
Ann Math Artif Intell (2011) 63:385–425
DOI 10.1007/s10472-012-9280-3

Tightly integrated probabilistic description logic
programs for representing ontology mappings

Thomas Lukasiewicz · Livia Predoiu ·
Heiner Stuckenschmidt

Published online: 22 January 2012
© Springer Science+Business Media B.V. 2012

Abstract Creating mappings between ontologies is a common way of approaching
the semantic heterogeneity problem on the Semantic Web. To fit into the landscape
of Semantic Web languages, a suitable, logic-based representation formalism for
mappings is needed. We argue that such a formalism has to be able to deal with
uncertainty and inconsistencies in automatically created mappings. We analyze the
requirements for such a formalism, and we propose a novel approach to probabilistic
description logic programs as such a formalism, which tightly combines normal logic
programs under the well-founded semantics with both tractable ontology languages
and Bayesian probabilities. We define the language, and we show that it can be used
to resolve inconsistencies and merge mappings from different matchers based on the
level of confidence assigned to different rules. Furthermore, we explore the semantic
and computational aspects of probabilistic description logic programs under the
well-founded semantics. In particular, we show that the well-founded semantics
approximates the answer set semantics. We also describe algorithms for consistency
checking and tight query processing, and we analyze the data and general complexity
of these two central computational problems. As a crucial property, the novel
tightly integrated probabilistic description logic programs under the well-founded

This article is a significantly extended and revised version of two papers that appeared
in Proc. URSW-2007 [2] and Proc. FoIKS-2008 [3].

T. Lukasiewicz (B)
Department of Computer Science, University of Oxford, Oxford, UK
e-mail: thomas.lukasiewicz@cs.ox.ac.uk

L. Predoiu
Institut für Technische und Betriebliche Informationssysteme,
Universität Magdeburg, Magdeburg, Germany
e-mail: predoiu@ovgu.de

H. Stuckenschmidt
Institut für Informatik, Universität Mannheim, Mannheim, Germany
e-mail: heiner@informatik.uni-mannheim.de

386 T. Lukasiewicz et al.

semantics allow for tractable consistency checking and for tractable tight query
processing in the data complexity, and they even have a first-order rewritable (and
thus LogSpace data complexity) special case, which is especially interesting for
representing ontology mappings.

Keywords Description logics · Ontologies · Logic programs · Description logic
programs · Ontology mappings · Semantic Web · Probabilistic logics · Uncertainty ·
Inconsistency · Well-founded semantics · Answer set semantics · Data integration ·
Databases

Mathematics Subject Classifications (2010) 68P15 · 68T27 · 68T30 · 68T37 · 68T35 ·
68U35

1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of Semantic Web technologies. To address
this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [50]. In real-world ontologies, it is unrealistic
to assume that mappings between ontologies are created manually by domain
experts, since existing ontologies, e.g., in the area of medicine contain thousands of
concepts and hundreds of relations. Recently, a number of heuristic methods for
matching elements from different ontologies have been proposed that support the
creation of mappings between different languages by suggesting candidate mappings
(e.g., [16]). These methods rely on linguistic and structural criteria. Evaluation
studies have shown that existing methods often trade off precision and recall. The
resulting mapping either contains a fair amount of errors or only covers a small part
of the ontologies involved [6, 17–20]. To leverage the weaknesses of the individual
methods, it is common practice to combine the results of a number of matching
components or even the results of different matching systems to achieve a better
coverage of the problem [16].

This means that automatically created mappings often contain uncertain hypothe-
ses and errors that need to be dealt with, briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only sup-
port very simple semantic relations (mostly equivalence between individual
elements);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.

If we want to use the resulting mappings, we have to find a way to deal with these
uncertainties and errors in a suitable way. We argue that the most suitable way of
dealing with uncertainties in mappings is to provide means to explicitly represent
uncertainties in the target language that encodes the mappings. In this paper, we
address the problem of designing a mapping representation language that is capable
of representing the kinds of uncertainty mentioned above. We propose an approach

Tightly integrated probabilistic dl-programs for representing ontology mappings 387

to such a language, which is based on an integration of ontologies and rules under
probabilistic uncertainty.

There is a large body of work on integrating ontologies and rules, which is a
promising way of representing mappings between ontologies. One type of integration
is to build rules on top of ontologies, i.e., rule-based systems that use vocabulary
from ontology knowledge bases. Another form of integration is to build ontologies
on top of rules, where ontological definitions are supplemented by rules or imported
from rules. Both types of integration have been realized in recent hybrid integrations
of rules and ontologies, called description logic programs (or dl-programs), which
have the form KB = (L, P), where L is a description logic knowledge base, and P
is a finite set of rules involving either queries to L in a loose integration [14, 15]
or concepts and roles from L as unary resp. binary predicates in a tight integration
[31, 35] (for more detailed overviews, see especially [14, 39]).

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the
annual Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there
also exists a W3C Incubator Group on Uncertainty Reasoning for the World Wide
Web). There are especially probabilistic extensions of description logics [24, 34], Web
ontology languages [8, 9], and dl-programs [32] (to encode ambiguous information,
such as “John is a student with probability 0.7 and a teacher with probability 0.3”,
which is very different from vague/fuzzy information, such as “John is tall with
degree of truth 0.7”). In particular, [32] extends the loosely integrated dl-programs of
[14, 15] by probabilistic uncertainty as in Poole’s independent choice logic (ICL) [42].
The ICL is a powerful representation and reasoning formalism for single- and also
multi-agent systems, which combines logic and probability, and which can represent
a number of important uncertainty formalisms, in particular, influence diagrams,
Bayesian networks, Markov decision processes, and normal form games. It also
allows for natural notions of causes and explanations as in Pearl’s structural causal
models [22].

In this paper, we explore the use of tightly integrated probabilistic dl-programs
under the answer set semantics and under the well-founded semantics as a language
for representing and reasoning with uncertain and possibly inconsistent ontology
mappings. The approach is a tight integration of normal logic programs under the
answer set and under the well-founded semantics, the tractable ontology language
DL-LiteA (which is a fragment the standard Web ontology language OWL), and
Bayesian probabilities. More concretely, the tight integration between ontology and
rule languages of [35] is combined with probabilistic uncertainty as in the ICL [42].
The main contributions of this paper can be summarized as follows:

– We explore the use of tightly integrated probabilistic dl-programs under the
answer set semantics and under the well-founded semantics as a language for
representing and reasoning with ontology mappings. Here, we aim especially at
a very efficient framework, and thus (i) assume DL-LiteA as underlying ontology
language, and (ii) allow nonmonotonic negation in rule bodies but disallow
disjunctions in rule heads.

– We define the well-founded semantics for tightly integrated probabilistic dl-
programs and provide several semantic results around it. In particular, we
show that (i) consistency under the answer set semantics implies consistency
under the well-founded semantics, and that (ii) the well-founded semantics is

388 T. Lukasiewicz et al.

an approximation of the answer set semantics, which is exact in certain cases.
We also show that under certain conditions, tight query processing yields point
probabilities rather than interval probabilities.

– We analyze the computational aspects of tightly integrated probabilistic dl-
programs under the well-founded semantics. In particular, we describe algo-
rithms for consistency checking and tight query processing, which are both based
on fixpoint iterations for computing the well-founded semantics of normal dl-
programs. We also analyze the data and the general complexity of consistency
checking and correct query processing, which both turn out to be complete for P
in the data complexity and for EXP in general, and thus have a lower complexity
than their counterparts under the answer set semantics.

– As a crucial property, the novel tightly integrated probabilistic dl-programs
under the well-founded semantics allow for tractable consistency checking and
for tractable tight query processing in the data complexity. Furthermore, we
delineate even a special case of first-order rewritability (and thus LogSpace
data complexity), which is especially interesting for ontology mapping, since it
informally models the case of mapping several input ontologies into an output
ontology via an acyclic normal program.

The rest of this paper is structured as follows. In Section 2, we analyze the
requirements of an ontology mapping language. Section 3 briefly reviews tractable
ontology languages as a basis for representing ontologies to be connected by
mappings. In Sections 4 and 5, we describe tightly integrated dl-programs as a
basis for representing mappings between ontologies as logical rules, and explain
how the rule language supports the refinement and repair of oversimplifying or
inconsistent mappings. Sections 6 and 7 present a probabilistic extension thereof,
and show that it can be used to represent and combine confidence values of different
matchers in terms of error probabilities and to resolve inconsistencies by using trust
probabilities. Sections 8 and 9 address the computational aspects of reasoning in
the novel language. In particular, Section 9 delineates a first-order rewritable case.
Section 11 discusses related work, and in Section 10, we summarize the main results
and give an outlook on future research. The proofs of all results in this paper are
given in Appendix.

2 Representation requirements

The problem of ontology matching can be defined as follows [16]. Ontologies are
theories encoded in a certain language L. For efficiency reasons, we assume here
that ontologies are encoded in the tractable description logic DL-LiteA [41], which
is a fragment of OWL.

For each ontology O in language L, we denote by Q(O) the matchable elements
of the ontology O. Given two ontologies O and O′, the task of matching is now to
determine correspondences between the matchable elements in the two ontologies.
Correspondences are 5-tuples (id, e, e′, r, n) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O) and e′ ∈ Q(O′) are matchable elements from the two ontologies;

Tightly integrated probabilistic dl-programs for representing ontology mappings 389

– r ∈ R is a semantic relation (in this work, we consider the case where the
semantic relation can be interpreted as an implication);

– n is a degree of confidence in the correctness of the correspondence.

In this paper, we develop a formal language for representing and combining
correspondences that are produced by different matching components or systems.
From the above general description of automatically generated correspondences
between ontologies, we can derive a number of requirements for such a formal
language for representing the results of multiple matchers as well as the contained
uncertainties:

– Tight integration of mapping and ontology language: The semantics of the
language used to represent the correspondences between different ontologies
has to be tightly integrated with the semantics of the used ontology language (in
this case DL-LiteA). This is important if we want to use the correspondences to
reason across different ontologies in a semantically coherent way. In particular,
this means that the interpretation of the mapped elements depends on the
definitions in the ontologies.

– Support for mappings ref inement: The language should be expressive enough
to allow the user to refine oversimplifying correspondences suggested by the
matching system. This is important to be able to provide a precise account
of the true semantic relation between elements in the mapped ontologies. In
particular, this requires the ability to describe correspondences that include
several elements from the two ontologies.

– Support for repairing inconsistencies: Inconsistent mappings are a major problem
for the combined use of ontologies because they can cause inconsistencies in the
mapped ontologies. These inconsistencies can make logical reasoning impossible,
since everything can be derived from an inconsistent ontology. The mapping
language should be able to represent and reason about inconsistent mappings
in an approximate fashion.

– Representation and combination of conf idence: The confidence values provided
by matching systems are an important indicator for the uncertainty that has to be
taken into account. The mapping representation language should be able to use
these confidence values when reasoning with mappings. In particular, it should
be able to represent the confidence in a mapping rule and to combine confidence
values on a sound formal basis.

– Decidability and ef f iciency of instance reasoning: An important use of ontology
mappings is the exchange of data across different ontologies. In particular, we
normally want to be able to ask queries using the vocabulary of one ontology
and receive answers that do not only consist of instances of this ontology
but also of ontologies connected through ontology mappings. To support this,
query answering in the combined formalism consisting of ontology language and
mapping language has to be decidable, and there should be efficient algorithms
for answering queries at least for relevant cases.

Throughout the paper, we use real data from the Ontology Alignment Evaluation
Initiative (OAEI)1 to illustrate the different aspects of mapping representation.

1http://oaei.ontologymatching.org

http://oaei.ontologymatching.org

390 T. Lukasiewicz et al.

In particular, we use examples from the benchmark and the conference dataset.
The former consists of five OWL ontologies (tests 101 and 301–304) describing
scientific publications and related information, while the latter consists of about
10 OWL ontologies describing concepts related to conference organization and
management. In both cases, we give examples of mappings that have been created
by the participants of the 2006 evaluation campaign. In particular, we use mappings
created by state-of-the-art ontology matching systems like falcon and hmatch.

3 Tractable ontology languages

As underlying ontology language, we use the tractable description logic DL-LiteA
[41], which adds datatypes to a restricted combination of the tractable description
logics DL-LiteF and DL-LiteR. All these description logics belong to the DL-Lite
family [5] of tractable description logics, which are a class of restricted description
logics for which the main reasoning tasks are possible in polynomial time in general
and some of them even in LogSpace in the data complexity. The DL-Lite description
logics are fragments of OWL and the most common tractable ontology languages
in the Semantic Web context. They are especially directed towards data-intensive
applications. Intuitively, description logics model a domain of interest in terms of
concepts and roles, which represent especially classes of individuals and binary
relations between classes of individuals, respectively. A knowledge base encodes
especially subset relationships between concepts, subset relationships between roles,
the membership of individuals to concepts, and the membership of pairs of individu-
als to roles.

We now recall the syntax and the semantics of DL-LiteA.

3.1 Syntax

As for the elementary ingredients of DL-LiteA, let D be a finite set of atomic
datatypes d, which are associated with pairwise disjoint sets of data values Vd. Let
A, RA, RD, and I be pairwise disjoint sets of atomic concepts, atomic roles, atomic
attributes, and individuals, respectively, and let V denote the union of all Vd with
d ∈ D.

Roles, concepts, attributes, and datatypes are as follows:

– A basic role Q is either an atomic role P ∈ RA or its inverse P−. A (general) role
R is either a basic role Q or the negation of a basic role ¬Q.

– A basic concept B is either an atomic concept A ∈ A, or an existential restriction
on a basic role Q, denoted ∃Q, or the domain of an atomic attribute U ∈ RD,
denoted δ(U). A (general) concept C is either the universal concept �C, or a basic
concept B, or the negation of a basic concept ¬B, or an existential restriction on
a basic role Q of the form ∃Q.C, where C is a concept.

– A (general) attribute V is either an atomic attribute U ∈ RD or the negation of an
atomic attribute ¬U .

– A basic datatype E is the range of an atomic attribute U ∈ RD, denoted ρ(U). A
(general) datatype F is either the universal datatype �D or an atomic datatype
d ∈ D.

Tightly integrated probabilistic dl-programs for representing ontology mappings 391

An axiom is an expression of one of the following forms:

– B � C (concept inclusion axiom), where B is a basic concept, and C is a concept;
– Q � R (role inclusion axiom), where Q is a basic role, and R is a role;
– U � V (attribute inclusion axiom), where U is an atomic attribute, and V is an

attribute;
– E � F (datatype inclusion axiom), where E is a basic datatype, and F is a datatype;
– (funct Q) (role functionality axiom), where Q is a basic role;
– (funct U) (attribute functionality axiom), where U is an atomic attribute;
– A(a) (concept membership axiom), where A is an atomic concept and a ∈ I;
– P(a, b) (role membership axiom), where P is an atomic role and a, b ∈ I;
– U(a, v) (attribute membership axiom), where U is an atomic attribute, a ∈ I, and v ∈ V.

A constraint is either a concept inclusion axiom of the form B �¬B′, a role inclusion
axiom of the form Q �¬Q′, an attribute inclusion axiom of the form U �¬U ′, a role
functionality axiom (funct Q), or an attribute functionality axiom (funct U).

We next define knowledge bases, which consist of a restricted finite set of inclusion
and functionality axioms, called TBox, and a finite set of membership axioms, called
ABox. We also define queries to such knowledge bases.

We first define the restriction on inclusion and functionality axioms. A basic role
Q (resp., atomic attribute U) is an identifying property in a set of axioms S iff S
contains a functionality axiom (funct Q) (resp., (funct U)). Given an inclusion axiom
α of the form X � Y (resp., X � ¬Y), a basic role (resp., atomic attribute) Y appears
positively (resp., negatively) in the right-hand side of α. A basic role (resp., atomic
attribute) is primitive in S iff it does not appear positively in the right-hand side of an
inclusion axiom in S and it does not appear in an expression of the form ∃Q.C in S .

We can now define knowledge bases. A TBox is a finite set T of inclusion
and functionality axioms such that every identifying property in T is primitive.
Intuitively, identifying properties cannot be specialized in T , i.e., they cannot appear
positively in the right-hand side of inclusion axioms in T . An ABox A is a finite set
of membership axioms. A knowledge base L =T ∪A is the union of a TBox T and
an ABox A.

Example 1 (Scientif ic database) We use a knowledge base L =T ∪A in DL-LiteA
to specify some simple information about scientists and their publications. Consider
the following sets of atomic concepts, atomic roles, atomic attributes, individuals, and
data values:

A ={Scientist, Article, ConferencePaper, JournalPaper},
RA ={hasAuthor, isAuthorOf, hasFirstAuthor},
RD ={name, title, yearOfPublication},

I ={i1, i2},
V ={“mary”, “Semantic Web search”, 2008}.

The TBox T contains the subsequent axioms, which informally express that (1) con-
ference and journal papers are articles, (2) conference papers are not journal papers,
(3) isAuthorOf relates scientists and articles, (4) isAuthorOf is the inverse of
hasAuthor, i.e., (scientist, article) belongs to isAuthorOf iff (article, scientist) belongs
to hasAuthor, and (5) hasFirstAuthor is a functional binary relationship:

(1) ConferencePaper � Article, JournalPaper � Article,
(2) ConferencePaper �¬JournalPaper,

392 T. Lukasiewicz et al.

(3) ∃isAuthorOf � Scientist, ∃isAuthorOf − � Article,
(4) isAuthorOf − � hasAuthor, hasAuthor− � isAuthorOf,
(5) (funct hasFirstAuthor).

The ABox A contains the following axioms, which express that (6) i1 is a scientist
whose name is “mary′′ and who is the author of i2, (7) i2 is an article entitled
“Semantic Web search”, and (8) i2 has been published in the year 2008:

(6) Scientist(i1), name(i1, “mary”), isAuthorOf(i1, i2),

(7) Article(i2), title(i2, “Semantic Web search”),

(8) yearOfPublication(i2, 2008).

3.2 Semantics

The semantics of DL-LiteA is defined in terms of standard first-order interpreta-
tions as usual. An interpretation I = (�I, ·I) consists of (i) a nonempty domain
�I = (�I

O,�I
V), which is the disjoint union of the domain of objects �I

O and the
domain of values �I

V = ⋃
d∈D �I

d , where the �I
d ’s are pairwise disjoint domains of

values for the datatypes d ∈ D, and (ii) a mapping ·I that assigns to each datatype
d ∈ D its domain of values �I

d , to each data value v ∈ Vd an element of �I
d (such

that v �=w implies vI �=wI), to each atomic concept A ∈ A a subset of �I
O, to each

atomic role P ∈ RA a subset of �I
O × �I

O, to each atomic attribute P ∈ RD a subset
of �I

O × �I
V , to each individual a ∈ I an element of �I

O (such that a �= b implies
aI �= bI). Note that different data values (resp., individuals) are associated with
different elements of �I

V (resp., �I
O) (unique name assumption). The extension of

·I to all concepts, roles, attributes, and datatypes, and the satisfaction of an axiom α

in the interpretation I = (�I, ·I), denoted I |= α, are defined as follows:

– (�D)I = �I
V and (�C)I = �I

O,
– (¬U)I = (�I

O × �I
V) \ UI ,

– (¬Q)I = (�I
O ×�I

O) \ QI ,
– (ρ(U))I = {v ∈ �I

V | ∃o : (o, v) ∈ UI},
– (δ(U))I = {o ∈ �I

O | ∃v : (o, v) ∈ UI},
– (P−)I = {(o, o′)∈ �I

O ×�I
O | (o′, o)∈ PI},

– (∃P)I = {o ∈ �I
O | ∃o′ : (o, o′)∈ PI},

– (∃Q.C)I = {o ∈ �I
O | ∃o′ : (o, o′) ∈ QI, o′ ∈ CI},

– (¬B)I = �I
O \ BI .

The satisfaction of an axiom α in I = (�I, ·I), denoted I |=α, is defined as follows:

– I |= B � C iff BI ⊆ CI ,
– I |= Q � R iff QI ⊆ RI ,
– I |= E � F iff EI ⊆ FI ,
– I |= U � V iff UI ⊆ VI ,
– I |= (funct Q) iff (o, q), (o, q′) ∈ QI implies q = q′,
– I |= (funct U) iff (o, v), (o, v′) ∈ UI implies v = v′,
– I |= A(a) iff aI ∈ AI ,
– I |= P(a, b) iff (aI, bI) ∈ PI ,
– I |= U(a, v) iff (aI, vI) ∈ UI .

Tightly integrated probabilistic dl-programs for representing ontology mappings 393

We say I satisf ies the axiom α, or I is a model of α, iff I |=α. We say I satisf ies a
knowledge base L, or I is a model of L, denoted I |= L, iff I |=α for all α ∈ L. We
say L is satisf iable (resp., unsatisf iable) iff L has a (resp., no) model. An axiom α is
a logical consequence of L, denoted L |=α, iff every model of L satisfies α.

As shown in [41], in particular, deciding the satisfiability of knowledge bases in
DL-LiteA and deciding logical consequences of membership axioms from knowledge
bases in DL-LiteA can both be done in LogSpace in the size of the ABox in the data
complexity.

Example 2 (Scientif ic database cont’d) It is not difficult to verify that the knowl-
edge base L of Example 1 is satisfiable, and that the two axioms JournalPaper �
¬ConferencePaper and hasAuthor(i2, i1) are logical consequences of L.

4 Tightly integrated normal dl-programs

In this section, we recall the tightly integrated approach to description logic pro-
grams (or simply dl-programs) KB = (L, P) under the answer set semantics and
under the well-founded semantics from [35]. However, in contrast to [35], where KB
consists of a description logic knowledge base L and a disjunctive logic program P,
here, for efficiency reasons, we restrict our attention to the special case where L is
a description logic knowledge base in DL-LiteA, and P is a normal logic program.
The semantics of such tightly integrated dl-programs is defined in a modular way
as in [14, 15], but it allows for a much tighter integration of L and P. Note that we
do not assume any structural separation between the vocabularies of L and P. The
main idea behind the semantics is to interpret P relative to Herbrand interpretations
that are compatible with L, while L is interpreted relative to general interpretations
over a first-order domain. Thus, we modularly combine the standard semantics of
logic programs and of description logics, which allows for building on the standard
techniques and results of both areas. As another advantage, the novel dl-programs
are decidable, even when their components of logic programs and description logic
knowledge bases are both very expressive. We refer especially to [35] for further
details on the novel approach to dl-programs and for a detailed comparison to
related works.

4.1 Syntax

We assume a first-order vocabulary � with finite nonempty sets of constant and
predicate symbols, but no function symbols. We use �c to denote the set of all
constant symbols in �. We also assume a set of data values V and pairwise disjoint
(denumerable) sets A, RA, RD, and I of atomic concepts, atomic roles, atomic
attributes, and individuals, respectively, as in Section 3. We assume that (i) �c is a
subset of I ∪ V, and that (ii) � and A (resp., RA ∪ RD) may have unary (resp., binary)
predicate symbols in common. Let X be a set of variables. A term is either a variable
from X or a constant symbol from �. An atom is of the form p(t1, . . . , tn), where p
is a predicate symbol of arity n � 0 from �, and t1, . . . , tn are terms. A classical literal
(or simply literal) l is an atom a or a negated atom ¬a. A negation-as-failure literal

394 T. Lukasiewicz et al.

(or NAF-literal) is an atom a or a default-negated atom not a. A normal rule (or
simply rule) r is an expression of the form

α ← β1, . . . , βn, not βn+1, . . . , not βn+m , (1)

where α, β1, . . . , βn+m are atoms and m, n � 0. We call α the head of r, denoted H(r),
while the conjunction β1, . . . , βn, not βn+1, . . . , not βn+m is its body. We define B(r) =
B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βn+m}. A fact is a
rule of the form (1) with n = m = 0. A normal program P is a finite set of normal
rules of the form (1). We say P is positive iff m = 0 for all normal rules (1) in P. A
tightly integrated normal description logic program (or simply normal dl-program)
KB = (L, P) consists of a description logic knowledge base L in DL-LiteA and a
normal program P. We say KB is a positive dl-program iff P is positive.

Example 3 Consider the normal dl-program KB = (L, P), where L is the description
logic knowledge base from Example 1, and P is the following collection of rules,
which model a part of the paper assignment in a reviewing process: (1) candidate
reviewers for a paper are all those referees who are experts in an area of the paper
and who are not in a conflict situation on this paper, (2) an expert in an area is
someone who has written at least three papers in that area, (3) someone is in a
conflict situation on a paper if she is a co-author of an author of the paper, (4) any
two authors of the same paper are co-authors, and (5) the paper p0 is in the Semantic
Web area, and John is a referee, who has reviewed the three papers p1, p2, and p3,
which are all in the Semantic Web area.

(1) cand(X,Q)← paperArea(Q, A), referee(X), expert(X,A), not conf lict(X,Q);
(2) expert(X,A) ← isAuthorOf (X,Q1), isAuthorOf (X,Q2), isAuthorOf (X,Q3),

inArea(Q1,A), inArea(Q2,A), inArea(Q3, A), Q1 �= Q2, Q2 �= Q3, Q1 �= Q3;
(3) conf lict(X, Q) ← co-author(X, Y), isAuthorOf (Y, Q);
(4) co-author(X, Y) ← isAuthorOf (X, Q), isAuthorOf (Y, Q);
(5) paperArea(p0, “SemanticWeb”); referee(john); isAuthorOf (john, p1);

isAuthorOf (john, p2); isAuthorOf (john, p3); inArea(p1, “SemanticWeb”);
inArea(p2, “SemanticWeb”); inArea(p3, “SemanticWeb”).

The above normal dl-program also shows the advantages and flexibility of the
tight integration between rules and ontologies (compared to the loose integration in
[14, 15]): Observe that the predicate symbol isAuthorOf in P is also a role in L, and
it freely occurs in both rule bodies and rule heads in P (which is both not possible in
[14, 15]). Furthermore, we can easily use the description logic knowledge base L to
express additional constraints on the predicate symbols in P. For example, we may
use the two concept inclusion axioms ∃conf lict � Scientist and ∃conf lict−1 � Article
in L to express that the relationship for conflict situations in P relates only scientists
and articles.

4.2 Answer set semantics

The answer set semantics of normal dl-programs generalizes the answer set semantics
of ordinary normal programs. In the sequel, let KB = (L, P) be a normal dl-program.

Tightly integrated probabilistic dl-programs for representing ontology mappings 395

A ground instance of a rule r ∈ P is obtained from r by replacing every variable
that occurs in r by a constant symbol from �c. We denote by ground(P) the set of
all ground instances of rules in P. The Herbrand base relative to �, denoted HB�,
is the set of all ground atoms constructed with constant and predicate symbols
from �. We use DL� to denote the set of all ground atoms in HB� that are
constructed from atomic concepts in A, atomic roles in RA, and atomic attributes
in RD. An interpretation I is any subset of HB�. Informally, every such I represents
the Herbrand interpretation in which all a ∈ I (resp., a ∈ HB� − I) are true (resp.,
false). We say an interpretation I is a model of a description logic knowledge base L,
denoted I |= L, iff L ∪ I ∪ {¬a | a ∈ HB� − I} is satisfiable. We say I is a model of a
ground atom a ∈ HB�, or I satisf ies a, denoted I |= a, iff a ∈ I. We say I is a model
of a ground rule r, denoted I |= r, iff I |=α for some α ∈ H(r) whenever I |= B(r), i.e.,
I |=β for all β ∈ B+(r) and I �|=β for all β ∈ B−(r). We say I is a model of a set of rules
P iff I |= r for every r ∈ ground(P). We say I is a model of a dl-program KB = (L, P),
denoted I |= KB, iff I is a model of both L and P. A dl-program KB = (L, P) is
satisf iable iff there exists a model I of KB.

We now define the answer set semantics of normal dl-programs by generalizing
the ordinary answer set semantics of normal programs. We generalize the definition
via the FLP-reduct [21], which is equivalent to the standard definition via the
Gelfond-Lifschitz reduct [23]. Given a dl-program KB = (L, P), the FLP-reduct of
KB relative to I ⊆ HB�, denoted KBI , is the dl-program (L, PI), where PI is the
set of all r ∈ ground(P) with I |= B(r). Note that the Gelfond-Lifschitz reduct of
KB relative to I ⊆ HB� is the positive dl-program (L, P̂I), where P̂I is obtained
from ground(P) by (i) deleting every rule r such that I |=β for some β ∈ B−(r) and
(ii) deleting the negative body from each remaining rule. An interpretation I ⊆ HB�

is an answer set of KB iff I is a minimal model of KBI . A dl-program KB is consistent
(resp., inconsistent) iff it has an (resp., no) answer set.

The notion of cautious (resp., brave) reasoning from normal dl-programs under
the answer set semantics is defined as follows. A ground atom a ∈ HB� is a cautious
(resp., brave) consequence of a normal dl-program KB under the answer set semantics
iff every (resp., some) answer set of KB satisfies a.

Example 4 Consider again the normal dl-program KB = (L, P) from Example 3.
Then, it is not difficult to verify that KB has a unique answer set IKB, and thus KB is
consistent. Furthermore, this answer set IKB is in particular a model of all facts in P
and of the literal ¬conf lict(john, p0). Consequently, IKB also satisfies cand(john, p0),
which implies that cand(john, p0) is both a cautious and a brave consequence of KB
under the answer set semantics. Informally, John is a candidate reviewer for paper
p0, since we are unaware of any conflict situation of John on the paper p0.

We next summarize some important semantic properties of normal dl-programs
under the above answer set semantics. In the ordinary case, every answer set of
a normal program P is also a minimal model of P, and the converse holds when
P is positive. This also holds for normal dl-programs. Furthermore, like ordinary
positive programs, every satisfiable positive dl-program has a unique answer set,
which coincides with the least model.

As another important semantic property, the answer set semantics of normal
dl-programs faithfully extends its ordinary counterpart. That is, the answer set

396 T. Lukasiewicz et al.

semantics of a normal dl-program with empty description logic knowledge base
coincides with the ordinary answer set semantics of its normal program.

Furthermore, the answer set semantics of normal dl-programs also faithfully
extends (from the perspective of answer set programming) the first-order semantics
of description logic knowledge bases. That is, a ground atom α ∈ HB� is true in all
answer sets of a positive dl-program KB = (L, P) iff α is true in all first-order models
of L ∪ ground(P). In particular, a ground atom α ∈ HB� is true in all answer sets of
KB = (L,∅) iff α is true in all first-order models of L. Note that this result holds also
when α is a ground formula constructed from HB� using the operators ∧ and ∨.

4.3 Well-founded semantics

We next recall the well-founded semantics for normal dl-programs [35], which
generalizes the well-founded semantics for ordinary normal programs via unfounded
sets [52]. Intuitively, compared to ordinary normal programs, normal dl-programs
KB additionally have a knowledge base L in DL-LiteA. In the definition of the
well-founded semantics for KB, one part of L is considered in a similar way as
ordinary normal rules, while the other part (namely, the set of all constraints in L) is
considered only in a final step.

For knowledge bases L in DL-LiteA, we denote by L+ the knowledge base
obtained from L by removing all constraints. For literals l = a (resp., l =¬a), we use
¬.l to denote ¬a (resp., a), and for sets of literals S, we define ¬.S = {¬.l | l ∈ S}
and S+ = {a ∈ S | a is an atom}. We use Lit� = HB� ∪ ¬.HB� to denote the set of all
ground literals with predicate and constant symbols from �. A set of ground literals
S ⊆ Lit� is consistent iff S ∩ ¬.S =∅. A (three-valued) interpretation relative to � is
any consistent set of ground literals I ⊆ Lit�.

We first define the notion of an unfounded set for normal dl-programs
KB = (L, P). Let I ⊆ Lit� be consistent. A set U ⊆ HB� is an unfounded set of KB
relative to I iff

(∗) for every a ∈ U ,

(a) for every r ∈ ground(P) with H(r) = a, either

(i) ¬b ∈ I ∪ ¬.U for some b ∈ B+(r), or
(ii) b ∈ I for some b ∈ B−(r); and

(b) L+ ∪ S+ �|= a for every consistent S ⊆ Lit� with I ∪ ¬.U ⊆ S.

Intuitively, all the atoms of the unfounded set U of KB relative to I can be safely set
to false under I. Here, compared to unfounded sets of ordinary normal programs,
the condition (b) is new, which intuitively says that a will never become true via the
knowledge base L+, if we expand I (to S) in a way such that all unfounded atoms
are kept false. In L+ ∪ S+, we only have to consider S+, since the negated atoms in S
(as long as consistent with L+ ∪ S+) do not enlarge the set of positive atoms logically
entailed by L+ ∪ S+.

The set of unfounded sets of KB relative to I is closed under union, which implies
that KB has a greatest unfounded set relative to I. Based on this result, we now
generalize the operators TP, UP, and WP from ordinary normal programs to normal

Tightly integrated probabilistic dl-programs for representing ontology mappings 397

dl-programs as follows. We define the operators TKB, UKB, and WKB on all consistent
I⊆Lit� by:

– a ∈ TKB(I) iff either

(a) a ∈ HB� and some r ∈ ground(P) exists such that

(i) H(r)= a,
(ii) b ∈ I for all atoms b ∈ B+(r), and

(iii) ¬b ∈ I for all atoms b ∈ B−(r), or

(b) L+ ∪ I+ |= a;

– UKB(I) is the greatest unfounded set of KB relative to I; and
– WKB(I)= TKB(I)∪ ¬.UKB(I).

Intuitively, TKB(I) is the set of all (positive) ground atoms that follow either (a)
from P under I in one step or (b) from L+ under I, while WKB(I) additionally
collects all negated ground atoms ¬a such that a belongs to the greatest unfounded
set of KB relative to I. Here, compared to the well-founded semantics of ordinary
normal programs, the condition (b) L+ ∪ I+ |= a in the definition of TKB(I) is new.
Intuitively, in addition to being implied by P under I, positive ground atoms may
also be implied by L+ under I.

It is not difficult to verify that the three operators TKB, UKB, and WKB are all
monotonic. Thus, in particular, WKB has a least fixpoint, denoted lfp(WKB). The
well-founded semantics of normal dl-programs can thus be defined as follows. Let
KB = (L, P) be a normal dl-program. The well-founded semantics of KB, denoted
WFS(KB), is defined as lfp(WKB), if L ∪ lfp(WKB) is satisfiable, and it is undefined,
otherwise. We then say that KB is consistent and inconsistent under the well-founded
semantics (or w-consistent and w-inconsistent), respectively. An atom a ∈ HB� is well-
founded (resp., unfounded) relative to KB iff a (resp., ¬a) belongs to WFS(KB). A
literal � ∈ HB� ∪ ¬.HB� is a consequence of a normal dl-program KB under the well-
founded semantics iff � ∈ WFS(KB).

Example 5 Consider again the normal dl-program KB = (L, P) from Example 3.
Then, it is not difficult to verify that KB has a total well-founded semantics (i.e., each
atom is either well-founded or unfounded), which coincides with the unique answer
set IKB from Example 4, and thus KB is w-consistent. Furthermore, in particular, all
facts in P and the atom cand(john, p0) are well-founded relative to KB, while the
atom conf lict(john, p0) is unfounded, i.e., the literal ¬conf lict(john, p0) belongs to
the well-founded semantics of KB.

We next summarize some important semantic properties of the well-founded se-
mantics for normal dl-programs. As a first such property, the well-founded semantics
of normal dl-programs faithfully extends the well-founded semantics of ordinary
normal programs.

Furthermore, the well-founded semantics for dl-programs can also be character-
ized in terms of the least and the greatest fixpoint of a monotonic operator γ 2

KB
similar as the ordinary well-founded semantics [1]. This characterization can then
be used to derive further properties of the well-founded semantics for dl-programs.
For a dl-program KB = (L, P), the application of the operator γKB on I ⊆ HB�,

398 T. Lukasiewicz et al.

denoted γKB(I), is the least model of (L+, PI). It can be shown that γKB is anti-
monotonic [35], like its counterpart for ordinary normal programs [1]. Hence, the
operator γ 2

KB(I)= γKB(γKB(I)), for all I ⊆ HB�, is monotonic and thus has a least
and a greatest fixpoint, denoted lfp(γ 2

KB) and gfp(γ 2
KB), respectively. These fixpoints

characterize the well-founded semantics of KB as follows.

Theorem 1 (see [35]) Let KB = (L, P) be a normal dl-program. Then, (a) KB is
w-consistent if f L ∪ (lfp(γ 2

KB) ∩ DL�) ∪ ¬.(DL� \ gfp(γ 2
KB)) is satisf iable, and (b) in

that case, a ∈ HB� is well-founded (resp., unfounded) w.r.t. KB if f a ∈ lfp(γ 2
KB) (resp.,

a �∈ gfp(γ 2
KB)).

The following theorem shows that for normal dl-programs, consistency under the
answer set semantics implies consistency under the well-founded semantics. The
converse, however, does not hold in general, unless the well-founded semantics is
defined and total (i.e., two-valued) as, e.g., in the positive case. This is due to the fact
that it may not always be possible to complete the partial model of the well-founded
semantics to a total model.

Theorem 2 (see [35]) Let KB = (L, P) be a normal dl-program. If KB is consistent,
then KB is w-consistent.

The next theorem shows that the well-founded semantics for normal dl-programs
approximates their answer set semantics. That is, every well-founded ground atom is
true in every answer set, and every unfounded ground atom is false in every answer
set.

Theorem 3 (see [35]) Let KB = (L, P) be a consistent normal dl-program. Then,
every answer set of KB includes all atoms a ∈ HB� that are well-founded relative to
KB and no atom a ∈ HB� that is unfounded relative to KB.

Recall that a ground atom a is a cautious (resp., brave) consequence under the
answer set semantics of a normal dl-program KB iff a is true in every (resp., some)
answer set of KB. Hence, under the answer set semantics, every well-founded and no
unfounded ground atom is a cautious (resp., brave) consequence of KB.

If the well-founded semantics of a normal dl-program KB = (L, P) is total, i.e.,
contains either a or ¬a for every a ∈ HB�, then it specifies the only answer set
of KB. Like in the case of ordinary normal programs, the well-founded semantics
for satisfiable positive dl-programs is total and coincides with their least model
semantics. This result can be proved using the characterization of the well-founded
semantics given in terms of γ 2

KB.

5 Representing ontology mappings

In this section, we show how tightly integrated normal dl-programs KB = (L, P)

can be used for representing mappings (without confidence values) between two
ontologies. Intuitively, L encodes the union of the two ontologies, while P encodes
the mappings between them.

Tightly integrated probabilistic dl-programs for representing ontology mappings 399

Tightly integrated normal dl-programs KB = (L, P) naturally represent two het-
erogeneous ontologies O1 and O2, and mappings between O1 and O2 as fol-
lows. The description logic knowledge base L is the union of two independent
description logic knowledge bases L1 and L2, which encode the ontologies O1

and O2, respectively. Here, we assume that L1 and L2 have signatures V1, A1,
RA,1, RD,1, I1 and V2, A2, RA,2, RD,2, I2, respectively, such that V1 ∩ V2 =∅,
A1 ∩ A2 =∅, RA,1 ∩ RA,2 =∅, RD,1 ∩ RD,2 =∅, and I1 ∩ I2 =∅. Note that this can
easily be achieved for any pair of ontologies by a suitable renaming. A mapping
between elements from L1 and L2 is then represented by a simple rule α ← β in P,
where α is an atom over A1 ∪ RA,1 ∪ RD,1, and β is a conjunction of NAF-literals
over A2 ∪ RA,2 ∪ RD,2. For example, the rule e2(x)← e1(x) in P, where e1 ∈ A1 ∪
RA,1 ∪ RD,1, e2 ∈ A2 ∪ RA,2 ∪ RD,2, and x is a suitable variable vector, encodes that
every instance of (the concept or role) e1 in O1 is also an instance of (the concept or
role) e2 in O2. Note that since the signatures of L1 and L2 are disjoint, the resulting
normal dl-program KB = (L, P) is actually acyclic (see Section 9).

Example 6 Taking an example from the conference data set of the OAEI challenges
2006 to 2009, we find, e.g., the following mappings that have been created by the
hmatch system for mapping the CRS Ontology (O1) on the EKAW Ontology (O2):

EarlyRegisteredParticipant(X) ← Participant(X) ;
LateRegisteredParticipant(X) ← Participant(X) .

Informally, these two mapping relationships express that every instance of the
concept Participant of the ontology O1 is also an instance of the concepts
EarlyRegisteredParti- cipant and LateRegisteredParticipant, respectively, of the on-
tology O2.

We now encode the two ontologies and the mappings by a tightly integrated
normal dl-program KB = (L, P), where L is the union of two description logic
knowledge bases L1 and L2 encoding the ontologies O1 and O2, respectively,
and P encodes the mappings. But we cannot directly use the two mapping rela-
tionships as two rules in P, since this would introduce an inconsistency in KB.
In detail, recall that a model of KB has to satisfy both L and P. Here, the two
mapping relationships interpreted as rules in P would require that if there is a
participant Alice (Participant(alice)) in the ontology O1, a model of KB contains
both EarlyRegisteredParticipant(alice) and LateRegisteredParticipant(alice). Such a
model, however, is invalidated by the ontology O2, which requires the concepts
EarlyRegistered- Participant and LateRegisteredParticipant to be disjoint. Therefore,
these mappings are useless, since they do not actively participate in the creation of
any model of KB.

In [37], we present a method for detecting such inconsistent mappings. There
are different approaches for resolving this inconsistency. The simplest one is to
drop mapping rules until no inconsistency is present anymore. In this paper, we
suggest to make use of our expressive mapping language and, in particular, to use
nonmonotonic negation in order to resolve such inconsistencies. One way of doing so
is to add body literals to the mapping rules, namely, negated concepts that are disjoint
to the concept in the heads of the rules. This way, we add background knowledge

400 T. Lukasiewicz et al.

available in the ontologies. In the example above, we then replace the two mapping
rules by the following ones:

EarlyRegisteredParticipant(X) ← Participant(X), not LateRegisteredParticipant(X),

LateRegisteredParticipant(X) ← Participant(X), not EarlyRegisteredParticipant(X).

These new mapping rules resolve the inconsistency. Assuming that there is a partici-
pant Alice in O1 (Participant(alice)), we then obtain the two answer sets

{EarlyRegisteredParticipant(alice), Participant(alice)} ,

{LateRegisteredParticipant(alice), Participant(alice)} .

None of these answer sets is invalidated by the disjointness constraints imposed by
the ontology O2. However, we can deduce only Participant(alice) cautiously, the
other two atoms can only be deduced bravely. More generally, with such rules,
instances that are only available in the ontology O1 cannot be classified with
certainty. Similarly, the partial model of the well-founded semantics is given by
{Participant(alice)}.

Another way of resolving inconsistencies in the mapping rules is to extend the
bodies of the original mapping rules by additional conditions as follows:

EarlyRegisteredParticipant(X) ← Participant(X), RegisterdbeforeDeadline(X) ,

LateRegisteredParticipant(X) ← Participant(X), not RegisteredbeforeDeadline(X) .

This refinement of the mapping rules resolves the inconsistency as well, and it is
also easier to process because there is no cycle involving nonmonotonic negation.
Note that both kinds of modifications cannot be performed fully automatically at
the moment, since it is currently not possible to automatically detect and resolve
all mappings introducing an inconsistency in a sound and complete way in each
application domain. However, it is conceivable to perform simple modifications
automatically, i.e., cases where the inconsistency can be found easily and there also
is an explicit axiom in the ontology that can be used to add a modification, and to
perform more intricate modifications in a semi-automatic manner.

In the next section, we present a probabilistic extension of tightly integrated
normal dl-programs that allows us to directly use confidence estimations of matching
engines to resolve inconsistencies and to combine the results of different matchers.

6 Tightly integrated probabilistic dl-programs

In this section, we present a tightly integrated approach to probabilistic description
logic programs (or simply probabilistic dl-programs) under the answer set and under
the well-founded semantics. Similarly to the probabilistic dl-programs in [32], they
are defined as a combination of dl-programs with Poole’s ICL [42], but using
the tightly integrated dl-programs of [35] (see Section 4), rather than the loosely
integrated dl-programs of [14, 15]. Poole’s ICL is based on ordinary acyclic logic
programs P under different “choices”, where every choice along with P produces
a first-order model, and one then obtains a probability distribution over the set of
all first-order models by placing a probability distribution over the different choices.
We use the tightly integrated dl-programs under the answer set semantics and under
the well-founded semantics of [35], respectively, instead of ordinary acyclic logic

Tightly integrated probabilistic dl-programs for representing ontology mappings 401

programs under their canonical semantics (which coincides with their answer set
and their well-founded semantics). We first introduce the syntax of probabilistic dl-
programs and then their answer set and their well-founded semantics.

6.1 Syntax

We now define the syntax of probabilistic dl-programs and of probabilistic queries to
them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A ⊆ HB� − DL�.
Any A ∈ C is an alternative of C and any element a ∈ A an atomic choice of C.
Intuitively, every alternative A ∈ C represents a random variable and every atomic
choice a ∈ A one of its possible values. A total choice of C is a set B ⊆ HB� such that
|B ∩ A| = 1 for all A ∈ C (and thus |B| = |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability μ on a
choice space C is a probability function on the set of all total choices of C. Intuitively,
μ is a probability distribution over the set of all variable assignments. Since C and
all its alternatives are finite, μ can be defined by (i) a mapping μ : ⋃

C → [0, 1] such
that

∑
a ∈ A μ(a) = 1 for all A ∈ C, and (ii) μ(B) =
b∈Bμ(b) for all total choices B

of C. Intuitively, (i) defines a probability over the values of each random variable of
C, and (ii) assumes independence between the random variables.

A tightly integrated probabilistic description logic program (or simply probabilistic
dl-program) KB = (L, P, C, μ) consists of a normal dl-program (L, P), a choice
space C such that no atomic choice in C coincides with the head of any rule in
ground(P), and a probability μ on C. Intuitively, since the total choices of C select
subsets of P, and μ is a probability distribution on the total choices of C, every
probabilistic dl-program is the compact representation of a probability distribution
on a finite set of normal dl-programs. Observe here that P is fully general and not
necessarily stratified or acyclic. We say KB is positive iff P is positive. An event α is
any Boolean combination of atoms (i.e., constructed from atoms via the Boolean
operators “∧” and “¬”). A conditional event is of the form β|α, where α and β

are events. A probabilistic query to KB has the form ∃(β|α)[r, s], where β|α is a
conditional event, and r and s are either two variables or two reals from [0, 1].

Example 7 Consider the tightly integrated probabilistic dl-program KB = (L, P,

C, μ) that is given as follows. Let L and P be defined as in Examples 1 and 3,
respectively, except that the following two probabilistic rules are added to P:

conf lict(X, Q) ← sameUniversity(X, Y), isAuthorOf (Y, Q), choiceu ;
conf lict(X, Q) ← sameTown(X, Y), isAuthorOf (Y, Q), choicet ;
conf lict(mary, p0) ← choicem ;
isAuthorOf (bill, p0); sameUniversity(john, bill) ;
sameTown(john, bill); sameTown(jane, bill) .

Let C = {{choiceu, not_choiceu}, {choicet, not_choicet}, {choicem, not_choicem}}, and
let the probability μ on C be given by μ : choiceu, not_choiceu, choicet, not_choicet,

choicem, not_choicem �→ 0.8, 0.2, 0.6, 0.4, 0.7, 0.3. Here, the first (resp., second)
rule encodes that if a person works at the same university (resp., lives in the same
town) as the author of a paper, then this person is in a conflict situation on that paper
with the probability 0.8 (resp., 0.6). The third rule encodes that Mary is in a conflict

402 T. Lukasiewicz et al.

situation on paper p0 with the probability 0.7. That is, probabilistic facts can be
encoded by rules with only atomic choices in their body. A probabilistic query asking
about the entailed tight interval for the probability that John is in a conflict situation
on paper p0 can be expressed by ∃(conf lict(john, p0))[r, s]. A probabilistic query
asking about all persons along with the tight interval for the probability with which
they are in a conflict situation on paper p0 can be encoded by ∃(conf lict(E, p0))[r, s].
Another query assuming the additional condition that John lives in the same town as
Bill is ∃(conf lict(E, p0)|sameTown(john, bill))[r, s].

6.2 Answer set semantics

We now define an answer set semantics of probabilistic dl-programs, and we intro-
duce the notions of consistency, consequence, tight consequence, and correct and
tight answers for probabilistic queries to probabilistic dl-programs. Note that their
semantics is based on subjective probabilities defined on a set of possible worlds.

Given a probabilistic dl-program KB = (L, P, C, μ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆ HB�. We say Pr is a (prob-
abilistic) answer set of KB iff (i) every interpretation I ⊆ HB� with Pr(I)> 0 is
an answer set of (L, P ∪ {p ← | p ∈ B}) for some total choice B of C, and (ii)
Pr(

∧
p∈B p)= ∑

I⊆HB�, B⊆I Pr(I) = μ(B) for every total choice B of C. Informally,
Pr is an answer set of KB = (L, P, C, μ) iff (i) every interpretation I ⊆ HB� of
positive probability under Pr is an answer set of the dl-program (L, P) under some
total choice B of C, and (ii) Pr coincides with μ on the total choices B of C. We
say KB is consistent iff it has an answer set Pr. The latter is equivalent to (L, P ∪
{p ← | p ∈ B}) being consistent for every total choice B of C with μ(B) > 0, which
implies that deciding whether a probabilistic dl-program is consistent can be reduced
to deciding whether a normal dl-program is consistent.

Given a ground event α, the probability of α in a probabilistic interpretation
Pr, denoted Pr(α), is the sum of all Pr(I) such that I ⊆ HB� and I |=α. Given two
ground events α and β, and two reals l, u ∈ [0, 1], we say (β|α)[l, u] is a consequence
of a consistent probabilistic dl-program KB under the answer set semantics, de-
noted KB ‖∼ (β|α)[l, u], iff Pr(α ∧ β) / Pr(α) ∈ [l, u] for all answer sets Pr of KB with
Pr(α)> 0. We say (β|α)[l, u] is a tight consequence of a consistent probabilistic dl-
program KB under the answer set semantics, denoted KB ‖∼tight(β|α)[l, u], iff l (resp.,
u) is the infimum (resp., supremum) of Pr(α ∧ β) / Pr(α) subject to all answer sets Pr
of KB with Pr(α)> 0. Note that this infimum (resp., supremum) is naturally defined
as 1 (resp., 0) iff no such Pr exists. The tight answer (resp., correct answer) for a
probabilistic query Q =∃(β|α)[r, s] to KB under the answer set semantics, where r
and s are two variables (resp., two reals from [0, 1]), is the set of all ground substi-
tutions θ (for the variables in Q) such that (β|α)[r, s]θ is a tight consequence (resp.,
consequence) of KB under the answer set semantics. For ease of presentation, since
tight (and correct) answers for probabilistic queries Q =∃(β|α)[r, s] with non-ground
β|α are easily reducible to tight answers for probabilistic queries Q =∃(β|α)[r, s] with
ground β|α, we consider only the latter type of probabilistic queries in the following.

The next result shows that computing tight answers for probabilistic queries
∃(β|α)[r, s] with ground β|α to consistent probabilistic dl-programs KB = (L, P, C, μ)

can be reduced to brave and cautious reasoning from normal dl-programs. Infor-
mally, the calculation is based on evaluating whether α ∧ β and α ∧ ¬β are true in

Tightly integrated probabilistic dl-programs for representing ontology mappings 403

every (resp., some) answer set of the normal dl-program (L, P ∪ {p ← | p ∈ B}), for
every total choice B of C with μ(B) > 0.

Theorem 4 (see [4]) Let KB = (L, P, C, μ) be a consistent probabilistic dl-program,
and let Q =∃(β|α)[r, s] be a probabilistic query with ground conditional event β|α.
Let a (resp., b) be the sum of all μ(B) such that (i) B is a total choice of C with
μ(B) > 0 and (ii) α ∧ β is true in every (resp., some) answer set of the normal dl-
program (L, P ∪ {p ← | p ∈ B}). Let c (resp., d) be the sum of all μ(B) such that (i)
B is a total choice of C with μ(B) > 0 and (ii) α ∧ ¬β is true in every (resp., some)
answer set of the normal dl-program (L, P ∪ {p ← | p ∈ B}). Then, the tight answer θ

for Q to KB under the answer set semantics is given by:

θ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{r/1, s/0} if b = 0 and d = 0;

{r/0, s/0} if b = 0 and d �= 0;

{r/1, s/1} if b �= 0 and d = 0;
{

r
/

a
a + d

, s
/

b
b + c

}

otherwise.

(2)

Example 8 Consider again the probabilistic dl-program KB = (L, P, C, μ) of
Example 7. Observe that the total choices Bi, i ∈ {1, . . . , 8}, of C, which encode the
possible worlds, along with their probabilities μ(Bi) are given as follows:

B1 = {choiceu, choicet, choicem}, μ(B1) = 0.8 · 0.6 · 0.7 = 0.336,

B2 = {choiceu, not_choicet, choicem}, μ(B2) = 0.8 · 0.4 · 0.7 = 0.224,

B3 = {not_choiceu, choicet, choicem}, μ(B3) = 0.2 · 0.6 · 0.7 = 0.084,

B4 = {not_choiceu, not_choicet, choicem}, μ(B4) = 0.2 · 0.4 · 0.7 = 0.056,

B5 = {choiceu, choicet, not_choicem}, μ(B5) = 0.8 · 0.6 · 0.3 = 0.144,

B6 = {choiceu, not_choicet, not_choicem}, μ(B6) = 0.8 · 0.4 · 0.3 = 0.096,

B7 = {not_choiceu, choicet, not_choicem}, μ(B7) = 0.2 · 0.6 · 0.3 = 0.036,

B8 = {not_choiceu, not_choicet, not_choicem}, μ(B8) = 0.2 · 0.4 · 0.3 = 0.024 .

It is not difficult to verify that KB has exactly one (probabilistic) answer set, i.e.,
every normal dl-program (L, P ∪ {p ← | p ∈ Bi}), i ∈ {1, . . . , 8}, has exactly one ordi-
nary answer set. Hence, KB is in particular consistent (under the answer set seman-
tics). Consider now the probabilistic query Q1 = ∃(conf lict(mary, p0))[r, s]. Then,
a = 0.7 (resp., b = 0.7), since conf lict(mary, p0) is true in every (resp., some) answer
set of Bi iff i ∈ {1, . . . , 4}. Moreover, c = 0.3 (resp., d = 0.3), since ¬conf lict(mary,

p0) is true in every (resp., some) answer set of Bi iff i ∈ {5, . . . , 8}. Hence, the tight
answer for Q1 to KB under the answer set semantics is given by θ ={r/0.7, s/0.7}.
The tight answers for the probabilistic queries Q2 = ∃(conf lict(jane, p0))[r, s],
Q3 =∃(conf lict(john, p0))[r, s], and Q4 =∃(cand(john, p0))[r, s] to KB under the
answer set semantics are θ ={r/0.6, s/0.6} (as conf lict(jane, p0) is true in the answer
set of Bi iff i ∈ {1, 3, 5, 7}), θ ={r/0.92, s/0.92} (as conf lict(john, p0) is true in the
answer set of Bi iff i ∈ {1, 2, 3, 5, 6, 7}), and θ ={r/0.08, s/0.08} (as cand(john, p0)

is true in the answer set of Bi iff i ∈ {4, 8}), respectively. Consider finally the
query Q5 =∃(conf lict(mary, p0)|sameTown(john, bill))[r, s] asking for the proba-
bility that there is a conflict for Mary with paper p0 given that Jane and Bill
live in the same town. Then, a = 0.7 (resp., b = 0.7), since sameTown(john, bill) ∧
conf lict(mary, p0) is true in the answer set of Bi iff i ∈ {1, . . . , 4}. Moreover, c = 0.3

404 T. Lukasiewicz et al.

(resp., d = 0.3), since sameTown(john, bill) ∧ ¬conf lict(mary, p0) is true in the an-
swer set of Bi iff i ∈ {5, . . . , 8}. Thus, the tight answer for Q5 to KB under the answer
set semantics is θ ={r/0.7, s/0.7}.

Example 9 Consider the probabilistic dl-program KB = (L, P, C, μ), where
L ={c � e}, P ={c(X)← not d(X), a2; d(X) ← not c(X); e(X) ← not c(X);
e(o)← a1; f (o) ← a1}, C ={{a1, a′

1}, {a2, a′
2}}, and μ(a1)= 0.9 and μ(a2) = 0.8.

Then, the total choices of C are given by B1 = {a1, a2}, B2 = {a1, a′
2}, B3 = {a′

1, a2},
and B4 = {a′

1, a′
2}. They are associated with the probabilities μ(B1) = 0.9 · 0.8 = 0.72,

μ(B2) = 0.9 · 0.2 = 0.18, μ(B3)= 0.1 · 0.8 = 0.08, and μ(B4) = 0.1 · 0.2 = 0.02,
and the sets of answer sets ASS(B1)={{c(o), e(o), f (o)}, {d(o), e(o), f (o)}},
ASS(B2)= {{d(o), e(o), f (o)}}, ASS(B3) ={{c(o), e(o)}, {d(o), e(o)}}, and
ASS(B4)= {{d(o), e(o)}}. This shows in particular that KB is consistent. Consider
now the probabilistic query Q = ∃(e(o))[r, s]. Then, a = 1 (resp., b = 1), since e(o)

is true in each (resp., some) answer set of B1, B2, B3, and B4. Furthermore, c = 0
(resp., d = 0), since ¬e(o) is false in each (resp., some) answer set of B1, B2, B3, and
B4. Hence, the tight answer for Q to KB under the answer set semantics is given
by θ ={r/1, s/1}. Consider next the probabilistic query Q′ = ∃(f (o))[r, s]. Then,
a = 0.9 (resp., b = 0.9), since f (o) is true in each (resp., some) answer set of B1 and
B2. Furthermore, c = 0.1 (resp., d = 0.1), since ¬ f (o) is true in each (resp., some)
answer set of B3 and B4. Hence, the tight answer for Q′ to KB under the answer set
semantics is given by θ = {r/0.9, s/0.9}.

6.3 Well-founded semantics

In this section, we define the well-founded semantics for probabilistic dl-programs.
More specifically, we define the notions of consistency and of tight answers to
probabilistic queries for the well-founded semantics. We then provide several results
around these notions of consistency and tight answers to probabilistic queries. In
particular, we show that tight answers under the well-founded semantics approximate
tight answers under the answer set semantics, and we also delineate special cases
where this approximation is exact.

We first define the notion of consistency under the well-founded semantics
for probabilistic dl-programs as follows. Informally, a probabilistic dl-program
KB = (L, P, C, μ) is consistent under the well-founded semantics iff the normal dl-
program for every total choice B of C with μ(B) > 0 is consistent under the well-
founded semantics. Recall that KB is consistent under the answer set semantics iff
the normal dl-program for every total choice B of C with μ(B) > 0 is consistent under
the answer set semantics.

Definition 1 A probabilistic dl-program KB = (L, P, C, μ) is consistent under the
well-founded semantics (or simply w-consistent) iff (L, P ∪ {p ← | p ∈ B}) is w-
consistent for every total choice B of C with μ(B) > 0.

Example 10 It is not difficult to verify that the well-founded semantics of the
probabilistic dl-program KB of Example 7 exists and coincides with the answer set
semantics (cf. Example 8). Hence, KB is consistent under the well-founded semantics
(or w-consistent).

Tightly integrated probabilistic dl-programs for representing ontology mappings 405

The following theorem shows that for probabilistic dl-programs, consistency under
the answer set semantics implies consistency under the well-founded semantics. The
converse, however, does not hold in general, unless the well-founded semantics is
defined and total (i.e., two-valued) as, e.g., in the positive case. Both results follow
from similar results for normal dl-programs under the answer set and the well-
founded semantics (cf. Theorem 2).

Theorem 5 Let KB = (L, P, C, μ) be a probabilistic dl-program. If KB is consistent,
then KB is w-consistent.

Example 11 The w-consistency of the probabilistic dl-program KB of Example 7
(cf. Example 10) is immediate by its consistency under the answer set semantics
(cf. Example 8).

We next define the notion of tight answers for probabilistic queries to probabilistic
dl-programs under the well-founded semantics as follows. Here, we take inspiration
from the characterization of tight answers for probabilistic queries to probabilistic
dl-programs under the answer set semantics in Theorem 4 and the approximation of
the answer set semantics by the well-founded semantics for normal dl-programs in
Theorem 3. Informally, rather than evaluating whether α ∧ β and α ∧ ¬β are true
in every (resp., some) answer set of the normal dl-program (L, P ∪ {p ← | p ∈ B}),
for every total choice B of C with μ(B) > 0, we evaluate whether α ∧ β and α ∧ ¬β

are true (resp., not false) in the well-founded semantic of (L, P ∪ {p ← | p ∈ B}), for
every total choice B of C with μ(B) > 0.

Definition 2 Let KB = (L, P, C, μ) be a w-consistent probabilistic dl-program, and
let Q = ∃(β|α)[r, s] be a probabilistic query with ground conditional event β|α. Let a
(resp., b−) be the sum of all μ(B) such that (i) B is a total choice of C with μ(B) > 0
and (ii) α∧β is true (resp., false) in WFS(L, P ∪ {p ← | p ∈ B}). Let c (resp., d−) be
the sum of all μ(B) such that (i) B is a total choice of C with μ(B) > 0 and (ii) α∧¬β is
true (resp., false) in WFS(L, P ∪ {p ← | p ∈ B}). Let b = 1−b− and d = 1−d−. Then,
the tight answer θ for Q to KB under the well-founded semantics is defined as follows:

θ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{r/1, s/0} if b = 0 and d = 0;

{r/0, s/0} if b = 0 and d �= 0;

{r/1, s/1} if b �= 0 and d = 0;
{

r
/

a
a + d

, s
/

b
b + c

}

otherwise.

(3)

Example 12 Consider again the probabilistic dl-program KB = (L, P, C, μ) of Ex-
ample 7. Then, the tight answers for the probabilistic queries Q1 = ∃(conf lict(mary,

p0))[r, s], Q2 = ∃(conf lict(jane, p0))[r, s], Q3 = ∃(conf lict(john, p0))[r, s], Q4 =
∃(cand(john, p0))[r, s], and Q5 = ∃(conf lict(mary, p0)|sameTown(john, bill))[r, s] to
KB under the well-founded semantics are given by θ ={r/0.7, s/0.7}, θ ={r/0.6,

s/0.6}, θ ={R/0.92, S/0.92}, θ = {R/0.08, S/0.08}, and θ = {r/0.7, s/0.7}, respec-
tively. For example, as for Q1, a = 0.7 (resp., b = 0.7), since conf lict(mary, p0) is
true (resp., false) in the well-founded semantics of B1, B2, B3, and B4 (resp., B5,

406 T. Lukasiewicz et al.

B6, B7, and B8). Furthermore, c = 0.3 (resp., d = 0.3), since ¬conf lict(mary, p0) is
true (resp., false) in the well-founded semantics of B5, B6, B7, and B8 (resp., B1,
B2, B3, and B4). Finally, the tight answers for the two queries Q6 = ∃(conf lict(mary,

p0)|conf lict(jane, p0))[r, s] and Q7 = ∃(conf lict(jane, p0)|con- flict(mary, p0))[r, s]
are θ ={r/0.7, s/0.7} and θ ={r/0.6, s/0.6}, respectively.

Example 13 Consider again the probabilistic dl-program KB = (L, P, C, μ) and the
probabilistic queries Q and Q′ of Example 9. Then, under the well-founded seman-
tics, the total choices B1, B2, B3, and B4 of C are associated with the literal sets
WFS(B1) ={e(o), f (o)}, WFS(B2)= {¬c(o), d(o), e(o), f (o)}, WFS(B3) ={¬ f (o)},
and WFS(B4) = {¬c(o), d(o), e(o), ¬ f (o)}. This shows in particular that KB is w-
consistent. Consider now Q =∃(e(o))[r, s]. Then, a = 0.92 (resp., b = 1), since e(o) is
true (resp., false) in the well-founded semantics of B1, B2, and B4 (resp., no total
choice). Furthermore, c = 0 (resp., d = 0.08), since ¬e(o) is true (resp., false) in the
well-founded semantics of no total choice (resp., B1, B2, and B4). Hence, the tight
answer for Q to KB under the well-founded semantics is given by θ ={r/0.92, s/1}.
Consider next Q′ = ∃(f (o))[r, s]. Then, a = 0.9 (resp., b = 0.9), since f (o) is true
(resp., false) in the well-founded semantics of B1 and B2 (resp., B3 and B4).
Furthermore, c = 0.1 (resp., d = 0.1), since ¬ f (o) is true (resp., false) in the well-
founded semantics of B3 and B4 (resp., B1 and B2). Hence, the tight answer for Q′
to KB under the well-founded semantics is given by θ ={r/0.9, s/0.9}.

The following theorem shows that, for probabilistic dl-programs KB =
(L, P, C, μ) where the well-founded semantics is total, the tight answers for proba-
bilistic queries to KB under the well-founded semantics (a) coincide with the tight
answers to KB under the answer set semantics (if they exist) and (b) are either
point intervals or empty. Here, the well-founded semantics of KB is total, i.e.,
WFS(L, P ∪ {p ← | p ∈ B}) is total (i.e., two-valued) for every total choice B of C
with μ(B) > 0. Note that, in particular, the well-founded semantics of every positive
probabilistic dl-program KB is total.

Theorem 6 Let KB = (L, P, C, μ) be a consistent probabilistic dl-program, and let
Q = ∃(β|α)[r, s] be a probabilistic query with ground β|α. Let the well-founded
semantics of KB be total, and let θ = {r/ l, s/u} and θ ′ = {r/ l′, s/u′} be the tight answers
for Q to KB under the well-founded semantics and under the answer set semantics,
respectively. Then, (a) [l′, u′] = [l, u], and (b) either l = u, or l = 1 and u = 0.

Example 14 Consider again the probabilistic dl-program KB of Example 7. The
well-founded semantics of KB is total. Indeed, (a) it coincides with the answer
set semantics (cf. Example 10), and (b) all tight answers in Example 12 are point
intervals.

The next theorem has slightly weaker preconditions, but also a slightly weaker
statement than Theorem 6. It says that for probabilistic queries Q =∃(�)[r, s] to KB,
where � is a ground literal that is defined for KB, the tight answers to KB under the
well-founded semantics (a) coincide with the tight answers to KB under the answer
set semantics (if they exist) and (b) are either point intervals or empty. Here, �

is def ined for KB = (L, P, C, μ) iff either � or ¬.� belongs to WFS(L, P ∪ {p ← |

Tightly integrated probabilistic dl-programs for representing ontology mappings 407

p ∈ B}) for every total choice B of C with μ(B) > 0. In particular, � is always defined
when the well-founded semantics of KB is total.

Theorem 7 Let KB = (L, P, C, μ) be a consistent probabilistic dl-program, and let
Q = ∃(�)[r, s] be a probabilistic query with ground literal � that is def ined for KB.
Let θ = {r/ l, s/u} and θ ′ = {r/ l′, s/u′} be the tight answers for Q to KB under the
well-founded semantics and under the answer set semantics, respectively. Then, (a)
[l′, u′] = [l, u], and (b) either l = u, or l = 1 and u = 0.

Example 15 Consider again the probabilistic dl-program KB and the probabilistic
query Q′ of Example 9. Then, observe that the ground literal f (o) is defined for
KB (cf. Example 13). Indeed, the tight answer for Q′ = ∃(f (o))[r, s] to KB under
both the answer set and the well-founded semantics is given by θ ={r/0.9, s/0.9} (cf.
Examples 9 and 13).

The following theorem shows that for probabilistic queries Q =∃(�)[r, s], where �

is a ground literal, the tight answers under the well-founded semantics approximate
the tight answers under the answer set semantics (if they exist). This result is a nice
semantic feature of the well-founded semantics for probabilistic dl-programs. It also
paves the way for an efficient approximation of tight answers under the answer set
semantics to such queries via the bottom-up fixpoint iteration of the well-founded
semantics of normal dl-programs.

Theorem 8 Let KB = (L, P, C, μ) be a consistent probabilistic dl-program, and let
Q = ∃(�)[r, s] be a probabilistic query with ground literal �. Let θ = {r/ l, s/u} and
θ ′ = {r/ l′, s/u′} be the tight answers for Q to KB under the well-founded semantics
and under the answer set semantics, respectively. Then, [l′, u′] ⊆ [l, u].

Example 16 Consider again the probabilistic dl-program KB and the probabilistic
query Q of Example 9. Recall that the tight answer for Q to KB under the answer set
semantics is given by θ = {r/1, s/1} (cf. Example 9), while the tight answer for Q to
KB under the well-founded semantics is given by θ ={r/0.92, s/1} (cf. Example 13).

Note that the approximation is even exact in cases where the well-founded
semantics associated with every total choice B of C with μ(B) > 0 coincides with the
set of all ground literals that can be bravely concluded under the answer set semantics
associated with B.

7 Representing ontology mappings with confidence values

We now show how tightly integrated probabilistic dl-programs KB = (L, P, C, μ) can
be used for representing (possibly inconsistent) mappings with confidence values
between two ontologies. Intuitively, L encodes the union of the two ontologies,
while P, C, and μ encode the mappings between them, where confidence values can
be encoded as error probabilities, and inconsistencies can also be resolved via trust
probabilities (in addition to using nonmonotonic negations under the answer set and
the well-founded semantics in P).

408 T. Lukasiewicz et al.

The probabilistic extension of tightly integrated normal dl-programs KB = (L, P)

to tightly integrated probabilistic dl-programs KB′ = (L, P, C, μ) provides us with a
means to explicitly represent and use the confidence values provided by matching
systems.

In particular, we interpret each confidence value n as an error probability, stating
that the probability that its mapping introduces an error is 1 − n. Conversely,
the probability that a mapping correctly describes the semantic relation between
elements of the different ontologies is 1 − (1 − n) = n. This means that we use the
confidence value n as a probability for the correctness of a mapping. The indirect
formulation is chosen, because it allows us to combine the results of different
matchers in a meaningful way. In particular, if we assume that the error probabilities
of two matchers are independent, we can calculate the joint error probability of
two matchers that have found the same mapping rule as (1 − n1) · (1 − n2). This
means that we can get a new probability for the correctness of the rule found
by two matchers which is 1 − (1 − n1) · (1 − n2). This way of calculating the joint
probability meets the intuition that a mapping is more likely to be correct if it has
been discovered by more than one matcher because 1 − (1 − n1) · (1 − n2) � n1 and
1 − (1 − n1) · (1 − n2) � n2.

We construct the choice space along with its probability values for encoding
the confidence values as follows. First, we enumerate all the mappings that are
found by each matcher. Then, for each mapping, an alternative of the choice space
is constructed, consisting of two atomic choices, which represent the probability
that the mapping holds and that it does not hold, respectively. The values of the
atomic choices are directly taken from the confidence values produced by the
matchers by interpreting them as error probabilities, as described in the para-
graph above. In this way, we obtain for each matcher m the subset of the choice
space {{mi, not_mi}|i ∈ {1, . . . , l}}, where l denotes the number of all mappings of
matcher m. Unifying all these subsets then yields the overall choice space.

In addition, we can associate a trust probability with each matcher m; it repre-
sents our confidence into the quality of the mappings produced by m, which can
vary between matchers and certain application domains with specific features. For
example, amongst others, the usage or avoidance of specific naming conventions
for the entities in an ontology can result in mappings of different quality and thus
different trust. This is especially useful when merging inconsistent results of different
matchers, where we can weigh each matching system and its result with a trust
probability. For example, the trust probabilities of the matching systems m1, m2,
and m3 may be 0.6, 0.3, and 0.1, respectively. That is, we trust most in m1, medium
in m2, and less in m3. Note that all trust probabilities sum up to 1.

Such trust probabilities can be assessed in advance, since they do not change
as long as the set of considered matchers and the set of considered features of
application domains do not change. It is conceivable to perform an evaluation like the
one at the Ontology Alignment Evaluation Initiative with a systematic benchmark
series,2 to identify the areas in which a matcher produces strong or weak results,
and to thus determine a trust probability for each matcher. As for their encoding
in choice space and probability values, we introduce a new alternative, where each

2http://oaei.ontologymatching.org/2010/benchmarks/

http://oaei.ontologymatching.org/2010/benchmarks/

Tightly integrated probabilistic dl-programs for representing ontology mappings 409

atomic choice along with its probability value corresponds to one trust probability;
this new alternative is then easily added to an already existing choice space (after
eventually renaming atomic choices that already occur in our choice space).

We now show how the probabilities are calculated, giving two examples from
the benchmark data set of the OAEI 2008 campaign. In particular, we use the
publication ontology in test 101 (O1), the publication ontology in test 302 (O2),
and the publication ontology in test 301 (O3). The mappings that we use have been
discovered by one of the two matchers hmatch [7] and falcon AO [26] and possibly
refined manually. Whenever we deal with a manually refined mapping by hmatch
or falcon AO, we explicitly say so. The first example shows how we can deal with
possibly inconsistent mappings in our framework.

Example 17 We consider the case where the publication ontology in test 101 (O1)
is mapped on the ontology of test 302 (O2). Below we show some mappings that
have been detected by the matching system hmatch that participated in the challenge.
The mappings are described as rules in P, which contain a conjunct indicating the
matching system that has created it and a number for identifying the mapping. These
additional conjuncts are atomic choices of the choice space C and link probabilities
(which are specified in the probability μ on the choice space C) to the rules (where
the common concept Proceedings of both ontologies O1 and O2 is renamed to the
concepts Proceedings1 and Proceedings2, respectively):

Book(X) ← Collection(X), hmatch1 ;
Proceedings2(X) ← Proceedings1(X), hmatch2 .

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C = {{hmatchi, not_hmatchi} | i ∈ {1, 2}}. It comes
along with the probability μ on C, which assigns the corresponding confidence value
n (from the matching system) to each atomic choice hmatchi and the complement
1 − n to the atomic choice not_hmatchi. In our case, we have μ(hmatch1) = 0.62,
μ(not_hmatch1) = 0.38, μ(hmatch2) = 0.73, and μ(not_hmatch2) = 0.27.

The benefits of this explicit treatment of uncertainty becomes clear when we now
try to merge this mapping with the result of another matching system. Below are two
examples of rules that describe correspondences for the same ontologies found by
the falcon system:

InCollection(X) ← Collection(X), falcon1 ;
Proceedings2(X) ← Proceedings1(X), falcon2 .

Here, the confidence encoding yields the choice space C′ = {{falconi, not_falconi} |
i ∈ {1, 2}} along with the probabilities μ′(falcon1) = 0.94, μ′(not_falcon1) = 0.06,
μ′(falcon2) = 0.96, and μ′(not_falcon2)= 0.04.

Note that directly merging these two mappings would not be a good idea for
two reasons. The first one is that we may encounter an inconsistency as shown in
Section 5. For example, in this case, the ontology O2 imposes that the concepts
InCollection and Book are disjoint. Thus, for each publication pub belonging to the
concept Collection in the ontology O1, the merged mappings infer Book(pub) and
InCollection(pub). Therefore, the first rule of each of the mappings cannot contribute
to a model of the knowledge base. The second reason is that a simple merge does not
account for the fact that the mapping between the Proceedings1 and Proceedings2

410 T. Lukasiewicz et al.

concepts has been found by both matchers and should therefore be strengthened.
Here, the mapping rule has the same status as any other rule in the mapping and
each instance of the rule has two probabilities at the same time.

Suppose that we associate with hmatch and falcon the trust probabilities 0.55
and 0.45, respectively. Based on the interpretation of confidence values as error
probabilities, and on the use of trust probabilities when resolving inconsistencies
between rules, we can now define a merged mapping set that consists of the following
rules:

Book(X) ← Collection(X), hmatch1, sel_hmatch1 ;
InCollection(X) ← Collection(X), falcon1, sel_falcon1 ;
Proceedings2(X) ← Proceedings1(X), hmatch2 ;
Proceedings2(X) ← Proceedings1(X), falcon2 .

The new choice space C′′ and the new probability μ′′ on C′′ are obtained from C ∪ C′
and μ · μ′ (which is the product of μ and μ′, i.e., (μ · μ′)(B ∪ B′)=μ(B) · μ′(B′) for
all total choices B of C and B′ of C′), respectively, by adding the alternative {sel_
hmatch1, sel_falcon1} and the two probabilities μ′′(sel_hmatch1) = 0.55 and μ′′(sel_
falcon1) = 0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Proceedings2(X) ← Proceedings1(X) holds
with the probability 1 − (1 − μ′′(hmatch2)) · (1 −μ′′(falcon2)) = 0.9892, as desired.
Informally, any randomly chosen instance of Proceedings of the ontology O1 is
also an instance of Proceedings of the ontology O2 with the probability 0.9892. In
contrast, if the mapping rule would have been discovered only by falcon or hmatch,
respectively, such an instance of Proceedings of the ontology O1 would be an instance
of Proceedings of the ontology O2 with the probability 0.96 or 0.73, respectively.

A probabilistic query Q asking for the probability that a specific publication pub
in the ontology O1 is an instance of the concept Book of the ontology O2 is given by
Q = ∃(Book(pub))[r, s]. The tight answer θ to Q under the answer set semantics is
given by θ ={r/0, s/0}, if pub is not an instance of the concept Collection in the on-
tology O1 (since there is no mapping rule that maps another concept than Collection
to the concept Book). If pub is an instance of the concept Collection, however, then
the tight answer to Q under the answer set semantics is θ ={r/0.341, s/0.341} (as
μ′′(hmatch1) · μ′′(sel_hmatch1) = 0.62 · 0.55 = 0.341). Informally, pub belongs to the
concept Book with the probabilities 0 and 0.341, respectively. Note that we may
obtain proper intervals when there are total choices with multiple answer sets.

Since the above probabilistic dl-program is positive, by Theorem 7, its well-
founded semantics coincides with the answer set semantics. Hence, the well-
founded semantics yields the same tight answer for the probabilistic query
Q =∃(Book(pub))[r, s] as above.

In the next example, we show how two ontologies can be mapped to a third one.
The resulting probabilistic dl-program has the acyclicity property, which allows for
first-order rewritability and thus for LogSpace data complexity of deciding consis-
tency and tight query processing under the well-founded semantics (see Section 9).

Example 18 The publication ontology in test 101 (O1) and the publication ontology
in test 301 (O2) are mapped to the publication ontology in test 302 (O3). Below

Tightly integrated probabilistic dl-programs for representing ontology mappings 411

we show some mappings that have been detected by the matching systems hmatch
and falcon AO. Again, the mappings are described as rules in P, which contain an
atomic choice of the choice space C as a conjunct in their bodies. Each alternative
of the choice space indicates the matching system that has created the mapping. The
function μ encodes the probabilities of the mappings. Note that the common concept
Publication of the ontologies O1, O2, and O3 is renamed to the concepts Publication1,
Publication2, andPublication3, respectively):

Published(X) ← Publication1(X), notUnpublished(X), hmatch1 ;
Published(X) ← Publication2(X), notUnpublished(X), hmatch2 ;
Publication3(X) ← Published(X), falcon1 ;
Publication3(X) ← Unpublished(X), falcon2 .

The part of the choice space mentioned in the rules above is C ={{hmatch1,

not_hmatch1}, {hmatch2, not_hmatch2}, { f alcon1, not_ f alcon1}, { f alcon2,

not_ falcon2}}. It comes along with the function μ on C, which assigns the
corresponding confidence value n (from the matching system) to each atomic
choice hmatchi and the complement 1 − n to the atomic choice not_hmatchi. In this
example, we have μ(hmatch1) = 0.72, μ(hmatch2) = 0.71, μ(falcon1) = 0.85, and
μ(falcon2) = 0.92.

Suppose that book is an instance of the concept Publication1 in ontology O1.
Then, the probabilistic query ∃(Publication3(book)|Published(book))[r, s] yields the
tight answer θ = {r/0.85, s/0.85}, under both the answer set and the well-founded
semantics.

8 Algorithms and complexity

In this section, we show how the consistency and the tight query processing problem
in probabilistic dl-programs under the well-founded semantics can be solved by an
anytime algorithm on top of procedures for solving the consistency and the query
processing problem in normal dl-programs under the well-founded semantics. More
concretely, we first describe finite fixpoint iterations for solving these two problems
in normal dl-programs. Based on this, we then describe the anytime algorithm for
the two problems in probabilistic dl-programs, and we also characterize their data
and combined complexity.

8.1 Fixpoint iteration

The well-founded semantics of normal dl-programs KB can be computed by two
finite fixpoint iterations, via the operator γ 2

KB = γKB ◦ γKB. The computation of the
operator γKB can in turn be done by one finite fixpoint iteration for computing the
least model of a positive dl-program KB′, via its immediate consequence operator
TKB′ .

In detail, to compute the well-founded semantics of a normal dl-program
KB = (L, P), i.e., by Theorem 1, WFS(KB) = lfp(γ 2

KB) ∪ ¬.(HB� \ gfp(γ 2
KB)), if it

412 T. Lukasiewicz et al.

exists, we compute the least and the greatest fixpoint of γ 2
KB as the limits of the two

fixpoint iterations

lfp(γ 2
KB) = U∞ = ⋃

i�0 Ui, where U0 = ∅, and Ui+1 = γ 2
KB(Ui), for i � 0, and

gfp(γ 2
KB) = O∞ = ⋂

i�0 Oi, where O0 = HB�, and Oi+1 = γ 2
KB(Oi), for i � 0,

respectively, which are both reached within |HB�| many steps, where γ 2
KB stands

for applying γKB twice. Note that the Ui’s are an increasing sequence, while the
Oi’s are a decreasing sequence, i.e., U0 ⊆ U1 ⊆ · · · ⊆ U∞ and O0 ⊇ O1 ⊇ · · · ⊇ O∞,
respectively.

As for the computation of γKB (and thus of γ 2
KB), recall that the application

of γKB on I ⊆ HB�, denoted γKB(I), is the least model of the positive dl-program
KBI,+ = (L+, PI), where L+ is obtained from L by removing all constraints (see
Section 4.3). The least model of KBI,+ in turn coincides with the least fixpoint of the
immediate consequence operator TKBI,+ , denoted lfp(TKBI,+), where TKBI,+ is defined
as follows for every I ⊆ HB�:

TKBI,+(I) = {H(r) | r ∈ ground(PI), I |= b for all b ∈ B(r)}
∪ {a ∈ DL� | L+ ∪ (I ∩ DL�) |= a} .

Hence, to compute γKB(I), for all I ⊆ HB�, we thus compute the least fixpoint of
TKBI,+ as the limit of the fixpoint iteration

lfp(TKBI,+) = S∞ = ⋃
i�0 Si, where S0 = ∅, and Si+1 = TKBI,+(Si), for i � 0,

which is also reached within |HB�| many steps. Note here that the Si’s are an
increasing sequence, i.e., S0 ⊆ S1 ⊆ · · · ⊆ S∞.

Finally, to assure that WFS(KB) actually exists, by Theorem 1, it remains to verify
that L ∪ (lfp(γ 2

KB) ∩ DL�) ∪ ¬.(DL� \ gfp(γ 2
KB)) is satisfiable.

8.2 Anytime algorithm

We now describe how the consistency problem for probabilistic dl-programs under
the well-founded semantics can be solved. Furthermore, we provide an anytime
algorithm for tight query processing in probabilistic dl-programs under the well-
founded semantics.

By Definition 1, a probabilistic dl-program KB = (L, P, C, μ) is w-consistent iff
every normal dl-programs (L, P ∪ {p ← | p ∈ B}) such that B is a total choice of
C with μ(B) > 0 is w-consistent. The latter can be decided by trying to compute
the well-founded semantics of the normal dl-program (L, P ∪ {p ← | p ∈ B}) as
described in Section 8.1.

By Definition 2, computing the tight answer for a probabilistic query to a w-
consistent probabilistic dl-program KB = (L, P, C, μ) under the well-founded se-
mantics can be reduced to computing the well-founded semantics of all normal dl-
programs (L, P ∪ {p ← | p ∈ B}) such that B is a total choice of C with μ(B) > 0.
Here, the number of all total choices B is generally non-neglectable. We thus propose
(i) to compute the tight answer only up to an error within a given threshold ε ∈ [0, 1],
(ii) to process the B’s along decreasing probabilities μ(B) > 0, and (iii) to eventually
stop the computation after a given time interval.

Tightly integrated probabilistic dl-programs for representing ontology mappings 413

Given a w-consistent probabilistic dl-program KB = (L, P, C, μ), a probabilistic
query Q = ∃(β|α)[r, s] with ground conditional event β|α, and an error threshold
ε ∈ [0, 1], Algorithm tight_answer (see Fig. 1) computes some θ ={r/ l′, s/u′} such that
|l − l′| + |u − u′|� ε, where {r/ l, s/u} is the tight answer for Q to KB under the well-
founded semantics. More concretely, it computes the bounds l′ and u′ by first initial-
izing the variables a, b , c, and d (which play the same role as in Definition 2). It then
computes the well-founded semantics S of the normal dl-program (L, P ∪ {p ← |
p ∈ Bi}) for every total choice Bi of C with μ(Bi) > 0, checks whether α ∧ β and
α ∧ ¬β are true or false in S, and updates a, b , c, and d accordingly. If the possible
error in the bounds falls below ε, then it stops and returns the bounds computed thus
far. Hence, in the special case where ε = 0, the algorithm computes in particular the
tight answer for Q to KB under the well-founded semantics. The algorithm is based
on two finite fixpoint iterations for computing the well-founded semantics of normal
dl-programs, which are in turn based on a finite fixpoint iteration for computing
the least model of positive dl-programs, as described in Section 8.1. The following
theorem shows that Algorithm tight_answer is sound.

Theorem 9 Let KB = (L, P, C, μ) be a w-consistent probabilistic dl-program, let Q =
∃(β|α)[r, s] be a probabilistic query with ground β|α, and let θ ={r/ l, s/u} be the
tight answer for Q to KB under the well-founded semantics. If tight_answer returns
θ ′ = {r/ l′, s/u′} for the error threshold ε ∈ [0, 1], then |l − l′| + |u − u′|� ε.

Algorithm tight_answer is actually an anytime algorithm, since we can always
interrupt it, and return the bounds computed thus far. The following theorem shows
that these bounds deviate from the tight bounds with an exactly measurable error
(note that it can also be shown that the possible error is decreasing along the

Fig. 1 Algorithm tight_answer

414 T. Lukasiewicz et al.

iterations of the while-loop). For this reason, Algorithm tight_answer also iterates
through the total choices Bi of C in a way such that the probabilities μ(Bi) are
decreasing, so that the error in the computed bounds is very likely to be low already
after few iteration steps.

Theorem 10 Let KB = (L, P, C, μ) be a w-consistent probabilistic dl-program, let
Q = ∃(β|α)[r, s] be a probabilistic query with ground β|α, let ε ∈ [0, 1] be an error
threshold, and let θ = {r/ l, s/u} be the tight answer for Q to KB under the well-founded
semantics. Suppose we run tight_answer on KB, Q, and ε, and interrupt it after line (9).
Let the returned θ ′ = {r/ l′, s/u′} be as in lines (11) to (14). Then, if v = 0, then θ = θ ′.
Otherwise,

|l − l′| + |u − u′|� v

a + d
+ v

b + c
.

8.3 Complexity

The following theorem shows that both deciding w-consistency and correct query
processing in probabilistic dl-programs KB = (L, P, C, μ) under the well-founded
semantics is complete for P in the data complexity. Recall that the complexity
class P contains all decision problems that can be solved in polynomial time on
a deterministic Turing machine, and that the data complexity for probabilistic dl-
programs KB = (L, P, C, μ) describes the case where all of KB but the facts in P
and the concept, role, and attribute membership axioms in L are fixed. Hardness for
P follows from the hardness for P of deciding, given an ordinary positive program
P and a ground atom a, whether P logically entails a in the data complexity [10].
Membership in P follows from Theorem 9 and that (a) computing the well-founded
semantics of ordinary normal programs can be done in polynomial time in the data
complexity, and (b) instance checking and knowledge base satisfiability in DL-LiteA
can be done in polynomial time. Here, |C| is bounded by a constant, since C and μ

define the probabilistic information of P, which is fixed as a part of the program in P,
while the ordinary facts in P are the variable input. Observe that, by a similar line
of argumentation, tight query processing in probabilistic dl-programs under the well-
founded semantics can also be done in polynomial time in the data complexity. Note
that this data tractability result for deciding w-consistency and tight query processing
nicely generalizes the data tractability result presented in the conference version of
this paper.

Theorem 11 (a) Given a vocabulary � and a probabilistic dl-program
KB = (L, P, C, μ), deciding whether KB is w-consistent is P-complete in the data
complexity. (b) Given additionally a probabilistic query Q = ∃(�)[r, s] with ground
literal � and reals l, u ∈ [0, 1], deciding whether θ ={r/ l, s/u} is a correct answer for Q
to KB under the well-founded semantics is P-complete in the data complexity.

The next theorem shows that both deciding w-consistency and correct query
processing in probabilistic dl-programs KB = (L, P, C, μ) under the well-founded
semantics is complete for EXP in general. The bounds follow from a similar argumen-
tation as in the case of data complexity, except that now, deciding, given an ordinary
positive program P and a ground atom a, whether P logically entails a is hard for

Tightly integrated probabilistic dl-programs for representing ontology mappings 415

EXP in general [10], and computing the well-founded semantics of ordinary normal
programs is in EXP in general. Notice that, by a similar line of argumentation, tight
query processing in probabilistic dl-programs under the well-founded semantics can
also be done in exponential time in general.

Theorem 12 (a) Given a vocabulary � and a probabilistic dl-program KB = (L, P,

C, μ), deciding whether KB is w-consistent is EXP-complete. (b) Given also a proba-
bilistic query Q = ∃(β|α)[r, s] with ground β|α and reals l, u ∈ [0, 1], deciding whether
θ ={r/ l, s/u} is a correct answer for Q to KB under the well-founded semantics is
EXP-complete.

Thus, deciding w-consistency and correct query processing in probabilistic dl-
programs under the well-founded semantics have a lower complexity than their
counterparts under the answer set semantics, which are hard for NP and co-NP in the
data and for NEXP and co-NEXP in general, as they generalize deciding consistency
and brave consequences of ground atoms under the answer set semantics in ordinary
normal programs, which are complete for NP and co-NP in the data and for NEXP
and co-NEXP in general [10].

9 First-order rewritability

We now show that deciding consistency and (correct and) tight query processing
in probabilistic dl-programs KB = (L, P, C, μ) under the well-founded semantics is
even first-order rewritable, and thus can be done in LogSpace in the data complexity,
when we make an additional acyclicity assumption. Hence, deciding consistency and
(correct and) tight query processing from such KB under the well-founded semantics
can be done very efficiently by means of commercial, SQL-expressive relational
database systems. In the same time, normal and probabilistic dl-programs under the
additional acyclicity assumption are still expressive enough to represent ontology
mappings as described in Sections 5 and 7, respectively.

We first formalize the notion of first-order rewritability for the consistency and the
tight query processing problem in probabilistic dl-programs under the well-founded
semantics. The w-consistency problem in probabilistic dl-programs KB = (L, P, C, μ)

is f irst-order rewritable iff it can be expressed in terms of a first-order formula φ over
the set F of all concept, role, and attribute membership axioms in L and all facts
in P, i.e., KB is w-consistent iff IF |=φ, where IF is the model satisfying exactly F. A
probabilistic query Q = ∃(β|α)[r, s] with ground β|α to a w-consistent probabilistic dl-
program KB = (L, P, C, μ) is f irst-order rewritable iff the tight answer θ ={r/ l, s/u}
for Q to KB under the well-founded semantics can be expressed in terms of a first-
order formula φ(l, u) over the set F of all concept, role, and attribute membership
axioms in L and all facts in P, i.e., θ ={r/ l, s/u} is the tight answer for Q to KB under
the well-founded semantics iff IF |=φ(l, u).

We next define the notion of acyclicity for ordinary normal programs, normal
dl-programs, and probabilistic dl-programs as follows. Given a normal program P,
we denote by PP the set of all predicate symbols in P. We say P is acyclic iff a
mapping κ : PP → {0, 1, . . . , n} exists such that for every r ∈ P, the predicate symbol
p of H(r), and every predicate symbol q of some b ∈ B(r), it holds that κ(p) > κ(q).

416 T. Lukasiewicz et al.

A normal dl-program KB = (L, P) is acyclic iff (i) P is acyclic, and (ii) L can be
partitioned into description logic knowledge bases LI

1, . . . , LI
m, LO over pairwise

disjoint sets of atomic concepts, atomic roles, and attributes such that the atomic
concepts, atomic roles, and attributes of LI

1, . . . , LI
m only occur in bodies of rules in

P and the ones of LO only occur in heads of rules in P. A probabilistic dl-program
KB = (L, P, C, μ) is acyclic iff every normal dl-program (L, P ∪ {p ← | p ∈ B}) is
acyclic for every total choice B of C with μ(B) > 0. Intuitively, acyclic probabilistic
dl-programs KB = (L, P, C, μ) allow for reading out instances of concepts, roles, and
attributes from several input ontologies LI

1, . . . , LI
m, elaborating them in an acyclic

normal program P, and then merging the result into an output ontology LO.
The following theorem shows that both deciding w-consistency and tight query

processing in acyclic probabilistic dl-programs KB = (L, P) under the well-founded
semantics are first-order rewritable (and thus can be done in LogSpace in the data
complexity).

Theorem 13 (a) Given an alphabet � and an acyclic probabilistic dl-program
KB = (L, P, C, μ), deciding whether KB is w-consistent is f irst-order rewritable. (b)
Given additionally a probabilistic query Q =∃(β|α)[r, s] with ground β|α, computing
the tight answer for Q to KB under the well-founded semantics is f irst-order rewritable.

10 Related work

In this section, we give a comparison to most closely related approaches to (i)
combinations of rules and ontologies under the well-founded semantics, (ii) proba-
bilistic description logic programs, (iii) other probabilistic languages for representing
ontology mappings, and (iv) approaches to representing complex ontology mappings.

10.1 Combinations of rules and ontologies under the well-founded semantics

To our knowledge, there are no previous approaches to probabilistic generalizations
of logic programs or of combinations of rules and ontologies that use the well-
founded semantics to interpret non-monotonic negations in rule bodies. However,
there are several ordinary combinations of rules and ontologies (for the Semantic
Web), for which a well-founded semantics has been defined; more specifically, the
works [15, 29], and [13] define a well-founded semantics for the loosely integrated
dl-programs in [14, 15], for the hybrid MKNF knowledge bases in [38, 39], and for an
integration of rules and ontologies that is close in spirit to Rosati’s approach [46, 47],
respectively. As for the more general use of the well-founded semantics in the
context of the Web, several reasoners adopt it for handling nonmonotonic negation,
including F lora-23 (which builds on XSB4) and OntoBroker,5 which are based
on F-Logic [28], and IRIS and MINS,6 towards the WSML-Rule language [11].

3http://flora.sourceforge.net/
4http://xsb.sourceforge.net/
5http://www.ontoprise.de/en/home/products/ontobroker/
6http://iris-reasoner.org/, http://tools.sti-innsbruck.at/mins/

http://f/lora.sourceforge.net/
http://xsb.sourceforge.net/
http://www.ontoprise.de/en/home/products/ontobroker/
http://iris-reasoner.org/
http://tools.sti-innsbruck.at/mins/

Tightly integrated probabilistic dl-programs for representing ontology mappings 417

10.2 Probabilistic description logic programs

It is important to point out that the probabilistic description logic programs here are
very different from the ones in [32] (and their recent tractable variant in [33]) as well
as from the ones in [44]. First, they are based on the tight integration between the
ontology component L and the rule component P of [35], while the ones in [32, 33]
realize the loose query-based integration between the ontology component L and
the rule component P of [14, 15]. This implies in particular that the vocabularies of L
and P here may have common elements (see also Example 3), while the vocabularies
of L and P in [32, 33] are necessarily disjoint. Furthermore, the probabilistic
description logic programs here behave semantically very differently from the ones
in [32, 33]. As a consequence, the probabilistic description logic programs here are
especially useful for sophisticated probabilistic reasoning tasks involving ontologies
(including representing and reasoning with ontology mappings under probabilistic
uncertainty and inconsistency), while the ones in [32, 33] can especially be used as
query interfaces to Web databases (including RDF theories). Second, differently
from here, the works [32, 33] do not explore the aspect of first-order rewritability.
Third, the works [32, 33] also do not explore the use of probabilistic description logic
programs for representing and reasoning with ontology mappings under probabilistic
uncertainty and inconsistency. Furthermore, the programs in [44] are much less
expressive in general.

10.3 Probabilistic languages for representing ontology mappings

There are several languages for representing mappings between ontologies [44, 50].
However, all of them, except for Bayesian description logic programs (BDLPs)
[44] represent mappings deterministically. BDLPs differ from the probabilistic dl-
programs here in the expressibility of both the description logic component L and the
logic programming component P. In BDLPs, differently from here, L is formulated
in the description logic programming (DLP) fragment from Grosof et al. [25], and
P does not support any kind of negation, which is strictly less expressive than here.
Furthermore, differently from here, the semantics of BDLPs is based on a translation
of L into logic programs.

There are other probabilistic extensions of different Web languages that are
conceivable to be used as mapping languages in the context of ontology mapping [43].
Examples of such probabilistic extensions are probabilistic extensions of description
logics like P-Classic, which is a probabilistic extension of the Classic description
logic [30], PR-OWL, which is an ontology that describes multi-entity Bayesian
networks [9], BayesOWL, which provides a probabilistic extension of a subset of
OWL [12], and P-SHOQ(D), which is a probabilistic extension of SHOQ(D) [24]
(see also P-SHIF(D) and P-SHOIN (D) in [34]). P-Classic and BayesOWL have
the disadvantage of a too low expressivity. PR-OWL does not provide a tight
formal integration between ontologies and the probabilistic model that they describe.
Although P-SHOQ is quite expressive and provides a tight integration between the
description logic and the probabilistic model, it does not have a rules component and
cannot solve the instance retrieval reasoning task as efficiently as a rule language.
Probabilistic extensions of rule languages for the Web besides the already mentioned
BDLPS are also pOWL Lite− and pOWL LiteEQ [40]. These two languages differ

418 T. Lukasiewicz et al.

only by equality, which is disallowed in pOWL Lite−. Both support also only the
description logic programming fragment (possibly enriched with equality) that is
supported by BDLPs and thus have the same expressivity drawback. Note that except
for BDLPs, none of these languages have been considered for an application in the
area of ontology mappings.

10.4 Representing complex ontology mappings

While almost all existing matching systems are restricted to the generation of
simple equivalence correspondences between classes and relations in ontologies,
there is an increasing interest in the identification and representation of complex
correspondences between ontologies [45, 48]. Along this line of research, a number
of common alignment patterns have been defined by Scharffe and others [49]; they
capture typical situations where a complex relation exists between elements from
two ontologies. It is easy to see that many of the patterns proposed in [49] can
directly or indirectly be represented using our formalism. Here are two examples of
the more complex patterns (note that the examples are slightly modified to enhance
readability, without changing the nature of the patterns):

Class relation mapping The pattern links a class expression to a relation in the
target ontology. The example given in [49] can be represented in tightly integrated
description logic programs via the following rule:

marriage(X1, X2, D) ← Marriage(X), partner1(X, X1),

partner2(X, X2), date(X, D) .

Attribute value mapping The pattern relates two attribute values in different
ontologies. The example given in [49] can be represented in tightly integrated
description logic programs via the following rule:

country(A, Ireland) ← Address(A), countryCode(A, ′IE′) .

These examples show that the proposed formalism is a good candidate for
providing a formal underpinning of complex ontology mapping patterns. A more
detailed and complete investigation of the formalization of proposed patterns is
subject to future work.

11 Conclusion

In this paper, we have explored the use of tightly integrated probabilistic dl-programs
as a rule-based framework for representing and reasoning with ontology mappings.
We have newly presented the well-founded semantics for such programs, and
analyzed its semantic and computational properties. In particular, we have shown
that the well-founded semantics approximates the answer set semantics. Further-
more, we have presented an anytime algorithm for tight query processing in such
programs, based on fixpoint iterations for computing the well-founded semantics of
normal dl-programs, and we have analyzed the data (resp., general) complexity of
consistency checking and correct query processing for tightly integrated probabilistic
dl-programs, which are both complete for P (resp., EXP).

Tightly integrated probabilistic dl-programs for representing ontology mappings 419

As for their use in representing ontology mappings, tightly integrated probabilistic
dl-programs have the following useful features:

– The semantics of the language is based on the tight integration between ontology
and rule languages of [35], which assumes no structural separation between the
vocabularies of the description logic and the logic program components. This
enables us to have description logic concepts and roles in both rule bodies and
rule heads. This is necessary if we want to use rules to combine ontologies.

– The rule language is quite expressive. In particular, we can have nonmonotonic
negations in rule bodies. This gives a rich basis for refining and rewriting
automatically created mappings for resolving inconsistencies.

– The integration with probability theory provides us with a sound formal frame-
work for representing and reasoning with confidence values. In particular, we
can interpret the confidence values as error probabilities and use standard
techniques for combining them. We can also resolve inconsistencies by using
trust probabilities.

– Consistency checking and tight query processing under the well-founded seman-
tics are tractable in the data complexity. In a special case, which is especially
interesting for representing and reasoning with ontology mappings, these prob-
lems are even first-order rewritable (and thus can be done in LogSpace in the
data complexity).

Hence, compared to the answer set semantics of tightly integrated probabilistic
dl-programs, (its semantic approximation by) the well-founded semantics can be
calculated via fixpoint iterations, and both consistency checking and query processing
have a lower (data and general) complexity, as well as a practically useful first-order
rewritable special case.

Note that the results of this paper are not restricted to DL-LiteA as underlying
ontology language; they also hold when any other tractable ontology language from
the DL-Lite family [5] is used instead. Most of the results (except for the first-order
rewritability ones) also carry over to more expressive tractable ontology languages,
such as Horn-SHIQ [27].

We leave for future work the implementation of tightly integrated probabilistic
dl-programs. Another interesting topic for future work is to explore whether the
first-order rewritability results can be extended to an even larger class of tightly inte-
grated probabilistic dl-programs. Furthermore, it would be interesting to investigate
whether one can develop an efficient top-k query technique (as, e.g., in [36, 51])
for tightly integrated probabilistic dl-programs: Rather than computing the tight
probability interval for a given ground atom, such a technique returns the k most
probable ground instances of a given non-ground atom.

Acknowledgements Thomas Lukasiewicz has been supported by the German Research Founda-
tion (DFG) under the Heisenberg Programme, by a Yahoo! Research Fellowship, by the Austrian
Science Fund (FWF) under the project P18146-N04, by the EPSRC under the grant EP/E010865/1
“Schema Mappings and Automated Services for Data Integration”, and by the European Re-
search Council under the EU’s 7th Framework Programme (FP7/2007-2013)/ERC grant 246858—
DIADEM. Heiner Stuckenschmidt and Livia Predoiu have been supported by an Emmy-Noether
Grant of the German Research Foundation (DFG). We thank the reviewers of this paper and
its URSW-2007 and FoIKS-2008 abstracts for their useful and constructive comments, which have
helped to improve this work.

420 T. Lukasiewicz et al.

Appendix: Proofs

Proof of Theorem 5 Recall that KB = (L, P, C, μ) is consistent under the answer set
semantics iff (L, P ∪ {p ← | p ∈ B}) has an answer set for every total choice B of
C with μ(B) > 0. By Theorem 2, the latter implies that (L, P ∪ {p ← | p ∈ B}) is
consistent under the well-founded semantics for every total choice B of C with
μ(B) > 0, which is in turn equivalent to KB = (L, P, C, μ) being consistent under the
well-founded semantics. ��

Proof of Theorem 6

(a) By Theorem 3, for every total choice B of C with μ(B) > 0, the answer set se-
mantics of (L, P ∪ {p ← | p ∈ B}) consists of a single answer set, and it coincides
with the well-founded semantics of (L, P ∪ {p ← | p ∈ B}). This implies that a,
b , c, and d in Theorem 4 coincide with a, b , c, and d in Definition 2, respectively.

(b) Since SB = WFS(L, P ∪ {p ← | p ∈ B}) is total for every total choice B of C with
μ(B) > 0, it follows that (1) α ∧ β is true in SB iff α ∧ β is not false in SB, and
(2) α ∧ ¬β is true in SB iff α ∧ ¬β is not false in SB, for every total choice B of
C with μ(B) > 0. Hence, b− = 1 − a and d− = 1 − c, and thus b = a and c = d,
respectively. It thus follows that either l = 1 and u = 0, or l = u. ��

Proof of Theorem 7

(a) We follow the same line of argumentation as in the proof of Theorem 8. But
since � is defined for KB = (L, P, C, μ), either � or ¬.� belongs to SB = WFS(L,

P ∪ {p ← | p ∈ B}) for every total choice B of C with μ(B) > 0, and thus we
obtain a = as, b s = b , c = cs, and ds = d rather than only a � as, b s � b , c � cs,
and ds � d, respectively, which implies the stronger result [l′, u′] = [l, u] rather
than only [l′, u′] ⊆ [l, u].

(b) Since � is defined for KB = (L, P, C, μ), either � or ¬.� belongs to
SB = WFS(L, P ∪ {p ← | p ∈ B}) for every total choice B of C with μ(B) > 0.
It thus follows that (a) � is true in SB iff � is not false in SB, and (b) ¬� is true in
SB iff ¬� is not false in SB, for every total choice B of C with μ(B) > 0. Hence,
b− = 1 − a and d− = 1 − c, and thus b = a and c = d, respectively. Hence, l = 1
and u = 0, or l = u. ��

Proof of Theorem 8 Recall that, by Definition 2, the tight answer θ = {r/ l, s/u} for
Q to KB under the well-founded semantics is given as follows:

θ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{r/1, s/0} if b = 0 and d = 0;

{r/0, s/0} if b = 0 and d �= 0;

{r/1, s/1} if b �= 0 and d = 0;
{

r
/

a
a + d

, s
/

b
b + c

}

otherwise,

where (a) a (resp., b−) is the sum of all μ(B) such that (a.i) B is a total choice of C
with μ(B) > 0 and (a.ii) � is true (resp., false) in WFS(L, P ∪ {p ← | p ∈ B}), (b) c
(resp., d−) is the sum of all μ(B) such that (b.i) B is a total choice of C with μ(B) > 0
and (b.ii) ¬.� is true (resp., false) in WFS(L, P ∪ {p ← | p ∈ B}), and (c) b = 1−b−

Tightly integrated probabilistic dl-programs for representing ontology mappings 421

and d = 1−d−. Similarly, by Theorem 4, the tight answer θ ′ = {r/ l′, s/u′} for Q to KB
under the answer set semantics is given as follows:

θ ′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{r/1, s/0} if b s = 0 and ds = 0;

{r/0, s/0} if b s = 0 and ds �= 0;

{r/1, s/1} if b s �= 0 and ds = 0;
{

r
/

as

as + ds
, s

/
b s

b s + cs

}

otherwise,

where (a) as (resp., b s) is the sum of all μ(B) such that (a.i) B is a total choice of C
with μ(B) > 0 and (a.ii) � is true in every (resp., some) answer set of (L, P ∪ {p ← |
p ∈ B}), and (b) cs (resp., ds) is the sum of all μ(B) such that (b.i) B is a total
choice of C with μ(B) > 0 and (b.ii) ¬.� is true in every (resp., some) answer set
of (L, P ∪ {p ← | p ∈ B}). By Theorem 3, it thus follows that a � as, b s � b , c � cs,
and ds � d. Since clearly as � b s and cs � ds, we thus obtain a � as � b s � b and
c � cs � ds � d. We now consider four cases (i)–(iv) as follows. (i) If b = 0 and d = 0,
then also b s = 0 and ds = 0, and thus [l′, u′] = [l, u] = [1, 0]. (ii) If b �= 0 and d = 0,
then b s � 0 and ds = 0, and thus [l′, u′] is either [1, 0] or [1, 1], which implies that
[l′, u′] ⊆ [l, u] = [1, 1]. (iii) If b = 0 and d �= 0, then b s = 0 and ds � 0, and thus [l′, u′]
is either [1, 0] or [0, 0], which implies that [l′, u′] ⊆ [l, u]= [0, 0]. (iv) If b �= 0 and
d �= 0, then b s � 0 and ds � 0, and we consider four subcases as follows. (iv.a) If b s = 0
and ds = 0, then [l′, u′] = [1, 0]⊆ [l, u]. (iv.b) If b s = 0 and ds �= 0, then [l′, u′] = [0, 0],
a = 0, and l = 0, which implies that [l′, u′] ⊆ [l, u]. (iv.c) If b s �= 0 and ds = 0, then
[l′, u′] = [1, 1], c = 0, and u = 1, which implies that [l′, u′] ⊆ [l, u]. (iv.d) If b s �= 0
and ds �= 0, then [l′, u′] = [as

as+ds
, b s

b s+cs
] and [l, u] = [a

a+d , b
b+c], which also implies that

[l′, u′] ⊆ [l, u]. ��

Proof of Theorem 9 Since the number of all total choices B of C is finite, Algorithm
tight_answer always terminates. Let a′, b ′, c′, d′, i′, and v′ be the final values of the
variables a, b , c, d, i, and v, respectively. Observe then that a′ + v′, c′ + v′ � 1 and
b ′, d′ � v′. If v′ = 0, then the algorithm has processed all the total choices B of C
with μ(B) > 0. Hence, in this case, by Definition 2, the algorithm returns the exact
tight answer for Q to KB. Suppose now v′ > 0 (and thus i′ � k, b ′ �= 0, d′ �= 0, and

v′
a′+d′ + v′

b ′+c′ � ε). Then, the returned lower and upper bounds are given by l′ = a′
a′+d′

and u′ = b ′
b ′+c′ , respectively. From the algorithm, it is easy to verify that the exact tight

lower and upper bounds l and u are of the form

l = a′ + va

a′ + va + d′ − vd
and u = b ′ − vb

b ′ − vb + c′ + vc
,

respectively, where va, vb , vc, vd ∈ [0, v′]. Observe that

l =
(

1 + d′ − vd

a′ + va

)−1

and u =
(

1 + c′ + vc

b ′ − vb

)−1

, if a′ + va > 0 and b ′ − vb > 0,

422 T. Lukasiewicz et al.

respectively. This implies that l′ � l � a′+v′
a′+d′ and b ′−v′

b ′+c′ � u � u′, respectively. Hence,

|l − l′| + |u − u′| = (l − l′) + (u′ − u)

� a′ + v′

a′ + d′ − a′

a′ + d′ + b ′

b ′ + c′ − b ′ − v′

b ′ + c′

= v′

a′ + d′ + v′

b ′ + c′

� ε .

��

Proof of Theorem 10 Immediate by the proof of Theorem 9. ��

Proof of Theorem 11 Hardness for P in both (a) and (b) follows from the P-hardness
of deciding, given an ordinary positive program P and a ground atom a, whether
P logically entails a in the data complexity [10]. Membership in P in both (a) and
(b) follows from Theorem 9 and the fact that the fixpoint iterations for computing
WFS(L, P ∪ {p ← | p ∈ B}) for each total choice B of C with μ(B) > 0 can be done
in polynomial time in the data complexity, since instance checking and knowledge
base satisfiability in DL-LiteA can be done in polynomial time. ��

Proof of Theorem 12 Hardness for EXP in both (a) and (b) follows from the EXP-
hardness of deciding, given an ordinary positive program P and a ground atom
a, whether P logically entails a [10]. Membership in EXP in both (a) and (b)
follows from Theorem 9 and the fact that the fixpoint iterations for computing
WFS(L, P ∪ {p ← | p ∈ B}) for each total choice B of C with μ(B) > 0 can be done
in exponential time, since instance checking and knowledge base satisfiability in DL-
LiteA can be done in polynomial time. ��

Proof of Theorem 13 We first show that for each total choice B of C with μ(B) > 0,
deciding whether a given ground atom a belongs to WFS(L, P ∪ {p ← | p ∈ B}) is
first-order rewritable. Since every (L, P ∪ {p ← | p ∈ B}) is acyclic, there exists a
mapping κ : PP → {0, 1, . . . , n} such that for every rule r ∈ P, the predicate symbol
p of H(r), and every predicate symbol q of some b ∈ B(r), it holds that κ(p) > κ(q).
We call κ(p) the rank of p. Since every LI

j is defined in DL-LiteA, as shown in [41],
every concept, role, and attribute membership a from LI

j can be expressed in terms
of a first-order formula over the concept, role, and attribute membership axioms
in LI

j . We first show by induction on κ(p) ∈ {0, 1, . . . , n} that every predicate p ∈PP

(relative to (L ∪ P) \ LO) can also be expressed in terms of a first-order formula over
the concept, role, and attribute membership axioms in L \ LO and the database facts
in P, constructed from predicate symbols of rank 0.

Basis Every predicate symbol p of rank 0 that does not occur in L, can trivially be
expressed in terms of a first-order formula over the database facts in P. As stated
above, by [41], every predicate symbol p of rank 0 that occurs in some LI

j can be
expressed in terms of a first-order formula over the concept, role, and attribute
membership axioms in LI

j . In summary, every predicate symbol p of rank 0 can

Tightly integrated probabilistic dl-programs for representing ontology mappings 423

be expressed in terms of a first-order formula over the concept, role, and attribute
membership axioms in L \ LO and the database facts in P.

Induction Consider any predicate symbol p ∈PP along with the set of all its defining
rules in P, i.e., all rules in P with p in their head. W.l.o.g., the heads p(x) of all these
rules coincide. Let α(x) denote the disjunction of the existentially quantified bodies
of these rules. By the induction hypothesis, every body predicate symbol in α(x) can
be expressed in terms of a first-order formula over the concept, role, and attribute
membership axioms in L \ LO and the database facts in P. Let the first-order formula
α′(x) be obtained from α(x) by replacing all atoms by their first-order formulas. Then,
α′(x) expresses p in terms of the concept, role, and attribute membership axioms in
L \ LO and the database facts in P.

We next add the description logic knowledge base LO. As stated above, by [41],
every predicate symbol p that occurs in LO can be expressed in terms of a first-
order formula α(x) over the concept, role, and attribute membership axioms in LO.
As shown above, every predicate symbol q ∈PP (relative to (L ∪ P) \ LO) can be
expressed in terms of a first-order formula φ over the concept, role, and attribute
membership axioms in L \ LO and the database facts in P. Let the first-order
formula α′(x) be obtained from α(x) by replacing every atom q(y) by the formula
q(y) ∨ φ(y). Then, α′(x) is a first-order formula for p over the concept, role, and
attribute membership axioms in L and the database facts in P.

Consequently, every atom and thus also every ground event α (relative to
(L, P ∪ {p ← | p ∈ B})) can be expressed in terms of a first-order formula αB over
the concept, role, and attribute membership axioms in L and the database facts in P.
Similarly, the probability of α in KB can be expressed as the first-order formula φ(pr)
consisting of the disjunction of all prob(pr) ∧ α′

B1
∧ · · · ∧ α′

Bn
, where (i) B1, . . . , Bn

are the total choices of C with μ(Bi) > 0, (ii) α′
Bi

is either αBi or ¬αBi , and (iii) pr
is the sum of all μ(Bi), i ∈ {1, . . . , n}, such that α′

Bi
=αBi . Similarly, the probability

interval [l, u] for a ground conditional event β|α in KB can be expressed as the first-
order formula φ(l, u) consisting of the disjunction of all probl(l) ∧ prob u(u) ∧ (α ∧
β)′B1

∧ · · · ∧ (α ∧ β)′Bn
∧ α′

B1
∧ · · · ∧ α′

Bn
, where (i) B1, . . . , Bn are the total choices of

C with μ(Bi)> 0, (ii) (α ∧ β)′Bi
is either (α ∧ β)Bi or ¬(α ∧ β)Bi , (iii) α′

Bi
is either αBi

or ¬αBi , and (iv) l = u = v/w, if w > 0, and l = 1 and u = 0, otherwise (note that the
acyclicity of KB implies that the well-founded semantics of KB is total), where v is the
sum of all μ(Bi), i ∈ {1, . . . , n}, such that (α ∧ β)′Bi

= (α ∧ β)Bi , and w is the sum of all
μ(Bi), i ∈ {1, . . . , n}, such that α′

Bi
=αBi . In summary, θ = {r/ l, s/u} is the tight answer

for Q to KB under the well-founded semantics iff F |=φ(l, u), where F is the set of
all concept, role, and attribute membership axioms in L and the database facts in P.

As for the w-consistency problem, by [41], the satisfiability of LO and every LI
j can

be expressed in terms of a first-order formula over the concept, role, and attribute
membership axioms in LO and every LI

j , respectively. The acyclicity of KB implies
that we only have to check these satisfiabilities, where all facts derived under B are
added to LO, for every total choice B of C with μ(B) > 0. The first-order formula
for this satisfiability check is constructed as above, and then disjunctively combined
with the disjunction of the first-order formulas for all LI

j . The first-order formula for
the w-consistency problem is then the disjunction of all these first-order formulas, for
every total choice B of C with μ(B) > 0. ��

424 T. Lukasiewicz et al.

References

1. Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming
and nonmonotonic reasoning. J. Autom. Reasoning 10(3), 399–420 (1993)

2. Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: A framework for representing ontol-
ogy mappings under probabilities and inconsistency. In: Proc. URSW-2007. CEUR Workshop
Proceedings 327, CEUR-WS.org (2008)

3. Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic de-
scription logic programs for representing ontology mappings. In: Proc. FoIKS-2008, pp. 178–198.
LNCS 4932. Springer, New York (2008)

4. Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic descrip-
tion logic programs for the Semantic Web. J. Data Sem. 12, 95–130 (2009)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. Autom. Reason. 39(3),
385–429 (2007)

6. Caracciolo, C., Euzenat, J., Hollink, L., Ichise, R., Isaac, A., Malaise, V., Meilicke, C., Pane, J.,
Shvaiko, P., Stuckenschmidt, H., Svab-Zamazal, O., Svatek, V.: Results of the ontology align-
ment evaluation initiative 2008. In: Proc. ISWC-2008 Workshop on Ontology Matching (2008)

7. Castano, S., Ferrara, A., Messa, G.: ISLab HMatch Results for OAEI 2006. In: Proc. Interna-
tional Workshop on Ontology Matching (2006)

8. da Costa, P.C.G.: Bayesian semantics for the Semantic Web. Doctoral dissertation, George
Mason University, Fairfax, VA, USA (2005)

9. da Costa, P.C.G., Laskey, K.B.: PR-OWL: a framework for probabilistic ontologies. In:
Proc. FOIS-2006, pp. 237–249. IOS Press, Amsterdam (2006)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001)

11. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web service modeling language WSML:
an overview. In: Proc. ESWC-2006, pp. 590–604. LNCS 4011. Springer, New York (2006)

12. Ding, Z., Peng, Y., Pan, R.: BayesOWL: uncertainty modeling in Semantic Web ontologies.
In: Soft Computing in Ontologies and Semantic Web, pp. 3–28. Springer, New York (2006)

13. Drabent, W., Małuszyński, J.: Well-founded semantics for hybrid rules. In: Proc. RR-2007,
pp. 1–15. LNCS 4524. Springer, New York (2007)

14. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-
gramming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–1539
(2008)

15. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description
logic programs in the Semantic Web. ACM Trans. Comput. Log. 12(2), Article 11 (2011)

16. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
17. Euzenat, J., Stuckenschmidt, H., Yatskevich, M.: Introduction to the ontology alignment evalua-

tion 2005. In: Proc. K-CAP-2005 Workshop on Integrating Ontologies (2005)
18. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., van Hage, W.R.,

Yatskevich, M.: First results of the ontology alignment evaluation initiative 2006. In: Proc. ISWC-
2006 Workshop on Ontology Matching (2006)

19. Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V.,
van Hage, W.R., Yatskevich, M.: Results of the ontology alignment evaluation initiative 2007.
In: Proc. ISWC-2007 Workshop on Ontology Matching (2007)

20. Euzenat, J., Ferrara, A., Hollink, L., Isaac, A., Joslyn, C., Malaise, V., Meilicke, C., Nikolov,
A., Pane, J., Sabou, M., Scharffe, F., Shvaiko, P., Spiliopoulos, V., Stuckenschmidt, H.,
Svab-Zamazal, O., Svatek, V., Trojahn dos Santos, C., Vouros, G., Wang, S.: Results of the
ontology alignment evaluation initiative 2009. In: Proc. ISWC-2009 Workshop on Ontology
Matching (2009)

21. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics
and complexity. In: Proc. JELIA-2004, pp. 200–212. LNCS 3229. Springer, New York (2004)

22. Finzi, A., Lukasiewicz, T.: Structure-based causes and explanations in the independent choice
logic. In: Proc. UAI-2003, pp. 225–232. Morgan Kaufmann, San Mateo (2003)

23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New
Gener. Comput. 9(3/4), 365–386 (1991)

24. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): a probabilistic extension of SHOQ(D) for proba-
bilistic ontologies in the Semantic Web. In: Proc. JELIA-2002, pp. 86–97. LNCS 2424. Springer,
New York (2002)

Tightly integrated probabilistic dl-programs for representing ontology mappings 425

25. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic
programs with description logics. In: Proc. WWW-2003, pp. 48–57. ACM Press, New York (2003)

26. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: a divide-and-conquer approach. Data
Knowl. Eng. 67(1), 140–160 (2008)

27. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description
logics. In: Proc. IJCAI-2005, pp. 466–471 (2005)

28. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages.
J. ACM 42(4), 741–843 (1995)

29. Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid MKNF knowledge
bases. In: Proc. ECAI-2008, pp. 99–103. Frontiers in Artificial Intelligence and Applications 178.
IOS Press, Amsterdam (2008)

30. Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: a tractable probabilistic description logic.
In: Proc. AAAI-2007, pp. 390–397. AAAI Press, Menlo Park (1997)

31. Lukasiewicz, T.: A novel combination of answer set programming with description logics for the
Semantic Web. In: Proc. ESWC-2007, pp. 384–398. LNCS 4519. Springer, New York (2007)

32. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason. 45(2), 288–307
(2007)

33. Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Proc. SUM-2007, pp. 143–
156. LNCS 4772. Springer, New York (2007)

34. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883 (2008)
35. Lukasiewicz, T.: A novel combination of answer set programming with description logics for the

Semantic Web. IEEE Trans. Knowl. Data Eng. 22(11), 1577–1592 (2010)
36. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for

the Semantic Web. In: Proc. SUM-2007, pp. 16–30. LNCS 4772. Springer, New York (2007)
37. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: Proc. AAAI-

2007, pp. 1408–1413. AAAI Press, Menlo Park (2007)
38. Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In:

Proc. IJCAI-2007, pp. 477–482. AAAI Press/IJCAI (2007)
39. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live together

happily ever after? In: Proc. ISWC-2006, pp. 501–514. LNCS 4273. Springer, New York (2006)
40. Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL Lite subsets based on proba-

bilistic Datalog. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 14(1), 17–42 (2006)
41. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to

ontologies. J. Data Sem. 10, 133–173 (2008)
42. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif.

Intell. 94(1/2), 7–56 (1997)
43. Predoiu, L.: Probabilistic models for the Semantic Web. In: Ma, Z., Wang, H. (eds.) The Semantic

Web for Knowledge and Data Management: Technologies and Practices, pp. 74–105. Information
Science Reference (2009)

44. Predoiu, L., Stuckenschmidt, H.: A probabilistic framework for information integration and
retrieval on the Semantic Web. In: Proc. InterDB-2007 Workshop on Database Interoperability
(2007)

45. Ritze, D., Meilicke, C., Svab-Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology
matching approach for detecting complex correspondences. In: Proc. ISWC-2009 Workshop on
Ontology Matching (2009)

46. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web Sem.
3(1), 61–73 (2005)

47. Rosati, R.: DL+log: tight integration of description logics and disjunctive Datalog. In: Proc.
KR-2006, pp. 68–78. AAAI Press, Menlo Park (2006)

48. Scharffe, F., Fensel, D.: Correspondence patterns for ontology alignment. In: Proc. EKAW-2008,
pp. 83–92. LNCS 5268. Springer, New York (2008)

49. Scharffe, F., de Bruijn, J., Foxvog, D.: Ontology mediation patterns library, V2. Deliverable
D4.3.2, EU-IST Integrated Project (IP) IST-2003-506826 SEKT (2006)

50. Serafini, L., Stuckenschmidt, H., Wache, H.: A formal investigation of mapping languages for
terminological knowledge. In: Proc. IJCAI-2005, pp. 576–581 (2005)

51. Straccia, U.: Towards top-k query answering in description logics: the case of DL-Lite.
In: Proc. JELIA-2006, pp. 439–451. LNCS 4160. Springer, New York (2006)

52. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs.
J. ACM 38(3), 620–650 (1991)

	Tightly integrated probabilistic description logic programs for representing ontology mappings
	Abstract
	Introduction
	Representation requirements
	Tractable ontology languages
	Syntax
	Semantics

	Tightly integrated normal dl-programs
	Syntax
	Answer set semantics
	Well-founded semantics

	Representing ontology mappings
	Tightly integrated probabilistic dl-programs
	Syntax
	Answer set semantics
	Well-founded semantics

	Representing ontology mappings with confidence values
	Algorithms and complexity
	Fixpoint iteration
	Anytime algorithm
	Complexity

	First-order rewritability
	Related work
	Combinations of rules and ontologies under the well-founded semantics
	Probabilistic description logic programs
	Probabilistic languages for representing ontology mappings
	Representing complex ontology mappings

	Conclusion
	Appendix: Proofs
	References

