traditional definition, a commitment does not include a notion of time, e.g., a
deadline. That is, the content (i.e., proposition) of the commitment is a logical
formula which is not necessarily associated with time. However, time is essential
when considering whether commitments are violated or fulfilled [48]. A commitment
has three fundamental states; active, fulf illed, and violated [22, 23]. In a centralized
monitoring system where all the interactions of agents are observable, commitment
tracking is an effective way to detect protocol exceptions [8]. While the commitment
description does not need any modifications for this process, temporal considerations
are required to enable deadlines for commitments.

The Event Calculus is used for representing events and their outcomes [36].
Commitments can be created in the Event Calculus, and protocol evolution can
be observed based on actions that manipulate commitments. Event Calculus, in its
nature, is used for backward reasoning, thus it is goal-driven. But Reactive Event
Calculus [8, 48], on the other hand, is event-driven. That is, it enables forward
reasoning in time which allows commitment tracking during protocol execution. In
particular, it can tell which properties change state as a new event occurs. The SCIFF
framework combines backward and forward reasoning exactly for the purpose of
runtime verification [1]. It models the agents’ interactions through expectations
rather than commitments. However, commitments can also be modeled in SCIFF
using expectations [50]. Once commitments and deadlines are created, the tracking
procedure just runs a monitoring process based on the happened events [48]. This
monitoring process determines which commitments are violated. In addition, com-
pensation rules describe how the system will behave when commitments are violated
(i.e., their deadlines have passed). Thus, the procedure also offers a solution for the
exceptions that occur due to commitment violations. Misalignment of commitments
often causes exceptions for the involved agents [16, 17, 45] as we have described in
the previous section.

To the best of our knowledge, no existing approach to distributed diagnosis is
able to distinguish between misalignment and misbehavior, as we do in this paper.
Here, we propose a logic-based framework to track down agents’ commitments and
diagnose faults via similarity relations described over those commitments. Moreover,
we provide a means of recovery from misalignment situations, whenever possible
(e.g., extend a commitment’s deadline to a newly discovered time point).

3 Commitments in REC

We use social commitments [47] to represent agent contracts. A social commitment
is formed between a debtor and a creditor, in which the debtor is committed to
the creditor for bringing about a property. Singh [47] considers two types of social
commitments:

– c(x, y, p) is a base-level commitment between the debtor agent x and the creditor
agent y to bring about the property described by the proposition p. When this
commitment is created, it is said to be active, and x is committed to y for
satisfying p. c(x, y, p) remains active until p gets either satisfied, in which case
the commitment becomes fulf illed, otherwise, it becomes violated [52].

80 Ö. Kafalı, P. Torroni

– cc(x, y, q, p) is a conditional commitment between the debtor agent x and the
creditor agent y to bring about the property described by the proposition p when
the condition q holds. When this commitment is active, namely when q is satisfied,
x will become committed to y for satisfying p. Thus, a new base-level commitment
c(x, y, p) is created, and we say that the conditional commitment is detached. Note
that a conditional commitment may never be violated.

It is more realistic to consider commitments with time [48]. That is, the debtor
is committed to satisfy the property for the creditor within a predefined deadline.
In this paper, we use the Reactive Event Calculus (REC) [8] to model time-
aware commitments (i.e., commitments with temporal constraints). REC extends the
Event Calculus, which is based on Prolog,2 to monitor commitments at run-time.
REC models two types of temporal constraints on commitments: (1) an existential
temporal constraint where the property of the commitment has to be brought about
inside a time interval, and (2) a universal temporal constraint where the property of
the commitment has to be maintained valid along a time interval. In this paper, we
focus on base-level commitments with existential temporal constraints.

We use the following syntax to represent an existential base-level commitment
throughout the paper:

s(c(x, y, property(e(t1, t2), p))),

where:

– s is a label identifying the state of the commitment at a specific time point. It can
be active, fulf illed, or violated;3

– x and y are the debtor and the creditor of the commitment, respectively;
– the existential temporal constraint e(t1, t2) on the property p, which is represented

by a logic formula, means that p must be satisfied at some time t, t1 ≤ t ≤ t2.

When the commitment is first created by the create operation [52], the commit-
ment’s state s is active. It remains active until t1. After t1, if p is satisfied between
t1 and t2, the commitment’s state s becomes fulf illed as soon as p is satisfied.
Otherwise, it becomes violated as soon as t2 is past. A detailed explanation of how
REC manipulates commitment states can be found in [10].

In REC, we can express that an event initiates (or terminates) a f luent or property
of the system, by way of initiates(Event, Fluent, Time) relations (see an example in
Listing 5 below). We use the following syntax to represent a happened event:

hap(event(exec(e(x, y, χ1, . . . , χn))), t).

Each event is thus represented as an exec message between an agents x, the sender,
and y, the receiver. The event description is represented by e, and χ1 through χn

are the parameters associated with e. The time in which the event has occurred is
represented by t.

2In the sequel, we assume that the reader has some basic knowledge of Prolog.
3We use this notation for presentation purposes only. In REC, the state is also a parameter of the
commitment description, and any number of states can be accommodated.

Exception diagnosis in multiagent contract executions 81

Customer

Bank

Store

Courier

pay

verify

notify verification

request

notify delivery

deliver

Fig. 1 Delivery process

4 Running example

Figure 1 shows the delivery process introduced in Example 1. We assume that the
customer has already placed the order, by direct or indirect interaction with the store,
e.g., via an e-commerce Web site. We thus focus on the subsequent phases (payment
& delivery).

In a desired execution, first the customer sends the payment to the bank regarding
its purchase from the store (pay). Then, the bank verifies the payment of the
customer (verify), and informs the store about the verification (notify verif ication).
Upon receiving the verification, the store requests the delivery of the book from the
courier (request). Finally, the courier delivers the book to the customer (deliver),
and informs the store about the delivery (notify delivery). Listings 1 through 5 show
how this process is formalized in REC, in coupled knowledge-bases. Recall that
the coupled knowledge-base of two agents contain the protocol rules and contract
descriptions involving those agents.

Listing 1 shows the REC rules shared among the customer and the bank agents.
We model the agents’ interactions as exec events from a sender towards a receiver.
The first two rules (CB1 and CB2) describe the effects of such events in terms of
fluents paid and verif ied. When the payment is sent from the customer to the bank,
the fluent paid starts to hold (CB1). Likewise, when bank verifies the customer’s
payment, the fluent verif ied starts to hold (CB2). The last parameter for both initiates
rules is a blank variable, telling that the time of event is not significant for its effect
to happen. The last rule (CB3) corresponds to the create operation described for
commitments [48, 52]. Here, the syntax of create in CB3 follows the literature; the
first parameter is the event that initiates the base-level commitment (this is the
requirement for Event Calculus), the second parameter is the debtor of the com-
mitment (a commitment can only be created by its debtor), and the last parameter is
the commitment itself. Since we deal with time-aware commitments here, the body

Listing 1 Coupled knowledge-base of the customer and the bank

% CB1: pay
initiates(exec(pay(Customer,Bank,Item)),paid(Item),_).

% CB2: verify payment
initiates(exec(veri fy(Bank,Customer,Item)),veri f ied(Item),_).

% CB3: verify commitment
create(exec(pay(Customer,Bank,Item)),Bank,

c(Bank,Customer,property(e(Ts,Te),veri f ied(Item))),Ts):-
Te is Ts + 3.

82 Ö. Kafalı, P. Torroni

of the rule handles the time constraints associated with the commitment. That is,
when the customer sends the payment for an item to the bank, then the bank will be
committed to verifying that payment in three time units (without loss of generality,
we use days as the time unit from now on). Lines starting with % are comments.

Listing 2 shows the REC rules shared among the bank and the store agents. The
only rule, BS1, is similar to CB2, the only difference being the receiver. That is, the
bank notifies the store about the verification of the customer’s payment.4

Listing 2 Coupled knowledge-base of the bank and the store

% BS1: verify payment
initiates(exec(veri fy(Bank,Store,Item)),veri f ied(Item),_).

Listing 3 shows the REC rules shared among the customer and the store agents.
The only rule CS1 describes the commitment between them. The semantics is that
when the bank sends the payment verification, then the store will be committed to
deliver the item in five days.5

Listing 3 Coupled knowledge-base of the customer and the store

% CS1: verify–deliver commitment
create(exec(veri fy(Bank,_,Item)),Store,

c(Store,Customer,property(e(Ts,Te),delivered(Item))),Ts):-
Te is Ts + 5, holds_at(in_stock(Item,Store),Ts).

Listing 4 shows the REC rules shared among the store and the courier agents.

Listing 4 Coupled knowledge-base of the store and the courier

% SD1: send for delivery
initiates(exec(request(Store,Courier,Item)),requested(Item),_).

% SD2: deliver
initiates(exec(deliver(Courier,Store,Item)),delivered(Item),_).

% SD3: send–deliver commitment
create(exec(request(Store,Courier,Item)),Courier,

c(Courier,Store,property(e(Ts,Te),delivered(Item))),Ts):-
Te is Ts + 3.

The first two rules (SD1 and SD2) describe the events for the request of a delivery,
and the delivery itself. The last rule SD3 describes the commitment between the two
agents. The semantics is that when the store requests the delivery of an item, then
the courier will be committed to deliver that item in three days.

4For the sake of simplicity, we do not indicate further conditions on Bank, Store, and Item, which
are free variables. A detailed implementation would require to express restrictions on such variables,
i.e., to define the “context” [12].
5The blank variable in the receiver location of the exec message accounts for either the customer or
the store. When the customer receives the message, it will infer the commitment. Similarly, the store
will infer the commitment when it is the receiver of that message.

Exception diagnosis in multiagent contract executions 83

Courier

Store

Bank

Customer

Fig. 2 Commitments in the delivery process at time 6.0

Listing 5 shows the REC rules shared among the courier and the customer agents.
The only rule DC1 is similar to the rule SD2, in which the only difference is
the receiver.

Listing 5 Coupled knowledge-base of the courier and the customer

% DC1: deliver
initiates(exec(deliver(Courier,Customer,Item)),delivered(Item),_).

For illustration purposes, the commitment rules contain the parties Customer,
Bank, Store, and Courier. These parties represent the roles that agents will enact
during the protocol’s execution. The real contracts, however, should define explicitly
which agents are involved in the contract, e.g., they should include a specific customer
name. Such definitions could be written modularly in REC, by resorting to the
concept of role [11].

We have implemented the diagnosis framework in the j-REC tool for run-time
monitoring6 which embeds a tuProlog reasoner.7 We could thus run experiments in
a simulated environment. In this paper, we only show some excerpts of the whole
code. A running prototype with a full implementation can be downloaded from a
dedicated Web page.8

Figure 2 demonstrates a snapshot of the agents’ commitments in the delivery
process. The snapshot is taken at time 6.0. You can see that the bank has already
fulfilled the commitment towards verifying the customer’s payment. Upon receiving
the verification of payment, the store has created the commitment towards delivering
the book to the customer. In addition, it has delegated the commitment to the
courier.

6http://www.inf.unibz.it/~montali/tools.html#jREC
7http://sourceforge.net/projects/tuprolog
8http://mas.cmpe.boun.edu.tr/ozgur/code.html. See Appendix B for further information.

http://www.inf.unibz.it/~montali/tools.html#jREC
http://sourceforge.net/projects/tuprolog
http://mas.cmpe.boun.edu.tr/ozgur/code.html

84 Ö. Kafalı, P. Torroni

5 Commitment similarity

Chopra and Singh [17] propose a stronger-weaker relation for commitments using
the commitments’ conditions and propositions (i.e., properties). However, we do not
focus on the properties of the commitments. Instead, we make comparisons based
on the temporal constraints associated with their properties (i.e., deadlines), and the
agents involved (i.e., debtor and creditor). Accordingly, we propose the following
similarity levels for commitments. We consider two commitments about the same
transaction (e.g., payment and delivery of a certain book) to be relevant to each
other. A commitment’s property suffices to identify a specific transaction. Thus the
following definition:

Definition 1 (Relevance) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is
relevant to commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if property p1 is
identical9 to property p2.

Example 2 Table 1(a) shows an example of relevance; c1 and c2 are relevant since
their properties are identical (even though their state, debtor, creditor and temporal
properties may differ).

Remark 1 Relevance is an equivalence relation, i.e., it is reflexive, symmetric and
transitive.

Definition 2 (Cover) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) covers
commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to c2, t1 ≥ t3,
and t2 ≤ t4.

Definition 3 (Extension) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is an
extension of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is relevant to
c2, t1 < t3, and t2 > t4.

Example 3 Table 1(b) shows an example of cover; c3 covers c4 since they are relevant
to each other, and the time span of c3 is within that of c4. That is, if the customer
wants delivery to be performed between times 3–10, then he will also accept delivery
between 5–8. Conversely, c4 is an extension of c3, in which the customer may not
accept an extended deadline for delivery.

Definition 4 (Forward-shift) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1)))
is a forward-shift of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is
relevant to c2, t1 ≥ t3, and t2 > t4.

9In this work, by “identical” we mean literally (syntactically) identical. This choice is dictated by
our intention to keep our focus on temporal and delegation aspects of misalignment. In future
versions, the framework could be extended to encompass more elaborate similarity relations, such
as subsumption and part-of relations, and others based on edit distance [45].

Exception diagnosis in multiagent contract executions 85

Table 1 Similarity relations

(a) c1 = active(c(courier, store, property(e(7.0,10.0), delivered(book))))

c2 = violated(c(store, customer, property(e(3.0,8.0), delivered(book))))

(b) c3 = active(c(store, customer, property(e(5.0,8.0), delivered(book))))

c4 = active(c(store, customer, property(e(3.0,10.0), delivered(book))))

(c) c5 = active(c(store, customer, property(e(5.0,10.0), delivered(book))))

c6 = violated(c(store, customer, property(e(3.0,8.0), delivered(book))))

(d) c7 = active(c(courier, store, property(e(5.0,8.0), delivered(book))))

c8 = active(c(store, customer, property(e(3.0,8.0), delivered(book))))

(e) c9 = active(c(courier, store, property(e(7.0,10.0), delivered(book))))

c10 = violated(c(store, customer, property(e(3.0, 8.0), delivered(book))))

(f) c11 = active(c(courier, store, property(e(4.0,7.0), delivered(book))))

c12 = active(c(store, customer, property(e(5.0, 10.0), delivered(book))))

Definition 5 (Backward-shift) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1)))
is a backward-shift of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1 is
relevant to c2, t1 < t3, and t2 ≤ t4.

Example 4 Table 1(c) shows an example of forward-shift; c5 is a forward-shift of c6

since they are relevant to each other, the starting point of c5’s time span is no less
than that of c6, and its end point (deadline) is strictly greater than c6’s deadline.
Conversely, c6 is a backward-shift of c5.

Note that forward-shift is not the inverse of backward-shift. For instance, c4 from
Example 3 is a backward-shift of c5 from Example 4, but c5 is not a forward-shift
of c4.

Remark 2 The following properties hold for the relations introduced so far. Cover
is reflexive, asymmetric, and transitive. Extension, forward-shift, and backward-shift
are all anti-symmetric and thus non reflexive, but they are transitive.

Lemma 1 Any two commitments ci and cj that are relevant to each other, are in one
(and only one) of the four temporal relations specif ied in Def initions 2–5. In other
words, if commitment ci is relevant to commitment cj, then one and only one of the
following relations holds:

– ci covers cj;
– ci is an extension of cj;
– ci is a forward-shift of cj;
– ci is a backward-shift of cj.

(one option excludes the other ones).

Proof There are 13 possible (exclusive) relations between two time intervals accord-
ing to Allen [2]. We show that our temporal relations cover all of those. Let us now

86 Ö. Kafalı, P. Torroni

enumerate each possible case; below [t1, t2] and [t3, t4] are the temporal constraints
of ci and cj, respectively.

1. t2 < t3: ci is a backward-shift of cj,
2. t1 > t4: ci is a forward-shift of cj,
3. t1 = t3 and t2 = t4: ci covers cj,
4. t2 = t3: ci is a backward-shift of cj,
5. t1 = t4: ci is a forward-shift of cj,
6. t1 > t3 and t2 < t4: ci covers cj,
7. t1 < t3 and t2 > t4: ci is an extension of cj,
8. t1 < t3 < t2 < t4: ci is a backward-shift of cj,
9. t3 < t1 < t4 < t2: ci is a forward-shift of cj,

10. t1 = t3 and t2 < t4: ci covers cj,
11. t1 = t3 and t2 > t4: ci is a forward-shift of cj,
12. t1 > t3 and t2 = t4: ci covers cj,
13. t1 < t3 and t2 = t4: ci is a backward-shift of cj.

The proof that the relations above are mutually exclusive trivially follows their
definitions. ��

Lemma 1 states that we can compare any two relevant commitments in terms of
the (temporal) similarity relations we propose, and that we can partition the set of
relevant commitments based on such relations. Let us now introduce the notion
of delegatee, which we need in the following definitions regarding commitment
delegation.

Definition 6 (Delegatee) The debtor-creditor couple (x1, y1) is a delegatee of the
debtor-creditor couple (x2, y2) if (a) x1 �= x2 and y1 = y2, or (b) x1 �= y2 and x2 = y1.

Figure 3 demonstrates the delegatee relation. There are two cases; (a) the debtor
of the commitment delegates it to a new debtor (the debtor of the former com-
mitment has no longer the responsibility), (b) the debtor of the commitment gets
involved in a new commitment with another agent towards the same property, this
time it is the creditor of the new commitment.

(a) new debtor for the same creditor (b) debtor is the new creditor

Fig. 3 Delegatee

Exception diagnosis in multiagent contract executions 87

Example 5 As an example of case (a), consider the following scenario: the store is
committed to the customer for delivering the book. Now assume that the store does
not currently have the book in stock. Thus, the store delegates its commitment to
another store, and informs the customer about the new commitment. For case (b),
consider again that the store has the commitment to the customer, but this time it
needs a courier in order to deliver the book to the customer. Thus, it gets involved
in another commitment with the courier towards delivery. The latter commitment is
again a delegation of the former commitment.

Some authors [17, 52] propose a more restricted definition of delegation which
is limited to case (a). There, when a delegation occurs, only the debtor of the
commitment changes. Definition 6 extends the notion of delegation by case (b).
This provides a way to trace a set of delegated commitments when diagnosing an
exception (e.g., identify the sequence of delegations). The first case does not support
this by just looking at the commitments themselves. That is, if the commitment is
delegated several times, it is not possible to keep track of the delegation sequence.

Remark 3 Delegatee is anti-symmetric and thus non reflexive. It is also not transitive.

The delegatee relation only makes sense when embedded in a commitment, as
described next.

Definition 7 (Delegation) Commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))) is
a (proper) delegation of commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) if c1

covers c2, and (x1, y1) is a delegatee of (x2, y2).

Definition 7 describes commitment delegation; commitment c2 is delegated to
agent x1. The delegation of a commitment usually has the same state as the com-
mitment itself.

Example 6 Table 1(d) shows an example of delegation; c7 is a delegation of c8 since
c7 covers c8, and the debtor-creditor couple of c7 is a delegatee of that of c8.

Alongside with proper delegations of commitments there may be “improper”
delegations, which may cause an exception. The exception is usually due to an agent
failing to bring about a property within a given time interval. Such improper delega-
tions may give rise to exceptions because they extend in one way or another the time
interval specified in the initial commitment. We distinguish between three different
types of improper delegation: forward-shift delegation, extension delegation, and
backward-shift delegation.

Definition 8 (Forward-shift delegation) Commitment c1 = s1(c(x1, y1, property(e(t1,
t2), p1))) is a forward-shift delegation of commitment c2 = s2(c(x2, y2, property(e(t3,
t4), p2))) if c1 is a forward-shift of c2, and (x1, y1) is a delegatee of (x2, y2).

Definition 9 (Extension delegation) Commitment c1 = s1(c(x1, y1, property(e(t1, t2),
p1))) is an extension delegation of commitment c2 = s2(c(x2, y2, property(e(t3, t4),
p2))) if c1 is an extension of c2, and (x1, y1) is a delegatee of (x2, y2).

88 Ö. Kafalı, P. Torroni

Example 7 Table 1(e) shows an example of forward-shift delegation; c9 is a forward-
shift delegation of c10 since c9 is a forward-shift of c10, and the debtor-creditor couple
of c9 is a delegatee of that of c10.

Definition 10 (Backward-shift delegation) Commitment c1 = s1(c(x1, y1,
property(e(t1, t2), p1))) is a backward-shift delegation of commitment c2 = s2(c(x2,
y2, property(e(t3, t4), p2))) if c1 is a backward-shift of c2, and (x1, y1) is a delegatee
of (x2, y2).

Example 8 Table 1(f) shows an example of backward-shift delegation; c11 is a
backward-shift delegation of c12 since c11 is a backward-shift of c12, and the debtor-
creditor couple of c11 is a delegatee of that of c12.

Remark 4 Delegation, forward-shift delegation, and backward-shift delegation are
all anti-symmetric and thus non reflexive, they are also not transitive.

Lemma 2 Any two commitments, ci and cj, such that ci’s debtor and creditor are
delegatees of cj’s debtor and creditor, are in one (and only one) of the four delegation
relations specif ied in Def initions 7–10. In other words, if ci = si(c(xi, yi, p)), cj =
sj(c(xj, yj, q)), and (xi, yi) is a delegatee of (xj, yj), then one and only one of the
following relations holds:

– ci is a delegation of cj;
– ci is an extension delegation of cj;
– ci is a forward-shift delegation of cj;
– ci is a backward-shift delegation of cj.

(one option excludes the other ones).

Proof The proof trivially follows from Lemma 1 and from Definitions 7–10. ��

Thanks to Lemma 2, we can partition the set of possible commitments linked by
delegation to a given commitment based on their mutual temporal relations.

Listing 6 shows some of the REC rules for the similarity relations.

6 Diagnosis process: architecture, procedure, and properties

The purpose of diagnosis is to investigate the state of commitments in the system,
and return a possible cause of violation; either a misalignment or a misbehavior.
Throughout this section, we provide the details regarding our diagnosis process.

Let C be the set of all commitments in the system and A be the set of all agents
in the system. When a diagnosis process is initiated by an agent A ∈ A, we are
interested in identifying the cause of violation of a specific commitment C ∈ C. We
denote by CA ⊆ C the set of commitments A is aware of. By definition, C ∈ CA.

With respect to Definition 1, CC
A ⊆ CA is the set of all and only the commitments

that are relevant to C. Moreover, members of CC
A that are a delegation of C by

Definition 7 belong to CCX
A ; those that are a forward-shift of C by Definition 4 belong

to CCf
A , and those that are a forward-shift delegation of C by Definition 8 belong to

Exception diagnosis in multiagent contract executions 89

Listing 6 Commitment similarity in REC (excerpt)

% S1: relevant
relevant(c(X1,Y1,property(e(Ts1,Te1),P)),

c(X2,Y2,property(e(Ts2,Te2),P))).

% S2: forward–shift
fshift(c(X1,Y2,property(e(Ts1,Te1),P1)),

c(X2,Y2,property(e(Ts2,Te2),P2))):-
relevant(c(X1,Y1,property(e(Ts1,Te1),P1)),

c(X2,Y2,property(e(Ts2,Te2),P2))),
Ts1 > Ts2, Te1 > Te2.

% S3: delegatee
delegatee((X1,Y),(X2,Y)):- X1 X̄2. delegatee((X1,Y),(Y,Y2)):- X1 Ȳ2.

% S4: forward–shift delegation
fshift_delegation(c(X1,Y1,property(e(Ts1,Te1),P1)),

c(X2,Y2,property(e(Ts2,Te2),P2))):-
fshift(c(X1,Y1,property(e(Ts1,Te1),P1)),

c(X2,Y2,property(e(Ts2,Te2),P2))),
delegatee((X1,Y1),(X2,Y2)).

CCf X
A . By definition, CCX

A ⊂ CC
A and CCf X

A ⊂ CCf
A ⊂ CC

A, while C ∈ CC
A by reflexivity

(see Remark 1) and C /∈ CCf
A , C /∈ CCX

A because forward-shift and delegation relations
are anti-symmetric (see Remarks 2 and 4).

For ease of reference, we summarize our notation in Table 3 (see Appendix A),
and graphically illustrate the relations among commitments in Fig. 4.

Definition 11 below formally defines the concept of diagnosis. A diagnosis process
starts from a violated commitment C, and aims to identify the reason behind that
violation, either as a misalignment among C and a relevant commitment c, or as
a misbehavior of the debtor x of a relevant commitment. The outcome of such a
process is what we call diagnosis.

Definition 11 Given a set of agents A, an agent A ∈ A, and a violated commitment
C ∈ CA, we call diagnosis of C by A an atom δ ∈ {misalignment(c), misbehavior(x)},
for some c ∈ C ∪ {∅}, or x ∈ A.

Fig. 4 Commitment relations

90 Ö. Kafalı, P. Torroni

To denote that a given atom δ represents such a diagnosis, we write 〈A,A〉
d(C)

� δ,

or simply A
d(C)

� δ when the set of agents in the system is clear from the context.
Sometimes it is useful to focus the diagnosis on a specific set of commitments. This
happens when some of the commitments relevant to C have been found not to be
relevant to the diagnosis process. Thus to prevent unnecessary iterations and ensure
that the diagnosis process always terminates, we keep track of already diagnosed
commitments for exclusionary purposes.

We will write A
d(C)

�� δ to indicate that δ is a diagnosis of C which excludes a given
set � of commitments from the set of commitments relevant to C.

While Definition 11 describes the generic outcome of a diagnosis process, we are
interested only a diagnosis that actually identifies the reason of C’s violation. We call
it a correct diagnosis. The two possible outcomes of a correct diagnosis are:

1. Misalignment: When we are in the presence of a (correct) misalignment diagno-
sis, one of the following applies:

(a) there is a commitment that is relevant to C, such that its creditor infers the
commitment but its debtor does not,

(b) there is a violated commitment that is relevant to C, such that its debtor
infers that the commitment is active (i.e., forward-shift or extension).

In case (a), the debtor’s and creditor’s event traces are misaligned. In particular,
debtor does not infer the creditor’s commitment because it does not have the
event in its trace that would create such a commitment (e.g., the bank never
informs the store about the customer’s payment, thus the store is not committed
to deliver).
In case (b), the debtor infers the creditor’s commitment with a shifted deadline
(e.g., the bank indeed informs the store, but at a later time than the customer).
Both cases are considered as misalignments in our diagnosis process, since the
debtor is not directly responsible for the violation of the commitment.

2. Misbehavior: When we are in the presence of a (correct) misbehavior diagnosis,
one of the following applies:

(a) there is a violated commitment that is relevant to C, such that its debtor
infers the commitment, and the debtor has not delegated the commitment,
or

(b) there is a violated commitment that is relevant to C, such that its debtor
infers the commitment, and the debtor has delegated the commitment
without respecting its deadline (i.e., forward-shift delegation or extension
delegation).

In case (a), the debtor also infers the violated commitment. Since the debtor has
not delegated the commitment to another agent, it has the full responsibility for
the violation (e.g., the store does not deliver in time).
In case (b), the debtor has not violated the commitment itself since it has dele-
gated the commitment to another agent. Nevertheless, it is still responsible for
the violation since the deadline of the commitment is shifted during delegation
(e.g., the store gives the delivery package to the courier too late).
Thus, both cases are considered as misbehaviors in our diagnosis process.

Exception diagnosis in multiagent contract executions 91

Definition 12 describes correct diagnosis formally taking into account the
above cases.

Definition 12 A correct diagnosis of C ∈ CA by A ∈ A is a δ such that A
d(C)

� δ and:

1. (a) if δ = misalignment(∅), then
∃x, y ∈ A, c = violated(c(x, y, property(e(t1, t2), p))) ∈ CC

A, such that

– c ∈ Cy (c is known to its creditor, y), and
– CC

x = ∅ (c is not known to its debitor, x);

(b) if δ = misalignment(c), c ∈ C, then
∃x, y ∈ A, c = violated(c(x, y, property(e(t1, t2), p))),
c′ = s(c(x, y, property(e(t3, t4), p))) ∈ CC

A, such that

– s ∈ {active, fulf illed},
– c ∈ Cy (c is known to be active or fulfilled to its creditor, y),
– c′ ∈ Cx (its debitor, x, considers it violated), and
– c′ is a forward shift or an extension of c (thus the misalignment);

2. if δ = misbehavior(x), then
∃x, y ∈ A, c = violated(c(x, y, property(e(t1, t2), p))) ∈ CC

A, such that

– c ∈ Cx ∩ Cy (both debtor and creditor know c is violated), and either

(a) CcY
x = ∅ for all Y ∈ A (the debtor, x, has not delegated c to anyone), or

(b) Ccf Y
x ∪ CceY

x �= ∅ for some Y ∈ A (x has delegated c using wrong
deadlines).

Note that Definition 12 describes diagnosis by looking at the multiagent system as
a whole, i.e., it gives an account of what has gone wrong in the system, by considering
all the commitments and the agents, and tell what a diagnosis should be in each case.

We will now propose a procedure that can achieve this result in a distributed way,
in which no agent has a global view.

Figure 5 describes the architecture used to perform such distributed diagnosis.
Agents are equipped with local/private knowledge-bases and may possess other
reasoning capabilities, not shown in the figure. Agents are connected to others
through the coupled knowledge-bases. Recall that we use such knowledge-bases
to represent knowledge shared by agents pairwise or group-wise, such as protocol
rules, commitment rules and 2-party contracts. However, the actual instances of
commitments (e.g., an active commitment of the store towards delivery) are not
stored within those knowledge-bases, but they are instead inferred based on the
existing knowledge at run time and on suitable monitoring capabilities. Each agent
individually monitors the state of commitments within its own scope. To this end,
it may use a REC engine such as j-REC, or any other suitable run-time monitoring
application equipped with a commitment theory and a domain representation.

For example, the customer can run its REC engine to track down the state of
its commitment for delivery, to make sure that nothing is wrong. If it detects that
the commitment is violated, it can verify whether its violated commitment is aligned
with the other agents’ commitments. In such a case, the customer initiates a diagnosis
process to find out what has happened. The diagnosis process may involve a number

92 Ö. Kafalı, P. Torroni

Fig. 5 Diagnosis architecture

of other agents depending on where the exception originated from. We cannot
determine a priori who will be involved; if all agents in A or only a subset.

The diagnosis process will step through a series of diagnosis requests among
agents in A until one of the outcomes in Definition 12 is reached and returned back
recursively to the initiator. In each iteration, the diagnosing agent processes through
its commitments, identifies the ones that are relevant to the subject commitment, and
checks to see if it can find a relation among them that fits one of the cases as described
in Definition 12. If so, the diagnosis ends with a result. Otherwise, it means that
the agent has delegated the commitment faultlessly (i.e., there is nothing wrong the
current diagnosing agent’s actions). Now, the agent delegates the diagnosis process to
the delegatee of the commitment. Recall that we do not allow multiple delegations of
the same commitment to several agents. Thus, an agent can delegate its commitment
to a single agent only. Thus, the next iteration of diagnosis always continues with
only one branch.

Definitions 13–18 specify the diagnosis process declaratively.

Definition 13 (Misalignment diagnosis without further evidence)

CC
A \ � = ∅

A
d(C)

�� misalignment(∅)

If no commitment is found that is relevant to C, diagnosis identifies a misalignment
as described in case (1a) of Definition 12. This is the case when the debtor does not
infer the creditor’s commitment at all. Note that there is no candidate commitment
for realignment in this case.

Exception diagnosis in multiagent contract executions 93

Definition 14 (Misalignment diagnosis following forward-shift)

c ∈ CCf
A ∪ CCe

A \ � ∧ CC∗X
A \ � = ∅ ∧ {c = active(C′) ∨ c = fulf illed(C′)}

A
d(C)

�� misalignment(C′)

If a commitment C′ is found that is a forward-shift or an extension of C, and such a
commitment is not violated, but instead still active, or even fulfilled, this means that
there is a temporal misalignment between the creditor’s and the debtor’s copies of
the same commitment.10 The debtor may be intending to bring about the property
of the commitment. Alas, too late! The diagnosis returns the debtor’s copy as a
candidate for alignment as described in case (1b) of Definition 12.

Definition 15 (Misalignment diagnosis following wrong delegation)

c ∈ CCf X
A ∪ CCeX

A \ � ∧ {c = active(C′) ∨ c = fulf illed(C′)}
A

d(C)

�� misalignment(C′)

Similar to Definition 14, if agent A finds a commitment C′ which is still active,
or already fulfilled, it means that C′ has been delegated away. Again, there is a
possibility of recovering from the violation (e.g., the creditor may not mind the
delay). The diagnosis returns the debtor’s copy as a candidate for alignment.

Definition 16 (Misbehavior diagnosis following failure to meet deadline)

violated(C′) ∈ CC
A \ � ∧ CC∗X

A \ � = ∅
A

d(C)

�� misbehavior(A)

If an agent finds a violated commitment relevant to C, but no delegation of it, it
means that the debtor failed to fulfill the commitment in time, and that it is no one
else’s responsibility. Thus, diagnosis returns the debtor as a culprit as described in
case (2a) of Definition 12.

Definition 17 (Misbehavior diagnosis following wrong delegation)

violated(C′) ∈ CCf X
A ∪ CCeX

A \ �

A
d(C)

�� misbehavior(A)

If a violated commitment is found that is a forward-shift delegation, or an
extension delegation of C, this means that the debtor has delegated its commitment
without respecting its deadline. Accordingly, diagnosis reports the debtor as a culprit
as described in case (2b) of Definition 12.

10A diagnosis process is always initiated following the violation of a commitment. Thus, the
backward-shift of a violated commitment will also be violated, and cannot cause a misalignment. For
this reason, we do not inspect backward-shift-related commitments in the diagnosis process. More
about this topic in Section 8.

94 Ö. Kafalı, P. Torroni

Definition 18 (Propagation of diagnosis following successful local check)

c ∈ CCX
A ∪ CCb X

A \ � ∧ X
d(C)

��∪c δ

A
d(C)

�� δ

Definition 18 covers a last case, in which a violated commitment is found, that is
either a delegation or a backward-shift delegation of C. This means that the debtor
has correctly delegated its commitment, but the debtor of the delegated commitment
(delegatee) has not fulfilled the commitment as it should have. Diagnosis continues
with the delegatee. Recall that we allow only a single delegation of the same
commitment. Thus, diagnosis continues with one branch only. To prevent infinite
loops, the next agent to continue diagnosis will exclude those commitments in �,
since they have already been inspected.

To execute such a diagnosis process, agents only need to be able to infer the state
of commitments at run-time, and have basic inference capabilities such as simple
operations with sets. Importantly, since each inference rule involves only one agent
making an inference about the state of its commitments, and possibly a request
to another specific agent (the delegatee of one of its commitments), it is possible
to implement the diagnosis process in a distributed way. In particular, a j-REC
implementation of such a process is available (see Appendix B).

Let us now analyze and discuss the behaviour and outcomes of the diagnosis
process. Let M1 be any method that implements a diagnosis process following
Definitions 13–18. The following properties hold for M1:

Property 1 (M1 terminates) We consider two cases for termination: (1) there does
not exist any circular chain of delegations, and (2) there exists a circular chain of
delegations. Termination for the former case is trivial since the number of iterations
is bounded with the number of agents in the system. For the latter case, consider
the following circular chain of delegations among the commitments; c1 = c(x, y, ...),
c2 = c(z, x, ...), ..., cn−1 = c(w, u, ...), cn = c(y, w, ...). After each agent takes one
diagnosis turn, agent y is requested to diagnose on commitment cn. Now, y cannot
request a further diagnosis from agent x on c1 since c1 is already contained in the set
of commitments that are previously diagnosed on (by Definition 18).

Property 2 (M1 makes a correct diagnosis) If M1 returns a misalignment, then a
misalignment has occurred in the system. Similarly, if M1 returns a misbehavior, then
a misbehavior has occurred in the system. In other words, M1’s outcome satisfies the
conditions stated in Definition 12. However, the other direction is not always true.
That is, if a misalignment has occurred in the system, M1 may return a misbehavior if
it is also the case that a misbehavior has occurred prior to the misalignment. Similarly,
if a misbehavior has occurred in the system, M1 may return a misalignment if it is also
the case that a misalignment has occurred prior to the misbehavior. This is intuitive
as we try to deal with the first possible reason for the exception.

We provide a notion of restricted completeness for M1, in the sense that our
diagnosis process only identifies the first exception (either a misalignment or a
misbehavior) that has possibly occurred in a chain of delegations. An alternative
would be that, Definitions 13–18 would exhaustively account for every possible
exception that may have occurred during the process. However, the motivation

Exception diagnosis in multiagent contract executions 95

behind our reasoning is that once an exception is identified, it does not seem
interesting to look for further misalignments or misbehaviors. As a matter of fact,
every other exception that occurs afterwards can be considered as a consequence of
the first one. Since M1 identifies that first exception (i.e., the most significant one),
we say that it is complete in that sense.

The conditions of Definitions 13–18 are also mutually exclusive. Therefore, the
following property holds:

Property 3 (M1 is deterministic) Let us now discuss the outcomes of this diagnosis
process in case of misbehavior or misalignment. In the case of a temporal misalign-
ment, M1 returns a commitment C′ which is the reason of the misalignment. If that
is the only reason of violation in the system (i.e., if there are no other misbehaviors
nor misalignments), a simple way to achieve realignment is the following Policy
P1. Agents following P1 will align their violated commitments with the one that is
presented as the outcome of the diagnosis procedure, by following these commitment
update rules:

– Alignment with forward-shift or extension: If the agent has commitment c1, and
the diagnosis process has proposed a commitment c2 which is a forward-shift or
an extension of c1, then the agent will replace its commitment c1 with c2.

– Alignment with forward-shift delegation or extension delegation: If the agent has
commitment c1 = s1(c(x1, y1, property(e(t1, t2), p1))), and the diagnosis process
has proposed a commitment c2 = s2(c(x2, y2, property(e(t3, t4), p2))) which is
a forward-shift delegation or an extension delegation of c1, then the agent will
replace c1 with c3 = s2(c(x1, y1, property(e(t3, t4), p2))).

The adoption of Policy P1 amounts to an implicit acceptance of a delayed commit-
ment fulfillment.

The two final results below are a consequence of P1’s soundness, determinism and
(restricted) completeness results.

Property 4 (M1 and P1 provide a means of alignment) This is true when a single
misalignment has occurred in the system, and no misbehaviors have occurred prior
to that misalignment. In that case, if all agents involved in the diagnosis process adopt
P1, once M1 terminates and all applicable P1 rules have been applied, there will be
no more violated commitment in the system.

Example 9 Assume that the agent has violated(c(store, customer, property (e(3.0,
8.0), delivered(book)))), and it is presented with a forward-shift delegation of
this commitment, active(c(courier, store, property(e(7.0,10.0), delivered(book)))).
Then, the agent will update its commitment to active(c(store, customer, property
(e(7.0, 10.0), delivered(book)))) following the rule for alignment with forward-shift
delegation.

Example 9 describes a case where the store makes a delegation to the courier
without respecting the deadline of the customer’s commitment. When such cases

96 Ö. Kafalı, P. Torroni

occur in real life, the customer often chooses to adapt to the new deadline discovered.
This is a means of alignment for the exception faced.

The update rules we propose provide a sample policy that agents can adapt
in order to realign their commitments with other agents. This ensures that no
commitment violations occur due to misalignment. Policy P1 can also be combined
with a form of compensation, e.g., the agent will adopt the commitment update rules,
in exchange for a monetary compensation. The compensation may also apply in the
case of a propagated diagnosis process. For example, the customer has asked the
store to diagnose its violated commitment. The store, in turn, has asked the courier
for a diagnosis. As a result, assume that the courier has identified a misalignment.
Now, both the store and the customer may realign their commitments regarding the
courier’s commitment. In such a case, who will get the compensation? This is an
interesting issue that we plan to investigate when considering recovery scenarios.

Property 5 (M1 “finds the culprit”) This is true when a single misbehavior has
occurred in the system, and no misalignments have occurred. In that case, M1 returns
an answer δ(X), X ∈ A, such that there exists an alternative possible trace of events
in X’s execution which will lead to no violation.

7 Case study

Next, we present two separate traces of happened events from the delivery process,
each leading to a different outcome of diagnosis. We assume that all agents adopt P1,
whenever there is a misalignment issue.

7.1 Case I: misalignment

Figure 6 shows the trace of events for the first case. This case represents a misalign-
ment of commitments between the customer (Federico) and store (Amazon) agents.

pay(federico,hsbc,hp7)
1.0

verify(hsbc,federico,hp7)
3.0

verify(hsbc,amazon,hp7)
5.0

request(amazon,ups,hp7)
7.0

deliver(ups,federico,hp7)
10.0

deliver(ups,amazon,hp7)
10.0

Fig. 6 Trace of events for Case I

Exception diagnosis in multiagent contract executions 97

The misalignment is caused by the late notification of the bank (HSBC) agent. Let us
review the trace of events. Federico sends the payment to HSBC at day 1, regarding
its purchase of HP7 from Amazon. At day 3, HSBC verifies Federico’s payment.
However, HSBC sends the notification of Federico’s payment to Amazon at day 5.
This is where the misalignment occurs between Federico and Amazon. Recall that
their commitment is triggered by HSBC’s confirmation of payment. Then, Amazon
requests the delivery of HP7 from the courier (UPS) agent at day 7. Finally, UPS
delivers HP7 to Federico at day 10. At the same time, UPS notifies Amazon about
the delivery.

Let us now track the commitments of agents in time. At day 3, Federico infers
c1 = active (c(amazon, f ederico, property(e(3.0, 8.0), delivered (hp7)))). At day
5, Amazon infers c2 = active (c(amazon, f ederico, property(e(5.0, 10.0), delivered
(hp7)))). Notice the deadline shift between those two commitments. At day 7, both
Amazon and UPS infer c3 = active (c(ups, amazon, property(e(7.0, 10.0), delivered
(hp7)))). At day 9, when Federico runs its REC engine, it detects that c1 has been
violated. Figures 8 through 11 in Appendix B show the j-REC output for this instance.

Since there is a commitment violation, Federico initiates the diagnosis process
with a diagnosis request for Amazon, i.e., by asking Amazon to find an answer δ

such that

amazon
d(c1)

�∅ δ.

According to the output of its monitoring facility, Amazon finds c2, which is a
(still active) forward-shift of c1. Things could still be OK for Amazon if Amazon had
delegated the task with a correct deadline. Unfortunately, this is not the case. Based
on its records, Amazon verifies that an active commitment, c3, is a forward-shift
delegation of c1. Thus, Amazon will immediately inform Federico of a misalignment
following wrong delegation (see Definition 15): δ = misalignment(c3). Federico then
updates its commitment c1 with c3 via the alignment policy P1, and waits for the
new deadline. At day 10, the updated commitment is fulfilled since UPS makes
the delivery.

7.2 Case II: misbehavior

Figure 7 shows the trace of events for a case of misbehavior, which is diagnosed via
a propagation of the diagnosis request. Let us review the trace of events. Federico
sends the payment to HSBC at day 1, regarding its purchase of HP7 from Amazon.
At day 3, HSBC verifies Federico’s payment, and sends the notification to Amazon.
Then, Amazon requests the delivery of HP7 from UPS at day 5. UPS delivers HP7
to Federico at day 10, and notifies Amazon about the delivery. This time, however,
UPS should have delivered earlier. Thus, this is where UPS violates its commitment
by disrespecting its deadline.

Let us track the commitments of the agents in time. At day 3, both Federico
and Amazon infer c1 = active (c(amazon, f ederico, property(e(3.0, 8.0), delivered
(hp7)))). At day 5, both Amazon and UPS infer c2 = active (c(ups, amazon,
property(e(5.0, 8.0), delivered (hp7)))). Similar to the first case, Federico detects that
c1 is violated when it runs its REC engine at day 9.

98 Ö. Kafalı, P. Torroni

pay(federico,hsbc,hp7)
1.0

verify(hsbc,federico,hp7)
3.0

verify(hsbc,amazon,hp7)
3.0

request(amazon,ups,hp7)
5.0

deliver(ups,federico,hp7)
10.0

deliver(ups,amazon,hp7)
10.0

Fig. 7 Trace of events for Case II

Federico initiates the diagnosis process with the diagnosis request

amazon
d(c1)

�∅ δ.

Accordingly, Amazon will find a violated commitment c1, and a correct delegation c2

of c1, which is also violated. This eliminates all the diagnosis cases in M1, except the
last one. Thus, Amazon redirects the diagnosis request to UPS (see Definition 18):

ups
d(c2)

�{c1} δ.

UPS finds that c2 is violated. Since there is no delegation of c2, UPS is the cause of
the exception (by Definition 16). The answer δ = misbehavior(ups) is passed from
UPS to Amazon, and from Amazon back to Federico. Figures 12 through 15 in
Appendix B show the j-REC output for this instance.

8 Discussion and future work

In this paper, we have mainly studied diagnosis of exceptions when the commitments
of agents are misaligned with each other. Among the set of possible causes for
misalignment [16, 17, 45], we are interested in the temporal aspects. That is, we aimed
at fixing misalignments that are caused by conflicts in the commitments’ deadlines.
We have argued that a conflict of deadlines among two relevant commitments may
be caused either by individual observations of agents that are in conflict with each
other (i.e., misalignment), or by a delegation that does not respect a previously
established deadline (i.e., misbehavior). We have proposed commitment similarity
relations that can be used to verify if two commitments are aligned in time. A more
comprehensive account of delegation similarity is presented in a companion paper
[27]. In the case of misalignment, the agents can update their commitments based on

Exception diagnosis in multiagent contract executions 99

the alignment policy we have proposed. Providing an update of contract deadlines is
an effective way of compensation that mimics real-life situations very closely. While
this constitutes one step of diagnosis, we also provide the culprit agent in the case of
misbehavior.

Alignment in commitment protocols has been thoroughly investigated by Chopra
et al. [13, 16, 17]. Their work accounts for constitutive protocol specifications that are
regulated by commitments. In other words, once the commitments are fulfilled, then
the protocol is assumed to be successful. Baldoni et al. [4], however, draw attention
to the regulative side of commitment protocols. In their work, they propose (causal)
rules among commitments that will further constrain an agent’s behavior during the
execution of a protocol.

Among others, the most similar work in commitment alignment to ours is that of
Chopra and Singh’s [17]. The key points regarding our formalization and theirs are:

– There are no temporal constraints on commitments in Chopra and Singh’s
formalization. However, without an explicit notion of time, it is hard to capture
the scenarios that are presented in this paper.

– Chopra and Singh propose a strength relation for commitments based on their
properties (conditions and propositions). They also handle asynchronous mes-
saging and have mechanisms of cancel and release of commitment, which we do
not. Currently, we consider only base-level commitments with single properties.
However, we focus on the similarity relation for commitments since it provides
a basis for verifying alignment. On one hand, the similarity relation takes into
account the deadlines associated with commitments when verifying alignment
in time. On the other hand, it takes into account the agents associated with
commitments when tracing for delegations.

– Chopra and Singh propose a solution for misalignment by ensuring that the cred-
itor of a commitment informs the debtor when the condition of the commitment
is brought about. So, the debtor of the commitment will also infer the same base-
level commitment the creditor infers. We believe that this solution may be an
overkill in large-scale e-commerce applications. Under normal conditions, the
execution will proceed as desired and the agents will infer the same commitments
most of the times. Thus, it may be more efficient to verify alignment if something
goes wrong (i.e., in the case of an exception). Moreover, when deadlines are
involved, a delay in such a notification message will also cause a similar misalign-
ment between the debtor and the creditor’s individual commitments.

Agents’ goals are also important when considering the commitments in a protocol
[14, 43]. Agents try to manipulate (e.g., create or delegate) their commitments with
each other in order to satisfy their goals. An agent’s goal can be an achievement goal,
or a maintenance goal [43]. In this paper, we have in a way dealt with achievement
goals. That is, the existential temporal constraint on a base-level commitment
corresponds to an achievement goal, in which the debtor of the commitment has
to satisfy a property for the creditor within a deadline. What we have not dealt
with here are maintenance goals, which can be represented by universal temporal
constraints on commitments. That is, the debtor of the commitment has to ensure
that the property of the commitment is valid throughout a certain period of time.

There are other settings, different from e-commerce as we experiment here, that
monitoring and diagnosis is essential in identifying exceptions. Kalech and Kaminka

100 Ö. Kafalı, P. Torroni

[29, 30] consider diagnosis of exceptions arising from disagreements due to different
observations in multiagent teamwork, e.g., in robotics or in a combat-field setting.
Agent death, or unreachable agents, is an important issue in such settings in the
sense that an unreachable agent will obviously not participate in the diagnosis. Since
we assume that our diagnosis process needs the collaboration of the agents that are
involved in the mismatch, it is not possible to diagnose cases of agent death [32].

Mallya and Singh propose similarity relations for protocol states [39], not directly
for commitments. However, some of the similarity relations involve the similarity of
commitments in order to make reasoning possible on states. Specifically, creditor-
similarity relation is very similar to our delegation relation; it aims at identifying
similar states that differ only in some commitments that are delegated. On the
contrary, their primary aim is completely different. They try to extend protocols via
the similarity relations (e.g., merge two protocols). We, on the other hand, diagnose
exceptions based on similar commitments.

In order to demonstrate how our approach works, we have extended a delivery
process description [28] by involving temporal constraints, and formalized it in REC
[8, 48]. We have designed and presented two different exception cases according to
the two possible outcomes of our diagnosis procedure. The forward-shift relation
we have proposed is the main cause of exceptions triggered by misalignment. In
particular, forward-shift can further have different levels. Table 2 shows three
commitments; both c2 and c3 are forward-shifts of c1. For diagnosis purposes, each
one is considered as misalignment. However, assume that the current time is 4.0 and
the customer has the commitment c1; it wishes to understand whether the delivery
will take place at time 8.0. If the store has the commitment c2, then the customer may
think that an exception is probable. But, there is still a chance that delivery will take
place at time 8.0, since 8.0 is within the temporal interval of c2. On the other hand,
if the store has the commitment c3, then the customer can understand that there is
no chance of delivery taking place at time 8.0. This type of reasoning can be used
to predict exceptions, e.g., prognosis. As for future work, we plan to investigate how
our similarity relations can be used for prognosis. In addition, we plan to extend our
commitment similarity relation to cover the strength relation of Chopra and Singh.
This will also allow us to investigate cases where multiple delegations are possible
for the same commitment. We plan to look at the Tropos framework for complex
delegation schemes [6].

The backward-shift and the backward-shift delegation relations we propose here
are not operational for diagnosis purposes. Since a diagnosis process is always
initiated after a commitment violation is detected, the backward-shift (delegation)
of the violated commitment will also be violated, thus cannot cause a misalignment.
However, when prognosis is also involved, backward-shift (delegation) may also be
the cause of a misalignment. For example, the customer may not wish to receive the

Table 2 Levels of forward-shift

c1 = active(c(store, customer, property(e(3.0,8.0), delivered(book))))

c2 = active(c(store, customer, property(e(5.0,10.0), delivered(book))))

c3 = active(c(store, customer, property(e(9.0,14.0), delivered(book))))

Exception diagnosis in multiagent contract executions 101

delivery earlier than a specific date. We will investigate such cases when we consider
prognosis. Another possible direction for future work is to decide what to do next
with the culprit agent identified (e.g., recovery). We are currently working on how
to proceed with such diagnosis via the exchange of happened events. That is, the
agents should reason both on the similarity among events and the relevance between
commitments and events in order to find a suitable recovery.

Acknowledgements The first author is supported by Boğaziçi University Research Fund under
grant BAP5694, and the Turkish State Planning Organization (DPT) under the TAM Project, num-
ber 2007K120610. We thank Marco Montali and Federico Chesani for providing us with a working
implementation of j-REC (http://www.inf.unibz.it/~montali/tools.html#jREC), which enabled us to
run experiments.

Appendix A Notation

Table 3 Notation used for diagnosis process

Symbol Description

C The domain of commitments

A The domain of agents

CA The set of commitments that agent A is aware of

CC
A The set of commitments in CA that are relevant to C

CCe
A The set of commitments in CA that are an extension of C

CCf
A The set of commitments in CA that are a forward-shift of C

CCb
A The set of commitments in CA that are a backward-shift of C

CCX
A The set of commitments in CA that are a (proper) delegation of C to X ∈ A

CCeX
A The set of commitments in CA that are an extension delegation of C to X ∈ A

CCf X
A The set of commitments in CA that are a forward-shift delegation of C to X ∈ A

CCb X
A The set of commitments in CA that are a backward-shift delegation of C to X ∈ A

CC∗X
A CCX

A ∪ CCeX
A ∪ CCf X

A ∪ CCb X
A

CA The set of all commitments (CA = ⋃
A∈A CA)

CC
A The set of commitments in CA that are relevant to C

Appendix B Implementation and testing

A running prototype with a full implementation can be downloaded from
http://mas.cmpe.boun.edu.tr/ozgur/code.html. Below we display some screenshots of
the testing done on the case studied presented here, using the j-REC tool. The
code also contains a commitment-based definition of the diagnosis method. We
use commitments to model collaboration. In particular, each agent is committed
to answer (faithfully) to a diagnosis request within a certain deadline. Different
evolutions of commitments related to the business (as shown in the pictures below)
and to the diagnosis can be tested by trying various sequences of event histories,
such as those contained in each eventTrace.txt file of each agent’s folder. The j-REC
tool only needs Java. For simplicity, there is one customized version of j-REC Tool

http://www.inf.unibz.it/~montali/tools.html#jREC
http://mas.cmpe.boun.edu.tr/ozgur/code.html
eventTrace.txt

102 Ö. Kafalı, P. Torroni

Fig. 8 Case I: j-REC output for customer

in each of 4 agents (federico, hsbc, amazon, and ups). The simplest way to run the
example is to execute java -jar CMon.jar (or double-click on the CMon.jar
file icon) on a selected agent folder.

Fig. 9 Case I: j-REC output for bank

Exception diagnosis in multiagent contract executions 103

Fig. 10 Case I: j-REC output for Store

Below is a screenshot of j-REC showing a version of Case I with compensation by
P1 following diagnosis. The compensated commitment c1 is shown in orange color by
the time Federico accepts to switch to a new commitment, with an extended deadline.

Fig. 11 Case I: j-REC output for courier

104 Ö. Kafalı, P. Torroni

Fig. 12 Case II: j-REC output for customer

To run tests such as this one, select tab (Model) from the left-hand side
menu and copy-paste the KB of your agent of choice (e.g., file Customer
(federico)/model.txt). Then hit the Run, and copy-paste on the right-hand

Fig. 13 Case II: j-REC output for bank

Exception diagnosis in multiagent contract executions 105

Fig. 14 Case II: j-REC output for store

box called trace the desired evolution of events. Once the events are in place, select
Start and then Log from the bottom. Use Stop to restart and Export to save the
output on a file.

Fig. 15 Case II: j-REC output for courier

106 Ö. Kafalı, P. Torroni

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log.
9(4), Article 29, 43 pp. (2008). doi:10.1145/1380572.1380578

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)
3. Ardissono, L., Console, L., Goy, A., Petrone, G., Picardi, C., Segnan, M., Dupré, D.T.: Enhancing

Web services with diagnostic capabilities. In: Proc. 2005 IEEE International Conference on Web
Services (ICWS 2005), pp. 182–191. IEEE Computer Society (2005)

4. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-oriented Commitment-based Protocols. In:
Proc. 19th ECAI. IOS Press (2010)

5. Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P.: Reactive Event Calculus for
monitoring global computing applications. In: Essays in Honour of Marek Sergot: Computational
Logic for Normative Systems. LNCS, Springer-Verlag (2012)

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an agent-oriented
software development methodology. Auton. Agent. Multi-Ag. 8, 203–236 (2004)

7. Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational complexity of
abduction. Artif. Intell. 49(1–3), 25–60 (1991)

8. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event
calculus. In: Proc. 21st IJCAI, pp. 91–96 (2009)

9. Chesani, F., Mello, P., Montali, M., Torroni, P.: A REC-based commitment tracking tool.
System demonstration. In: Proc. 10th WOA (2009). http://cmt.math.unipr.it/woa09/papers/
Chesani_Demo.pdf

10. Chesani, F., Mello, P., Montali, M., Torroni, P.: Monitoring time-aware social commitments with
reactive event calculus. In: Proc. 7th International Symposium “From Agent Theory to Agent
Implementation” (AT2AI-7), pp. 447–452 (2010)

11. Chesani, F., Mello, P., Montali, M., Torroni, P.: Role monitoring in open agent societies. In:
Proc. 4th KES-AMSTA, Part I. LNCS, vol. 6070, pp. 112–121. Springer-Verlag (2010)

12. Chittaro, L., Montanari, A.: Temporal representation and reasoning in artificial intelligence:
Issues and approaches. Ann. Math. Artif. Intell. 28(1–4), 47–106 (2000)

13. Chopra, A.K.: Commitment Alignment: Semantics, Patterns, and Decision Procedures for
Distributed Computing. PhD Dissertation, NCSU (2009)

14. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents and protocols
via goals and commitments. In: Proc. 9th AAMAS, pp. 457–464 (2010)

15. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, coverage, and inter-
operability. In: Proc. 4th DALT. LNCS, vol. 4327, pp. 1–15. Springer-Verlag (2006)

16. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: Proc. 7th AAMAS, pp. 797–804
(2008)

17. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proc. 8th AAMAS, pp. 937–
944 (2009)

18. Console, L., Dressler, O.: Model-based diagnosis in the real world: lessons learned and challenges
remaining. In: Proc. 16th IJCAI, pp. 1393–1400 (1999)

19. Console, L., Dupré, D.T., Torasso, P.: Towards the integration of different knowledge sources
in model-based diagnosis. In: Proc. 2nd AI*IA. LNCS, vol. 549, pp. 177–186. Springer-Verlag
(1991)

20. Dellarocas, C., Klein, M., Rodríguez-Aguilar, J.A.: An exception-handling architecture for open
electronic marketplaces of contract net software agents. In: Proc. 2nd EC, pp. 225–232. ACM
(2000)

21. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Processes = protocols + policies: a method-
ology for business process development. Tech. Rep., NC State University, TR2004-34 (2004)

22. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commitments in busi-
ness processes. In: Proc. 22nd AAAI, pp. 1328–1333 (2007)

23. Fornara, N., Colombetti, M.: Defining interaction protocols using a commitment-based agent
communication language. In: Proc. 2nd AAMAS, pp. 520–527 (2003)

24. Giordano, L., Martelli, A.: Verifying agents’ conformance with multiparty protocols. In:
Proc. CLIMA IX. LNCS, vol. 5405, pp. 17–36. Springer-Verlag (2009)

25. Horling, B., Benyo, B., Lesser, V.R.: Using self-diagnosis to adapt organizational structures. In:
Proc. 5th Autonomous Agents, pp. 529–536. ACM (2001)

http://doi.acm.org/10.1145/1380572.1380578
http://cmt.math.unipr.it/woa09/papers/Chesani_Demo.pdf
http://cmt.math.unipr.it/woa09/papers/Chesani_Demo.pdf

Exception diagnosis in multiagent contract executions 107

26. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous agents for
business process management. Appl. Artif. Intell. 14(2), 145–189 (2000)

27. Kafali, Ö., Torroni, P.: Social commitment delegation and monitoring. In: Proc. CLIMA XII.
LNCS, vol. 6814, pp. 171–189. Springer-Verlag (2011)

28. Kafalı, Ö., Yolum, P.: Detecting exceptions in commitment protocols: Discovering hidden states.
In: Proc. 2nd LADS. LNCS, vol. 6039, pp. 112-127, Springer-Verlag (2009)

29. Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent teams.
In: Proc. 18th IJCAI, pp. 370–375 (2003)

30. Kalech, M., Kaminka, G.A.: Towards model-based diagnosis of coordination failures. In:
Proc. 20th AAAI, pp. 102–107 (2005)

31. Kaminka, G.A., Tambe, M.: Robust agent teams via socially-attentive monitoring. J. Artif. Intell.
Res. 12, 105–147 (2000)

32. Klein, M., Rodriguez-Aguilar, J., Dellarocas, C.: Using domain-independent exception handling
services to enable robust open multi-agent systems: the case of agent death. Auton. Agent. Multi-
Ag. 7(1–2), 179–189 (2003)

33. Klein, M., Dellarocas, C.: A knowledge-based approach to handling exceptions in workflow
systems. Comput. Support. Coop. Work 9(3/4), 399–412 (2000)

34. Klein, M., Dellarocas, C.: A systematic repository of knowledge about handling exceptions in
business processes. ASES Working Report. MIT (2000)

35. Kollingbaum, M., Norman, T.: A contract management framework for supervised interaction. In:
UK Multi-Agent Systems (UKMAS) Annual Conference, Liverpool, UK (2002)

36. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95
(1986)

37. Lamperti, G., Zanella, M.: Eden: An intelligent software environment for diagnosis of discrete-
event systems. Appl. Intell., 18(1), 55–77 (2003). doi:10.1023/A:1020974704946

38. Lucas, P.J.F.: Analysis of notions of diagnosis. Artif. Intell. 105(1–2), 295–343 (1998)
39. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Auton. Agent. Multi-Ag.

14(2), 143–163 (2007)
40. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team of service robots:

a model-based approach. AI Commun. 19, 313–340 (2006)
41. Pencole, Y., Cordier, M.O., Roze, L.: Incremental decentralized diagnosis approach for the

supervision of a telecommunication network. In: IEEE Conference on Decision and Control,
pp. 435–440 (2002)

42. Picardi, C., Bray, R., Cascio, F., Console, L., Dague, P., Millet, D., Rehfus, B., Struss, P., Vallée,
C.: Idd: Integrating diagnosis in the design of automotive systems. In: Proc. 15th ECAI, pp. 628–
632. IOS Press (2002)

43. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying framework.
In: Proc. 7th AAMAS, pp. 713–720 (2008)

44. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. Auton. Agent. Multi-Ag. 19(1),
30–52 (2009)

45. Schroeder, M., Schweimeier, R.: Arguments and misunderstandings: fuzzy unification for
negotiating agents. Electr. Notes Theor. Comput. Sci. 70(5), 1–19 (2002)

46. Singh, M.P.: Agent communication languages: rethinking the principles. IEEE Comput. 31,
40–47 (1998)

47. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unification of
normative concepts. Artif. Intell. Law 7, 97–113 (1999)

48. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: satisfied or compen-
sated. In: Proc. 7th DALT. LNCS, vol. 5948, pp. 228–243. Springer-Verlag (2009)

49. Torroni, P., Chesani, F., Mello, P., Montali, M.: A retrospective on the reactive event calculus and
commitment modeling language. In: Proc. 9th DALT. LNCS, vol. 7169, pp. 120–127. Springer-
Verlag (2012)

50. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.:
Modelling interactions via commitments and expectations. In: Handbook of Research on Multi-
Agent Systems: semantics and Dynamics of Organizational Models, pp. 263–284. IGI Global
(2009)

51. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-agent
plans. In: Proc. 4th AAMAS, pp. 805–812. ACM (2005)

52. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calculus
planning using commitments. In: Proc. 1st AAMAS, pp. 527–534 (2002)

http://dx.doi.org/10.1023/A:1020974704946

	Exception diagnosis in multiagent contract executions
	Abstract
	Introduction
	Related work
	Commitments in REC
	Running example
	Commitment similarity
	Diagnosis process: architecture, procedure, and properties
	Case study
	Case I: misalignment
	Case II: misbehavior

	Discussion and future work
	Appendix A Notation
	Appendix B Implementation and testing
	References

