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Abstract The article is based on the approximate solution of a well known Lane–
Emden–Fowler (LEF) equation. A trial solution of the model is formulated as
an artificial feed-forward neural network containing unknown weights which are
optimized in an unsupervised way. The proposed scheme is tested successfully on
various test cases of initial value problems of LEF equations. The reliability and
effectiveness is validated through comprehensive statistical analysis.
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1 Introduction

Many problems in mathematical physics, chemical physics and astrophysics are
modeled by second order non-linear ordinary differential equations (ODEs). A
second order non-linear ODE of the type Emden–Fowler is used to model the
phenomena of the theory of stellar structure, the thermal behavior of a spherical
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cloud of gas, isothermal gas sphere and theory of thermionic currents [1–3]. These
models are difficult to solve analytically and some time it is impossible, the solution
of Emden–Fowler is even more challenging due to the singularity behavior at the
origin [4]. In this regard applications are made to the relevant numerical methods.
The generic form of Emden–Fowler taken in this paper is as follow

ÿ + r
x

ẏ + a f (x) g(y) = k(x), r ≥ 0, (1)

with the following initial conditions

y(0) = c ; ẏ(0) = b , (2)

where c is a constant and, f (x) and g(y) are some given functions of x and y
respectively. The case, when f (x) = 1 and a = 1, the expression (1) reduces to Lane–
Emden equation, which, with specified g(y), was used to model various phenomenas
of engineering [2].

The vast applications and importance of Emden–Fowler equation attracts a
number of researchers to find out its numerical solution. In this regard, Adomian
decomposition methods were used for approximate analytic solution to Lane–Emden
equations by Shawagfeh [5] and Wazwaz [6]. Recently Wazwaz [7] applied Adomian
decomposition method (ADM) to solve time dependent Emden–Fowler type of
equations. The effect of competing parameters on the existence and non existence
of positive solutions of singular Emden–Fowler equation is presented by Guedda
[8]. Oscillation criteria for a class of second order Emden–Fowler delay dynamic
equations on time scale has been solved by mean of Riccati transformation technique
[9]. Variation iteration method (VIM) is used for approximate analytic solutions for
time dependent Emden–Fowler type equation by Batiha [10]. Homtopy perturbation
method (HPM) is another powerful and convenient analytical technique given by
He [11]. A special class of time dependent Emden–Fowler equation was solved
analytically in [12, 13] using the ADM, HPM and Homtopy analysis method (HAM)
[14], respectively. Recently, the HAM was successfully applied to Cauchy reaction
diffusion problems by Bataineh et al. [15]; they also extended the applicability of
HAM to the system of ODEs. After a comprehensive survey it has been investigated
that a number of researchers analytically and numerically solved various forms of
Emden–Fowler equation by various methods and in different applications [2, 3, 16].
A lot of work has been done to solve this notorious problem of highly stochastic
nature but no one yet try to approximate the solution with the help of heuristic
computation like evolutionary computing, swarm intelligence, genetic programming,
artificial immune systems, simulating annealing etc. That is the motivation to cope
with different heuristic techniques to solve linear and non linear forms of Emden–
Fowler equation.

The mathematical models based on ANN methods have universal capability
to solve a variety of problems associated with differential equations (DEs) [17–
19]. An unsupervised feed forward ANN is used for finding the general solution
of magnetohydrodynamic plasma equilibrium problem represented by ODEs [20].
Radial basis functions neural network were exploited to design a moving mass
attitude control system [21] to control a vehicle with three axis stabilization in intra-
atmospheric space. Recently some of the developed solutions of the differential
equation incorporate the ANN with evolutionary computation techniques [22–24]. It
is well known that the computational techniques like genetic algorithms avoid to get
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stuck in local minima and it maintain the diversity in searching of candidate solution
[25, 26]. Moreover, there is a need to see the applicability of the stochastic solvers on
even complex form of non-linear systems having singularity at x = 0.

In this paper, an investigation and analysis is carried out for successful model-
ing of Emden–Fowler type of non-linear ODE using feed-forward ANN assisted
with heuristic computation. According to the best of author literature survey, this
paper represents the first application of heuristic computational technique for the
numerical approximation of Emden Fowler equation. The modeling of the equation
is performed by ANN networks by defining an unsupervised error. The unknown
weights of these networks are highly stochastic by nature, therefore it has been tuned
with genetic algorithm (GA) and simulating annealing (SA) hybridized with interior
point algorithm (IPA) for efficient local search. We systematically discuss various
models of f (x) and g(y) to verify the efficiency of stochastic numerical solvers. A
number of Monte Carlo simulations are performed to determine the effectiveness of
the given scheme. Moreover the reliability of the scheme is carried out with superior
statistical analysis.

The remainder of this paper is organized as follows. The neural network math-
ematical modeling along with formulation of the fitness function is revealed in
Section 2. The learning procedure for the adaptive parameters of the neural network
is introduced in Section 3. A detailed computer simulations and discussion on the
results for various numerical problems is presented in Section 4. In the last section
we conclude our main findings along with some directions for future research.

2 Designed methodology

The designed methodology consist of two parts, in the first part artificial neural
network mapping along with the feed-forward architecture has been revealed. In the
second part learning methodology for both local and global optimization has been
narrated along with the logical steps.

2.1 Artificial neural network modeling

In this sub-section, an approximate mathematical model has been developed using
feed-forward ANN. As a feed-forward NN is a universal function approximator [27–
29]. Any network suitably trained to approximate a mapping satisfying some ODE
will have an output function that will also approximate the DE [30]. For this following
continuous mapping is employed,

z(x) =
m∑

i=1

αiϕ (wix + bi) (3)

ż(x) =
m∑

i=1

αiϕ̇ (wix + bi) (4)

z̈(x) =
m∑

i=1

αiϕ̈ (wix + bi) (5)
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For z, ż and z̈ respectively, where φ being the activation function normally taken as
log sigmoid for hidden layers and linear function for output layer.

ϕ(t) = 1

1 + e−t
(6)

ϕ(t) = t (7)

where αi, wi, and β i are real-valued bounded adaptive parameters and m is the
number of neurons in the ANN architecture.

2.2 Fitness evaluation function

The unsupervised error function e is formulated by the linear combination of network
(3) to (5) for any problem in the form given is (1) as

e = 1

1 + ej
j = 1, 2, . . . . . . (8)

where j is the cycle index, and the function ej is defined as:

ej = e1 + e2|j (9)
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Fig. 1 Artificial neural network architecture of Emden–Fowler equation
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where e1 is error associated with the equation is given as the mean of sum of
square error.

e1 = 1

s

s∑

i=1

[
z̈ (ti) + 2

ti
ż (ti) + az (ti)

]2

(10)

where s = mh, m is the total number of steps and h defines the size of step, t is
taken between (0, T). Greater the value of s more will be the accuracy but at the
cost of greater computational complexity of the algorithm. Setting the value of s is
bit fiddly, because it is a parameter that decides a compromise between accuracy and
computational cost.

Similarly e2 is linked with initial conditions are written as,

e2 = 1

N

N−1∑

k=0

(z(0) − ck)
2 + 1

N

N−1∑

k=0

(ż(0) − b k)
2 (11)

where N is the number of initial conditions. It is quite evident that subject to the
availability of unknown weights for which the function ej approaches zero then the
value of unsupervised error eapproaches to 1, hence, z(t) approaches the solution
y(t). The linear combinations of networks from (3) to (5) can approximately model
the differential equation given in (1). It is named as differential equation neural
network (DE-NN). The DE-NN architecture for Emden–Fowler is given in the Fig. 1.

3 Learning procedure

In this section, our intent is to provide the necessary details about learning procedure
for unknown weight of the neural network architecture. The learning methodologies
are based on algorithms like simulating annealing and genetic algorithm hybridized
with interior point algorithm.

3.1 Genetic algorithm

The genetic algorithm (GA) is a heuristic search that mimics the process of natural
evolution [31]. This heuristic is routinely used to generate useful solutions to opti-
mization and search problems which are computationally complex to solve [32]. GAs
belong to the larger class of evolutionary algorithms (EA), which generate solutions
to optimization problems using techniques, such as inheritance, mutation, selection,
and crossover [33]. Commonly, the algorithm terminates, when, either a maximum
number of generations has been produced, or a satisfactory fitness level has been
reached. The major advantage of GA is that, it is robust, simple, efficient and does
not trapped in poor region of search space like classical numerical methods [34]. The
generic flow diagram of the evolutionary algorithm used for optimization is provided
in Fig. 2.

3.2 Simulating annealing

The method was independently described by Scott Kirkpatrick, C. Daniel Gelatt and
Mario P. Vecchi in 1983 [35], and by Vlado Černý in 1985 [36]. SA is a generic
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Fig. 2 Generic flow diagram of genetic algorithm

probabilistic metaheuristic for the global optimization problem of applied mathemat-
ics, namely locating a good approximation to the global optimum of a given function
in a large search space. The name and inspiration of SA come from annealing in
metallurgy, a technique involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. The heat causes the atoms
to become unstuck from their initial positions (a local minimum of the internal
energy) [37]. The converging capabilities of SA are remarkable in pattern analysis
and intelligent system designs [38]. In the simulated annealing (SA) method, each
point s of the search space is analogous to a state of some physical system, and the
function E(s) to be minimized is analogous to the internal energy of the system in that
state. The goal is to bring the system, from an arbitrary initial state, to a state with the
minimum possible energy. At each step, the SA heuristic considers some neighboring
state s′ of the current state s, and probabilistically decides between moving the system
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to state s′ or staying in state s. These probabilities ultimately lead the system to move
to states of lower energy. Typically this step is repeated until the system reaches a
state that is good enough for the application, or until a given computation budget has
been exhausted [39].

3.3 Interior point algorithm

Interior point methods (IPA) also referred to as barrier methods are a certain class
of algorithms to solve linear and nonlinear convex optimization problems. These
algorithms have been inspired by Karmarkar’s algorithm, developed by Narendra
Karmarkar in 1984 for linear programming [40]. The basic elements of the method
consist of a self-concordant barrier function used to encode the convex set [41].
Contrary to the simplex method, it reaches an optimal solution by traversing the
interior of the feasible region [42].

The algorithm runs iteratively for the optimization of adaptive parameters, the
structure of the given algorithm is described briefly in following steps:

Step (1) Initialization population
An initial population is generated in a bounded range with the help of a
random number generator in the following way

Xl = [xl1, xl2, . . . , xln] ; l = 1 to m

where

xlk = (U − L) ∗ rlk + L; k = 1 to n

where xik is the kth element of a chromosome Xl of length n, and U and
L are upper and lower bounds for elements of population. rlk is a random
number between 0 and 1.

Step (2) Generation of subpopulations
Divide the population in q subpopulations, each with m

q chromosomes.
Step (3) Ranking

The individuals in each subpopulation are ranked using user defined ob-
jective function that calculates the fitness of all individuals. The individuals
are arranged such that the member X1 is considered to be dominating on
the member X2 if X1 is no worse than X2 in all objectives and X1 is strictly
better than X2 in at least one objective.

Step (4) (Selection)
Half chromosomes from each subpopulation are selected as parents
by taking m

2q − 2 top ranked individuals and 2 from the worst ranked
individuals.

Step (5) (Crossover)
Crossover of two parents Xp and Xq generates two new off-springs Xa and
Xb with the following elements

xak =
{

xqk k > i
xpk k ≤ i

xbk =
{

xqk k ≤ i
xpk k > i



192 J.A. Khan et al.

where i is a random integer in the range 1 to n − 1 and xlk is the kth element
of chromosome Xl . In order to search the entire space the crossover is also
held for some of the pairs of elite and busted individuals.

Step (6) (Mutation)
Few new mutated chromosomes are included by small random constant
value addition in some elements of chromosomes selected at random to
increase the diversity in the search space.

Step (7) Formulate new subpopulation by combining initial subpopulation and
generated population in steps (4)–(6).

Step (8) (Termination Criteria)
For all m

q sub-population repeat steps (3)–(6) until the termination criteria
meets.

Step (9) (Local Search)
The chromosome attain from the above step are given as the start point to
interior point algorithm for further refinement.

4 Simulation and results

In this section, we shell consider three test problems based on generalized Emden–
Fowler equation. In order to prove the applicability and effectiveness of the proposed
scheme a non-linear homogenous Emden Fowler equation has been considered as a
Problem 1. The comparison is made with exact, Homtopy analysis method (HAM)
as well as by stochastic solvers. Moreover the statistical analysis is also carried out
for solvers to see the reliability of the algorithm. In Problem 2, another non-linear
homogenous Emden–Fowler equation is solved by the proposed method as well as
Homtopy Perturbation method (HPM) and exact solution. In the last example the
results are compared with the proposed methodology, various solvers and with exact
method. The error differences of the SA and GA are shown in the form of the graphs
to have a close look on the strengths of the stochastic solvers.

Case 1 f (x) = xm, g(y) = ey

Problem 1 Let us consider a non-linear, homogeneous Emden–Fowler type equa-
tion [6, 7, 11]

ÿ + 5

x
ẏ + 8a

(
ey + 2ey/2

) = 0, (12)

with initial and boundary conditions,

y(0) = 0, ẏ(0) = 0,

The exact solution for the this equation is given as

y(t) = −2 ln
(
1 + ax2

)
(13)
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The following results of Homtopy analysis method (HAM) upto third term given in
[11] is used to take the analytic result of the expression (12)

u1 = 2ahx2

u2 = 2ahx2 + 2ah2x2 + a2h2x4

u2 = 2ahx2 + 4ah2x2 + 2ah3x2 + 2a2h2x4 + 2a2h3x4 + 2

3
a3h3x6

By considering the value of h = −1 and a = 1, the above relation is converted into
the following limiting solution of third term

u(x) = −2ax2 + a2x4 − 2

3
a3x6 (14)

The neural network modeling of the equation in (12) is done by DE-NN networks
that consist of ten neurons (i.e., N = 10), it means 30 adaptive parameters are
optimized during the training. The real numbered values of the weights are restricted
in the interval [−15, 15].The training is performed for inputs between 0 to 1 with a
problem specific fitness function. The fitness evaluation function formulated for (12)
is given as

ej = 1

11

11∑

i=1

[
z̈ (ti) + 5

ti
ż (ti) + 8

(
ez(ti) + 2e

z(ti)/2
)]2

+ 1

2

[{z(0)}2 + {ż(0)}2]
∣∣∣∣
j
, j = 1, 2, 3 . . . (15)

where, j is the number of generations and z(t), ż(t) and z̈(t) are the networks provided
in (3) to (5) respectively. In order to compute the minimum value of the fitness
function, an initial population with N number of chromosome is generated. The
scheme runs iteratively for specified number of generations or fitness function ej ≤
10−9, which ever comes earlier. The parameter setting for the global optimization by
SA and GA is listed in Table 1. The best chromosome achieved by global search
is passed as a start point to IPA, which is an efficient and reliable local search
technique. The parameter setting for IPA is also given in Table 1. One can find
the solution for the above problem for any input time t between 0 and 1 by the
best refined weights achieved after the hybridization. For the approximate numerical
solution of (12) the proposed technique has been applied by considering the value of
r = 5, with some value of a = 1, 2 and 3 respectively. The comparisons of the results
for SA and GA are made with exact solution and limiting solution of third term
approximation for HAM method.

The results along with error difference of SA, GA and HAM methods with exact
solution are summarized in Table 3. This is obvious from the given table that the
accuracy of third term HAM method decreases as the time increases from 0 to 1
while the results obtained by SA and GA are consistent and are in a good agreement
with the exact solution. By taking the limiting solution on large number of terms, we
can get results at a good accuracy but on the cost of high computations. However,
equivalent precision in the results are found with reduced computational cost, when
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Table 1 Parameters setting for SA, IPA, and GA

GA IPA SA

Parameters Setting Parameters Setting Parameters Setting

Population 240 Subproblem Idl Temperature Exponential
size algorithm factorization update temperature

function update

Chromosome 30 Chromosome 30 Chromosome 30
size size size

No. of runs 2000 Hessian BFGS Mesh size (1, 10)

Selection Stochastic Minimum 1e-8 Annealing Fast
uniform perturbation function annealing

Reproduction Elite Maximum 0.1 Re-annealing 200
count of 2 perturbation interval
crossover

fraction 0.7
Mutation Adaptive Maximum 3000 Maximum 90000

feasible evaluation evaluation
function function

Hybridization IPA Maximum 1000 Hybridization IPA
iteration

compared with evolutionary computational intelligence based on neural networks
and Genetic Algorithm hybrid with Interior point Algorithm. Another advantage
of the given scheme is that it involves mathematically less expensive operations like
crossover, selection and mutation.

One of the best set chromosome of DE-NN trained heuristically by SA and GA
are provided in Table 2. The weights in Table 2 is used to optimize the Problem 1
and the results are listed in Table 3 for a = 1.

In order to have a reliability in the proposed method a comprehensive simulation
is performed by considering a = 2 and a = 3 respectively on the same inputs from 0
to 1. The real valued chromosomes for adaptive parameters αi, wi and βi of a = 1, 2, 3
are represented in Fig. 3 in the form of multiple bars.

The results achieved by the chromosomes represented in Fig. 3 are thoroughly
given in Fig. 4. Figure 4a provides the result for t ∈ [0,1] with a step size of 0.1

Table 2 DE-NN weights trained by different solvers for Problem 1

I wi αi β i

SA GA SA GA SA GA

1 1.4194776 1.3016022 −1.5326960 −1.1591736 −1.2697695 −1.2774433
2 −0.3377788 −0.6914482 0.0867564 0.758588 0.1556725 −1.5518364
3 1.3075257 1.3758173 0.5201725 −2.5515528 0.5014446 −2.2615302
4 1.1603475 −3.8639086 −1.4711290 −1.1223040 −1.7152615 −2.2908400
5 −1.2964929 2.5369194 −0.6763090 −0.8775756 0.2254261 −0.6663938
6 3.0114602 −1.3861552 2.7874442 0.92781952 1.2373492 1.9764443
7 −2.5958861 −0.5048545 1.0323294 −0.2828672 1.0723367 1.0073925
8 1.1789274 −2.9993198 −3.1465080 −1.9515727 −1.3092351 −0.7214404
9 0.2404541 −0.1051222 −1.5441880 −0.1131359 0.2116409 −0.0237624
10 0.0920477 −2.1426376 −1.0836810 1.09664274 1.2447624 1.2280225
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Table 3 Comparison of results for the solution of problem in Case 1

t y(t) ŷ(t)
∣∣y(t) − ŷ(t)

∣∣

SA GA HAM SA GA HAM

0.0 0.0000000 −1.55E-06 −2.24E-07 0.0000000 1.55E-06 2.24E-07 0.000000
0.1 −0.0199007 −0.0198783 −0.0198923 −0.0199007 2.24E-05 8.34E-06 4.96E-09
0.2 −0.0784414 −0.0784194 −0.0784337 −0.0784427 2.20E-05 7.71E-06 1.24E-06
0.3 −0.1723554 −0.1723453 −0.1723516 −0.1723860 1.01E-05 3.77E-06 3.06E-05
0.4 −0.2968400 −0.2968288 −0.2968353 −0.2971307 1.13E-05 4.73E-06 0.000291
0.5 −0.4462871 −0.4462706 −0.4462805 −0.4479167 1.65E-05 6.55E-06 0.001630
0.6 −0.6149694 −0.6149552 −0.6149643 −0.6215040 1.42E-05 5.07E-06 0.006535
0.7 −0.7975522 −0.7975441 −0.7975497 −0.8183327 8.18E-06 2.50E-06 0.020780
0.8 −0.9893925 −0.9893854 −0.9893899 −1.0451627 7.07E-06 2.59E-06 0.055770
0.9 −1.1866537 −1.1866447 −1.1866498 −1.3181940 9.02E-06 3.91E-06 0.131540
1.0 −1.3862944 −1.3862883 −1.3862922 −1.6666667 6.09E-06 2.18E-06 0.280372

for different values of the variable coefficient by GA hybrid with IPA. The above
chromosomes are also used to find the behavior of their corresponding derivative
of the solution as shown in the Fig. 4d. It can be seen from Fig. 4a and d that the
results obtained by GA hybrid with IPA are overlapped to the exact solution as
well as at its derivative. As there is no noticeable difference between the exact and
proposed technique so the results of the same chromosomes are also achieved for t ∈
[0,4]. In Fig. 4b and e, it is evident that the error is starting to accumulate for input
greater than 2 but still under a acceptable level of accuracy. Figure 4c and f presents
the results of the results for the input time t ∈ [0,1] with the same chromosomes as
achieved in Fig. 3. This is worth mentioning that for Fig. 4c and f some of the error
difference is there, but still the trend is the same. It has been seen in the solution of
non-linear systems that the results start to diverge for the large input times but in the
presented method, this is not the case. This is the point of attention that the results
of the derivatives of the problem with the given method also validate the capability
of stochastic solvers.

Fig. 3 Real valued chromosomes of adaptive weights for Problem 1 at a = 1, a = 2 an a = 3
respectively for interval between 0 to 1
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(a) (d) 

(b) (e) 

(c) (f) 

Fig. 4 The results of the Problem 1 and their derivatives for a = 1,2,3 with GA and exact solution

The results drawn in Fig. 4 are at the log scale as the error difference between
exact and approximated methods is from 10−5 to 10−6.

It can be concluded form Fig. 4 that the results are convergent for smaller training
inputs and it is still consistent for the larger inputs. However the accuracy for a
longer time intervals can be calculated by training for larger intervals. We have
optimized the problem for larger interval from 0 to 4. Now this time the results
remain convergent even for this large interval but at a cost of large computations.
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The chromosomes obtained by training from 0 to 4 are also used to get results
from 0 to 10 for both of the solution and its derivative. Figure 5a and b show the
experimental results of the Problem 1 for training from 0 to 4, while Fig. 5c and d
represents the results of its corresponding derivatives. It has been observed that the
error started to grow after t = 7, however this error can be reduced by training for
even larger intervals. It can be concluded that there is always a trade off between the
computational cost and level of accuracy.

The chromosome attained in the training of Problem 1 from 0 to 4 are provided
in the Fig. 6. These weights are in a bounded range, by using these tuned adaptive
variable one can get the reported result. It is remarkable to mention that only 30 units
of neurons are needed to solve such a complex non-linear problem, which is a small
number as compared to the number of basic function required in the conventional
calculations iteratively. To get a reliable statistical analysis for the efficiency of
the given method a large number of simulations are performed. In this regard 125
independent runs are carried out for finding the weights of DE-NN optimized with
SA and GA algorithms.

The matlab 7.7 version optimization tool box is used for SA, GA and IPA with
setting given in the Table 1. The chromosomes obtained by SA and GA are given
as a start point to IPA. All 125 independent run results are ranked in descending

(a ) (c) 

(b) (d) 

Fig. 5 The results of the problem and their derivatives for larger time spans with GA and exact
solution
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Fig. 6 Real valued chromosomes of adaptive weights for Problem 1 at a = 1,a = 2 an a = 3
respectively for interval between 0 to 4

order; the results of 25 runs are discarded for a better refinement. The discarded
independent runs are ill with respect to the desired level of accuracy. From the
remaining 100 runs the analysis is made on the criteria of best, worst, mean and
standard deviation (STD). The best is defined as the minimum value of the function
ej while the worst is the maximum value of the problem specific fitness function.

The statistical results of the solution and its derivatives are given in the Table 4 for
SA-IPA while Table 5 presents the statistical analysis for GA-IPA. The absolute of
the error difference is taken with exact and approximated solutions from stochastic
solvers.

The best values for the solution and its derivative lie in the range of 10−6 to 10−7

for SA and 10−6 to 10−8.
The statistical analysis is made for 125 independent runs, best 100 value of the

function ej for GA, SA-IPA and GA-IPA are drawn in the decreasing order in Fig. 7.
The results are drawn on log-scale as the stochastic solvers provide the results close to

Table 4 Statistical analysis of SA-IPA for the problem in Case 1

t SA-IPA
∣∣y(t) − ŷ(t)

∣∣ SA-IPA
∣∣y′(t) − ŷ′(t)

∣∣

Best Worst Mean STD Best Worst Mean STD

0 1.59E-06 0.3981116 0.0077061 0.0475609 4.93E-06 0.1375817 0.003319 0.018618
0.1 2.42E-06 0.4078750 0.0081924 0.0497579 2.48E-05 0.2161927 0.007198 0.028326
0.2 2.94E-05 0.4041971 0.0084656 0.0502946 4.10E-07 0.1519571 0.004509 0.019977
0.3 7.98E-06 0.3838130 0.0081235 0.0479361 5.62E-07 0.2809099 0.007577 0.038486
0.4 5.16E-06 0.3496018 0.0075024 0.0437811 5.26E-06 0.3936050 0.007966 0.046685
0.5 2.28E-07 0.3071916 0.0067488 0.0390909 4.11E-06 0.4438464 0.008318 0.048712
0.6 1.23E-06 0.2628983 0.0059721 0.0344089 1.95E-07 0.4325150 0.008369 0.047540
0.7 7.40E-06 0.2223111 0.0052307 0.0299886 3.79E-06 0.3728862 0.007862 0.043151
0.8 1.15E-06 0.1891149 0.0045437 0.0260048 4.18E-06 0.2898748 0.006915 0.037425
0.9 3.70E-06 0.1638794 0.0039304 0.0225083 9.74E-06 0.2224257 0.006256 0.032872
1.0 8.45E-07 0.1429506 0.0033790 0.0193419 4.53E-05 0.2277216 0.006040 0.031511
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Table 5 Statistical analysis of GA-IPA for the problem in Case 1

t GA-IPA
∣∣y(t) − ŷ(t)

∣∣ GA-IPA
∣∣y′(t) − ŷ′(t)

∣∣

Best Worst Mean STD Best Worst Mean STD

0 8.32E-08 0.0001571 1.54E-05 2.75E-05 1.72E-07 0.0005165 4.27E-05 6.42E-05
0.1 6.76E-08 0.0001249 3.03E-05 2.55E-05 3.08E-06 0.0014745 0.000227 0.000216
0.2 1.27E-06 0.0001865 3.24E-05 3.12E-05 3.43E-06 0.0002540 0.000112 5.93E-05
0.3 2.70E-07 0.0001212 2.25E-05 2.50E-05 1.90E-07 0.0010292 0.000104 0.000149
0.4 1.36E-06 0.0001181 1.91E-05 2.10E-05 1.06E-07 0.0006177 5.97E-05 8.13E-05
0.5 3.76E-08 0.0001014 1.99E-05 1.84E-05 2.21E-07 0.0002282 5.47E-05 5.27E-05
0.6 1.00E-06 8.490E-05 1.95E-05 1.60E-05 1.78E-06 0.0006360 6.66E-05 8.41E-05
0.7 8.76E-07 0.0001115 1.69E-05 1.85E-05 1.44E-07 0.0004913 5.24E-05 6.24E-05
0.8 5.16E-08 0.0001376 1.52E-05 1.97E-05 3.24E-09 0.0001630 3.62E-05 3.62E-05
0.9 1.04E-07 0.0001167 1.42E-05 1.64E-05 7.56E-08 0.0004424 2.86E-05 6.04E-05
1.0 1.02E-08 8.100E-05 1.11E-05 1.24E-05 2.25E-06 0.0002694 5.17E-05 4.08E-05

each other. It has been noticed that GA-IPA characteristics curve is always superior
to SA-IPA and GA in term of minimum of ej.

Case 2 f (x) = xm, g(y) = yn ln(y)

Problem 2 Another type of the nonlinear, homogeneous Emden–Fowler equation is
taken to investigate the strengths of the proposed stochastic algorithm. Consider the
equation of Emden–Fowler [6, 7]

ÿ + 8

x
ẏ + 18ay + 4ay ln y = 0 (16)

subject to the following conditions

y(0) = 1, ẏ(0) = 0, (17)

Fig. 7 Comparison of DE-NN
networks optimized with
stochastic solvers for 100
independent runs
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The exact solution obtained Wazwaz [7] by Adomian decomposition method is
as follow,

y(x) = e−ax2
(18)

The Problem 2 is also solved numerical by using Homtopy Perturbation method
(HPM) method upto a limiting solution of fourth order and following relationships
are obtained from [43] to take the analytic result of (16).

u0 = 1

u1 = −ax2

u2 = 1

2
a2x4

u3 = −1

3
a3x6

By considering the value of a = 1 the above relation is converted into the following
relation

u(x) = 1 − x2 + 1

2
x4 − 1

3
x6 (19)

This problem is solved on the same manner as the previous one by considering the
value of r = 8 and constant coefficient a = 1. The problem specific fitness function
for (16) is given below as

ej = 1

11

11∑

i=1

[
z̈ (ti) + 8

ti
ż (ti) + 18z (ti) + 4 z (ti) ln (z (ti))

]2

+ 1

2

[{z(0) − 1}2 + {ż(0)}2]
∣∣∣∣
j

(20)

where, j = 1, 2, 3.... is the number of generation used for the given algorithm. This
time the numerical method used for the limiting solution is Homtopy perturbation
method (HPM) of order four. The HAM method, exact solution and the proposed
solution is compared to see the working of the proposed method. The results are
summarized in Table 6 along with error difference of SA, GA and HPM methods
with exact solution.

The one of the best chromosomes tuned by SA and GA hybridized by IPA for
constructed DE-NN architecture are narrated in Table 7. The real values of the
adaptive parameters are between 10 to −10.

The error of the results achieved by SA and GA in comparison to exact solution
is given on the training set t between 0 and 1 and results are shown in the Table 6.

The training of the weights of Problem 2 is also performed iteratively for 125
independent runs for a reliable statistical analysis. The results for best 100 run are
given for GA, SA-IPA and GA-IPA respectively in Fig. 8. This is quite evident from
the Fig. 8 that the results achieved by GA-IPA are not only consistent but also the
value of fitness function ej is minimum in other words the fitness has been maximized.

The statistical analysis for problem in Case 2 is also made on the same pattern
as in Problem 1. The results of SA-IPA is given in Table 8 which clearly mention
that best of the fitness value is in an acceptable range of 10−6 to 10−8 for SA-IPA
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Table 6 Comparison of results for the solution of Problem 2

t SA GA HPM

y(t) ŷ(t)
∣∣y(t) − ŷ(t)

∣∣ ŷ(t)
∣∣y(t) − ŷ(t)

∣∣ ŷ(t)
∣∣y(t) − ŷ(t)

∣∣

0.0 1.0000000 1.0000301 3.01E-05 0.9999945 5.46E-06 1.000000 0.000000000
0.1 0.9900498 0.9900765 2.66E-05 0.9900465 3.30E-06 0.990050 4.15835E-10
0.2 0.9607894 0.9608197 3.02E-05 0.9607871 2.29E-06 0.960789 1.05819E-07
0.3 0.9139312 0.9139616 3.04E-05 0.9139282 2.94E-06 0.913929 2.68527E-06
0.4 0.8521438 0.8521687 2.49E-05 0.8521405 3.26E-06 0.852117 2.64556E-05
0.5 0.7788008 0.7788180 1.72E-05 0.7787980 2.75E-06 0.778646 0.000154950
0.6 0.6976763 0.6976891 1.28E-05 0.6976743 2.03E-06 0.697024 0.000652326
0.7 0.6126264 0.6126415 1.51E-05 0.6126246 1.76E-06 0.610442 0.002184561
0.8 0.5272924 0.5273142 2.18E-05 0.5272907 1.76E-06 0.521109 0.006183091
0.9 0.4448581 0.4448837 2.56E-05 0.4448567 1.36E-06 0.429477 0.015381566
1.0 0.3678794 0.3679015 2.20E-05 0.3678787 7.83E-07 0.333333 0.034546108

while for GA-IPA the 10−7 to 10−8. This is the point to be notice that the best
value of the derivative of Problem 2 is also in the range of 10−7 to 10−8 for GA-IPA
(Table 9).

Case 3 f (x) = xm, g(y) = yn

Problem 3 Consider the following non homogeneous Emden–Fowler equation
[17, 22]

ÿ + 8

x
ẏ + xy = x5 − x4 + 44x2 − 30x (21)

where the initial conditions are given as

y(0) = 0, ẏ(0) = 0 (22)

The exact solution of the problem is [10, 36]

y(x) = x4 − x3 (23)

Table 7 DE-NN weights trained by different solvers for Problem 2

I SA GA

wi αi bi wi αi bi

1 1.5201467 8.8901147 0.9027935 1.4716276 −0.4755607 1.6002860
2 −1.5685892 −7.3210845 7.9901269 2.4783652 0.4507208 1.3647668
3 −2.5359836 0.8868132 4.6943234 0.9541985 −0.3475089 1.3352805
4 −1.7266383 6.4666929 0.7572675 2.5578620 1.3607064 1.3871906
5 −5.0384262 −2.4886952 −7.4792495 −2.3116898 1.6004335 1.5874304
6 1.3903107 −7.0050581 2.0164435 0.3587036 −0.4600746 1.1781354
7 4.3444801 −5.7561590 7.8112571 2.4280146 −0.1688584 −0.6624523
8 0.7428610 8.4312150 5.5882520 −0.6946742 −0.8847606 1.7750085
9 −0.6469537 −7.7219384 1.6934410 2.8451283 −0.3666042 −0.9588452
10 3.9783800 6.7728618 9.1006489 1.9122634 0.4222301 −0.4777037



202 J.A. Khan et al.

Fig. 8 Comparison of GA,
Sa-IPA and GA-IPA for 100
independent runs for
Problem 2

The (21) is the special form of expression (1) by taking r = 8 and a = 1. The
problem is also solved on the same pattern as the previous problems, with a number
of variations, the number of neurons in each hidden layer are taken as m = 8
which results in 24 unknown adaptive weights (αi, wi and bi). These parameters
are restricted to real numbers between (−10, 10). A randomly generated initial
population consists of a set of 100 chromosomes. Each chromosome has a length
of 24 parameters. The input of the training set is taken from time t ∈ (0, 1) with a
step size of 0.1. It means that s = 11 in the expression (10) is to be used, so the fitness
evaluation function subject to the Problem 3 in this case can be given as:

ej = 1

11

11∑

i=1

[
z̈ (ti) + 8

ti
ż (ti) + tiz (ti) − (ti)5 + (ti)4 − 44 (ti)2 + 30ti

]2

+ 1

2

[{z(0)}2 + {ż(0)}2]
∣∣∣∣
j
, j = 1, 2, 3 . . . (24)

Table 8 Statistical analysis of SA-IPA for the problem in Case 2

t SA-IPA
∣∣y(t) − ŷ(t)

∣∣ SA-IPA
∣∣y′(t) − ŷ′(t)

∣∣

Best Worst Mean STD Best Worst Mean STD

0 5.44E-06 0.4784636 0.0105718 0.0659547 2.14E-05 0.1322593 0.0027999 0.0153775
0.1 2.50E-07 0.4829271 0.0105837 0.0657393 1.86E-05 0.1258985 0.0037624 0.0133579
0.2 4.62E-06 0.4707706 0.0103640 0.0639148 8.60E-06 0.1982206 0.0046631 0.0256108
0.3 5.26E-06 0.4441879 0.0098226 0.0606821 9.22E-06 0.3281620 0.0072667 0.0399769
0.4 1.61E-06 0.4063106 0.0090563 0.0559941 2.34E-06 0.4230523 0.0092947 0.0538737
0.5 1.40E-05 0.3608972 0.0080880 0.0500828 1.34E-06 0.4784944 0.0108722 0.0636673
0.6 8.72E-06 0.3119360 0.0070140 0.0434912 1.27E-05 0.4943658 0.0114913 0.0672539
0.7 6.55E-06 0.2631978 0.0059292 0.0368166 8.44E-06 0.4751860 0.0110547 0.0655619
0.8 4.42E-07 0.2177561 0.0049074 0.0304788 9.15E-07 0.4304859 0.0101328 0.0607597
0.9 9.06E-08 0.1774355 0.0039639 0.0247030 1.64E-06 0.4002562 0.0092000 0.0546916
1.0 2.17E-06 0.1420642 0.0031492 0.0195324 5.92E-06 0.3587941 0.0081473 0.0490579
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Table 9 Statistical analysis of GA-IPA for the problem in Case 2

t GA-IPA
∣∣y(t) = ŷ(t)

∣∣ GA-IPA
∣∣y′(t) = ŷ′(t)

∣∣

Best Worst Mean STD Best Worst Mean STD

0 3.62E-08 0.0003170 1.75E-05 3.81E-05 1.51E-08 8.36E-05 2.26E-05 1.74E-05
0.1 1.07E-07 0.0003079 1.74E-05 3.81E-05 9.39E-08 0.0002902 8.89E-05 6.27E-05
0.2 3.23E-07 0.0002956 1.81E-05 3.72E-05 2.52E-07 0.0002698 5.11E-05 4.02E-05
0.3 2.89E-08 0.0002844 1.49E-05 3.55E-05 1.48E-07 0.0002478 5.79E-05 4.79E-05
0.4 4.29E-08 0.0002660 1.36E-05 3.20E-05 4.32E-07 0.0002475 4.13E-05 4.42E-05
0.5 4.40E-08 0.0002344 1.17E-05 2.83E-05 3.39E-07 0.0003781 5.17E-05 5.27E-05
0.6 2.23E-07 0.0001933 1.20E-05 2.43E-05 4.80E-07 0.0004222 2.64E-05 4.61E-05
0.7 1.10E-07 0.0001541 1.04E-05 2.09E-05 2.18E-07 0.0003448 4.36E-05 5.26E-05
0.8 1.66E-08 0.0001263 8.49E-06 1.81E-05 4.47E-07 0.0002431 3.66E-05 4.05E-05
0.9 5.51E-08 0.0001091 6.87E-06 1.47E-05 1.07E-07 0.0003073 3.35E-05 4.81E-05
1.0 4.67E-08 8.990E-05 4.92E-06 1.15E-05 3.15E-07 0.0002595 3.39E-05 4.36E-05

where j be the number of generations, z̈, ż and z are the networks given in (5), (4) and
(3) respectively. Our scheme runs iteratively in order to find the minimum of fitness
function ej, with stoppage criteria as 2000 number of runs or fitness value ej ≤ 10−10

whichever comes earlier. One of the best unknown weights trained stochastically by
DE-NN algorithms for the step size of 0.1 for SA and GA are provided in Fig. 9a and
b respectively in the bounded range. These weights can be used to obtain the solution
of the equation for any real input time t between 0 and 1. The trained weights by SA
and GA hybridized by IPA provide the results so close to each other that it was
merely difficult to differentiate between the accuracy level of both of the stochastic
solvers, so the error of each method with the exact solution has been computed at
each time step. The absolute error of the exact solution with the results achieved by
the training of SA-IPA and GA-IPA are given in the Fig. 8. The Fig. 10 is drawn on
the log scale to have a clear view on the difference of both the errors. This obvious
from the Fig. 9 that the SA-IPA provides the results upto an error of 10−4 and GA-
IPA in the range of 10−6 to 10−8, which clarify the strengths of the genetic algorithm
in optimization of complex problems.

(a) (b)

Fig. 9 The unknown weights trained by DE-NN algorithm for Problem 3, a for SA and b for GA



204 J.A. Khan et al.

Fig. 10 The difference of the
absolute error with the exact
for SA-IPA and GA-IPA
|y(t) − z(t)|

The training of the weights of Problem 3 is highly stochastic in nature so the
statistical analysis is made to see the consistency and accuracy for the stochastic
optimizer. 125 independent runs are for made for both SA and GA in collaboration
of IPA. The results for best 100 run are given in Fig. 11. The statistical analysis,
based on 100 independent runs of our scheme, is provided in the Table 10. It is clear
from the Table that the values of the best and worst have much difference, while the
mean and standard deviation results are not at wide spread. Moreover, the average
accuracy is obtained in the range of 10−5 to 10−6. On the basis of these result it can
be stated that the proposed method is applicable to solve such problems of Emden–
Fowler at a good level of accuracy.

The best and mean value of the GA-IPA is much better than that of SA-IPA as
evident from the Table 10.

Fig. 11 Comparison of GA,
Sa-IPA and GA-IPA for 100
independent runs
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Table 10 Statistical analysis for t ∈ (0,1) in Problem 3

T Best Worst Mean Standard deviation

SA-IPA GA-IPA SA-IPA GA-IPA SA-IPA GA-IPA SA-IPA GA-IPA

0.0 5.29E-07 4.58E-09 0.512802 0.000239 0.034635 6.36E-06 0.102069 2.85E-05
0.1 1.36E-06 3.95E-08 0.51255 0.000254 0.034916 2.88E-05 0.102204 3.69E-05
0.2 1.51E-05 2.21E-07 0.519216 0.000255 0.035242 2.91E-05 0.103080 3.84E-05
0.3 2.10E-06 3.55E-07 0.526737 0.000243 0.035403 1.51E-05 0.104314 3.04E-05
0.4 9.50E-06 5.31E-07 0.531842 0.000242 0.035555 1.64E-05 0.105443 2.97E-05
0.5 4.66E-07 3.01E-08 0.533322 0.000254 0.035687 2.71E-05 0.106162 3.52E-05
0.6 4.96E-07 1.33E-07 0.531300 0.000257 0.035763 2.89E-05 0.106351 3.69E-05
0.7 2.81E-06 5.87E-08 0.526544 0.000244 0.035764 1.94E-05 0.106177 3.20E-05
0.8 5.92E-06 1.36E-08 0.523687 0.000238 0.035703 1.73E-05 0.105848 2.97E-05
0.9 2.64E-06 2.84E-07 0.518163 0.000248 0.035564 2.52E-05 0.105248 3.33E-05
1.0 3.32E-06 1.81E-07 0.509409 0.000238 0.035291 1.91E-05 0.104137 3.02E-05

5 Conclusion

A novel method appropriate for the numerical treatment of Emden–Fowler equation
that relies upon the function approximation capabilities of neural network assisted
with computational intelligence has been presented. The method has been applied
successfully on various cases of Emden–Fowler that has the vast applicability. The
accuracy of the proposed method is checked by comparing the results with exact
and standard state of art deterministic numerical solver and is found to be in good
agreement. A large number of Monti Carlo simulations are performed to validate the
reliability and effectiveness of the stochastic solvers. It must also be expressed that
the strength of designed scheme over such solver is that it can provide the results on
continuous time finite domain of inputs instead of predefine discrete grid of points.

5.1 Future work

In future, we are supposed to improve the mathematical modeling by employing
activation functions other than log-sigmoid or applying other neural network models.
Another, possible improvement is to develop other population based optimization
algorithms.
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