
Ann Math Artif Intell (2011) 62:187–217
DOI 10.1007/s10472-011-9265-7

Experimental evaluation of pheromone models
in ACOPlan

Marco Baioletti · Alfredo Milani ·
Valentina Poggioni · Fabio Rossi

Published online: 26 August 2011
© Springer Science+Business Media B.V. 2011

Abstract In this paper the system ACOPlan for planning with non uniform action
cost is introduced and analyzed. ACOPlan is a planner based on the ant colony
optimization framework, in which a colony of planning ants searches for near optimal
solution plans with respect to an overall plan cost metric. This approach is motivated
by the strong similarity between the process used by artificial ants to build solutions
and the methods used by state–based planners to search solution plans. Planning ants
perform a stochastic and heuristic based search by interacting through a pheromone
model. The proposed heuristic and pheromone models are presented and compared
through systematic experiments on benchmark planning domains. Experiments are
also provided to compare the quality of ACOPlan solution plans with respect to
state of the art satisficing planners. The analysis of the results confirm the good
performance of the Action–Action pheromone model and points out the promising
performance of the novel Fuzzy–Level–Action pheromone model. The analysis also
suggests general principles for designing performant pheromone models for planning
and further extensions of ACOPlan to other optimization models.

Keywords Automated planning · Ant colony optimization

Mathematics Subject Classifications (2010) 68T05 · 68T20 · 68W20 · 68W25

M. Baioletti · A. Milani · V. Poggioni (B) · F. Rossi
Department of Mathematics and Computer Science, University of Perugia,
Via Vanvitelli 1, 06123 Perugia, Italy
e-mail: poggioni@dmi.unipg.it

M. Baioletti
e-mail: baioletti@dmi.unipg.it

A. Milani
e-mail: milani@dmi.unipg.it

F. Rossi
e-mail: rossi@dmi.unipg.it

188 M. Baioletti et al.

1 Introduction

Planning optimization relies on finding solution plans of highest quality with respect
to a given objective function.

Most propositional planners embed basic optimization metrics like sequential plan
length, or the number of time steps when parallel actions are allowed. HSP [8] is an
example of planners of the first type; while many others, including GraphPlan [6]
and BlackBox [21], optimize the number of steps. However planning frameworks
in which optimization seems to be more natural are planning models with action
costs and/or numerical f luents. In the first case a typical optimization metric is the
overall plan cost, computed as the sum of costs of the actions occurring in the solution
plan. On the other hand, numerical fluents are used to model resources, numerical
constraints and other numerical aspects of the domain; in this case the metric is a
function of numerical variables, like for instance the fuel consumption in the classical
Logistics domain.

The main idea of this paper is to use the well known Ant Colony Optimization
metaheuristic (ACO) [13] to solve planning problems with the aim of optimizing the
quality of the solution plans. The approach is based on the strong similarity between
the process used by artificial ants to build solutions and the way used by state—
based planners to find solution plans. Therefore, we have defined an ACO algorithm
which handles a colony of planning ants with the purpose of solving planning prob-
lems by optimizing solution plans with respect to the overall plan cost. According
to the main features of ACO the ant–planners of the colony are stochastic and
heuristic–based.

ACO is a metaheuristic inspired by the behavior of natural ants colony which
has been successfully applied to many Combinatorial Optimization problems. Being
ACO a stochastic incomplete algorithm, there is no guarantee that optimal solu-
tions are ever found, but a number of successful applications confirm ACO as a
generally promising metaheuristic to find efficiently and effectively good suboptimal
solutions.

In order to investigate if ACO can be effectively used in optimization planning
problems, we have implemented and tested ACOPlan, an ACO—based proposi-
tional planner which tries to optimize plans in terms of plan length. The promising
results of ACOPlan [2–5] have motivated the extension to more complex planning
frameworks, like planning with action costs. In this paper the ACOPlan model for
planning with action costs is presented together with a systematic experimental eval-
uation of the system and a comparison with respect to the most recent benchmark
planners for planning with action costs [18]. The evaluation focuses in particular
on the role of different pheromone models on the performance in the benchmark
domains.

The paper is structured as follows. Two brief introductions to Ant Colony
Optimization and Automated Planning are provided, then the ACOPlan model
and algorithm in the framework of planning with action cost are presented. Four
pheromone models are introduced and motivated. Systematic experiments of the
proposed pheromone models on benchmark domains are presented and the evalua-
tion of their performance with respect to the other state of art planners is presented
and discussed. The paper concludes with a discussion of lessons learned and future
direction of works and extensions.

Experimental evaluation of pheromone models in ACOPlan 189

2 Ant Colony Optimization

Ant Colony Optimization is a metaheuristic used to solve combinatorial optimization
problems, introduced since early 1990s by Dorigo and Stuetzle [13].

ACO is inspired by the foraging behavior of natural ant colonies that, when walk-
ing, release on the ground a chemical substance called pheromone that other ants
can smell; moreover, ants tend to follow paths with a higher amount of pheromone.
When an ant finds some food, it comes back to the nest releasing a higher quantity
of pheromone with the implicit aim of communicating to other ants where the food
is located. Pheromone trails are also subject to evaporation. The reduction of the
pheromone quantities has a greater impact on the longest paths, because they would
need to have more time to be enforced.

On the long run, the shortest paths from the nest to the food become marked by a
higher quantity of pheromone since they are followed by an increasing number of ants.

ACO is usually applied to optimization problems whose solutions are composed
by discrete components. A Combinatorial Optimization problem is described in
terms of a solution space S, a set of (possibly empty) constraints � and an objective
function f : S → R

+ to be minimized (maximized).
ACO uses a colony of artificial ants, which move in the solution space S and build

solutions by composing discrete components. The choice of the component structure
is crucial and it is strongly dependent on the class of problems we are solving.
The construction of a solution is incremental: each ant probabilistically chooses a
component to add to the partial solution built so far, according to the problem
constraints �. Each component should contain all the information that is necessary
to the ants to make a choice. The random choice is biased by the artif icial pheromone
value τ related to each component and by a heuristic function η. Both terms evaluate
the desiderability of each component. The probability that an ant will choose the
component c is

p(c) = [τ(c)]α[η(c)]β
∑

x[τ(x)]α[η(x)]β (1)

where the sum on x ranges on all the components which can be chosen, and α and β

are tuning parameters which differentiate the pheromone and heuristic contributions.
The heuristic function is an external source of information and helps the ants

to choose the components. Even if it has no equivalent in natural ants, it is an
essential tool in ACO, because otherwise the artificial ants would be not able to
solve significant problems.

The pheromone values represent a kind of memory shared by the whole ant colony
and are subject to update and evaporation. In particular, the pheromone can be
updated at each construction step (online update) or after complete solutions are
created (offline update). Often only the best solutions are considered for the update:
the best solution found so far (best–so–far) or best solution found in the current
iteration (iteration–best) or both. In certain variants of ACO, limits for maximum
and minimum pheromone values are used. Most ACO algorithms use the following
update rule [7]:

τ(c) ← (1 − ρ) · τ(c) + ρ ·
∑

s∈�upd : c∈s

F(s) (2)

190 M. Baioletti et al.

Fig. 1 Scatter plot comparing
the solutions of the AA model
versus the other models in
terms of solution cost in the
Elevators domain

where �upd is the set of solutions involved in the update, F is the so called quality
function, which is a decreasing function of f (increasing if f is to be maximized),
and ρ is the pheromone evaporation rate ρ ∈]0, 1[. This pheromone evaporation rate
allows to model the actual pheromone evaporation event and has been introduced in
order to avoid a premature convergence towards non optimal solutions.

The simulation of the ant colony is iterated until a satisfactory solution is found,
a termination criterion is satisfied or a given number of iterations is reached. The
standard ACO algorithm is described in Fig. 1 where na is the number of the ants,
θiter is the solution built by each ant and best is the best solution found so far.

Experimental evaluation of pheromone models in ACOPlan 191

ACO has been used to solve several combinatorial optimization problems, reach-
ing in many cases state of art performances, as shown in [13]. As far as we know,
there are no applications of ACO to automated (general purpose) planning, with the
exception of very specialized fields like for instance path planning [15].

3 Automated planning

Automated planning is a well known AI problem deeply studied in the last years.
Several planning models have been proposed for different classes of problems.

In the standard reference classical planning model or STRIPS model [24], world
states are described in terms of a finite set F of propositional variables under Closed
World Assumption (CWA), i.e., a state s is represented with a subset of F , containing
all the variables which are true in s.

A Planning Problem is defined by a triple (I,G,A), in which I ⊆ F is the initial
state, G ⊆ F denotes the goal, and A is a finite set of actions.

An action a ∈ A is described by a triple (pre(a), add(a), del(a)), where

(i) pre(a) ⊆ F is the set of preconditions: a is executable in a state s if and only if
pre(a) ⊆ s

(ii) add(a), del(a) ⊆ F are, respectively, the sets of positive and negative effects of
the action a. If an action a is executable in a state s, the state resulting after its
execution is

Res(s, a) = (s \ del(a)) ∪ add(a) (3)

otherwise Res(s, a) is undefined.

A linear sequence of actions (a1, a2, . . . , an) is a plan for a problem (I,G,A)

if a1 is executable in I , a2 is executable in s1 = Res(I, a1), a3 is executable in
s2 = Res(s1, a2), and so on. A plan π = (a1, a2, . . . , an) is a solution plan for (I,G,A)

if G ⊆ sn.
Usually a planning problem is stated as a pure search problem, in which the

purpose is to find, if any, a solution plan. In this setting, the computational problem
of determining the existence of a solution to a planning problem is known to be
PSPACE–complete [9].

Among the many algorithmic solutions for planners it is worth to point out
three main approaches. Designing planning ad–hoc algorithms has been the first
technique, where Partial Order Planning has dominated until mid–1990’s. More
recently one of the most successful ad–hoc resolutive method is the graph–based
approach introduced in Graphplan [6], also used in FF [19] and LPG [16]. A second
approach consists in planning problem mapping, i.e., to translate a planning problem
into a different combinatorial problem, like logical formula satisfiability [1, 10, 20],
integer programming [23] or constraint satisfaction problems, and to use fast solvers
designed for these problems. A third approach, which is sometimes combined with
ad–hoc methods, is to formulate planning as heuristic search problem, as done in HSP
[8], FF [19], Fast Downwards [17] and Lama [25].

The classical planning model has been extended in many directions in order to
increase expressivity and reasoning capabilities. Among the many extensions, it is

192 M. Baioletti et al.

worth to mention the introduction of numerical fluents in planning problems: in these
models states and goals are also described in terms of numerical variables, actions can
also require numerical preconditions and can change the value of numerical variables
as effect. In other extensions, like probabilistic planning, states are described by
probability distributions, actions can have stochastic effects and plans can guarantee
to reach the goal only with a certain probability. In planning with preferences some
goals and preconditions can be neglected without invalidating the action applicability
or the problem solvability, but only reducing the plan quality, (notion of “soft”
preconditions and goals).

A planning problem can also be formulated as the optimization problem to find, if
any, a solution plan which minimizes (or maximizes) a given metric function f . The
most common metric functions used in the different planning models are:

– in propositional planning, the plan length;
– in non uniform action cost planning, the sum of the action costs;
– in numerical planning, any expression of the numerical fluents (usually a rational

function);
– in planning with preferences, a function which takes into account the violation

costs of soft preconditions and goal utilities;
– in probabilistic planning, the probability of reaching the goals or the expected

utilities of the reached goals.

The optimization version of the planning problem has been empirically shown
to be much harder than its pure search counterpart. Indeed, even for the basic
metrics in propositional planning models, only a few planners are really able to
find optimal solutions for non trivial problem instances, as shown in the results of
the last planning competition IPC-6 [18]. However a larger number of very efficient
suboptimal planners have been also proposed especially to cope with large problem
instances and more complex metrics and planning models.

4 Planning with ACO

The main idea of this work is to use an ACO approach to solve optimization planning
problems. The approach is based on the strong similarity between the process used
by ants to build solutions and the way used by state—based planners to find solution
plans. Therefore, we have defined an ACO algorithm which handles a colony of
planning ants with the purpose of solving planning problems by optimizing solution
plans with respect to the overall plan cost.

According to the main features of ACO the ants–planners of the colony are
stochastic and heuristic–based. In particular, the importance of an informed heuristic
is threefold:

(i) to find solution plans, the heuristics primarily help the ants to find solutions for
planning which is a computationally hard problem;

(ii) to drive ants choices towards good (maybe optimal) solution plans;
(iii) to compare plans, the heuristic function is used to compare plans found by

different ants.

Experimental evaluation of pheromone models in ACOPlan 193

Each ant–planner executes a forward search, starting from the initial state I and
trying to reach a state in which the goal G is satisfied. The solution is built step
by step by adding solution components. The choice of the components structure,
i.e., pheromone model, is one of the main points to address in ACO systems. In
general each component is a piece of the problem solution so, in the planning context,
the most intuitive and simple choice fell on single actions as possible components.
However, this solution is too little informative because it should contain information
about the context in which the action will be applied. Four different pheromone
models are proposed and described in Section 4.2.

At each step, the ant–planner search process performs a randomized weighted
selection of a solution component c which takes into account both the pheromone
value τ(c) associated to the component and the heuristic value η(a) computed for
each action a executable in the current state and related to the chosen solution
component. Once an action a has been selected, the current state is updated by means
of the effects of a.

The construction phase stops when at least one of the following termination
condition is verified

1. a solution plan is found, i.e., a state where all the goals are true is reached;
2. a dead end is met, i.e., no action is executable in the current state;
3. an upper bound Lmax for the number of execution steps is reached.

An alternative way to forward search, which has been considered, is to use a
colony of backward ant–planners which start the search phase from the goal and try
to build solution plan by regression. In this case an appropriate heuristic function
should be designed accordingly to be used in a backward search. The backward
approach have been experimented in [3], but the first empirical results, not reported
here, show that the forward method seems to outperform the backward version,
although the issue will need further investigations.

In the ACOPlan algorithm here described, all the ant–planners in the colony are
homogeneous and they can fully share information about the pheromone values
distribution. In general, as we will discuss in the conclusions, it is possible to define
colonies composed by heterogeneous planners with different degrees and types of
information sharing.

4.1 The algorithm

The generic ACOPlan algorithm [2–5] is described in Fig. 2. Let (I,G,A) be the
planning problem, the optimization process is iterated for a given number N of
iterations, in which a colony of na ants build plans with a maximum number of steps
Lmax. At each step, each ant chooses an action among the executable ones by the
ChooseAction function that encodes the transition probability function previously
described. When all ants have completed the search phase, the best plan πiter of
the current iteration is selected and the global best plan πbest is possibly updated.
Finally, the pheromone values of the solution components are updated by means
of the function UpdatePheromone that implements the updating rules presented in
Section 4.4. Relevant parameters are c0 which denotes the initial value for the
pheromone, ρ which represents the evaporation rate and σ that is a parameter of
the pheromone update rule (see (6)).

194 M. Baioletti et al.

4.2 The pheromone models

The simulation of the stigmergic mechanism typical of natural ants is crucial for the
optimization process, then the choice of the structures where pheromone is deposited
deserves a deep investigation.

An effective pheromone model should be simple to compute but enough infor-
mative to guide the search. This consideration leads to exclude some very intuitive
but too simple pheromone models, like the one that consider only single actions

Fig. 2 Scatter plot comparing
the solutions of the AA model
versus the other models in
terms of solution cost in the
Parcprinter domain

Experimental evaluation of pheromone models in ACOPlan 195

as possible components. This model is indeed too little informative: for instance it
cannot distinguish between situations in which executing an action a is useful from
those ones in which other actions appear to be better than a.

A useful solution component is then a structure characterizing the context in
which an ant–planner can choose a specific action, easy to represent and to compute.
A good component for action choice should be enough informative to distinguish
the context of most successful choices from the worst ones. On the other hand the
characterization of the component should not be too much detailed in order to allow
the pheromone to deposit in a significant quantity.

The following four pheromone models has been considered and experimented
with the ACOPlan algorithm.

State–State (SS) model A component is defined by the current state s. This is one
of the most expensive pheromone model from the space complexity point of view,
because the number of possible states is exponential with respect to the problem
size. Anyway the storage of the pheromone values can exploit the existence of the
state–cache data structure, as described in Section 4.3.

State–Action (SA) model The pheromone value τ depends on the current state s and
on the action a to be executed. This model is even more expensive than SS, because
for each state s there can exist several actions executable (and chosen) in s. On the
other hand, the pheromone values can be interpreted in terms of a preference policy:
τ(a, s) represents how much it is desirable, or it has been useful, to execute a in state s.

Action–Action (AA) model In this model a notion of local history is introduced: the
pheromone depends both on the action a under evaluation and on the last executed
action a′, i.e., the pheromone is a function τ(a, a′). Considering only the previous
action is the simplest way in which the action choice can be directly influenced by
history of previous decisions. AA allows a manageable representation and defines a
sort of local first order Markov property.

Fuzzy level–Action (FLA) model The basic idea underlying this model is to asso-
ciate the action under evaluation with the plan time step, i.e., the plangraph level,
where it is executed. Since the limited number of levels, such approach has a more
tractable space complexity with respect to the State–Action model. On the other hand
a pure Level–Action model would present the drawback that the pheromone of an
action at a time step t cannot be used in other close time steps, while it is often
likely that an action desirable at certain time step, say 2, will also be desirable at
close time steps, say 1 and 3. To solve this problem the Fuzzy level–Action model
which fuzzifies the Level–Action representation just described has been introduced:
when pheromone is distributed over an action a executed at time step t is also spread
in decreasing quantity over the same action in the close time steps, conversely the
pheromone level computed for an action a to be executed at time t is computed as the
weighted average of the pheromone values τ(a, t′) for a and for t′ = t − W, . . . , t + W
computed with the Level–Action model, where weights, i.e., the spread distribution,
and the time window W are parameters of the model.

The former pheromone models have been empirically compared by systematic
experiments whose results are described in the next section. The experiments have
allowed to draw general principles and guidelines to develop effective pheromone
models which are discussed and motivated in the Section 6.

196 M. Baioletti et al.

4.3 The heuristic FFAC for actions costs

The heuristic function is a key feature of ACOPlan because it directly affects the
transition probability function (1) used to synthesized the solution plan. The heuristic
value for a component c is defined by

η(c) = 1
h(sc)

where h is an heuristic function which evaluates the state sc resulting from the
execution of the action ac associated to the component c in the current state.

The first version of ACOPlan [2–5], which solves problems in the classical
planning model, uses the heuristic FF introduced by Hoffmann and Nebel in [19]
because it provides a good estimation of the distance between a generic state and the
goal state in terms of the number of the actions, i.e., plan length.

In the case of planning with action costs, this heuristic is no longer informative
because it would neglect the action costs.

At this aim, in this new version of ACOPlan we use a heuristic function which
takes into account of the action costs and which is very similar to the heuristic
function used in SAPA [12] with the sum propagation for action cost aggregation.
We obviously use, as done in classical planning, a constant duration for each action
and usual timing for preconditions and effects (respectively at the beginning and at
the end of the action). In order to keep this paper self–contained we report here a
detailed description of the method used to compute the heuristic function.

This heuristic exploits the idea of FF to use the relaxed planning graph structure
to compute a relaxed solution plan and use the provided information to estimate the
cost of the actual solution. The relaxed planning graph is derived by the classical
planning graph introduced in [6] by ignoring the delete list, i.e., the negative effects
of the actions. A relaxed planning graph is then a leveled graph with two kinds of
nodes: facts and actions. A fact level Fk is the set of the facts that are true at the step
k, while the action level Ak is built using the actions that are executable in the states
represented by the fact level Fk. Given a fact level Fk and the corresponding action
level Ak, the successor fact level Fk+1 is computed using only the positive effects of
the actions in Ak. The graph begins with the initial fact level F0 = I .

To compute the heuristic value of a state s, first a relaxed planning graph from s
to G is built, then a relaxed plan π+ is extracted from it by a backward search. The
technique used for the π+ extraction is different to the one used in the FF system
because the concept of action dif f iculty has been redefined taking into account the
action costs. The cost of the relaxed plan c(π+) is the heuristic value that estimates
the cost needed to reach the goals by the current state s:

c(π+) =
∑

a∈π+
c(a)

During the graph construction phase a minimum estimated cost ck is assigned to each
fact and each action for every level k of the graph in the following way:

for each a ∈ Ak

ck(a) = c(a) +
∑

f∈pre(a)

ck(f). (4)

Experimental evaluation of pheromone models in ACOPlan 197

for each f ∈ Fk

ck(f) = min

⎧
⎨

⎩
c(a) +

∑

b∈pre(a)

ck−1(b) : a ∈ Ak−1, f ∈ add(a)

⎫
⎬

⎭
. (5)

while, for each f ∈ F0, we have c0(f) = 0.

Then, new levels are added to the graph until no changes arise, even if goals have
been already reached. In other words, the construction process stops when all the
goals are present in the graph, no new facts or actions are added and the costs of
facts (actions) at the last level L (or L − 1 for the actions) are the same they have at
the previous level L − 1 (or L − 2 for the actions).

It is worth to note that the preliminary costs estimation introduced by the formulas
(4) and (5) depends on the level in the relaxed planning graph, i.e., we do not have
static costs as in the heuristic proposed by Keyder and Geffner in [22] but dynamic
costs depending on the level at hand.

The entire process of computation of the heuristic function is shown in
Algorithm 3 where the core technique used to compute the relaxed plan π+ relies
in functions λ and BestAction. The function λ, applied to an action a or to a fact f ,
returns the first level k in which ck(a) or ck(f) gets the minimum value, while the
function BestAction(g,k) returns the action a ∈ Ak−1 with the minimum dif f iculty
which can adds g at the level k. The concept of action difficulty is defined in this
context by the cost of the action, i.e., dif f icultyk−1(a) = ck−1(a).

Note that when an action a is added to the plan π+, the effects of a are deleted
from Gk. This feature allows to take into account the so called positive interactions,
i.e., it avoids to use a new action a′ to reach a goal g, when an already selected another
action also reaches g. This feature is one of the most important inheritance we receive
by FF: it allows to the heuristic FFAC to differ in one more point to the heuristic hsa

used in FF(ha) [22] that cannot take into account positive interactions. Hence, there
exist problems for which hsa overestimates the number of actions, and possibly the

198 M. Baioletti et al.

cost too, needed to reach the goals from a given state with respect to the estimate
computed by FFAC.

As FF, also FFAC can compute the set of Helpful Actions, which are the actions
in the first step of π that add some subgoals present in the level F1 during the relaxed
plan extraction process. Helpful Actions can be considered as privileged actions, i.e.,
actions whose execution is more desirable than other ones. Therefore, in ACOPlan
the heuristic value of states reached by the execution of Helpful Actions can be
decreased, so that they have a greater probability of being chosen.

Since the computation of the heuristic function is computationally demanding and
the number of evalutation for h is huge (each ant at each step should compute h for
each reachable state), a state–cache data structure is used to store heuristic values
(and other informations, like the pheromone value for the SS model) for each visited
state. This structure is implemented through a hash table to speed up the search
process. Moreover in order to avoid memory problems the size of the hash table is
bounded and table entries are eventually removed using a Least Recently Used strategy.

4.4 Plan comparison and pheromone updating

A critical point of the optimization process is the ability of comparing plans found
by the colony of planner ants. This is particularly important in pheromone updating
phase where the best plan of the iteration must be selected, as well as in the general
ACOPlan which returns the best plan found in all the iterations.

Any comparison criteria should obviously prefer a solution plan to a non solution
plan. On the other hand comparison of two solution plans π, π ′ can be easily based
on actions costs, because it is possible to compute their respective costs and prefer
the plan with the lowest cost or, when they are equal in cost, let prevail the one with
the lesser plan length metric, either sequential or parallel.

A comparison criteria cannot be easily defined when both plans π and π ′ are not
solution plans. In this case using only the overall action cost of the non solution plan
makes no much sense, since a cheap plan can be far away from any solution. In other
words, it would be useful to take into account both the distance from the goals and
cost of a non solution plan.

In order to evaluate a plan π , it is possible to combine the value of the heuristic
function FFAC on the best state s ever reached by π with the cost of reaching s.

More formally, let π = (a0, a1, . . . , an) be a plan and let si+1 = Res(si, ai), for i =
0, . . . , n, with s0 = I , be the states reached by π , we define the penalty of plan π as

p(π) = min
k=0,...,n

(
k∑

i=0

c(ai) + ωF F AC(sk)

)

where ω is a parameter which is used to enhance the influence of the second factor,
the distance from sk to the goal state, with respect to the first one, the cost to reach the
state sk. The parameter ω is usually set to a high value (e.g. 10), because the distance
to the goal state has a greater importance. Then π is preferable to π ′ if p(π) < p(π ′).

The pheromone update phase evaporates all the pheromone values and increases
the pheromone value of the components belonging to πiter and πbest according to the
formula

τ(c) ← (1 − ρ) · τ(c) + ρ · �(c) (6)

Experimental evaluation of pheromone models in ACOPlan 199

where

�(c) =

⎧
⎪⎪⎨

⎪⎪⎩

σ if c belongs to πiter

1 − σ if c belongs to πbest

1 if c belongs to both
0 otherwise

and σ is usually set to 2
3 which increases a component belonging to the best plan in

the iteration by a double quantity with respect to a component belonging to the best
plan so far, thus enforcing the exploration, instead of the exploitation.

5 Experimental evaluation

This section presents and discusses the results of experiments held with ACOPlan
optimizing the overall plan execution costs. The previously introduced pheromone
models are compared, and comparisons are also made with state of the art satisficing
planners both with respect to the solving capability and with respect to the quality of
the synthesized solutions.

The benchmarks domain problems from the recent planning competition IPC-6
[18] has been used in the experiments. The results presented here refers to the
domains Elevators, Openstacks, Parcprinter, Pegsol, Transport and Woodworking.

Since the behavior of ACOPlan depends on many parameters, a preliminary phase
of parameters tuning has been held by systematic tests in order to establish the
ACOPlan general setting which has been used in all four pheromone models. For
more information and details about this experiments see [26]. The next phase of
actual experiments has then been conducted with the ACOPlan settings: 10 planner–
ants, 5,000 iterations, α = 2, β = 5, ρ = 0.15, c0 = 1 (initial pheromone value), k =
0.5 (decreasing rate of the heuristic value of states reached by the execution of
Helpful Actions). Moreover, since ACOPlan is a not deterministic planner, the
results collected for each single problem instance are the median values obtained
over 50 runs. The experiments were run on a Linux machine with a 2.4 GHz quad
core processor with 4 GB of RAM.

5.1 Benchmark domains

In this section a brief description of the tested domains is given. Each domain con-
tains 30 problems numbered p01,. . . ,p30 which can be grouped in three ordered sets

p01, . . . , p10

p11, . . . , p20

p21, . . . , p30

which can be roughly considered of increasing difficulty due to the increasing number
of objects in the problems.

Elevators A building of N+1 floors that can be separated in blocks of size M+1 is
served by elevators. Adjacent blocks have a common floor. For example, suppose

200 M. Baioletti et al.

N=12 and M=4, then we have 13 floors in total (ranging from 0 to 12), which form 3
blocks of 5 floors each, being 0 to 4, 4 to 8 and 8 to 12.

The building has K fast (accelerating) elevators (with capacity of X persons) that
stop only in floors that are multiple of M/2 and, within each block, there are L (with
capacity of Y persons) slow elevators, that stop at every floor of the block.

There are costs associated with each elevator starting/stopping and moving. In par-
ticular, fast (accelerating) elevators have negligible cost of starting/stopping but have
significant cost while moving. On the other hand, slow (constant speed) elevators
have significant cost when starting/stopping and negligible cost while moving.

There are several passengers, for which their current location (i.e., the floor they
are) and their destination are given. The planning problem is to find a plan that
moves the passengers to their destinations minimizing the cost.

Parcprinter This domain models the operation of the multi-engine printer, for
which one prototype is developed at the Palo Alto Research Center (PARC).
This type of printer can handle multiple print jobs simultaneously. Multiple sheets,
belonging to the same job or different jobs, can be printed simultaneously using mul-
tiple Image Marking Engines (IME). Each IME can either be color or mono. Each
sheet needs to go through multiple printer components such as feeder, transporter,
IME, inverter, finisher and need to arrive at the finisher in order. Thus, sheet (n+1)
needs to be stacked in the same finisher with sheet n of the same job, but needs to
arrive at the finisher right after sheet n (no other sheet stacked in between those two
consecutive sheets). Given that the IMEs are heterogeneous (mixture of color and
mono) and can run at different speeds, optimizing the operation of this printer for a
mixture of print jobs, each of them is an arbitrary mixture of color/b&w pages that
are either simplex (one–sided print) or duplex (two–sided print) is a hard problem.

The objective function is to minimize the printing cost. For example, using a more
expensive color IME to print a black&white page costs more than using a mono IME.
However, the cost tradeoff may not be clearcut if the feeder, where the blank sheets
originally reside at, is closer to the mono IME than to the color IME.

Openstacks A manufacturer has a number of orders, each of them for a combina-
tion of different products, and it can only makes one product at a time.

The total required quantity of each product is made at the same time (because
changing from making one product to making another requires a production stop).
From the time that the first product included in an order is made to the time that
all products included in the order have been made, the order is said to be “open”
and during this time it requires a “stack” (a temporary storage space). The problem
is to order the making of the different products so that the maximum number of
stacks that are in use simultaneously, or equivalently the number of orders that are
in simultaneous production, is minimized (because each stack takes up space in the
production area). The goal is to minimize the total number of stacks.

The problem is NP-hard.

Pegsol This domain models the well known Peg solitaire (the English version),
that is a board game for one player involving movement of pegs on a board with
holes. Pegs are arranged on the board such that at least one hole remains. By making
draughts–like moves, pegs are gradually removed until no further moves are possible
or some goal configuration is achieved. A valid move is to jump a peg orthogonally

Experimental evaluation of pheromone models in ACOPlan 201

over an adjacent peg into a hole two positions away and then to remove the jumped
peg. The difficult of each problem is defined by the number and the initial position
of the pegs in the board. The goal is defined by the position that the last (unique) peg
has to reach. The planning domain provides three actions defining a starting jump
move, a continuing jump move and an ending move. The action costs are used to
define the number of jump sequences as the optimization criterion. The problem is
NP–hard.

Transport This domain models a list of packages, a list of vehicles and a list of
locations. Packages must be picked up to some vehicle (characterized by a given
capacity) in order to be moved and then they must be dropped from the vehicle
to reach a destination; vehicles can drive between two different locations. Each
drive action has a cost proportional to the distance between the two locations, while
the pickup and drop actions have unitary cost. The objective is to deliver some
given packages into given locations starting from different initial locations (both for
packages and vehicles). The objective is to minimize the total cost (i.e., minimize the
covered distance).

Woodworking This domain models the operations in a woodworking where wood
objects are worked. Objects are worked in parts that can be modeled by a grinder
or a planer in order to obtain different treatment of the surface: smooth or very-
smooth; they can be cut by two different types of saw (normal or highspeed) in order
to obtain border with different size: small, medium or large; they can be colored by
two types of varnisher (immersion-varnisher and spray-varnisher) or by a glazer. All
these operations are modeled by specific actions with different costs that, in general,
require the part under consideration to be previously worked by another machine
(for instance, the varnishing operations require the object to be smooth). The goal is
to obtain object parts with given manufacturing minimizing the total-cost.

5.2 Comparing pheromone models

This group of experiments aims at comparing and evaluating the ACOPlan
pheromone models introduced in Section 4.2. Initially the models have been evalu-
ated with respect to their problem solving ability, i.e., to find which one can solve the
greatest number of problems. In Table 1 it is shown, for each domain, the percentage
of problem instances (runs) solved in the upper bound time of 900 s.

In order to understand if the differences from the solving capability point of view
observed in the experiments are statistically significants, we have applied the χ2 test
to compare the probabilities of success of the different pheromone models. In this
test we have considered the number of the solved instances with respect the total

Table 1 Percentages of
problems solved in 900 s for
each IPC–6 domain

AA (%) FLA (%) SA (%) SS (%)

Elevators 87 83 81 82
Openstacks 100 100 100 100
Parcprinter 80 80 73 74
Pegsol 96 96 96 96
Transport 82 84 82 83
Woodworking 100 100 100 100

202 M. Baioletti et al.

number of runs; we have tested 6 domains containing 30 problems each, and for
each problem we run the planner for 50 times. Therefore we have submitted to each
pheromone model 9000 problem instances.

The number of successes for each model is shown in brackets in the heading
row/column in Table 2 that shows the results of such a statistic. Each cell in the
table contains the χ2 value and the p-value obtained comparing the model in the
row heading and the model in the column heading; Low p-values allow to reject the
null hypothesis (the two model performance are equal) in favour of the alternative
hypothesis to have better performance for the first model.

A first point which can be noticed is that AA and FLA have comparable perfor-
mance with a little difference in favour of AA while, setting the confidence level at
99.5%, SS and SA are statistically worse than them with a relevant gap.

On the other hand a very encouraging new result has been obtained: ACOPlan
with FLA pheromone model performs very close to the AA model, although, as
noted in the previous section, FLA is much more manageable with respect to space
complexity.

Moreover we have compared the pheromone models from the solution quality
point of view. In this case we have computed and compared for each solved problem
the median values for solution cost over the 50 runs; these values have been plotted
in the graphs in Figs. 1, 2, 3 and 4.

These plots give a graphical representation of the performance of the AA
model compared with the other models in terms of solution cost. The figures
show respectively the results for the domains Elevators, Parcprinter, Transport and
Woodworking. Each symbol represents a problem instance; if the symbol is under
the solid diagonal line, then the corresponding model has a median value for solution
cost that is lower than the median value of the AA model; otherwise (i.e., the symbol
is over the solid line), the opposite is true (i.e., the compared model is better than the
AA model). The plots have two additional dotted lines delimiting the area where
solutions with a cost differing of less than 33% from the AA solution fall. The
plots for the Openstacks and Pegsol domains are not significant and have not been
presented; this is due to the excellent results we have obtained in these domains
where all the models find in most the cases the same (optimal) solution as can be
noted in the raw data presented in Tables 8 and 10.

A first comment on the overall plan quality result is that the prevalence of the
AA and FLA models and the bad performance of SA and SS models observed on
the number of solved problems (see Tables 1 and 2) is generally confirmed for the
quality found. In other words the problem solving ability and the optimization ability
of all the pheromone models seems to follow a similar pattern.

Table 2 Statistical analysis of the pheromone model comparisons by means of χ2 test

FLA (8155) SS (8021) SA (7990)

AA (8194) χ2 = 1.01 χ2 = 18.61 χ2 = 25.49
p = 0.16 p = 8.01 · 10−6 p = 2.23 · 10−7

FLA (8155) – χ2 = 10.95 χ2 = 16.36
p = 4.67 · 10−4 p = 2.61 · 10−5

SS (8021) – – χ2 = 0.54
p = 0.23

Experimental evaluation of pheromone models in ACOPlan 203

Fig. 3 Scatter plot comparing
the solutions of the AA model
versus the other models in
terms of solution cost in the
Transport domain

Domains which are considered “difficult”, such as Elevators, Transport and
Woodworking, show a prevailing bad performance for the component models SS
and SA. The intuition would suggest instead that SS and SA characterize the context
where a choice is operated by ants, since a pair of states represents the most detailed
description of a local context, and the best performance of more simplified contexts
such as AA pair and F LA seems to be counterintuitive. A careful analysis has been

Fig. 4 Scatter plot comparing
the solutions of the AA model
versus the other models in
terms of solution cost in the
Woodworking domain

204 M. Baioletti et al.

Fig. 5 For each domain, each column represents a synthesis of the average quality found by means
of each model. AA(Action-Action), FLA(Fuzzy-Level-Action), SA(State-Action), SS(State-State)

done of pheromone distribution for SS and SA on the worst performing problem
instances, such as elevators09, parcprinter19, transport15. The analysis has revealed
that the difficult seems to be caused by a too high level of details, i.e., in the
proliferation of components. In other words if each different state originates one
(or more) different component, similar successful states, which could differ for just
one fluent value, do not accumulate enough pheromone, a fact which prevent them
to be preferred in the ants choices.

We have observed that in situations where SS and SA are performing bad, the
pheromone is spread over too many components, which are not likely to appear again
in different runs of the ants, even if the plans found in the run slightly differ from the
previous ones. On the other hand a less detailed description of the context, like in the
AA model, allows the accumulation of pheromone over components which appear
more easily in different successful and similar runs.

Let us consider, for example, two successful plans π1 = {A0, . . . , Ai, Ai+1, . . . , An}
and π2 = {A0, . . . , Ai+1, Ai, . . . , An} which differs only for two consecutive switched

Table 3 Results for the Wilcoxon test for the pheromone model comparisons

AA SA SS

FLA z = −1.71 z = −3.66 z = −3.02
p = 0.0043 p = 0.0001 p = 0.0013

AA – z = −1.91 z = −2.56
p = 0.0028 p = 0.0005

SA – – z = 0.78
p = 0.0218

Each cell contains the z-value and p-value obtained comparing the model in the row heading versus
the model in the column heading

Experimental evaluation of pheromone models in ACOPlan 205

 ele15 ele16 ele17 ele18 ele19 ele20 ele27 ele28 ele29 ele30

10
0

15
0

20
0

25
0

30
0

problems

pl
an

 q
ua

lit
y

Fig. 6 Distribution of quality of solution plans found in 50 runs for Elevators domain with AA and
FLA pheromone model. For each problem, the first box represents the distribution of quality values
obtained by means of AA pheromone model, while the second box represents the distribution of
quality values obtained by means of FLA pheromone model

 ope15 ope16 ope17 ope18 ope19 ope20 ope27 ope28 ope29 ope30

3
4

5
6

7
8

problems

pl
an

 q
ua

lit
y

Fig. 7 Distribution of quality of solution plans found in 50 runs for Openstacks domain with AA
and FLA pheromone model. For each problem, the first box represents the distribution of quality
values obtained by means of AA pheromone model, while the second box represents the distribution
of quality values obtained by means of FLA pheromone model

206 M. Baioletti et al.

 par15 par16 par17 par18 par19 par20 par27 par28 par29 par30

15
00

00
0

20
00

00
0

25
00

00
0

problems

pl
an

 q
ua

lit
y

Fig. 8 Distribution of quality of solution plans found in 50 runs for Parcprinter domain with AA and
FLA pheromone model. For each problem, the first box represents the distribution of quality values
obtained by means of AA pheromone model, while the second box represents the distribution of
quality values obtained by means of FLA pheromone model

 peg15 peg16 peg17 peg18 peg19 peg20 peg27 peg28 peg29 peg30

10
15

20
25

problems

pl
an

 q
ua

lit
y

Fig. 9 Distribution of quality of solution plans found in 50 runs for Pegsol domain with AA and
FLA pheromone model. For each problem, the first box represents the distribution of quality values
obtained by means of AA pheromone model, while the second box represents the distribution of
quality values obtained by means of FLA pheromone model

Experimental evaluation of pheromone models in ACOPlan 207

 tra15 tra16 tra17 tra18 tra19 tra20 tra27 tra28 tra29 tra30

20
00

30
00

40
00

50
00

60
00

70
00

problems

pl
an

 q
ua

lit
y

Fig. 10 Distribution of quality of solution plans found in 50 runs for Transport domain with AA and
FLA pheromone model. For each problem, the first box represents the distribution of quality values
obtained by means of AA pheromone model, while the second box represents the distribution of
quality values obtained by means of FLA pheromone model

 woo15 woo16 woo17 woo18 woo19 woo20 woo27 woo28 woo29 woo30

40
0

60
0

80
0

10
00

12
00

problems

pl
an

 q
ua

lit
y

Fig. 11 Distribution of quality of solution plans found in 50 runs for Woodworking domain with AA
and FLA pheromone model. For each problem, the first box represents the distribution of quality
values obtained by means of AA pheromone model, while the second box represents the distribution
of quality values obtained by means of FLA pheromone model

208 M. Baioletti et al.

Table 4 Summary showing the number of solved problems S and the number of problem for which
the found solution is the best solution known so far

Domain FF(ha) Lama LPG ACO(FLA) Gamer

Solved BQ Solved BQ Solved BQ Solved BQ Solved BQ

Elev 30 2 30 23 30 4 30 18 22 22
Open 30 2 30 30 30 0 30 30 19 19
Parc 16 16 23 12 30 28 27 22 0 0
Peg 29 6 30 25 26 0 30 27 22 22
Trans 29 6 30 22 29 17 28 11 11 11
Wood 30 0 30 9 30 25 30 16 13 13
Total 164 32 173 121 175 74 175 124 87 87

The same 180 problems have been submitted to all the five planners

actions Ai and Ai+1. The two plans in the Action-Action model will only differ locally
for the three components (Ai−1, Ai) , (Ai, Ai+1) and (Ai, Ai+1), while in the SS (or
in the SA) models they will potentially differ on all the components starting from the
state produced by action Ai−1 onward, till the end of the plans. It is apparent that
the earlier a different state is produced the greatest is the impact on the component
differences among plans which are similar.

Considering the global plan quality shown in Fig. 5, the F LA model still confirms
its proximity to the AA model, i.e., F LA is always performing second and it is
the best performing one also in the only domain (see Pegsol domain) where AA
is not. The global quality results for Openstacks also point out that it is in general
an easy problem domain not sufficiently significant to address quality performance
comparisons.

The performance of the F LA model can be explained by reasons similar to the
ones supporting the better behavior of the AA model with respect to state based
components. In fact, using F LA, two similar plans, in the sense of the previous π1

and π2, receive pheromone in similar components: the model is robust with respect
to local differences such as consecutive action switching or action insertion in a plan.

Moreover the F LA model is more flexible with respect to AA. In AA the
pheromone for plan π1 is given, for instance, to (Ai, Ai+1) whereas pheromone
for plan π2 is put on component (Ai+1, Ai). In F LA instead, switching actions Ai

and Ai+1 will not prevent the two components (Ai, i) and (Ai, i + 1) to receive
pheromone from both plans, although they will receive a fuzzy different amount.
The F LA model is then a worthwhile compromise to obtain a good performance
close to the AA without the higher implemental associated cost.

In general F LA tends to learn in which time step (or nearby) to apply an action
is useful, while AA tends to learn which action is useful to apply after a given one.

Table 5 Statistical analysis of
the data presented in Table 4
by means of χ2 test

Lama LPG FF(ha)

ACO χ2 = 0.03 χ2 = 29.07 χ2 = 89.85
(FLA) p = 0.43 p = 3.48 · 10−8 p < 2.2 · 10−16

Lama – χ2 = 27.01 χ2 = 86.36
p = 1.01 · 10−7 p < 2.2 · 10−16

LPG – – χ2 = 20.43
p = 3.09 · 10−6

Experimental evaluation of pheromone models in ACOPlan 209

Table 6 Statistical analysis
with the Wilcoxon
Signed-Rank test of the data
reported in Tables 7–12

Lama LPG FF(ha)

ACO z = 1.48 z = −3.75 z = −9.54
(FLA) p = 0.08 p = 0.0001 p < 0.0001
Lama – z = −4.79 z = −10.01

p < 0.0001 p < 0.0001
LPG – – z= −7.55

p < 0.0001

In order to understand if the differences between the performance obtained by
the tested pheromone models are significative, we carried out a statistical analysis
by means of the Wilcoxon Signed-Rank test [11]. The results are shown in Table 3,
where each pheromone model has been compared with all the other models con-
sidering all the problem instances that are solved by at least one of the models.
When a planner does not solve a problem instance, we set the corresponding solution
cost to the double of the highest cost found by any other model. The models are
pairwise compared; the Wilcoxon test ranks, by increasing numbers, the difference

Table 7 Results for plan quality on Elevators domain

Problem FF(ha) Lama LPG LPG ACO(FLA) ACO(FLA) Gamer
min median min median

elev01 58 42 42.8 42.8 42 42 42
elev02 26 26 26.6 26.6 26 26 26
elev03 99 55 56 56 55 55 55
elev04 52 40 41.2 41.2 40 40 40
elev05 125 55 56.4 60 55 55 55
elev06 118 53 54.8 70.6 53 53 53
elev07 155 62 67.8 67.8 62 106 62
elev08 126 53 58.6 66.6 53 53 53
elev09 305 87 88 88.2 89 103.5 78
elev10 171 99 80 82 103 103 –
elev11 109 56 57 57 56 56 56
elev12 92 54 54.8 54.8 54 54 54
elev13 88 59 60 60 59 59 59
elev14 147 63 64.4 65.4 64 64 63
elev15 128 66 67.4 68.2 66 66 66
elev16 190 87 89.2 98.6 91 106 –
elev17 200 81 83 88.6 93 100 78
elev18 116 61 62.8 69.6 66 86.5 61
elev19 228 147 124.6 140.2 231 244.5 –
elev20 182 88 99 99.2 154 154 –
elev21 48 48 49 49 48 48 48
elev22 78 54 55.8 55.8 55 55 54
elev23 122 69 70.4 70.4 69 69 69
elev24 90 61 57.6 57.6 56 56 56
elev25 150 63 64.8 66.2 63 103 63
elev26 71 48 49.2 49.2 48 48 48
elev27 152 82 83.8 84 97 107 –
elev28 226 82 86.6 89.4 110 110.5 –
elev29 240 157 111.8 116.8 177 177 –
elev30 131 89 86.4 86.4 124 136.5 –

210 M. Baioletti et al.

between the solution cost found by the two planners, assigning a minus/plus sign to
the rank value according to the sign of the corresponding difference. Since the range
of the quality values may vary greatly between domains, or even between problems
in the same domain, we normalized the differences by dividing the two values we
are comparing with the quality value of the better plan. More formally, let q1 and
q2 the two values for the solution plan quality obtained by the two planners we are
comparing, before applying the Wilcoxon test we have replaced those values with
q1/ min(q1, q2) and q2/ min(q1, q2) respectively.

Since a better solution has a lower value for solution cost, a preponderance of
negative signs among the signed ranks would suggest that the first planner found
solutions with lowest cost (i.e., performs better), while a preponderance of positive
signs would suggest the opposite. The null hypothesis is that there is no tendency
in either direction, hence that the numbers of positive and negative signs will be
approximately equal. In that event, we would expect the value of the sum of the
signed ranks to be near zero, within the limits of random variability. Each cell of the
Table 3 contains the z-value and the p-value resulting from the application of the test

Table 8 Results for plan quality on Openstacks domain

Problem FF(ha) Lama LPG LPG ACO(FLA) ACO(FLA) Gamer
min median min median

open01 3 2 3.5 3.5 2 2 2
open02 3 2 3.8 3.8 2 2 2
open03 2 2 4.1 4.1 2 2 2
open04 3 3 5.4 5.4 3 3 3
open05 9 4 6.7 6.7 4 4 4
open06 5 2 5 6 2 2 2
open07 7 5 8.3 8.3 5 5 5
open08 10 5 8.6 8.6 5 5 5
open09 11 3 6.9 7.9 3 3 3
open10 11 3 7.2 8.2 3 3 3
open11 9 4 8.5 9.5 4 4 4
open12 13 3 9.8 9.8 3 3 3
open13 9 4 10.1 11.1 4 4 4
open14 13 4 11.4 12.4 4 4 4
open15 12 4 11.7 13.7 4 4 4
open16 15 4 13 13 4 4 4
open17 15 4 13.3 15.3 4 4 4
open18 14 3 13.6 14.6 3 3 3
open19 15 4 13.9 15.9 4 4 –
open20 14 4 15.2 15.2 4 4 –
open21 22 3 14.5 15.5 3 3 –
open22 18 4 17.8 18.8 4 4 4
open23 18 4 17.1 20.1 4 4 –
open24 16 5 18.4 18.4 5 5 –
open25 20 4 21.7 22.7 4 4 –
open26 27 5 18 19 5 5 –
open27 20 6 22.3 23.3 6 6 –
open28 19 4 21.6 22.6 4 4 –
open29 24 5 23.9 24.9 5 5 –
open30 32 4 23.2 24.2 4 4 –

Experimental evaluation of pheromone models in ACOPlan 211

using the model in the row heading as the first model and the model in the column
heading as the second model. Negative z-value denotes that the model in the row
heading performs better with respect the model in the column heading, while the
absolute value of the z-value measures the gap between the two models, the higher
the z-value the more significant the difference is. The p-value represents the level of
significance.

Setting the confidence level at 99.5% we can conclude that, except for the SA–SS
comparison, the models statistically differ in their performance.

Finally, we have analyzed the F LA and the AA models more deeply by studying
the distribution of the solution costs. For each domain we have plotted plan cost
values for both these models and built the corresponding boxplot.

In each boxplot are represented the results of the 10 most interesting problems
of the 30 problems in each domain, i.e., the problems p16..p20, p26..p30 for each
domain. The results are very different among the domains, while they are quite
similar comparing both models in the same domain (Figs. 6, 7, 8, 9, 10 and 11).

Table 9 Results for plan quality on Parcprinter domain

Problem FF(ha) Lama LPG LPG ACO(FLA) ACO(FLA) Gamer
min median min median

par01 169009 169009 169009 169009 169009 169009 –
par02 438047 438047 438047 438047 438047 438047 –
par03 807114 807114 807114 807114 807114 807114 –
par04 876094 876094 876094 876094 876094 876094 –
par05 1145132 1345190 1145132 1145132 1145132 1145132 –
par06 – 1614228 1514199 1514199 1514199 1514199 –
par07 – 1783237 1383121 1383121 1383121 1387122.16 –
par08 – 2152304 1852217 1852217 1852217 1852217 –
par09 – 2421342 2121255 2121255 2121255 2131257.9 –
par10 – 2690380 2490322 2490322 2490322 2502325.48 –
par11 182808 182808 182808 182808 182808 182808 –
par12 510256 510256 510256 510255 510256 510256 –
par13 693064 693064 693064 693064 693064 693064 –
par14 1020512 1020512 1020512 1020512 1020512 1020512 –
par15 1695507 1746041 1695507 1705326 1695507 1695507 –
par16 1675408 1827010 1675408 1675408 1675807 1676006.5 –
par17 1713576 1915712 1713576 1713576 1764509 1764509 –
par18 2330304 2582974 2330304 2330304 2483103 2483103 –
par19 3353256 3851224 3422278 3468829 – – –
par20 2754187 – 2775122 2844535 – – –
par21 143411 143411 143411 143411 143411 143411 –
par22 – 375821 375821 375821 375821 375821 –
par23 – 519232 519232 519232 519232 519232 –
par24 – 751642 751642 751642 751642 751642 –
par25 – – 1215839 1215839 1215839 1215839 –
par26 – – 1216462 1216462 1216462 1216462 –
par27 – – 1270874 1270874 1270874 1270874 –
par28 – – 1681282 1681282 1681381 1681381 –
par29 – – 2377265 2377364 – – –
par30 – – 2021893 2021893 2032289 2032289 –

212 M. Baioletti et al.

More in detail, we can note that in the Figs. 7–9, showing respectively the results
for Openstacks, Parcprinter and Pegsol domains, we have obtained very dense
distributions that in many cases collapse into a line (all the runs found the same
value), while in Transport (Fig. 10), Woodworking (Fig. 11) domains and especially
in Elevators domain (Fig. 6) the boxes show a higher degree of dispersion and the
presence of some outliers. A possible explanation of this behaviour is that the heuris-
tic F F AC is lesser informative in Transport, Woodworking and Elevators domains
causing a slower convergence of the algorithm. In this case greater differences can be
found among the different solution plans and this leads to a higher dispersion of the
synthesized plans in the solution space.

5.3 Comparing ACOPlan with other planners

This second set of experiments has been devoted to compare ACOPlan with other
“state of the art” planners. We have chosen to compare ACOPlan with Fuzzy

Table 10 Results for plan quality on Pegsol domain

Problem FF(ha) Lama LPG LPG ACO(FLA) ACO(FLA) Gamer
min median min median

peg01 2 2 2.30 2.30 2 2 2
peg02 5 5 5.40 5.40 5 5 5
peg03 4 4 4.50 4.50 4 4 4
peg04 5 4 4.60 4.60 4 4 4
peg05 5 4 4.70 4.70 4 4 4
peg06 4 4 4.80 4.80 4 4 4
peg07 3 3 3.90 3.90 3 3 3
peg08 9 6 7.00 7.00 6 6 6
peg09 5 5 6.00 6.00 5 5 5
peg10 8 6 7.10 7.10 6 6 6
peg11 9 7 8.10 8.10 7 7 7
peg12 9 8 9.20 9.20 8 8 8
peg13 13 9 11.20 11.20 9 9 9
peg14 12 7 – – 7 7 7
peg15 12 8 9.30 9.30 8 8 8
peg16 10 8 9.30 9.30 8 8 8
peg17 12 10 11.40 11.40 10 10 10
peg18 14 7 12.40 12.40 7 7 7
peg19 11 8 9.40 9.40 8 8 8
peg20 12 7 9.50 11 7 7 7
peg21 14 8 12.50 14 8 8 8
peg22 8 6 7.50 7.5 6 6 6
peg23 16 8 – – 8 8 –
peg24 14 8 13.70 13.7 8 8 –
peg25 12 8 10.70 12.2 8 8 –
peg26 14 10 13.80 14.3 10 10 –
peg27 14 8 13.10 15.1 7 7 –
peg28 16 15 – – 13 13 –
peg29 19 13 18.60 18.6 11 11 –
peg30 – 22 – – 23 24 –

Experimental evaluation of pheromone models in ACOPlan 213

Level Action pheromone model (ACO(FLA)) with FF(ha) [22], Lama [25], Gamer
[14] and LPG [16]. Lama was the winner of the last planning competition in the
sequential satisficing track, so it is the natural basis for comparisons. The choice of
FF(ha) is twice motivated: it has been the second best planner resulting from the
above track competition and it uses a heuristic function quite close to ACOPlan.
LPG has been chosen because it is one of the best performing planners of the last
years and moreover it uses a non-deterministic approach. Finally, Gamer has been
chosen because it was the winner of the last planning competition in the sequential
optimization track: it has been mainly used to obtain the optimal solution quality in
order to evaluate the solutions found by the other planners.

All the planners have run on the same machine, with the same limit for the CPU
time (varying on the basis of the problem difficulty), and using the most suitable
parameters values (if tunable) to improve the quality of the plans found. In particular
LPG has run with -n 50 option and, because it is a non deterministic planner, the
shown results are the median values of the results obtained by 50 runs.

Table 11 Results for plan quality on Transport domain

Problem FF(ha) Lama LPG LPG ACO(FLA) ACO(FLA) Gamer
min median min median

tra01 54 54 54 54 54 54 54
tra02 182 131 131 131 131 131 131
tra03 397 250 250 250 250 250 250
tra04 492 318 318 320 318 327.5 318
tra05 620 335 377 401 357 360 –
tra06 670 523 484 563.5 541 580.5 –
tra07 1079 528 519 612 682 1012 –
tra08 1225 682 811 887.5 1263 1318 –
tra09 1494 598 791 930 1174 1215.5 –
tra10 1705 762 2225 2225 2023 2023 –
tra11 456 456 456 456 456 456 456
tra12 886 594 594 594 594 594 594
tra13 1105 550 550 550.5 550 550 550
tra14 1507 1028 1055 1115.5 1032 1039 –
tra15 1963 1354 1072 1149 1384 1487.5 –
tra16 2937 1603 1717 1797 2766 2815 –
tra17 2349 2748 2410 2918 3485 3897 –
tra18 3779 2936 2834 3076 4757 4757 –
tra19 4450 4448 4227 4420.5 – – –
tra20 – 3877 – – – – –
tra21 478 478 478 478 478 478 478
tra22 632 632 632 632 632 632 632
tra23 630 630 630 630 630 630 630
tra24 1207 614 614 616 614 616.5 614
tra25 1716 1005 979 1051 1003 1004 –
tra26 1271 959 1026 1059 1004 1021.5 –
tra27 2517 962 1090 1108.5 1385 1402.5 –
tra28 4790 1794 2139 2336.5 3677 3723.5 –
tra29 1827 1505 1796 2014 2344 2531 –
tra30 3561 1553 2303 2435 2414 2414 –

214 M. Baioletti et al.

The results relative to the plan quality are synthesized in Table 4 that shows,
for each planner and for each domain, the two values Solved and BQ representing,
respectively, the number of solved problem (at least in one run) and the number of
problems for which a solution with the optimal (or the best-known value) cost has
been found.

These results have been also analyzed with the χ2 test and the results have been
shown in Table 5 using the same technique previously presented for Table 2. From
these data we can conclude that ACO(FLA) and Lama perform significantly better
than both LPG and FF(ha), and that LPG performs significantly better than FF(ha).

Finally we have collected and analyzed the solution cost of the all attempted prob-
lem instances by the all tested planners. These data are analyzed by the Wilcoxon
Signed-Rank test using the same technique and notations previously presented for
Table 3; the results are shown in Table 6 while the data are extensively presented
in Tables 7, 8, 9, 10, 11 and 12. For the deterministic planners Lama, FF(ha) and
Gamer the exact solution cost is reported, while for ACOPlan and LPG, which
adopt stochastic algorithm in their search process, both the minimum cost they found

Table 12 Plan quality on Woodworking domain

Problem FF(ha) Lama LPG LPG ACO(AA) ACO(AA) Gamer
min median min median

wood01 240 170 170 170 170 170 170
wood02 240 185 185 185 185 185 185
wood03 415 295 275 275 275 282 275
wood04 380 315 280 280 280 287.7 280
wood05 365 320 270 270 270 275.5 –
wood06 550 505 440 440 430 493.7 –
wood07 550 420 400 400 475 497.5 –
wood08 610 620 450 450 525 585.5 –
wood09 700 575 500 500 600 740.7 –
wood10 890 765 585 585 800 1012.9 –
wood11 145 130 130 130 130 130 130
wood12 310 225 225 225 225 225 225
wood13 265 235 215 215 215 215 215
wood14 295 275 230 230 245 245 225
wood15 405 435 270 270 280 342.2 270
wood16 385 360 315 315 315 334.4 –
wood17 460 335 290 290 335 424.3 –
wood18 580 640 470 470 525 582.6 –
wood19 665 530 420 420 465 553.6 –
wood20 680 835 525 525 730 863.9 –
wood21 105 95 100 100 95 95 95
wood22 195 185 185 185 185 185 185
wood23 225 195 195 195 195 195 195
wood24 290 245 245 245 245 245.3 245
wood25 680 435 420 420 400 535.7 –
wood26 365 240 240 240 240 253.1 –
wood27 465 480 370 370 410 459.5 –
wood28 665 665 1235 1235 660 733.9 –
wood29 785 735 545 545 745 854.4 –
wood30 925 825 695 695 930 1118.7 –

Experimental evaluation of pheromone models in ACOPlan 215

and the median value over the 50 runs are reported. When the data are missing the
planner was not able to solve the problem at hand.

These data are analyzed by the Wilcoxon Signed-Rank test using the same
technique and notations previously presented for Table 3; the results are shown in
Table 6.

From these data we can deduce that ACO(FLA) and Lama are comparable in
terms of solution cost, LPG performs a little worse than them while FF(ha) is in
general the worst performing.

Combining the results of these two last analysis we can conclude that ACO(FLA)
and Lama are comparable both in terms of solving and optimizing capabilities; LPG
is performing worse specially from the optimizing capability (i.e., it finds in general
good solutions but it often fails to find the best possible solution); FF(ha) is the worst
performing both in terms of solving and optimizing capabilities with very relevant
differences.

6 Conclusions

ACOPlan, an optimization planning algorithm has been presented. ACOPlan em-
ploys a colony of stochastic and heuristic–based ants–planners in the framework
of ACO metaheuristic, an action cost based heuristic function FFAC and different
pheromone models to optimize planning with respect to action costs.

Results of systematics experiments with benchmark domains suggest that, in
general, action based pheromone models, like Action–Action, outperform state
based ones, while the proposed novel pheromone model based on Fuzzy–Level–
Action components has been proved to be a promising and effective tradeoff between
performance and space cost. These results hold both for problem solving and
optimization capabilities of the planner.

The comparison of ACOPlan with state of the art planners shows that the
stochastic ACO based approach is optimal in many hard problems, and is competitive
with respect to the percentage of solved problems and from the point of view of
distribution of solution quality, as shown in the box–plot diagrams in Section 5. This
is strongly promising since the ACO approach to planning can still be extended in
many directions.

The analysis of results allows a deeper understanding of the role of component
models in the problem solving and optimization capability of ACOPlan, which
suggests useful guidelines for further development of ACOPlan and, at some extent,
in the broader context of ACO algorithms.

– In order to produce effective search strategies which distinguish a useful situation,
the components should capture the context in which an action is applicable, or a
decision is taken (maximum context details);

– The component should not proliferate too much, for performance reason, and
more importantly in order to allow the pheromone to be deposited on frequently
used components. In other words, the components should not be too detailed in
order to avoid to spread the pheromone on too many components which seldom
will be found again in the search space (minimum context details)

– The model components should include elements of the solution plans (actions and
precedence constraints, time steps or plan history etc.) instead of properties of

216 M. Baioletti et al.

entities which can greatly differ in similar solution plans (e.g. a complete state
description)

– The model components should verify the property that two similar solution
should produce similar components, according to a given notion of similarity,
i.e., a minimal perturbation on a solution producing a solution with the same
optimality value should deposit a similar amount of pheromone on similar
components.

This latter property has been shown to hold for AA and more strongly for F LA, al-
lowing the pheromone to deposit on most of the components of perturbed solutions.

The promising behavior of F LA model will be experimented in future works
in more general optimization contexts such as multiple costs and cost metrics
involving resource consumption. In particular it is worth investigating extensions of
the technique of component fuzzif ication introduced with F LA. According to this
principle, given a metric distance D among components, a pheromone model can
be fuzzified providing that: each component C which is similar to a given one Csol

appearing in a solution, will receive a pheromone amount in inverse proportion of
the distance D(C, Csol). The technique has a general aim and it can also be applied
to state based pheromone models, although these latter ones still present space
complexity problems.

Another line of future research will be the study of ACOPlan with multiple
heterogeneus pheromone models and/or colonies of heterogeneous ants. In multiple
pheromone models the transition probabilities are computed by using the average
of different pheromone types, while heterogeneus ants can use different search
algorithms and/or heuristics. The purpose, in both cases, is to exploit the performance
of different models/search methods and dynamically adapting them to the problem
domain.

References

1. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for plan-
ning. Artif. Intell. 116, 123–191 (2000)

2. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: An ACO approach to planning. In: Proceedings
of the 9th European Conference on Evolutionary Computation in Combinatorial Optimisation,
EVOCOP 2009 (2009)

3. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Ant search strategies for planning optimization.
In: Proceedings of the International Conference on Planning and Scheduling, ICAPS 2009 (2009)

4. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Optimal planning with ACO. In: Proceedings of
AI*IA 2009. LNCS, vol. 5883, pp. 212–221 (2009)

5. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: PlACO: Planning with Ants. In: Proceedings of
The 22nd International FLAIRS Conference. AAAI (2009)

6. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artif. Intell. 90, 281–300
(1997)

7. Blum, C.: Ant colony optimization: introduction and recent trends. Physics of Life Reviews 2(4),
353–373 (2005)

8. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33 (2001)
9. Bylander, T.: The computational complexity of propositional strips planning. Artif. Intell. 69

(1–2), 165–204 (1994)
10. Cialdea, M., Limongelli, C., Poggioni, V., Orlandini, A.: Linear temporal logic as an executable

semantics for planning languages. J. Logic, Lang. Inf. 16, 63–89 (2007)
11. Conover, W.: Practical Nonparametric Statistics. John Wiley & Sons (1999)

Experimental evaluation of pheromone models in ACOPlan 217

12. Do, M.B., Kambhampati, S.: Sapa: a multi-objective metric temporal planner. J. Artif. Intell. Res.
(JAIR) 20, 155–194 (2003)

13. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA, USA (2004)
14. Edelkamp, S., Kissmann, P.: Gamer: bridging planning and general game playing with symbolic

search. In: Proceedings of IPC-6 Competition (2008)
15. Garcia, M.P., Oscar Montiel, O.C., Sepulveda, R., Melin, P.: Path planning for autonomous

mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl.
Soft Comput. 9, 1102–1110 (2008)

16. Gerevini, A., Serina, I.: LPG: a planner based on local search for planning graphs. In:
Proceedings of the 6th International Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS’02). AAAI Press, Toulouse, France (2002)

17. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. (JAIR). 26, 191–246 (2006)
18. Helmert, M., Do, M., Refanidis, I.: International Planning Competition IPC-2008. The Deter-

ministic Part. http://ipc.icaps-conference.org/ (2008)
19. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search.

J. Artif. Intell. Res. (JAIR) 14, 253–302 (2001)
20. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceedings of

KR-96, Cambridge, Massachusetts, USA (1996)
21. Kautz, H., Selman, B.: Unifying sat-based and graph-based planning. In: Proceedings of IJCAI-

99, Stockholm (1999)
22. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proceedings of

ECAI 2008, pp. 588–592 (2008)
23. Menkes van den Briel, T.V., Kambhampati, S.: Loosely coupled formulations for automated

planning: an integer programming perspective. J. Artif. Intell. Res. (JAIR) 31, 217–257 (2007)
24. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan

Kaufmann (2004)
25. Richter, S., Westphal, M.: The lama planner using landmark counting in heuristic search. In:

Proc. of IPC-6 Competition (2008)
26. Rossi, F.: An aco approach to planning. Ph.D. thesis, Mathematics and Computer Science Dept.,

University of Perugia, Italy (2009)

http://ipc.icaps-conference.org/

	Experimental evaluation of pheromone models in ACOPlan
	Abstract
	Introduction
	Ant Colony Optimization
	Automated planning
	Planning with ACO
	The algorithm
	The pheromone models
	The heuristic FFAC for actions costs
	Plan comparison and pheromone updating

	Experimental evaluation
	Benchmark domains
	Comparing pheromone models
	Comparing ACOPlan with other planners

	Conclusions
	References

