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Abstract We detail the relationship between sets of desirable gambles and condi-
tional lower previsions. The former is one the most general models of uncertainty.
The latter corresponds to Walley’s celebrated theory of imprecise probability. We
consider two avenues: when a collection of conditional lower previsions is derived
from a set of desirable gambles, and its converse. In either case, we relate the
properties of the derived model with those of the originating one. Our results
constitute basic tools to move from one formalism to the other, and thus to take
advantage of work done in the two fronts.
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1 Introduction

1.1 Background and motivation

Uncertainty is at the very heart of much of artificial intelligence (AI), and so are the
many theories and models proposed to deal with it. Among these, a central role is
played by probabilistic theories, and in particular by Bayesian theory. On the other
hand, the very general kind of uncertainty handling needed by AI has favored the
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emergence of theories able to deal with uncertainty more flexibly than traditional
probability. In fact, recent years have seen more and more work being devoted to
theories of so-called imprecise probability.1 The common ground among them is the
attempt to represent and deal with probabilities that can be imprecisely specified,
for example by using sets of probabilities. Introducing imprecision has enabled prob-
ability to cope effectively with qualitative uncertainty statements, with incomplete
(or missing) information, and to naturally embed robustness in its inferences.

A prominent theory of imprecise probability is Walley’s behavioral theory of
coherent lower previsions [19]. The distinguishing feature of this theory is its being
founded on a rationality axiom: coherence. Coherence ensures that probabilistic
inferences made under such a theory are self-consistent. Walley’s theory shares
this property with the Bayesian theory, of which it can actually be regarded as a
generalisation: in fact, a coherent lower prevision is a lower expectation functional,
which is in one-to-one correspondence with a closed convex set of probability
distributions (that is, a so-called credal set). The approach by Walley includes also
as particular cases most of the other imprecise probability models appearing in the
literature (when these are interpreted as sets of probabilities and used coherently),
such as possibility measures, belief functions, Choquet capacities and coherent lower
and upper probabilities and expectations. Coherence is also at the basis of the
inferential procedure called the natural extension, which allows one to derive, in
a very general sense, probabilistic conclusions from probabilistic premises. A few
special cases of the natural extension are logical deduction, de Finetti’s fundamental
theorem of probability, Lebesgue integration of a probability measure, Choquet
integration of 2-monotone lower probabilities, Bayes’ rule for probability measures
and robust Bayesian analysis.

As Walley himself has repeatedly remarked (see [19, Appendix F], [21]), there
is another theory which is even more general than coherent lower previsions: the
theory of (coherent) sets of desirable gambles. In the theory of desirable gambles,
a subject expresses his uncertainty about the outcome of an experiment through a
set of gambles that he would accept. As with coherent lower previsions, a rationality
axiom of coherence is imposed on a set of desirable gambles, and a related procedure
of natural extension is defined as well.

Despite the unusual form as models of uncertainty, sets of desirable gambles have
a number of remarkable properties. One of the most appealing is their inherent
conceptual simplicity: for example, the founding notion of coherence, which in
the case of coherent lower previsions is quite technical, becomes very clear and
intuitive; updating a set of desirable gambles in the light of new evidence simply
corresponds to focus on a subset of the original gambles. Also, we can derive
coherent lower previsions easily from sets of desirable gambles, and moreover these
are indeed more expressive than coherent lower previsions. This is obvious when
we come to updating: coherent lower previsions, as well as traditional probability
models, are not suited to update beliefs conditional on an event of probability zero.2

The reason is that by its very definition Bayes’ rule cannot be applied (or, stated
alternatively, it leads to uninformative conclusions). On the other hand, the extra

1See http://www.sipta.org.
2Some reasons why it is important to allow for conditioning on such events, in particular with
imprecise probability models, are discussed in the Introduction of another paper [14].

http://www.sipta.org
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expressivity of desirable gambles permits to obtain meaningful conclusions also when
the conditioning event has lower, and even upper, probability equal to zero.

The idea of using desirable gambles as models for uncertainty dates back to the
early sixties from Smith’s work [17], but it was elaborated and formalised with all
the main modern ideas only in 1975 in the important work of Williams [24]. Then
it was reconsidered by Walley, who used desirable gambles as a building block
of his theory of coherent lower previsions. Walley also explored to a large extent
(see [19, Section 3.7]) the relationship between desirability and unconditional lower
previsions, showing in particular that a special type of desirable gambles, called
almost-desirable, are models equivalent to unconditional lower previsions. He also
introduced the related notions of real and strict desirability. More recent work has
been done by Moral [15], who studied notions of irrelevance for desirable gambles;
by de Cooman and Miranda [4], who made a general study of transformational
symmetry assessments for desirable gambles; by Couso and Moral [1], who discussed
the relationship with credal sets, computer representation, and maximal sets of
desirable gambles; and finally by de Cooman and Quaeghebeur [5], who studied
exchangeability in the framework of desirable gambles, and who also introduced the
new notion of weak desirability.

1.2 Problems and contributions

Although the theory of desirable gambles has recently experienced a boost in
research, some of its basic features are still relatively unexplored. This is the case of
the relationship between sets of desirable gambles and conditional lower previsions,
which is particularly important to relate, and take advantage of, work done in the
two fronts. This paper is a technical set of notes that detail such a relationship.

Consider a space of possibilities � that lists all the possible outcomes ω of
an experiment. Consider a further experiment whose possible outcomes are the
elements of a partition B of �. By yielding a set B ∈ B, the latter experiment tells
us something about where the outcome of the first experiment is going to be in
�. Let L(�) be the set of all gambles (bounded random variables) f : � → R. A
conditional coherent lower prevision P(·|B), defined on a subset K of L(�), is a
conditional lower expectation functional equivalent to a (closed and convex) set of
distributions conditional on some B ∈ B. We summarise the conditional information
through the gamble P(·|B) which takes the value P(·|B) on the elements of B; and
we call P(·|B), too, a conditional coherent lower prevision. The above reasoning can
be repeated for different partitions B1, . . . ,Bm of �, therefore it is common to take
a collection of conditional coherent lower previsions P1(·|B1), . . . , Pm(·|Bm) as the
basic modelling unit in Walley’s theory.

We can consider two situations at this point:

(1) In the first, we start from a set of desirable gambles R, and given partitions
B1, . . . ,Bm of �, we derive from R a collection of conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm).

(2) In the second, starting from a collection of conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm) we derive a set of desirable gambles R.

In this paper we study, in both cases (1) and (2), the relation between the properties
of the derived model and those of the originating one.



254 E. Miranda, M. Zaffalon

As we have said, a thorough study of this type has already been done by Walley
in the unconditional case [19, Section 3.7], which corresponds to focusing on the
single trivial partition B = {�}. In the much more involved case where we focus on
multiple partitions B1, . . . ,Bm, the contributions so far are basically confined within
the work of Williams [24]. Williams has, in particular, focused mostly on case (1)
above. Case (2) is nearly unexplored to date (although part of Walley’s work is
somewhat implicitly relying on it).

We start our work in Section 2, where we give background notions on conditional
coherent lower previsions. We define a number of consistency conditions, already
introduced by Walley: separate coherence, avoiding uniform sure loss, avoiding
partial loss, weak coherence, and finally (joint or strong) coherence. We define also
the natural extension of a collection of conditional coherent lower previsions, and
prove some of its properties. Then we introduce the special case of coherent lower
previsions called linear previsions, which are expectation functionals, that is, precise-
probability models. Moreover, we discuss the updating of an unconditional coherent
lower prevision in the form of a generalised Bayes’ rule.

In doing all this, we take a very general stance: we do not place any restriction
of the cardinality of the set � nor on the domain of the conditional coherent lower
previsions. This is in contradistinction with Walley’s (and Williams’) work, which in
the conditional case is restricted to domains being linear spaces, and is instead in the
same spirit of more recent work [13, 16]. On the other hand, throughout the paper we
do place the restriction that each conditioning partition of � be finite. We do this to
avoid entering the controversy concerning how to deal with infinite partitions: in fact,
Walley’s approach relies on an axiom of so-called conglomerability [19, Section 6.8
and Appendix F], which is an important point of disagreement with Williams’ and de
Finetti’s work (see also [24] and [16]).

In Section 3 we introduce sets of really desirable gambles, which is our main model
through the paper, and define for this model the conditions of avoiding partial loss,
coherence, and the procedure of natural extension. We provide some basic results,
and introduce the related notions of almost and strictly desirability.

The main corpus of our work starts in Section 4, where we address case (1) above.
We detail the conditions of the set R that enable the derived conditional lower
previsions to be, in turn, well-defined (i.e., bounded), separately coherent, avoiding
partial loss, and (jointly) coherent. We also highlight here the natural connections
of these results with almost-desirability. Moreover, we discuss which properties of
R can affect the domain of the derived lower previsions, and show under which
conditions R yields linear previsions. This part of the paper is the closest to Williams’
work, which is partly generalised here.

The work continues in Section 5, where we address point (2). There we define
the set R of really desirable gambles that is derived from a collection of sepa-
rately coherent conditional lower previsions P1(·|B1), . . . , Pm(·|Bm), and provide
two equivalent formulations for its natural extension. On this basis, we show that
P1(·|B1), . . . , Pm(·|Bm) avoid partial (or uniform sure) loss if and only if R does.
Moreover, we show in Theorem 11 a somewhat unexpected result: that while a
coherent collection P1(·|B1), . . . , Pm(·|Bm) yields a coherent set R, the coherence
of R alone does not imply that the originating collection is coherent. Further results
detail the link between the natural extension of the collection and that of the derived
set R.
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These results are used in Section 6. We first discuss commutativity, which is
something that Williams had already explored in his framework: what happens if
we start from a collection P1(·|B1), . . . , Pm(·|Bm), derive a set of desirable gambles
R, and from this we derive a new collection P′

1(·|B1), . . . , P′
m(·|Bm)? What happens if

we go the other way around? We show that in the first case we re-obtain the original
collection, and moreover that the logical implications of set R coincide with those
of the collection (so that it is possible to always work entirely in the framework of
desirable gambles), while in the second case there is a loss of information. We then
move on to deepen the properties of sets of desirable gambles that make them more
expressive than collections of conditional coherent lower previsions: in this case, we
describe the special sets of desirable gambles that are as expressive as collections of
conditional lower previsions. When � is finite, this result is particularly revealing: it
shows that there is a kind of information carried by sets of desirable gambles that
cannot be disclosed through any conditional probabilistic statement. As we shall see,
such a kind of information has to do with modelling preferences.

After drawing some conclusions in Section 7 on the problems studied and dis-
cussing open problems, we give some additional results in Appendix A. These results
are related to the main discussion in the paper but are also somewhat less central
to it. Thus, we have preferred to collect them separately in order to allow the
reader to follow more easily the main discussion. The first result, relating to some
recent work [1], shows which properties of R lead to conditional lower previsions
that coincide with those obtained through the regular extension, which is a special
updating procedure for lower previsions; the second investigates some properties of
the concept of weak desirability, which has recently been introduced in [5], and its
relationship with the results in this paper.

Finally, and again for clarity, in Appendix B we have collected all the proofs of
the results in the paper.

2 Coherent lower previsions

Let us give a short introduction to the concepts and results from the behavioural
theory of imprecise probabilities that we shall use in the rest of the paper. We refer to
[19] for an in-depth study of these and other properties, and to [11] for a brief survey.

2.1 The behavioural interpretation

Given a possibility space �, a gamble f is a bounded real-valued function on �. This
function represents a random reward f (ω), which depends on the a priori unknown
value ω of �. We shall denote by L(�) the set of all gambles on �, or by L when there
is no confusion about the possibility space we are dealing with, and by L+ := { f ∈ L :
f � 0} the set of non-negative gambles different from zero.3 A lower prevision P is
a real functional defined on some set of gambles K ⊆ L(�). It is used to represent

3In this paper we shall use f < g to denote that f (ω) < g(ω) for all ω ∈ �, and f ≤ g when f (ω) ≤
g(ω) for all ω ∈ �. The notation f � g (often adopted when either f = 0 or g = 0) is used in the case
f ≤ g, f �= g, and similarly f � g means that f ≥ g, f �= g.
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a subject’s supremum acceptable buying prices for these gambles, in the sense that
for all ε > 0 and all f in K the subject is disposed to accept the uncertain reward
f − P( f ) + ε.

From any lower prevision P we can define an upper prevision P using conjugacy:
P( f ) := −P(− f ) for any gamble f in −K := { f : − f ∈ K}. P( f ) can be interpreted
as the infimum acceptable selling price for the gamble f . Because of this relationship,
it will suffice for the purposes of this paper to concentrate on lower previsions for the
most part.

We can also consider the supremum buying prices for a gamble, conditional on
a non-empty subset of �. Given such a set B and a gamble f on �, the lower
prevision P( f |B) represents the subject’s supremum acceptable buying price for the
gamble f , provided he later comes to know that the unknown value ω belongs to
B, and nothing else. Equivalently, it can also be seen as the supremum value of
δ for which our subject is disposed to accept the transaction given by the gamble
B( f − δ),4 where to simplify the notation we use B to denote also the indicator
function IB of the set B. If we consider a partition B of � (for instance a set of
categories), then we shall represent by P( f |B) the gamble on � that takes the
value P( f |B) if and only if ω belongs to the element B of the partition B. The
functional P(·|B) that maps any gamble f on its domain into the gamble P( f |B)

is called a conditional lower prevision. To any conditional lower prevision P(·|B) we
can associate a conditional upper prevision P(·|B) by P( f |B) := −P(− f |B). It will
represent the infimum acceptable selling price for the gamble f , contingent on the
element of the partition B that we observe.

A gamble f on � is called B-measurable when it is constant over the elements of
B. This is for instance the case of the conditional lower prevision P( f |B).

We shall also use the notations

G( f |B) := B( f − P( f |B)), G( f |B) :=
∑

B∈B
G( f |B) = f − P( f |B)

for all f in the domain of P(·|B) and all B ∈ B. By G( f |B) we represent the
transaction where the gamble f is bought at the price P( f |B) contingent on B, and
which is called off otherwise. In the case of an unconditional lower prevision P, we
shall let G( f ) := f − P( f ) for any gamble f in its domain. In our notation this is
equivalent to have a conditional lower prevision P(·|B) with B = {�}. Moreover, in
this case G( f |�) = G( f ).

These assessments modelled by a conditional lower prevision P(·|B) can be made
for many different partitions of �, and therefore it is not uncommon to model a
subject’s beliefs using a finite number of different conditional lower previsions. We
should verify then that all the assessments modelled by these conditional lower
previsions are coherent with one another. In this section we review the different
consistency criteria. We give the particular definitions of these notions for finite
partitions, which will be the ones considered in this paper, and refer to [13, 19] for
more general definitions of these notions.

4These are called the updated and contingent interpretations of the conditional prevision, and
represent our subject’s beliefs at the present time, even if they take into account future scenarios.
See [19, Section 6.1] or [11, Section 3.1] for more details.
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2.2 Separate coherence

The first requirement we make is that for any partition B, the conditional lower
prevision P(·|B) defined on a subset H of L should be separately coherent.

Definition 1 (Separate coherence) A conditional lower prevision P(·|B) with do-
main H is separately coherent if for every B ∈ B, the gamble B belongs to H and
P(B|B) = 1, and moreover

sup
ω∈B

⎡

⎣
n∑

j=1

λ jG( f j|B) − G( f0|B)

⎤

⎦ (ω) ≥ 0

for every n ≥ 0, j = 1, . . . , n, f j ∈ H, λ j ≥ 0, f0 ∈ H.

Separate coherence means that contingent on B the supremum acceptable buying
price for a gamble f0 cannot be raised by taking into account other acceptable
transactions, and also that we should be prepared to bet on B at all odds after having
observed it.

When the domain H is a linear set of gambles (i.e., closed under addition and
under multiplication by real numbers), there is a simpler characterisation of separate
coherence:

Theorem 1 [19, Theorem 6.2.7] If the domain H of P(·|B) is a linear set of gambles
that contains all gambles B ∈ B, then P(·|B) is separately coherent if and only if the
following conditions are satisf ied for all B ∈ B, f, g ∈ H, and λ > 0:

P( f |B) ≥ inf
ω∈B

f (ω), (SC1)

P(λ f |B) = λP( f |B), (SC2)

P( f + g|B) ≥ P( f |B) + P(g|B). (SC3)

It is also useful for this paper to explicitly consider the particular case where
B = {�}, that is, when we have unconditional information. We have then a(n
unconditional) lower prevision P on a subset K of the set L of all gambles. Separate
coherence is simply called then coherence:

Definition 2 (Coherence) An unconditional lower prevision P with domain K is
coherent when

sup
ω∈�

⎡

⎣
n∑

j=1

λ jG( f j) − G( f0)

⎤

⎦ (ω) ≥ 0 (1)

for every n ≥ 0, j = 1, . . . , n, f j ∈ K, λ j ≥ 0, f0 ∈ K.
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Its interpretation is similar to that of separate coherence, now with B = �. Again,
we can give a simpler characterisation in the case of linear domains:

Theorem 2 [19, Section 2.3.3] Let P be a lower prevision def ined on a linear set of
gambles K. It is coherent if and only if the following conditions hold for all f, g ∈ K,
and λ > 0:

P( f ) ≥ inf f, (C1)

P(λ f ) = λP( f ), (C2)

P( f + g) ≥ P( f ) + P(g). (C3)

Remark 1 It is possible to deduce from Definition 1 that given a separately coherent
conditional lower prevision P(·|B) with domain H, we may assume without loss of
generality that H contains all the gambles λ f − μ, where f ∈ H, λ ≥ 0 and μ ∈ R,
and moreover that for each fB ∈ H, B ∈ B, also the gamble

∑
B∈B BfB belongs to

H (see [19, Lemma 6.2.4 and Section 6.2.6]). The above assumptions imply that the
B-measurable gambles are in H. Two other useful consequences that we shall use
repeatedly in the rest of the paper are the following:

• for all f ∈ H, both G( f |B) and G( f |B) belong to H;
• for all f ∈ H, λ ≥ 0, λG( f |B) = G(λ f |B) and λG( f |B) = G(λ f |B) (note that

the gamble λ f belongs to H).

The second point, in particular, will allow us to simplify the notation by removing the
λ-coefficients from many formulae.

2.3 Avoiding partial and uniform sure loss

Let B1, . . . ,Bm be finite partitions of � and let P1(·|B1), . . . , Pm(·|Bm) be sepa-
rately coherent conditional lower previsions whose respective domains are subsets
H1, . . . ,Hm of L.

Definition 3 (Avoiding uniform sure loss) The conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss if for every j = 1, . . . , m, n j ≥ 1, k =
1, . . . , n j, gk

j ∈ H j,

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) ≥ 0.

The intuition behind this notion is that there at least should exist a possibility for
the subject to not lose any utiles from the transactions that the subject has accepted,
so a combination of transactions which are acceptable to our subject should not make
him lose utiles for all the outcomes of the experiment. It is based on the rationality
requirement that a gamble f < 0 should not be desirable.

A related stronger notion that restricts the set where we take the supremum in the
definition above is called avoiding partial loss. In order to introduce it, we need to
give first the notion of support.
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Definition 4 (B-support) Define the B-support S( f ) of a gamble f in L as

S( f ) := {B ∈ B : Bf �= 0}, (2)

i.e., it is the set of conditioning events for which the restriction of f is not identically
equal to the zero gamble.

Definition 5 (Avoiding partial loss) We say that a number of conditional lower
previsions P1(·|B1), . . . , Pm(·|Bm) avoid partial loss if for every j = 1, . . . , m, n j ≥
1, k = 1, . . . , n j, gk

j ∈ H j, such that not all the gk
j are zero gambles,

sup
ω∈S(gk

j )

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) ≥ 0,

where by S(gk
j ) := ⋃∪m

j=1 ∪n j

k=1 S j(gk
j ) we mean the set of elements that belong to

some set in S j(gk
j ) for some j ∈ {1, . . . , m}, k ∈ {1, . . . , n j}.

With this stronger notion, we also reject the possibility that a combination of
acceptable transactions make our subject lose utiles except in the set where all the
transactions are equal to zero.

Remark 2 One might wonder whether the support of a gamble f could rather be
defined as S( f ) := {B ∈ B : Bf not constant}, because it is in these conditioning
events where G( f |B) is non-zero. Actually, it can be checked that the resulting
condition of avoiding partial loss, which at first sight might seem stronger than the
one in Definition 5, is equivalent to it provided that the domains are rich enough,
in the sense that the domain of P(·|B) contains all B-measurable gambles (and this
is something we have assumed in Section 2.2, see Remark 1). Similar considerations
can be made for the notion of coherence we shall introduce in Definition 7.

In order to explore the connection between avoiding partial loss and the desirabil-
ity of a set of gambles, we are going to use a number of properties. The first one is
an adaptation of a result we established somewhere else [14, Proposition 4] for lower
previsions conditional on variables:

Proposition 1 Let P1(·|B1), . . . , Pm(·|Bm) be conditional lower previsions with re-
spective domains H1, . . . ,Hm. The following are equivalent:

1. P1(·|B1), . . . , Pm(·|Bm) avoid partial loss.
2. For every ε > 0, gk

j ∈ H j, j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, such that not all the
gk

j are zero gambles, it holds that

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω) > 0. (3)
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3. For every ε > 0, gk
j ∈ H j, j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, such that not all the

gk
j are zero gambles, it holds that

sup
ω∈S(gk

j )

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω) ≥ 0. (4)

Remark 3 In the particular case where the domains of the conditional lower pre-
visions P1(·|B1), . . . , Pm(·|Bm) are linear spaces, we can assume without loss of
generality that n j = 1 for j = 1, . . . , m in Definitions 3 and 5, and in (3): it suffices
to take into account that, because of the super-additivity (SC3) of the conditional
lower previsions,

∑n j

k=1 G j(gk
j |B j) ≥ G j(

∑n j

k=1 gk
j |B j), and this for every j = 1, . . . , m.

Similar considerations hold for the conditions of weak and strong coherence we shall
introduce next, and for the natural extension we shall define in (7). We shall use this
to simplify some of the proofs in Appendix B.

2.4 Weak and strong coherence

We next give two notions that generalise the concept of coherence in (1) from the
unconditional to the conditional case:

Definition 6 (Weak coherence) Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent
conditional lower previsions with respective domains H1, . . . ,Hm. We say that they
are weakly coherent if for every j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j, and for
every j0 ∈ {1, . . . , m}, g0 ∈ H j0 , B0 ∈ B j0 , it holds that

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− G j0 (g0|B0)

⎤

⎦ (ω) ≥ 0. (5)

With this condition we require that our subject should not be able to raise his
supremum acceptable buying price P j0(g0|B0) for a gamble g0 contingent on B0 by
taking into account the implications of other conditional assessments: if (5) does not
hold and the supremum is strictly negative then we can deduce that there is some ε >

0 such that G j0(g0|B0) − ε is also a desirable gamble, which means that P j0(g0|B0) + ε

is an acceptable buying price.
However, under the behavioural interpretation, a number of weakly coherent

conditional lower previsions can still present some forms of inconsistency with one
another. See [19, Chapter 7], [12] and [22] for some discussion. On the other hand,
weak coherence neither implies nor is implied by the notion of avoiding partial loss.
Because of these two facts, we consider another notion which is stronger than both,
and which is called (joint or strong) coherence:5

Definition 7 (Strong coherence) Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent
conditional lower previsions with respective domains H1, . . . ,Hm. We say that they

5The distinction between this and the unconditional notion of coherence mentioned above will
always be clear from the context.
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are coherent if for every j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk
j ∈ H j, and for every

j0 ∈ {1, . . . , m}, g0 ∈ H j0 , B0 ∈ B j0 , it holds that

sup
ω∈S(gk

j )∪B0

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− G j0 (g0|B0)

⎤

⎦ (ω) ≥ 0. (6)

Remark 4 There is another approach to the notion of coherence for imprecise
previsions which is earlier than Walley’s, and that was developed by Peter Williams
in [24]. It is based on the idea of deriving conditional previsions from sets of
desirable gambles that satisfy a number of consistency axioms, as we shall do in
Section 4.

Although there are some differences between the two approaches, in the context
of this paper, where all the partitions are finite, the two of them are equivalent. This
means that we could have formulated the subsequent results concerning coherent
conditional lower previsions using Williams’ terminology. We have opted to use
Walley’s instead because his is the theory most widespread, and also because we shall
use a number of concepts, such as weak coherence, which were established by him.
Nevertheless, some of the results we shall prove in Sections 4 and 6.1 are already
present in a similar form in Williams’ work, and we shall remark it when it is the
case. See [11, Section 5.2], [19, Appendix K] and [18] for a comparison between both
approaches.

The coherence of a collection of conditional lower previsions implies their weak
coherence; although the converse does not hold in general, it does in the partic-
ular case when we only have a conditional and an unconditional lower prevision
P1(·|B), P2 with respective domains H,K. To see this, note that the union of the
supports in (6) is � unless all the gambles from K considered in the equation are
equal to the zero gamble, and then (6) would follow from the separate coherence of
P1(·|B).

Similarly, when we have only one conditional and one unconditional lower
prevision, the notions of avoiding partial loss and avoiding uniform sure loss become
equivalent. In that case, they are referred to as avoiding sure loss in [19, Chapter 6].

2.5 Linear previsions and envelope theorems

Given a conditional lower prevision P(·|B) with domain H, we define its conjugate
conditional upper prevision by P( f |B) := −P(− f |B) for every f ∈ −H := {− f :
f ∈ H}. As we said at the beginning of the section, the value P( f |B) can be
interpreted as the infimum acceptable selling price for the gamble f contingent
on B. When the supremum acceptable buying price for a gamble coincides with
the infimum acceptable selling price, we obtain the so-called conditional linear
previsions.
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Definition 8 (Linear conditional previsions) We say that a conditional lower pre-
vision P(·|B) with domain6 L is linear if and only if it is separately coherent and
moreover P( f + g|B) = P( f |B) + P(g|B) for all B ∈ B and f, g ∈ L.

Conditional linear previsions correspond to the case where a subject’s supremum
acceptable buying price (lower prevision) coincides with his infimum acceptable
selling price (or upper prevision) for any gamble on the domain. When a separately
coherent conditional lower prevision P(·|B) is linear we shall denote it by P(·|B); in
the unconditional case, we shall use the notation P. A number of conditional linear
previsions are coherent if and only if they avoid partial loss; and they are weakly
coherent if and only if they avoid uniform sure loss.

Conditional linear previsions correspond to conditional expectations with respect
to a probability. In particular, an unconditional linear prevision P is the expectation
with respect to the probability which is the restriction of P to events. They can be
used to give a Bayesian sensitivity analysis interpretation of the notion of coherence:

Theorem 3 [19, Section 3.3.3] Given an unconditional lower prevision P with domain
K, we shall denote the set of dominating linear previsions by

M(P) := {P : P( f ) ≥ P( f ) ∀ f ∈ K}.
Then P is coherent if and only if it is the lower envelope of M(P).

The conjugate unconditional upper prevision P on −K is then the upper envelope
of M(P), so P( f ) = sup{P( f ) : P ∈ M(P)}.

Following [10], we shall call any closed7 and convex8 set of linear previsions a
credal set; an instance is the set M(P). Similarly, for a conditional lower prevision
P(·|B) with domain H, we define

M(P(·|B)) := {P(·|B) : P( f |B) ≥ P( f |B) ∀ f ∈ H, B ∈ B}.
Then a conditional lower prevision P(·|B) is separately coherent if and only if it is
the lower envelope of M(P(·|B)), meaning that

P( f |B) = min{P( f |B) : P(·|B) ≥ P(·|B)} ∀ f ∈ H, B ∈ B.

Its conjugate conditional upper prevision P(·|B) will be then the upper envelope of
M(P(·|B)).

The situation is more complicated when we have more than one conditional lower
prevision. In [19, Section 8.1] Walley proved that when the partitions are finite and
the domains are linear spaces, coherent P1(·|B1), . . . , Pm(·|Bm) are always the en-
velope of a set {Pγ (·|B1), . . . , Pγ (·|Bm) : γ ∈ �} of dominating coherent conditional
linear previsions. Here, � denotes simply a (possibly infinite) set of indexes, which

6We shall always assume in this paper that the domain of a conditional linear prevision is the whole
set L.
7In the weak* topology, which is the smallest topology for which all the evaluation functionals given
by f (P) := P( f ), where f ∈ L, are continuous.
8That is, for all linear previsions P1, P2 in the set and all α ∈ (0, 1), the linear prevision αP1+
(1 − α)P2 also belongs to this set.
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serves to identify the conditional linear previsions from which we are taking the lower
envelope. In [12], a similar property was established for weak coherence.

Another interesting particular case is the following:

Theorem 4 [19, Theorem 6.5.4] Consider an unconditional lower prevision P on a
linear set of gambles K and a separately coherent conditional lower prevision P(·|B)

on a linear set of gambles H satisfying the properties mentioned in Remark 1, at the end
of Section 2.2, where B is a f inite partition of �. If K ⊇ H then P, P(·|B) are coherent
if and only if, for all f ∈ H and all B ∈ B,

P(G( f |B)) = 0. (GBR)

Condition (GBR) is called the Generalised Bayes Rule. When P(B) > 0, GBR can
be used to determine the value P( f |B): it is then the unique value μ ∈ R for which
P(B( f − μ)) = 0 holds.

If P(B) = 0 and P(B) > 0, then any value of μ in the interval

[
inf
ω∈B

f (ω), inf
P≥P,P(B)>0

P(Bf )
P(B)

]

satisfies that P(B( f − μ)) = 0, and can therefore be used to define P( f |B); the upper
limit of the above interval is what we shall call in Appendix A.1 the regular extension
of P. To see this, denote μ1 := infω∈B f (ω) and μ2 := infP≥P,P(B)>0

P(Bf )
P(B)

, and observe
that for any linear prevision P ≥ P, P(B( f − μ2)) = 0 if P(B) = 0, and P(B( f −
μ2)) ≥ P

(
B

(
f − P(Bf )

P(B)

))
= 0 if P(B) > 0. As a consequence,

0 ≤ P(B( f − μ2)) ≤ P(B( f − μ1)) ≤
(

sup
ω∈B

f (ω) − inf
ω∈B

f (ω)

)
P(B) = 0.

Hence, both μ1 and μ2, and as a consequence also any value between them, are
possible values for P( f |B), since the resulting conditional prevision satisfies (GBR).

Finally, if P(B) = 0 then following a similar reasoning we see that any real
number μ satisfies P(B( f − μ)) = 0, and therefore we can take any value in
[infω∈B f (ω), supω∈B f (ω)] to define P( f |B) with a separately coherent P(·|B).

If P and P(·|B) are linear previsions, they are coherent if and only if for all f ,
P( f ) = P(P( f |B)). This is equivalent to requiring that P( f |B) = P( f B)

P(B)
for all f and

all B ∈ B with P(B) > 0 (see [19, Section 6.5.7]).

2.6 Extension of conditional lower previsions

We next show how to determine the behavioural consequences of the assessments
modelled by some conditional lower previsions.

Definition 9 (Natural extension) Let P1(·|B1), . . . , Pm(·|Bm) be separately coher-
ent conditional lower previsions with domains Hi for i = 1, . . . , m. Their natural
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extensions to L are defined, for every gamble f and every B0 ∈ B j0 , with j0 ∈
{1, . . . , m} by

E j0( f |B0) := sup
{
α : ∃n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j for j = 1, . . . , m s.t.

sup
ω∈S(gk

j )∪B0

[ m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B0( f − α)

]
(ω) < 0

}
. (7)

Although the previous definition only requires that P1(·|B1), . . . , Pm(·|Bm) are
separately coherent, in practice the procedure of natural extension is useful when
these conditional lower previsions avoid partial loss. This is the reason why the
assumption of avoiding partial loss is made in [19, Definition 8.1.1] and [13,
Definition 6]. In that case, and in the context of this paper, where all the partitions
are finite, the natural extensions are the smallest conditional lower previsions which
are coherent and dominate P1(·|B1), . . . , Pm(·|Bm). Moreover, they coincide with
the initial assessments if and only if P1(·|B1), . . . , Pm(·|Bm) are themselves coherent.
Otherwise, they ‘correct’ the initial assessments taking into account the implications
of the notions of coherence. This is made precise in Lemma 1 below.

Remark 5 The natural extension can actually be computed for any non-empty B0 ⊆
�, not only for the elements of the pre-existing partitions B1, . . . ,Bm. In other
words, (7) can be employed to compute the logical implications of the assessments
P1(·|B1), . . . , Pm(·|Bm) on the beliefs about a gamble f conditional on any B0 ⊆ �,
B0 �= ∅. To see this, consider that, irrespective of whether or not B0 is an element of
one of the pre-existing partitions, one can (i) consider any partition B0 that includes
B0, and (ii) define a new conditional lower prevision P0(·|B0), whose domain is a triv-
ial one, such as the set of B0-measurable gambles. In this way, by the new conditional
lower prevision, we are not adding any assessment that is not already implied by the
former ones. In fact, it can be checked that P0(·|B0), P1(·|B1), . . . , Pm(·|Bm) avoid
partial loss if and only if P1(·|B1), . . . , Pm(·|Bm) do. Then (7) can be readily used to
compute E0( f |B0). Moreover, E0( f |B0) does not depend on the specific partition
B0 considered, provided that it contains B0. For this reason, in the following we shall
sometimes adopt such an extended view of the natural extension referring directly to
E0( f |B0) irrespective of whether B0 is in a pre-existing partition or not.

Some useful properties of the natural extension are the following:9

Lemma 1 Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower
previsions.

1. E j( f j|B j) ≥ P j( f j|B j), for every j = 1, . . . , m, f j ∈ H j, B j ∈ B j.
2. P1(·|B1), . . . , Pm(·|Bm) avoid partial loss if and only if for all f ∈ L, and all non-

empty B0 ⊆ �, it holds that E0( f |B0) < +∞.
3. If P1(·|B1), . . . , Pm(·|Bm) avoid partial loss, then E1(·|B1), . . . , Em(·|Bm) are

coherent.

9Some related, but less general versions of points 1, 3, 4 and 5 can also be found in [13, Proposition 11
and Theorem 15].
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4. If P′
1(·|B1), . . . , P′

m(·|Bm) are coherent lower previsions on L that domi-
nate P1(·|B1), . . . , Pm(·|Bm) on their domains, then E j(·|B j) ≤ P′

j(·|B j) for j =
1, . . . , m.

5. P1(·|B1), . . . , Pm(·|Bm) are coherent if and only if E j( f j|B j) = P j( f j|B j), for
every j = 1, . . . , m, f j ∈ H j, B j ∈ B j.

A consequence of the proof of the second point of this lemma is the following:

Corollary 1 Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower pre-
visions. If E j( f j|B j) < +∞ for all j ∈ {1, . . . , m}, B j ∈ B j, and some f j ∈ H j, then
P1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

We can also use the notion of natural extension to define an unconditional lower
prevision. If we apply (7) with B := {�}, we obtain the functional E given by

E( f ) := sup
{
α : ∃ j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j s.t.

( f − α) >

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)}
(8)

for every gamble f ∈ L. It follows that

E( f ) = sup
{
α : ∃ j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j s.t.

( f − α) ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)}
(9)

for every gamble f ∈ L: any α satisfying (8) satisfies (9), and conversely if α satisfies
(9) then α − ε satisfies (8) for every ε > 0.

It has been established in [13, Proposition 14] that when the conditional lower
previsions P1(·|B1), . . . , Pm(·|Bm) are coherent, E is the smallest coherent lower
prevision that is coherent with them, and it is called their (unconditional) natural
extension.

Another particular case of interest is when we make the natural extension of a
separately coherent conditional lower prevision P(·|B) from its domain H to the set
of all gambles L; then E(·|B) is the smallest coherent extension of P(·|B), and it is the
lower envelope of the credal set M(P(·|B)); similarly, if we have an (unconditional)
coherent lower prevision P with domain K, its natural extension E to L is its smallest
coherent extension, and it is the lower envelope of the credal set M(P). Hence,
in those cases we can keep the sensitivity analysis interpretation we mentioned in
Section 2.5. See [19, Sections 3.4 and 6.7] for more details.

3 Sets of desirable gambles

As we have seen in Section 2, lower previsions can be given a behavioural interpre-
tation in terms of acceptable buying and selling prices, and the different consistency
notions we have introduced can be better understood in terms of the desirability of a
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number of gambles. In this section, we summarise the formal structure of the sets of
desirable gambles that we shall use later in the paper.

There are a number of different consistency notions for sets of gambles, which give
rise to the notions of sets almost desirable, really desirable, strictly desirable or weakly
desirable gambles. The difference between all these notions is in the inclusion of the
gambles which are in the topological boundary of the set. Here, and for reasons that
will become clearer in Section 4, we shall work mostly with sets of really desirable
gambles.

Suppose R ⊆ Q ⊆ L, where Q is a set of gambles whose desirability has been
evaluated and R the subset of gambles that have been deemed desirable. Hence,
Q could be interpreted as the domain of a function which tells us if a gamble is
considered desirable or not. The notion of natural extension allows us to extend this
domain to the set of all gambles.

Definition 10 (Natural extension for gambles) The natural extension of R is the set

E := L+ ∪
{

g ∈ L : g ≥
r∑

j=1

λ jg j for some r ≥ 1, g j ∈ R, λ j > 0
}
. (10)

Note that R ⊆ Q ∩ E and that we can express E equivalently as

E =
{

g ∈ L : g =
r∑

j=1

λ jg j for some r ≥ 1, g j ∈ R ∪ L+, λ j > 0
}
,

and it follows also that E is closed under dominance. The natural extension models
the consequences of the behavioural assessments expressed by R, and does so in a
least-committal way, in the sense that it produces the minimal set of gambles that we
should judge desirable taking into account the set R.

We next introduce two consistency conditions for a set of acceptable transactions.
The first, less restrictive one, is called avoiding partial loss:10

Definition 11 (Avoiding partial loss for gambles) We say that R avoids partial loss
if 0 /∈ E .

Taking into account the previous interpretation of the natural extension, the
intuition behind Definition 11 is that it is not rational to judge R desirable if
it logically implies that we should judge as desirable the zero gamble (see also
Corollary 2 below for further implications of avoiding partial loss).

The second consistency condition is called coherence; it means that the gambles in
R are the only ones from Q that we should judge desirable, taking into account the
consequences modelled by E .

Definition 12 (Coherence for gambles) Say that R is coherent relative to Q if R
avoids partial loss and Q ∩ E ⊆ R (and hence Q ∩ E = R). In case Q coincides with
L then we simply say that R is coherent.

10This concept is related to the notion of ‘avoiding non-positivity’ from [5].
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We have the following axiomatic characterisation of coherence. A similar result
for the notion of almost-desirability we shall use later can be found in [19, Sec-
tion 3.7].

Proposition 2 Suppose Q is a linear space containing constant gambles. Then R is
coherent if and only if the following axioms hold:

(APL) 0 /∈ R. [Avoiding Partial Loss]
(APG) If g ∈ Q ∩ L+, then g ∈ R. [Accepting Partial Gains]
(PHM) If g ∈ R and λ > 0, then λg ∈ R. [Positive Homogeneity]
(ADD) If f, g ∈ R, then f + g ∈ R. [Additivity]

A consequence of this result and (10) is that when Q satisfies the assumptions of
Proposition 2, the natural extension of a coherent set of desirable gambles R with
respect to Q is given by

E = L+ ∪ {g ∈ L : g ≥ f for some f ∈ R}. (11)

In particular, when Q = L, a coherent set of desirable gambles R satisfies R = E .
Some basic properties of the natural extension are collected in the following:

Proposition 3 SupposeR ⊆ Q is a set of desirable gambles, and let E denote its natural
extension. The following properties hold:

(a) The natural extension of E is E itself.
(b) If R is contained in a coherent set E ′, then E ⊆ E ′.
(c) R avoids partial loss if and only if E avoids partial loss.
(d) R avoids partial loss if and only if E is coherent.
(e) R avoids partial loss if and only if there is a coherent set E ′ that includes R.
(f) R is coherent relative to Q if and only if there is a coherent set E ′ such that Q ∩

E ′ = R.
(g) R is included in a coherent set E ′ if and only if E is coherent.
(h) If E is coherent, then it is the intersection of all the coherent sets that include R.

We deduce a corollary that clarifies the meaning of avoiding partial loss:

Corollary 2 Suppose R ⊆ Q is a set of desirable gambles, and let E denote its natural
extension. If R avoids partial loss, then

g � 0 ⇒ g /∈ E . (APL’)

A consequence of this is that whenever R avoids partial loss, then it does not
include any gamble g � 0, because R ⊆ E .

To every set of desirable gambles R ⊆ Q we associate a set of linear previsions:

M(R) := {P : P(g) ≥ 0 for all g ∈ R}.
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In order to characterise this set, we next introduce the notion of almost-desirable
gambles:

Definition 13 (Almost-desirability) We say that D is a coherent set of almost-
desirable gambles (relative to L) when it satisfies axioms (PHM), (ADD) and:

(ASL) If f ∈ D, then sup f ≥ 0. [Avoiding Sure Loss]
(ASG) If inf f > 0, then f ∈ D. [Accepting Sure Gains]
(CLS) If f + δ ∈ D for all δ > 0, then f ∈ D. [Closure]

From axioms (ASG) and (CLS), we deduce that the gamble f = 0 belongs to D,
and as a consequence any gamble f ≥ 0 also belongs to D. As a consequence, if D is
a coherent set of almost-desirable gambles, it also satisfies axiom (APG). However,
it does not satisfy condition (APL), although it may satisfy (APL’). An example is
given by D := { f ≥ 0}.

Conversely, let R be a coherent set of desirable gambles with respect to L, which
as a consequence coincides with its natural extension E . It follows that (APL’) implies
(ASL) and (APG) implies (ASG). However, a coherent set of desirable gambles does
not satisfy condition (CLS), because it includes the constant gamble on δ for every
δ > 0, but it does not include the zero gamble.

Coherent sets of almost-desirable gambles are related to coherent lower previ-
sions, as discussed in [19, Section 3.8]: if P is a coherent lower prevision on L, the set
D := { f : P( f ) ≥ 0} is a coherent set of almost-desirable gambles; and conversely, if
D is a coherent set of almost-desirable gambles with respect to L, the lower prevision
PD given by

PD( f ) := max{α : f − α ∈ D} (12)

is coherent, and moreover D = { f : PD( f ) ≥ 0}. This equivalence allows us to char-
acterise the set M(R) defined above (this is an adaptation from [14, Proposition 7]):

Proposition 4 Let R be a set of desirable gambles that avoids partial loss. Then {g ∈
L : P(g) ≥ 0 ∀P ∈ M(R)} = {g ∈ L : g + δ ∈ E ∀δ > 0} = E , where E is the natural
extension of R and E denotes the closure of E in the topology of uniform convergence.

In the unconditional case, there is a one-to-one correspondence between coherent
sets of almost-desirable gambles and coherent lower previsions: every coherent
lower prevision uniquely determines a coherent set of almost-desirable gambles,
and vice versa; however, there are many different coherent sets of (really) desirable
gambles that may correspond to the same set of almost-desirable gambles, and as
a consequence coherent sets of desirable gambles are more informative (i.e, model
more behavioural assessments) than coherent lower previsions.

It is also interesting to remark that with any coherent set D of almost-desirable
gambles, as well as of really desirable gambles, we can associate a set D of strictly
desirable gambles, which is given by

D := L+ ∪ {
f : PD( f ) > 0

}
,

where PD is the coherent lower prevision associated to D by means of (12). Using
Proposition 2, it is easy to see that D is a set of really desirable gambles. Moreover,
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if R is a coherent set of really desirable gambles, R is its associated set of almost-
desirable gambles, and R its related set of strictly desirable gambles, we have R ⊆
R ⊆ R [19, Appendix F].

4 Conditional lower previsions derived from sets of desirable gambles

In this section, we are going to define a number of conditional lower previsions
from a set of gambles that we judge desirable and we are going to investigate under
which assumptions the different consistency notions from Section 2 are satisfied. We
assume that we give a judgement about the desirability of all the gambles in some set
Q, turning out that we consider the gambles in some domain R ⊆ Q to be desirable.

For the time being, we are not imposing any conditions on the set of gambles
R: hence, we are allowing for contradictory statements, such as considering that a
constant reward on 1 is desirable for us, but a constant reward on 3 is not. What we
shall show in this section is that if we derive conditional lower previsions from the
assessments represented by R and we want these conditional lower previsions to be
coherent, a number of consistency notions on R arise naturally.

The idea of deriving conditional lower previsions from sets of desirable gambles
is already present in [19, Appendix F] and [21]. One of its advantages is the
ability to deal easily with the problem of conditioning on sets of zero lower or
upper probability: in that case there is usually not a unique way of deriving the
conditional lower previsions from the unconditional ones [19, Section 6.10], while
we can determine the behavioural implications of our assessments by working with
sets of desirable gambles.

Let B be a partition of �, and let us define the conditional lower prevision P(·|B)

on L by

P( f |B) := sup {μ : B( f − μ) ∈ R} (13)

for every f ∈ L and every B ∈ B.
If in particular B = {�}, we obtain a lower prevision P on L given by:11

P( f ) := sup{μ : ( f − μ) ∈ R}. (14)

We shall discuss why L is the domain of definition of these lower previsions in
Proposition 7 later on: we shall show that we can in general assume that Q = L or
take the natural extension E of R. But before establishing this, we are first going
to determine under which conditions P(·|B) is well-defined. By this we mean what
follows:

Definition 14 (Well-definedness) P(·|B) is well-defined if for every gamble f in L
and every B ∈ B, it holds that

inf
ω∈B

f (ω) ≤ P( f |B) ≤ sup
ω∈B

f (ω).

11Conversely, we can see (13) also as a consequence of (14), once we update the set R by B, by
considering RB := { f : Bf ∈ R}; see [5, 21] for further comments on this idea.
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In order to study this, we introduce an additional consistency axiom:

(SDa) If f ≤ 0, supB f < 0 for some B ∈ B, then f /∈ R.
(SDb) If f ≥ 0, infB f > 0 for some B ∈ B, then f ∈ R.

We shall refer to these two conditions together as (SD) (which stands for Strict
Dominance) with respect to B, or simply to (SD) when it is clear which partition
we are working with. They respectively follow from (APL’) and (APG) (when
in the latter we have Q = L), so any coherent set of desirable gambles satisfies
(SDa), (SDb). To see that (SDa) is actually weaker than (APL’), consider � :=
{1, 2, 3},B := {{1}, {2, 3}} and R := { f : f (1) ≥ 0, max( f (2), f (3)) ≥ 0}: then R sat-
isfies (SDa) with respect to B, but not (APL’), because it includes the gamble f =
( f (1), f (2), f (3)) := (0,−1, 0). On the other hand, (SDa) is stronger than (ASL); to
see that they are not equivalent, note that given � := {1, 2} and B := {{1}, {2}} the
set of gambles { f : f (1) ≥ 0} is a coherent set of almost-desirable gambles but does
not satisfy (SDa) because it includes the gamble f = ( f (1), f (2)) := (0,−1). Hence,
axiom (SD) allows us to differentiate between sets of desirable and almost-desirable
gambles.

Theorem 5

(1) If R satisf ies (SDb), then P( f |B) ≥ infω∈B f (ω) for every f ∈ L and every
B ∈ B.

(2) If R satisf ies (SDa), then P( f |B) ≤ supω∈B f (ω) for every f ∈ L and every
B ∈ B.

(3) If R satisf ies (SDb) and (ADD), then B( f − μ) belongs to R for every μ <

P( f |B).
(4) If R is closed under dominance, i.e., such that g ≥ f ∈ R implies that g ∈ R, then

P(·|B) is well-def ined if and only if R satisf ies (SD).

We deduce that P(·|B) is well-defined when the set R satisfies (SD),12 and in
particular when it satisfies (APG) with respect to L and (APL’). Note that if R does
not satisfy the dominance property, i.e., if we do not have that g ≥ f ∈ R implies
that g ∈ R, we may still end up with a bounded conditional lower prevision by means
of (13) (even if not satisfying the dominance property is rather counter-intuitive):

Example 1 Let � := {ω1, ω2}, and let R := L+ ∩ { f ∈ L : f ≤ 1}. Let
B := {{ω1}, {ω2}}. To see that R does not satisfy neither (ASG) nor (SD), it suffices
to see that the gamble f := 2 does not belong to R. However, the conditional lower
prevision we can define by means of (13) is bounded (it is even separately coherent):
for every gamble f , it is easy to see that P( f |{ω1}) = f (ω1), P( f |{ω2}) = f (ω2).

We see then that axiom (SD), which is one of the differences between coherent
sets of almost-desirable and really desirable gambles, is one of the keys for deriving

12This result can also be found in [25, Section 3].
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conditional lower previsions that avoid partial loss. In fact, if D is a coherent
set of almost-desirable gambles and we define the conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm) from D by means of (13), these conditional lower previsions
may not be well-defined:

Example 2 Let � := {ω1, ω2}, and letD := { f : f (ω1) ≥ 0}. LetB := {{ω1}, {ω2}}. It is
easy to see that D satisfies all the axioms in Definition 13, and is therefore a coherent
set of almost-desirable gambles. However, it does not satisfy (SD): the gamble
f := (0,−1) belongs to D, and therefore (SDa) is not satisfied. In fact, using (13) we
obtain P( f |{ω2}) = +∞, because the gamble fα := I{ω2}( f − α) satisfies fα(ω1) = 0
for every α ∈ R.

This shows that when we want to derive conditional lower previsions from a
set of gambles, the notion of almost-desirability may be too weak to produce any
meaningful assessments, and this is one of the reasons why we are focusing on the
notion of real desirability in this paper. Interestingly, for almost-desirable gambles
axiom (SD) is related to the necessity of conditioning on sets of upper probability
zero, which is related also to the results we shall develop in Appendix A.1:

Proposition 5 Let D be a coherent set of almost-desirable gambles and B be a non-
empty subset of �. Let P be the coherent lower prevision derived from D by means
of (12), and P its conjugate upper prevision. Then

P(B) = 0 if and only if there is f ∈ D s.t. f ≤ 0, sup
B

f < 0. (15)

As a consequence, D satisf ies (SDa) with respect to a partition B if and only if
P(B) > 0 for every B ∈ B.

We next investigate which conditions on the set of desirable gambles R guarantee
that the lower prevision P(·|B) satisfies the consistency axioms from Section 2. We
begin with the property of separate coherence.

Theorem 6 Let R be a set of gambles, and def ine P(·|B) on L by (13). Then P(·|B) is
separately coherent if R satisf ies axioms (SD), (PHM) and (ADD).

In the particular case where B = {�}, and where we define a lower prevision P
on L by (14), the notion of separate coherence becomes the coherence property from
Definition 1. In that case condition (SD) is equivalent to (ASL) together with (ASG).
As we have already remarked, the connection between sets of desirable gambles and
lower previsions in the unconditional case has been established by Walley in [19,
Chapter 3].

To see that the sufficient conditions in Theorem 6 are not necessary, note that
the set of gambles R considered in Example 1 does not satisfy any of the axioms
(SD), (PHM), (ADD), and still it produces a separately coherent conditional lower
prevision.
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One particular case of interest of separately coherent conditional lower previsions
are the linear previsions considered in Section 2.5. In that case, we must require that
R satisfies some additional properties besides the ones in Theorem 6:

Proposition 6 Assume R satisf ies (ADD), (PHM) and (SD) and let P(·|B), P be
given by (13) and (14), respectively.

(1) P(·|B) is a linear conditional prevision if and only if

∀B ∈ B, f ∈ L, ε > 0 either Bf ∈ R or B(ε − f ) ∈ R. (LC)

(4) P is a linear prevision if and only if for every gamble f and every ε > 0, either f
or ε − f belongs to R.

The intuition of this result is clear, once we recall the behavioural interpretation
of linear conditional previsions from Section 2.5: for them the supremum acceptable
buying price coincides with the infimum acceptable selling price, which means that
for almost every real number μ and for every conditional event B either B( f − μ) or
B(μ − f ) should be an acceptable transaction for our subject.

In particular, we obtain linear (conditional) previsions when the set R is maximal,
in the sense that for every non-zero gamble f ∈ L either f or − f belongs to R.
Maximal sets have been studied in [1], and have the property that we cannot add any
new gamble to R without violating one of the properties of coherence. Moreover,
they can be used to express the natural extension E of a coherent set of gambles R
as an intersection of maximal coherent sets. See [1, Section 5] for more information
and [23] for some related work.

In particular, we can apply Proposition 6 when R is either a coherent set of
almost-desirable gambles that satisfies (SD) (see Definition 13) or a coherent set
of desirable gambles (Proposition 2). The reason why we are introducing the ε > 0
in the condition of the above proposition is that it may be that neither f nor − f
belong to R, even if this set of gambles is coherent, and still it may give rise to a
linear prevision:

Example 3 Consider � := {ω1, ω2} and let R := { f ∈ L : f (ω1) + f (ω2) > 0}. Then
R satisfies all the axioms in Proposition 2, and as a consequence it is a coherent set
of desirable gambles with respect to L. Moreover, it gives rise to the linear prevision
P given by P( f ) = f (ω1)+ f (ω2)

2 for all f ∈ L. However, given f := (1,−1), neither f
nor − f belong to R.

On the other hand, we can assume that ε = 0 when we work with a coherent set
of almost-desirable gambles:

Corollary 3 If D is a coherent set of almost-desirable gambles that satisf ies (SD), then
P(·|B) is a linear conditional prevision if and only if for every set B ∈ B and every
gamble f ∈ L, either Bf or −Bf belongs to D.

If R is a coherent set of desirable gambles with respect to a linear set of gambles
Q and we want to use it to define a conditional lower prevision by means of (13), we
may wonder if the domain of this conditional lower prevision should be the set of all
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gambles L or only the subset Q given by those gambles whose desirability we have
evaluated.

Indeed, the coherence of R with respect to Q is not sufficient to guarantee that
the conditional lower prevision it originates is separately coherent, because it must
also satisfy condition (SDb); this property follows from (APG) when Q = L, but not
in general:

Example 4 Let � := {ω1, ω2, ω3} and take Q := { f ∈ L : f (ω1) = f (ω2)},R := { f ∈
Q : f (ω1) + f (ω3) > 0}. Then Q is a linear set of gambles that includes all constant
gambles, and Proposition 2 shows that R is coherent with respect to Q. If we consider
the partition B := {{ω1, ω3}, {ω2}} of �, then for the gamble f := (2, 2, 0) ∈ Q it
follows that given B := {ω1, ω3} there is no value of μ such that gμ := B( f − μ)

belongs to R: the only μ for which gμ(ω1) = gμ(ω2) is μ = 2, and the gamble gμ =
(0, 0,−2) does not belong to R. Hence, the lower prevision P(·|B) derived from the
coherent set R by means of (13) is not well-defined.

Our next result shows, essentially, that in order to obtain meaningful conditional
lower previsions it is helpful to work with the natural extension E of R.

Proposition 7 Let R be a coherent set of desirable gambles with respect to a linear
set Q, and let E denote its natural extension. Let B be a partition of �, and let
P1(·|B), P2(·|B), P3(·|B), be the conditional lower previsions with respective domains
Q,L,L given by

P1( f |B) := sup{μ : B( f − μ) ∈ R} ∀B ∈ B, f ∈ Q,

P2( f |B) := sup{μ : B( f − μ) ∈ R} ∀B ∈ B, f ∈ L,

P3( f |B) := sup{μ : B( f − μ) ∈ E} ∀B ∈ B, f ∈ L.

(1) P3(·|B) is a separately coherent conditional lower prevision.
(2) If R satisf ies (SD), then P1(·|B) is separately coherent, and P2(·|B) = P3(·|B) is

the natural extension of P1(·|B).

Taking this result into account, whenever we have a coherent set of desirable
gambles R with respect to Q that satisfies (SD), we can always use it to define a
conditional lower prevision P(·|B) on L.

We move next to the consistency properties of several conditional lower pre-
visions. Consider thus a number of partitions B1, . . . ,Bm of �, and let us define
conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) on L.

Theorem 7 If R satisf ies (SD) with respect to B1, . . . ,Bm, (PHM) and (ADD), then
the conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

When all the conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) are linear, the
notion of avoiding partial loss is equivalent to coherence. Hence, Theorem 7 shows
that conditions (SD),(PHM),(ADD) and (LC) imply the coherence of the derived
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conditional linear previsions. We next establish a similar result for conditional lower
previsions:

Theorem 8 If R includes the non-negative gambles and satisf ies (SD) with respect to
B1, . . . ,Bm,(PHM) and (ADD), then P1(·|B1), . . . , Pm(·|Bm) are coherent.

In particular we deduce the following:

Corollary 4 ([25, Proposition 1], [19, Appendix F, Theorem F3]) Let R be a
coherent set of really desirable gambles and def ine conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm) on L by means of (13). Then these conditional lower previ-
sions are coherent.

Hence, the coherence of a set of desirable gambles implies the coherence of
the derived conditional lower previsions, but as Theorem 8 shows this sufficient
condition is not necessary. This solves the main problem in one direction.

5 Desirable gambles derived from conditional lower previsions

In Section 4, we have started from a set of desirable gambles R and defined a
number of conditional lower previsions P1(·|B1), . . . , Pm(·|Bm), and have studied
which conditions on R guarantee that P1(·|B1), . . . , Pm(·|Bm) are coherent. We turn
now to the converse problem.

Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower previsions
with respective domains H1, . . . ,Hm. Assume these domains satisfy the assumptions
imposed in Remark 1, at the end of Section 2.2.

From the point of view of desirable gambles, we are evaluating the desirability of
the gambles in the set

Q := {g ∈ L : g = G j( f j|B j)+εB j for some j ∈ {1, . . . , m}, f j ∈ H j, B j ∈ B j, ε �= 0}.
(16)

Note that this set is not linear in general.
The lower previsions are equivalent to statements of desirability for some of the

gambles in Q. Taking into account that P j( f j|B j) is interpreted as the supremum
acceptable buying price for the gamble f j contingent on B j, and that therefore
P j( f j|B j) − ε is an acceptable buying price for every ε > 0, we obtain that the
gambles in the following set are judged as desirable:

R := {g ∈ L : g = G j( f j|B j)+εB j for some j ∈ {1, . . . , m}, f j ∈ H j, B j ∈ B j, ε > 0}.
(17)

We give an equivalent characterisation of R in the following proposition.
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Proposition 8 Consider the sets Q,R derived from the separately coherent conditional
lower previsions P1(·|B1), . . . , Pm(·|Bm) by means of (16) and (17). Then R can be re-
written equivalently as follows:

R = {g ∈ L : g ∈ H j, gBc
j = 0, P j(g|B j) > 0 for some j ∈ {1, . . . , m}, B j ∈ B j}.

(18)

Let us now apply considerations of avoiding partial loss and coherence to the
set R. For this, we reconsider the natural extension E of R, as given by (10).

Theorem 9 Consider the sets Q,R derived from the separately coherent conditional
lower previsions P1(·|B1), . . . , Pm(·|Bm) by means of (16) and (17). Let E be the
natural extension of R, given by (10). Then a gamble g belongs to E if and only if
any of the following equivalent conditions holds:

(1) Either g ∈ L+ or there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk
j ∈ H j, not all of

them zero, B j ∈ B j, ε > 0 such that

g ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
. (19)

(2) Either g ∈ L+ or there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk
j ∈ H j not all of

them zero, such that

inf
S
(

gk
j

)

⎡

⎣g −
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ > 0 and g ≥ 0 in S

(
gk

j

)c
. (20)

We can use the equivalent expressions of E from this theorem to characterise the
notions of avoiding partial and uniform sure loss in terms of desirable gambles:

Theorem 10 Consider the set R derived from the separately coherent conditional
lower previsions P1(·|B1), . . . , Pm(·|Bm) by means of (17) and let E be the natural
extension of R.

(1) P1(·|B1), . . . , Pm(·|Bm) avoid partial loss if and only if R avoids partial loss.
(2) P1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss if and only if E satisf ies (ASL).

We next come to the main result of this section, where we characterise the coher-
ence of the conditional lower previsions in terms of desirable gambles. Interestingly,
we show that the coherence of the conditional lower previsions implies the coherence
of the set R with respect to Q, but both conditions are not equivalent: we need an
additional technical condition, which is related to the fact that the same conditioning
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set can belong to two different partitions, and in that case we should require that the
conditional previsions are defined in the same way:

Theorem 11 Let Q,R be derived from the separately coherent conditional lower pre-
visions P1(·|B1), . . . , Pm(·|Bm) by means of (16) and (17). The following statements
are equivalent:

(1) R is coherent relative to Q and G j( f j|B j) − εB j /∈ R for any f j ∈ H j, B j ∈
B j, ε > 0 and any j = 1, . . . , m.

(2) P j( f j|B j) = E j( f j|B j) for all j = 1, . . . , m, f j ∈ H j, B j ∈ B j.
(3) The conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) are coherent.

In order to show that point (1) in this theorem cannot be simplified, in the sense
that if R is coherent relative to Q we do not necessarily have that G j( f j|B j) −
εB j /∈ R for any f j ∈ H j, B j ∈ B j, ε > 0 and any j = 1, . . . , m, consider the following
example:

Example 5 Consider � := {1, 2, 3, 4, 5, 6} and the following two partitions of �:
B1 := {{1, 2}, {3, 4, 5, 6}} and B2 := {{1, 2}, {3, 4}, {5, 6}}. Let P1(·|B1) be the vacuous
lower prevision, given by

P1( f |B1) = min
ω∈B1

f (ω)

for every gamble f and every B1 ∈ B1, and let P2(·|B2) be vacuous when B2 = {3, 4}
or B2 = {5, 6}, and uniform when B2 = {1, 2}. Then P1(·|B1) and P2(·|B2) are not
coherent: if we consider the gamble f := I{1}, it holds that

G2( f |B2) − G1( f |{1, 2}) ≤ −0.5

in S2( f ) ∪ {1, 2} = {1, 2}. Note on the other hand that P1(·|B1) and P2(·|B2) avoid
partial loss (it suffices to take into account that P1(·|B1) is vacuous).

Let us derive the set R from them. According to the definition in (17), the generic
gamble in R is equal to G j( f |B j) + εB j for some j ∈ {1, 2}, f ∈ H j, B j ∈ B j, ε > 0.
Let us consider the vacuous case first, for instance when j = 1 and B1 = {1, 2}. This
gives rises to the following subset of R: RB j

j = R{1,2}
1 := {B1( f − minB1 f ) + εB1 :

f ∈ H1, ε > 0}, which is more conveniently written as

R{1,2}
1 = {g : min

{1,2}
g > 0, gI{3,4,5,6} = 0}.

In fact, that the latter set includes R{1,2}
1 is trivial; conversely, it is enough to choose

ε := min{1,2} g. We can proceed in much the same way in order to find out the
expressions for the sets R{3,4,5,6}

1 ,R{3,4}
2 ,R{5,6}

2 , which we summarise below:

R{3,4,5,6}
1 = {g : min

{3,4,5,6}
g > 0, gI{1,2} = 0},

R{3,4}
2 = {g : min

{3,4}
g > 0, gI{1,2,5,6} = 0},

R{5,6}
2 = {g : min

{5,6}
g > 0, gI{1,2,3,4} = 0}.
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In the remaining case where j = 2 and B2 = {1, 2}, we obtain that R{1,2}
2 =

{B2( f − 1
2 f (1) − 1

2 f (2)) + εB2 : f ∈ H2, ε > 0}. Let us show that

R{1,2}
2 = {g : g(1) + g(2) > 0, gI{3,4,5,6} = 0}.

That the latter set includes R{1,2}
2 is trivial. Conversely, it is enough to set f (1) :=

g(1) − g(2), f (2) := 0, and ε := g(1)+g(2)

2 .
Observing that R{1,2}

1 ⊆ R{1,2}
2 , we can finally write that

R = R{3,4,5,6}
1 ∪ R{3,4}

2 ∪ R{5,6}
2 ∪ R{1,2}

2 .

Let us focus on the set Q now. With arguments analogous to those used with R,
we obtain that

Q = Q{1,2}
1 ∪ Q{3,4,5,6}

1 ∪ Q{3,4}
2 ∪ Q{5,6}

2 ∪ Q{1,2}
2 ,

with

Q{1,2}
1 := {g : min

{1,2}
g �= 0, gI{3,4,5,6} = 0},

Q{3,4,5,6}
1 := {g : min

{3,4,5,6}
g �= 0, gI{1,2} = 0},

Q{3,4}
2 := {g : min

{3,4}
g �= 0, gI{1,2,5,6} = 0},

Q{5,6}
2 := {g : min

{5,6}
g �= 0, gI{1,2,3,4} = 0},

Q{1,2}
2 := {g : g(1) + g(2) �= 0, gI{3,4,5,6} = 0}.

Let us focus now on the natural extension E of R (see (10)). We start by
considering the related set

E ′ := {g ∈ L : g =
r∑

j=1

λ jg j for some r ≥ 1, g j ∈ R, λ j > 0}.

Observe that for every set RB j

j and gamble g j ∈ RB j

j , the gamble λ jg j belongs to RB j

j ,
too, for all λ j > 0. This allows λ j to be dropped from the definition of E ′. For similar

reasons, it is enough to consider at most one gamble from each set RB j

j in the sum
that defines E ′. In other words, it holds that

E ′ = {g = gB1
1 +

∑

B2∈B2

gB2
2 : B1 = {3, 4, 5, 6}, g

B j

j ∈ RB j

j ∪ {0}, g �= 0}.

It can be checked that the sixteen elements making up E ′ can be recovered as follows:

E ′ = [({g : g(1) + g(2) > 0} ∪ {g : g(1) = g(2) = 0})
∩ ({g : min{g(3), g(4)} > 0} ∪ {g : g(3) = g(4) = 0})
∩ ({g : min{g(5), g(6)} > 0} ∪ {g : g(5) = g(6) = 0})] \ {0}.

The natural extension E is related to E ′ through the relation E = L+ ∪ { f : f ≥
g for some g ∈ E ′}. It follows that

E = [
({g : g(1) + g(2) > 0} ∪ {g : gI{1,2} = 0}) ∩ {g : gI{3,4,5,6} ≥ 0}] \ {0}.



278 E. Miranda, M. Zaffalon

Let us verify that Q ∩ E ⊆ R, and hence that R is coherent. Take g ∈ Q. We have
the following possibilities:

• If g ∈ Q{1,2}
1 , then gI{3,4,5,6} = 0 and min{g(1), g(2)} �= 0; since g ∈ E , we obtain

that g(1) + g(2) > 0 and hence g ∈ R.
• If g ∈ Q{3,4,5,6}

1 , then gI{1,2} = 0 and min gI{3,4,5,6} �= 0; since g ∈ E , we obtain that
min gI{3,4,5,6} > 0 and hence g ∈ R.

• If g ∈ Q{3,4}
2 , then gI{1,2,5,6} = 0 and min gI{3,4} �= 0; since g ∈ E , we obtain that

min gI{3,4} > 0 and hence g ∈ R.
• If g ∈ Q{5,6}

2 , then gI{1,2,3,4} = 0 and min gI{5,6} �= 0; since g ∈ E , we obtain that
min gI{5,6} > 0 and hence g ∈ R.

• If g ∈ Q{1,2}
2 then gI{3,4,5,6} = 0 and g(1) + g(2) �= 0; since g ∈ E , we obtain that

g(1) + g(2) > 0 and hence g ∈ R.

Hence, the set R is coherent but the conditional lower previsions P1(·|B1), P2(·|B2)

are not. Taking into account Theorem 11, we deduce that the first statement in the
theorem does not hold, and as consequence the second condition in that statement
does not follow from the coherence of R.

We can also relate the natural extension E of the set of gambles R derived by
some conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) to their conditional natural
extensions. Let us consider a gamble f ∈ L and a non-empty set B0 ⊆ �; taking into
account Remark 5, we can calculate the natural extension E0( f |B0) of f conditional
on B0 as the supremum value of α for which there are j = 1, . . . , m, n j ≥ 1, k =
1, . . . , n j, gk

j ∈ H j and δ > 0, such that

−δ >

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B0( f − α)

in S

(
gk

j

)
∪ B0.

Definition 15 (Support) For every f ∈ L, we shall denote by B f the event {ω ∈ � :
f (ω) �= 0}, and refer to it as the support of f . Similarly, given ε > 0 we shall denote
by Bε

f the event {ω ∈ � : | f (ω)| ≥ ε}, and we shall call it the ε-support of f .

Lemma 2 Let P1(·|B1), . . . , Pm(·|Bm) be separately coherent conditional lower pre-
visions that avoid partial loss. Let R be the set they originate by means of (17) and
let E be the natural extension of R. Take f ∈ E . Then there is some ε > 0 such that
E0( f |Bε

f ) > 0 for all ε ∈ (0, ε). As a consequence, when � is f inite E0( f |B f ) > 0.

If we compute the natural extension for all non-empty B0 ⊆ � and all gambles
f ∈ L, we can determine, in the usual way, a corresponding set of desirable gambles:

EP := {g ∈ L : g = G0( f |B0) + εB0 for some f ∈ L, ∅ �= B0 ⊆ �, ε > 0}, (21)
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where G0 corresponds to E0. In our next theorem we give a number of properties of
the set EP and establish its relationship with E :

Theorem 12 Assume P1(·|B1), . . . , Pm(·|Bm) avoid partial loss, and consider the
natural extension E of the set R given by (17). Let EP be the set of gambles given
by (21).

(1) EP = { f : E0( f |B f ) > 0}.
(2) { f : E0( f ) > 0} ∪ L+ ⊆ E ⊆ { f : E0( f ) ≥ 0}.
(3) EP ⊆ E ⊆ E P.
(4) In the particular case where � is f inite, E = EP.
(5) E is the natural extension of EP.

Let us show that the fourth statement of this theorem cannot be extended to the
case where � is infinite, and that there may be gambles in E which may not belong
to EP. This is because in that case the set EP may not be coherent:

Example 6 Let � := N, and let P be a linear prevision satisfying P({n}) = 0 for all
n, and let Q,R be the sets derived from P by means of (16) and (17). It follows
from Theorem 11 that R is coherent relative to Q, and from Proposition 3(d) that
its natural extension E is coherent. Consider the gamble h given by h(n) := 1

2n . Then
h ∈ L+ and as a consequence it belongs to E . On the other hand, the support of h is
Bh = N, whence E0(h|B f ) = E0(h) = P(h) = 0, taking into account that the uncon-
ditional natural extension of P is P itself, and that P(h) ≤ P({1, . . . , n}) + 1

2n P({n +
1, . . . }) = 1

2n for all n. Applying the first statement from Theorem 12, we deduce that
h does not belong to EP.

Let us show also that both inclusions in the second statement can be strict:

Example 7 Consider first of all � := {1, 2, 3, 4},B := {{1, 2}, {3, 4}} and P, P(·|B)

determined by P({3, 4}) := 1, P({4}|{3, 4}) := 1 =: P({1}|{1, 2}). It can be checked
that these previsions are coherent. Given the gamble f := I{1} − I{2}, it holds that
E0( f |B f ) = P( f |{1, 2}) > 0, because of Lemma 1(5), whence f ∈ EP ⊆ E , using the
third statement of Theorem 12. On the other hand, the natural extension E0 of
P, P(·|B) is given by [19, Theorem 6.7.2] E0 = P(P(·|B)), and it satisfies E0( f ) =
P({1, 2})P( f |{1, 2}) = 0.

For the second inclusion, take � := {1, 2} and let P be the prevision associated
to the uniform probability distribution on �. Let R be the set of desirable gambles
derived from P through (17). Applying P to the expression for the natural extension
of R in (19), we obtain that E ⊆ { f : P( f ) > 0}: to see this, note that for any non-
zero gamble f it holds that E(G( f ) + εS( f )) = P(G( f ) + ε) = ε > 0, and since
P(1) = P(2) > 0 we also have L+ ⊆ { f : P( f ) > 0}. Applying the second statement
in Theorem 12, we deduce that E = { f : P( f ) > 0}, and this is a strict subset of
{ f : P( f ) ≥ 0}, because the gamble f := (1,−1) belongs to the latter set but not to
the former.
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6 Commutativity and equal expressivity

6.1 Commutativity

So far, we have introduced two ways of relating conditional lower previsions and
sets of really desirable gambles: we can derive the conditional lower previsions from
the desirable gambles (Section 4) or we can derive a set of desirable gambles from
the conditional lower previsions (Section 5). We now proceed to investigate whether
these two procedures commute.

First of all, we should like to show that one can take conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm) that avoid partial loss, turn them into a (coherent) set of
desirable gambles R, and do inferences from it that are equal to those that can be
obtained from the natural extensions of P1(·|B1), . . . , Pm(·|Bm). This would allow us
to always work in the domain of desirable gambles even if we start from conditional
lower previsions. We proceed to show that this is indeed the case. A similar
result was already established, in a slightly different context, by Peter Williams in
[25, Propositions 2 and 3]. The differences are basically in his formulation of the
coherence condition, which is nevertheless equivalent to the one we are using in this
paper when we have finite partitions, and on the use of conditional upper previsions.
Another difference is that, unlike us, he assumes the zero gamble to be desirable. For
the sake of completeness, we also establish the result within our framework:

Theorem 13 Consider the sets Q,R derived from the jointly coherent condi-
tional lower previsions P1(·|B1), . . . , Pm(·|Bm) by means of (16) and (17). Let
P′

1(·|B1), . . . , P′
m(·|Bm) be the conditional lower previsions obtained from R through

(13). Then P j( f j|B j) = P′
j( f j|B j) for all j = 1, . . . , m, f j ∈ H j, B j ∈ B j.

Let us give an example of illustration of this theorem:

Example 8 Consider � := {1, 2, 3, 4},B1 := {{1, 2}, {3, 4}},B2 := {{1, 3}, {2, 4}}, and
P1(·|B1), P2(·|B2) given by

P1( f |{1, 2}) := min{ f (1), f (2)},

P1( f |{3, 4}) := f (3) + f (4)

2
,

P2( f |{1, 3}) := min{ f (1), f (3)},

P2( f |{2, 4}) := f (2) + f (4)

2
,

for every gamble f ∈ L. Then P1(·|B1), P2(·|B2) are coherent: this follows applying
[12, Theorem 6] to the lower prevision P given by P( f ) := min{ f (1),

f (2)+ f (3)+ f (4)

3 }.
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The set R of desirable gambles they originate is given by R := R{1,2}
1 ∪ R{3,4}

1 ∪
R{1,3}

2 ∪ R{2,4}
2 , where

R{1,2}
1 := { f ∈ L : min{ f (1), f (2)} > 0, f (3) = f (4) = 0},

R{3,4}
1 := { f ∈ L : f (1) = f (2) = 0, f (3) + f (4) > 0},

R{1,3}
2 := { f ∈ L : min{ f (1), f (3)} > 0, f (2) = f (4) = 0},

R{2,4}
2 := { f ∈ L : f (1) = f (3) = 0, f (2) + f (4) > 0}.

The definition of set RB
i , i = 1, 2, immediately follows from the application of (18)

to the corresponding conditional Pi(·|B).
Now, if we consider the conditional lower previsions P′

1(·|B1) and P′
2(·|B2) derived

from (13) we recover P1(·|B1), P2(·|B2). For instance, given f ∈ L,

P′
1( f |{1, 2}) = sup{μ : I{1,2}( f − μ) ∈ R}

= sup{μ : I{1,2}( f − μ) ∈ R{1,2}
1 } = min{ f (1), f (2)}.

Here, the second equality follows because if g := I{1,2}( f − μ) ∈ R{3,4}
1 we contradict

that g(3) + g(4) > 0, if it belongs to R{1,3}
2 we contradict g(3) > 0, and if it belongs

to R{2,4}
2 we should have g(2) + g(4) = g(2) > 0 and g(1) = 0, which means that μ =

f (1) < f (2) and then again μ ≤ min{ f (1), f (2)}.
The other cases can be established similarly.

In addition, Williams also showed in [25, Theorem 1] that we can use the set
of gambles E to derive the natural extensions of the initial assessments. We next
establish this result in our context:

Theorem 14 Consider conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) that avoid
partial loss, and let E0( f |B0) be their generic natural extension to a gamble f ∈ L,
conditional on a non-empty subset B0 of �. Let Q,R be the sets derived from
P1(·|B1), . . . , Pm(·|Bm) by means of (16) and (17), and let E be the natural extension
of R. Let E′

0( f |B0) be the conditional lower prevision obtained from E through (13).
Then E0( f |B0) = E′

0( f |B0).

Conversely, we can also start from a coherent set of desirable gambles E with
respect to L, and define conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) by
means of (13). We can use these conditional previsions to derive another set R′ of
desirable gambles by means of (17). Let E ′ be the natural extension of R′, defined
by (10).

Proposition 9 The set of gambles E ′ is included in E .

To see that we may not have the equality in general, consider the following
example:

Example 9 Consider � := {ω1, ω2}, and let E := { f : f (ω1) + f (ω2) > 0}. Take B :=
{{ω1}, {ω2}}. Then applying (13) given any gamble f on L, P( f |{ω1}) = f (ω1) and
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P( f |{ω2}) = f (ω2). If we now consider the set R′ derived from P(·|B) through (18),
we obtain

R′ = { f : f (ω1) > 0, f (ω2) = 0} ∪ { f : f (ω1) = 0, f (ω2) > 0},

whose natural extension is (10) E ′ = L+, which is a strict subset of E .

What these two results provide is further evidence that sets of desirable gambles
are more informative than coherent lower previsions: although for a number of
coherent conditional lower previsions there is always a coherent set of desirable
gambles with the same behavioural implications, not every coherent set of desirable
gambles can be recovered from a set of coherent conditional lower previsions.

6.2 Equal expressivity

Taking the previous results into account, we shall investigate next if there is some
particular subclass of coherent sets of desirable gambles which is as expressive as
coherent conditional lower previsions. In the next definition we make precise the
idea of equal expressivity.

Definition 16 (Equal expressivity) Let P1(·|B1), . . . , Pm(·|Bm) be a set of coherent
conditional lower previsions, Q,R be the sets derived from them by means of (16)
and (17), and let E be the natural extension of R. Let E ′ be a coherent set of desirable
gambles. We say that P1(·|B1), . . . , Pm(·|Bm) and E ′ are equally expressive if E = E ′.

This definition is well posed as E is coherent thanks to Theorem 11 and Propo-
sition 3(d). More generally speaking, the definition hinges on the consideration that
desirability is a more primitive concept than that of lower prevision. Therefore, when
the desirability statements implied by the lower previsions coincide with those in E ′,
then all the conclusions we may draw from either of them will coincide with those
obtained from the other (see also Theorem 14).

Now, let us focus on some special sets of desirable gambles.

Definition 17 (Conditional strict desirability) Let E be a coherent set of desirable
gambles. Consider f ∈ E , and its ε-support Bε

f for all ε > 0. We say that E is a
coherent set of conditionally strictly desirable gambles if it satisfies the following
condition:

f ∈ E ⇒ ∃ε̄ > 0 : ∀ε ∈ (0, ε̄) there is δε > 0 s.t. Bε
f ( f − δε) ∈ E . (22)

The next proposition shows that the desirability-counterpart of sets of conditional
lower previsions are sets of conditionally strictly desirable gambles. This shows in a
definite sense that sets of conditional lower previsions are at most as expressive as a
special class of desirable gambles.

Proposition 10 For each f inite set of coherent conditional lower previsions there is a
coherent set of conditionally strictly desirable gambles that is equally expressive.
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When � is finite, it is possible to provide a tighter link between sets of conditional
lower previsions and sets of conditionally strictly desirable gambles. In that case, the
condition of conditional strict desirability in (22) is equivalent to

f ∈ E ⇒ ∃δ > 0 : B f ( f − δ) ∈ E . (23)

To see that (22) implies (23), note that when � is finite there is some ε′ > 0 for
which Bε

f = B f for every ε ∈ (0, ε′). Then it suffices to consider the δε associated to
any ε ∈ (0, min{ε′, ε̄}) and define δ := δε. Conversely, consider again ε′ > 0 for which
Bε

f = B f for every ε ∈ (0, ε′). Define ε̄ := ε′, and let δε := δ for all ε ∈ (0, ε̄).
On this basis, we obtain the next result.

Theorem 15 Let � be a f inite set.

(1) For each coherent set of conditionally strictly desirable gambles there is a f inite
set of coherent conditional lower previsions that is equally expressive.

(2) For each f inite set of coherent conditional lower previsions there is a coherent set
of conditionally strictly desirable gambles that is equally expressive.

What this theorem says is that in the finite case there is a correspondence
between sets of conditionally strictly desirable gambles and sets of conditional lower
previsions. This result may look surprising at first. In fact, Walley motivated the
introduction of real desirability (see [19, Appendix F]), among other things, by
stressing in particular that there may be different sets of desirable gambles that yield
different conditional lower previsions while yielding the same unconditional ones.13

This shows that really desirable gambles are more expressive than unconditional
lower previsions. Our result goes a step further by showing that this holds also
when we consider sets of conditional lower previsions. And the question is that,
while in the cases discussed by Walley, the differences in the sets of desirable
gambles were possible to reveal by looking at the conditional lower previsions they
originate, in our case this is not possible: what we show, in fact, is that there is some
extra expressivity of real desirable gambles that is not revealed by any conditional
probabilistic statement.

To see what this extra expressivity is for, we have to briefly consider the notion of
preference. In fact, Walley has pointed out long ago [19, Section 3.7] that there is one-
to-one correspondence between sets of desirable gambles R and partial preference
orderings among gambles: given a set R, say that f is preferred to g (or f � g, in
symbols) whenever f − g belongs to R;14 conversely, a partial preference ordering �
originates a set of desirable gambles through the definition R := { f − g : f � g}. The
interpretation at the basis of these transformations is straightforward: f is preferred

13This is true even when the conditional event has probability zero.
14Such a relation is in fact a partial order in general, as it can be the case that neither f − g nor g − f
belong to R.



284 E. Miranda, M. Zaffalon

to g if and only if it is desirable to give away g in order to have f . We can also consider
a weaker notion of preference: say that f is weakly preferred to g (in symbols, f � g)
if and only if gamble f − g + ε is desirable for all ε > 0. In this case f + ε is preferred
to g for all ε > 0, but f itself may not. At this point we are ready to show how the
extra expressivity of desirable gambles comes about:

Example 10 Consider � := {ω1, ω2}, and let R1 := { f ∈ L : f (ω1) + f (ω2) >

0},R2 := R1 ∪ { f ∈ L : f (ω1) = − f (ω2) < 0}. R1 and R2 are coherent sets of
desirable gambles with respect to L (use Proposition 2). Moreover, they originate
the same conditional and unconditional lower previsions on L through (13): in
the unconditional case we obtain P( f ) = f (ω1)+ f (ω2)

2 , and in the conditional case
P( f |{ω1}) = f (ω1), P( f |{ω2}) = f (ω2). Therefore R1 and R2 are indistinguishable
as far as probabilistic statements are concerned. This is not the case of preferences.
Consider f := (2,−1) and g := (1, 0): under both R1 and R2 it holds that f � g; but
under R2 we obtain the additional, and perhaps unexpected, information that f ≺ g.

In other words, desirable gambles give us the opportunity to distinguish pref-
erence from weak preference, which is something that probabilities (that is, lower
previsions) do not allow us to do. This point has already been made in particular in a
paper also authored by Walley [21, Example 7(f) and Section 4(f)].

7 Conclusions

The behavioural theory of imprecise probabilities can be formulated by means of
lower and upper previsions, credal sets of linear previsions, or sets of desirable
gambles. In the unconditional case, there is a well-known correspondence between
the three representations, which allows us to move from one to another. In this
paper we have investigated the more involved situation when we consider beliefs
conditional on some evidence.

We have focused on two problems: how to derive conditional lower previsions
from a set of desirable gambles, and viceversa. For the first problem, we have
established sufficient conditions for the conditional lower previsions to satisfy the
different consistency axioms in [19] (separate coherence, avoiding partial and uni-
form sure loss, weak and strong coherence). The most important result in this section
is Theorem 8, where we give sufficient conditions on the set of desirable gambles
so that the derived conditional lower previsions are coherent, thus extending some
results from the literature. In this section, we also detail the connections with the
important notion of almost-desirability.

With respect to the second problem, we have derived sets of desirable gambles
from conditional lower previsions, and determined under which conditions the
consistency properties of the previsions hold onto the gambles. Moreover, we have
showed that these gambles can be used effectively to compute the conditional nat-
ural extensions of our assessments, which represent their behavioural implications.
Specifically, in Theorem 11 we give conditions for the equivalence between the
coherence of the conditional lower previsions and their derived sets of desirable
gambles.
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These results have highlighted a well-known fact within the behavioural theory
of imprecise probabilities: that sets of really desirable gambles are more informative
than coherent lower previsions. This is made clearer in Theorem 13 and Proposition 9
in Section 6.1. However, and in parallel to the situation in the unconditional case, we
prove in Theorem 15 that when the referential space is finite we can consider a subset
of the class of sets of really desirable gambles which is as expressive, in the sense that
it allows us to produce the same inferences, as conditional lower previsions: those
which satisfy conditional strict desirability. These are an analog of the sets of strictly
desirable gambles from the unconditional case.

An important remark throughout is that there is an alternative definition of
coherence for sets of desirable gambles which assumes that the zero gamble is
desirable, and as a consequence it includes it in the natural extension of a set of
desirable gambles that avoids partial loss; see, for example [3, 19, 25] for some
papers that follow this approach. The results we have established in this paper can
be adapted to this alternative definition, by making some minor modifications: for
instance the expression of the natural extension in Definition 10 will be different
now, and this means that the equivalent expressions in Theorem 9 should be slightly
modified.

With respect to the open problems deriving from this paper, one of the most
important is the generalisation of the results in this paper to conditional lower
previsions on infinite partitions. In fact, despite the formulation of desirability in
this paper is very general (among other things, we allow for any cardinality of the
possibility space), we have restricted the attention to finite conditioning partitions.
In order to relax this requirement, one has to deal carefully with the issue of
conglomerability, which is discussed in some detail in [19, Chapter 6] (see also [24]
and [16]) and which is one of the points of disagreement between the approaches to
coherence of Walley and Williams, as well as de Finetti’s. On our view, this would
mean (i) to deepen the discussion concerning whether or not conglomerability can be
justified as a rationality requirement (which is the major source of disagreement be-
tween the above-mentioned authors); and (ii) to verify how severe are the technical
implications of adding a conglomerability axiom to our notion of coherence for sets
of desirable gambles, as it is already quite clear that this is going to complicate the
computation of the natural extension. Another open problem would be the extension
of the results on equal expressivity to infinite spaces.

Finally, it is useful also to point out that the results of this paper have a direct
bearing on a topic in artificial intelligence that is currently subject of much attention:
modelling preferences (and in particular partial preferences, see [9] for some recent
work). Preferences are increasingly important for AI sectors as diverse as agents,
machine learning, and argumentation, to say a few. The relationship between desir-
ability and preferences is very tight, as we have described at the end of Section 6.2:
there is actually one-to-one correspondence between sets of desirable gambles and
partial preference orderings, so that the material in this paper can immediately be re-
phrased as a study on the relationship between preference modelling and imprecise
probability. Exploring this link further appears to be a promising research avenue.
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Appendix A: Additional results

This appendix collects some additional results that are related to the main discussion
in the paper but are not necessary to follow it. We report them here to ease the
accessibility of the paper to the reader more interested in the main development.

A.1 Regular conditioning

In this section we investigate when the conditional lower previsions obtained from a
coherent set of desirable gambles R through (13) match those that would be obtained
by applying regular extension on the associated unconditional lower prevision.
Taking into account Proposition 7, we shall assume Q = L here.

Definition 18 (Regular extension) Given a set M of linear previsions and a partition
B of �, the regular extension R(·|B) is given by

R( f |B) := inf
{

P(Bf )
P(B)

: P ∈ M, P(B) > 0
}

for every B ∈ B, f ∈ L whenever there is some P ∈ M such that P(B) > 0, and is
given by R( f |B) := infω∈B f (ω) otherwise. This amounts to applying Bayes’ rule
to the dominating linear previsions whenever possible (i.e., disregarding the linear
previsions that assign zero probability to the conditioning event).

If we have an unconditional coherent lower prevision P, the regular extension
R(·|B) is derived from P by applying the above definition to the credal set M(P).
When the partition B of � is finite, as it is the case in this paper, it follows from [19,
Appendix (J3)] that P, R(·|B) are coherent. The regular extension has been proposed
and used a number of times in the literature as an updating rule [2, 6–8, 19, 20]. For
the case of finite �, a comparison with natural extension has been made in [12, 14].

Now, denote by P( f |B) the lower prevision of f ∈ L conditional on B ∈ B ob-
tained fromR through (13). LetR denote the closure ofR in the topology of uniform
convergence. R is a set of almost-desirable gambles according to Proposition 4. Let
M be the corresponding set of linear previsions, P be its lower envelope, and R( f |B)

the associated regular extension. The following proposition gives a necessary and
sufficient condition for the procedure of (13) to provide us with the regular extension.

Theorem 16 Consider B ∈ B and f ∈ L. Then P(B) > 0 and P( f |B) = R( f |B) if
and only if

μ ∈ R, B( f − μ) ∈ R ⇒ B( f − (μ − ε)) ∈ R ∀ε > 0. (24)

An immediate corollary that we establish without proof is the following:

Corollary 5 Consider B ∈ B. Then P(B) > 0 and P( f |B) = R( f |B) for all f ∈ L if
and only if

Bf ∈ R ⇒ B( f + ε) ∈ R ∀ε > 0. (25)
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This corollary generalises the result given by Theorem 3 in [1]. Such a theorem
shows that the condition

f ∈ R ⇒ f + εB ∈ R ∀ε > 0 (26)

implies P(B) > 0 and P( f |B) = R( f |B). The above corollary shows that this condi-
tion is unnecessarily strong as we do not need to take into account gambles f such
that Bf �= f .

Remark 6 The same reference [1] makes two additional claims, which we briefly
discuss in our language. The first (in Lemma 1 from that paper) is that P(B) > 0
is sufficient for (26) to hold. An analogous claim is easy to obtain in our context: in
fact, when P(B) > 0, GBR determines uniquely the lower prevision conditional on
B, and therefore the regular extension R( f |B) coincides with P( f |B), so that (25)
follows.

The second claim (Lemma 2 in [1]) can be reformulated in our context as
follows: if P(B) > 0, B( f − μ) ∈ R and B((μ − ε) − f ) /∈ R ∀ε > 0 ⇒ B( f − (μ −
ε)) ∈ R ∀ε > 0, then (24) holds. But since P(B) > 0, we know, thanks to Propo-
sition 5, that there cannot be ε > 0 such that B((μ − ε) − f ) ∈ R, as otherwise
−εB = B(( f − μ) + ((μ − ε) − f )) ∈ R, thus violating (15). In other words, under
the condition P(B) > 0, the assumption

B( f − μ) ∈ R and B((μ − ε) − f ) /∈ R ∀ε > 0 ⇒ B( f − (μ − ε)) ∈ R ∀ε > 0

reduces to B( f − μ) ∈ R ⇒ B( f − (μ − ε)) ∈ R ∀ε > 0, which is (24), and which is
equivalent to the equality P( f |B) = R( f |B) because of Theorem 16.

A.2 On weak desirability

In this section, we briefly discuss another approach to sets of desirable gambles which
was recently introduced by de Cooman and Quaeghebeur in [5]: that of a set of
weakly desirable gambles. This is an intermediate notion between those of desir-
ability and almost-desirability, and it was introduced in the context of exchangeable
imprecise models.

Given a coherent set of really desirable gambles R, the set of weakly desirable
gambles associated to R is defined by

DR := { f : f + g ∈ R ∀g ∈ R}. (27)

It follows immediately from this definition that R ∪ {0} ⊆ DR.
We can study the properties of a set of weakly desirable gambles by means of the

following axioms:

(WD1) f � 0 ⇒ f /∈ DR.
(WD2) f ≥ 0 ⇒ f ∈ DR.
(WD3) f ∈ DR, λ > 0 ⇒ λ f ∈ DR.
(WD4) f, g ∈ DR ⇒ f + g ∈ DR.
(WD5) If f + δ ∈ DR ∀δ > 0 and it does not hold that f � 0 then f ∈ DR.

From [5, Proposition 5], the set DR originated by a coherent set of really desirable
gambles satisfies (WD1)–(WD4). We next give a sufficient condition for a set of
gambles to be a set of weakly desirable gambles.
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Proposition 11 For every set of gambles D satisfying (WD1)–(WD5) there is a
coherent set of really desirable gambles R such that DR = D.

However, not every set of weakly desirable gambles associated to a set R of
desirable gambles satisfies (WD5), as the following example shows:

Example 11 Let � := {ω1, ω2} and let R := { f : f (ω1) + f (ω2) > 0} ∪ { f : f (ω1) >

0, f (ω2) = − f (ω1)}. Then R is a coherent set of really desirable gambles. Its asso-
ciated set of weakly desirable gambles is DR = R ∪ {0}: given a gamble f such that
f (ω1) + f (ω2) = −ε < 0, the constant gamble equal to ε

2 belongs to R and f + ε
2

does not belong to R; on the other hand, if f (ω1) + f (ω2) = 0 and f (ω1) < 0, then
− f

2 belongs to R but f − f
2 = f

2 does not.
To see that R does not satisfy (WD5), note that the gamble f given by f (ω1) =

−1, f (ω2) = 1 satisfies that f + δ ∈ R ⊆ DR for every δ > 0, but f /∈ DR.

On the other hand, a coherent set of really desirable gambles R lies between
the associated sets of strictly desirable R and almost-desirable R gambles. It is not
difficult to see that the associated set of weakly desirable gambles lies between the
coherent set of really desirable gambles and the coherent set of almost-desirable
gambles: remember that R is the topological closure of set R (see Proposition 4);
then it is clear that R undergoes the same condition as in (27) but restricting
ourselves to gambles g which are constant on some ε > 0.

We next show that for the purposes of our work in this paper, really desirable
gambles and weakly desirable gambles are going to provide the same information:

Proposition 12 Let R be a coherent set of really desirable gambles, and let DR be its
associated set of weakly desirable gambles. Then for every subset B of � and for every
gamble f ,

sup{μ : B( f − μ) ∈ R} = sup{μ : B( f − μ) ∈ DR}. (28)

Appendix B: Proofs

This appendix gathers the proofs of all the results in the paper.

Proof of Proposition 1 We make a circular proof. Let us show that the first statement
implies the second. Assume (3) fails. Then there are ε > 0, gk

j ∈ H j, j = 1, . . . , m,
n j ≥ 1, k = 1, . . . , n j, such that for all ω ∈ �,

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω) ≤ 0,

and hence
⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) ≤ −ε

⎡

⎣
m∑

j=1

n j∑

k=1

S j

(
gk

j

)
⎤

⎦ (ω) < 0
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for every ω ∈ S

(
gk

j

)
, since not all the gk

j are zero gambles. This implies that the

conditional lower previsions P1(·|B1), . . . , Pm(·|Bm) incur partial loss.
That the second statement implies the third follows by taking into account that the

sum in (4) is zero outside S

(
gk

j

)
.

Finally, assume that (4) holds. If our conditional lower previsions incur partial
loss, then there are δ > 0, n j ≥ 1, gk

j ∈ H j, j = 1, . . . , m, k = 1, . . . , n j, such that not
all the gk

j are zero gambles, which lead to

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
(ω) ≤ −δ

for all ω ∈ S

(
gk

j

)
. Therefore, we can define ε := δ

1+∑m
j=1 n j

, and obtain that for all

ω ∈ S

(
gk

j

)
,

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω)

=
⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) + ε

⎡

⎣
m∑

j=1

n j∑

k=1

S j

(
gk

j

)
⎤

⎦ (ω)

≤ −δ + δ ·
∑m

j=1 n j

1 + ∑m
j=1 n j

< 0.

This implies that expression (4) fails, a contradiction. ��

Proof of Lemma 1

1. Consider j ∈ {1, . . . , m}, f j ∈ H j, B j ∈ B j, and let us consider the gamble B j f j ∈
H j. Then for all α < P j( f j|B j) it holds that

sup
S(B j f j)∪B j

[G j(B j f j|B j) − B j( f j − α)] = sup
B j

[G j( f j|B j) − B j( f j − α)]

= α − P j( f j|B j) < 0,

whence (7) implies that E j( f j|B j) ≥ α. As a consequence, E j( f j|B j) ≥
P j( f j|B j).

2. Let us consider the direct implication. Take f ∈ L and B0 ⊆ �, B0 �= ∅. By
definition of natural extension, we know that for all α < E0( f |B0), there are
j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j, δ > 0 such that

B0( f − α) − δ >

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
(29)

in S

(
gk

j

)
∪ B0. Let us show that any such α is smaller than supω∈B0

f (ω), from

which we deduce that E0( f |B0) ≤ supω∈B0
f (ω). In the case where all the gk

j
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are zero gambles, that follows immediately from (29) as α < infω∈B0 f (ω) ≤
supω∈B0

f (ω).
Let us assume that not all the gk

j are zero gambles. It follows from (29)

that (i) the gamble
∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
is bounded by −δ in S

(
gk

j

)
\ B0,

and (ii) that supω∈B0
[B0( f − α)](ω) > supω∈B0

[∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)]
(ω). On

the other hand, knowing that P1(·|B1), . . . , Pm(·|Bm) avoid partial loss tells

us (iii) that
∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
has non-negative supremum over S

(
gk

j

)
,

and hence also over S

(
gk

j

)
∪ B0. By using (i) and (iii), we obtain that

supω∈B0

[∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)]
(ω) ≥ 0; this, together with (ii) allows us to

deduce that supω∈B0
[B0( f − α)](ω) > 0, and hence that α < supω∈B0

f (ω).
For the converse implication, let us assume that P1(·|B1), . . . , Pm(·|Bm) incur
partial loss, and show that this leads to an infinite natural extension. From
Definition 5, there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j, not all the gk
j

equal to the zero gamble, such that

sup
ω∈S(gk

j )

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) = −δ < 0.

Multiplying both sides of the equality by λ > 0, and taking into account that

λG j

(
gk

j |B j

)
= G j

(
λgk

j |B j

)
, S j

(
gk

j

)
= S j

(
λgk

j

)
when λ > 0, and that gk

j,λ := λgk
j

belongs to H j, we see that for every λ > 0 there are j = 1, . . . , m, n j ≥ 1, k =
1, . . . , n j, gk

j,λ ∈ H j, where not all the gk
j,λ are equal to the zero gamble, such that

sup
ω∈S(gk

j )

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j,λ|B j

)
⎤

⎦ (ω) = −λδ < 0.

The key point here is that S

(
gk

j

)
does not depend on λ. This means, in other

words, that we can find gambles that make the double sum as small as we wish

on each element of the f ixed set S

(
gk

j

)
.

Now, take any f ∈ L, and j0 ∈ {1, . . . , m}, B0 ∈ B j0 s.t. B0 ∈ S

(
gk

j

)
(we can do

so because S

(
gk

j

)
is not empty as not all the gk

j are zero gambles). Choose

also α > 0, and let μ := inf
S
(

gk
j

) B0( f − α). Then it is enough to choose λ > 0

such that −λδ < μ, in order to know that there are j = 1, . . . , m, n j ≥ 1, k =
1, . . . , n j, gk

j,λ ∈ H j, such that
∑m

j=1
∑n j

k=1 G j

(
gk

j,λ|B j

)
≤ −λδ < μ ≤ B0( f − α)

in S

(
gk

j

)
∪ B0 = S

(
gk

j

)
, whence

m∑

j=1

n j∑

k=1

G j

(
gk

j,λ|B j

)
− B0( f − α) ≤ −λδ − μ < 0
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on S(gk
j ) ∪ B0 = S(gk

j ), taking into account that −B0( f − α) ≤ −μ and that
−λδ − μ < μ − μ = 0. Since we can do this for any α > 0, it follows that
E j0( f |B0) = +∞.

3. Consider f j ∈ L for j = 1, . . . , m, j0 ∈ {1, . . . , m}, B0 ∈ B j0 , f0 ∈ L, and let us
show that

sup
ω∈S( f j)∪B0

[ m∑

j=1

f j − E j( f j|B j) − B0( f0 − E j0( f0|B0))
]
(ω) ≥ 0. (30)

Assume ex-absurdo that the above supremum in (30) is smaller than −δ for
some δ > 0. Fix ε := δ

2m > 0. Then, since from the second statement Ei( fi|Bi)

is finite for every i = 1, . . . , m and every Bi ∈ Si( fi), there is an integer n j ≥ 1
and gambles gk

Bi, j ∈ H j, j = 1, . . . , m, k = 1, . . . , n j such that

sup
ω∈S(gk

Bi , j)∪Bi

[ m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− Bi( fi − Ei( fi|Bi) + ε)

]
(ω) < −δi,Bi < 0

for some positive real δi,Bi . By making the sum over all Bi ∈ Si( fi), we deduce
that
⎡

⎣
∑

Bi∈Si( fi)

⎛

⎝
m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− Bi( fi − Ei( fi|Bi) + ε)

⎞

⎠

⎤

⎦ (ω) < − min
Bi∈Si( fi)

δi,Bi

< 0

for all ω ∈ Si( fi) ∪ S(gk
Bi, j). If we now make the sum over all the partitions, we

deduce that
⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

⎛

⎝
m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− Bi( fi − Ei( fi|Bi) + ε)

⎞

⎠

⎤

⎦ (ω)

< − min
i,Bi∈Si( fi)

δi,Bi

on S( fi) ∪ S

(
gk

Bi, j

)
. Consider now γ ∈ (0, δ

4 ). Given ω ∈
(
S

(
gk

Bi, j

)
∩ S( fi)

)
∪

B0, it follows that
⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− B0( f0 − E j0( f0|B0) − γ )

⎤

⎦ (ω)

=
⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

⎛

⎝
m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− Bi( fi − Ei( fi|Bi) + ε)

⎞

⎠

⎤

⎦ (ω)

+
⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

Bi( fi − Ei( fi|Bi) + ε) − B0( f0 − E j0( f0|B0) − γ )

⎤

⎦ (ω)

≤ 0 − δ + γ + δ

2
< 0.
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On the other hand, if ω ∈ S(gk
Bi, j) \ (S( fi) ∪ B0), then

⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
− B0( f0 − E j0( f0|B0) − γ )

⎤

⎦ (ω)

=
⎡

⎣
m∑

i=1

∑

Bi∈Si( fi)

m∑

j=1

n j∑

k=1

G j

(
gk

Bi, j|B j

)
⎤

⎦ (ω) < − min
i,Bi∈Si( fi)

δi,Bi < 0;

we conclude that we can increase E j0( f0|B0) in γ , a contradiction with the
definition of the natural extension.

4. Let P′
1(·|B1), . . . , P′

m(·|Bm) be coherent conditional lower previsions on L that
dominate P1(·|B1), . . . , Pm(·|Bm) on their domains. Assume there are some
j0 ∈ {1, . . . , m}, B0 ∈ B j0 , f0 ∈ L, such that P′

j0( f0|B0) < E j0( f0|B0). Then it
follows from the definition of E j0( f0|B0) that there are gk

j ∈ H j, n j ≥ 1, j =
1, . . . , m, k = 1, . . . , n j such that

sup
ω∈S(gk

j )∪B0

⎡

⎣
m∑

j=1

G j

(
gk

j |B j

)
− B0( f0 − P′

j0( f0|B0))

⎤

⎦ (ω) < 0,

and since P′
j

(
gk

j |B j

)
≥ P j

(
gk

j |B j

)
for all j = 1, . . . , m, k = 1, . . . , n j,

sup
ω∈S

(
gk

j

)
∪B0

⎡

⎣
m∑

j=1

G′
j

(
gk

j |B j

)
− B0( f0 − P′

j0( f0|B0))

⎤

⎦ (ω) < 0.

This contradicts the coherence of P′
1(·|B1), . . . , P′

m(·|Bm).
5. Assume first of all that P j(·|B j) = E j(·|B j) for j = 1, . . . , m. Since P1(·|B1), . . . ,

Pm(·|Bm) are separately coherent, they are in particular finite. Applying the
second statement, P1(·|B1), . . . , Pm(·|Bm) avoid partial loss, and using now the
third statement we deduce that the natural extensions E1(·|B1), . . . , Em(·|Bm),
and therefore also P1(·|B1), . . . , Pm(·|Bm), are coherent.
Conversely, if the lower previsions P1(·|B1), . . . , Pm(·|Bm) are coherent but there
is some j0 ∈ {1, . . . , m} and g0 ∈ H j0 , B0 ∈ B j0 such that P j0(g0|B0) < E j0(g0|B0),
then (7) implies that there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j

such that

sup
S
(

gk
j

)
∪B0

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− G j0(g0|B0)

⎤

⎦ < 0,

thus contradicting the coherence of P1(·|B1), . . . , Pm(·|Bm). ��

Proof of Corollary 1 The statement is a direct consequence of the second part of the
proof of statement 2 in Lemma 1, which shows that if P1(·|B1), . . . , Pm(·|Bm) incur
partial loss, there must be j ∈ {1, . . . , m}, B j ∈ B j, such that E j( f |B j) = +∞ for all
f ∈ L. ��
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Proof of Proposition 2 Let us assume that the axioms hold and prove that Q ∩ E ⊆
R. We use (10). Given g ∈ Q ∩ E , if g ∈ L+ then it follows from (APG) that g ∈ R.
Otherwise, if g /∈ L+ then g ≥ ∑r

j=1 λ jg j for some r ≥ 1, j ∈ {1, . . . , r}, g j ∈ R, λ j >

0. By using (PHM) and (ADD), we obtain that
∑r

j=1 λ jg j ∈ R. Since Q is linear,
it holds that g0 := g − ∑r

j=1 λ jg j belongs to Q, too. If g0 = 0 then g = ∑r
j=1 λ jg j ∈

R. Otherwise, condition (APG) implies that g0 ∈ R and then applying (ADD) we
obtain that g belongs to R.

Let us show now that R avoids partial loss as in Definition 11. Assume, by contra-
diction, that 0 ∈ E . Then 0 ≥ ∑r

j=1 λ jg j for some r ≥ 1, j ∈ {1, . . . , r}, g j ∈ R, λ j > 0.
Let g0 := 0 − ∑r

j=1 λ jg j. The case g0 = 0 is not possible because the previous part
of the proof has shown that

∑r
j=1 λ jg j ∈ R, and 0 /∈ R by (APL). Therefore it holds

that g0 ∈ L+. But g0 belongs also to Q, because Q is linear, and by (APG) we see
that g0 ∈ R. By (ADD) we obtain that 0 = ∑r

j=1 λ jg j − ∑r
j=1 λ jg j ∈ R. This is a

contradiction with (APL).
Assume conversely that R avoids partial loss and R = Q ∩ E , and let us prove that

the axioms hold. That (APL) holds follows trivially from R ⊆ E and the fact that
R avoids partial loss. Concerning (APG), if g ∈ Q is such that g ∈ L+, then g ∈ E
and hence g ∈ Q ∩ E = R. As for (PHM), if g ∈ R and λ > 0, then λg ∈ Q, because
Q is a linear set, and λg ∈ E , by definition: whence, λg ∈ Q ∩ E = R. Finally, and
analogously, if f, g ∈ R, then f + g ∈ Q, because Q is a linear set, and f + g ∈ E , by
definition: whence, f + g ∈ Q ∩ E = R, and (ADD) holds. ��

Proof of Proposition 3 Regarding point (a), if a gamble g in the natural extension
of E belongs to L+, then it belongs to E too; otherwise g is such that g ≥ ∑r

j=1 λ jg j

for some r ≥ 1, j ∈ {1, . . . , r}, g j ∈ E, λ j > 0, where we can assume without loss of
generality that g j /∈ L+ for all j ∈ {1, . . . , r}. Moreover, each g j in the sum belongs
to E and hence it is such that g j ≥ ∑r j

k j=1 λk j gk j , for some r j ≥ 1, gk j ∈ R, λk j > 0. It

follows that g ≥ ∑r
j=1

∑r j

k j=1 λ jλk j gk j for some r ≥ 1, r j ≥ 1, gk j ∈ R, λ j > 0, λk j > 0.
This shows that g belongs to E , and hence that the natural extension of E is included
in E . The opposite inclusion holds trivially. Concerning point (b), if R is included
in a coherent set E ′ then E is included in the natural extension of E ′, which from
the first point is again E ′. Point (c) follows trivially from point (a). Point (d) follows
trivially from points (a) and (c). The direct implication in point (e) is trivial, given
the definition of E and point (d). For the converse implication, consider that: E ′ must
include the natural extension E , because of point (b); this implies that E avoids partial
loss, considered that its natural extension is E itself, as in point (a); then R avoids
partial loss because of point (c). The direct implication in point (f) is trivial. For
the converse implication, consider that R avoids partial loss since E ′ contains R and
because of point (e). Now, take g ∈ Q ∩ E . Since E ⊆ E ′, thanks to point (b), then g ∈
Q ∩ E ′ = R. For the direct implication in (g), note that if R is included in a coherent
set E ′, then E ′ avoids partial loss. Applying (b), we deduce that so does E , and then
points (c) and (d) imply that E is coherent. The converse implication in (g) is trivial.
Finally, (h) is a consequence of points (b) and (g). ��

Proof of Corollary 2 Consider g � 0, and assume by contradiction that g ∈ E . E
is coherent because of Proposition 3(d); hence it includes −g ∈ L+. Moreover,
by (ADD) in Proposition 2, we obtain that 0 = g − g ∈ E , a contradiction. ��
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Proof of Proposition 4 Remember that E is coherent given that R avoids partial loss,
because of Proposition 3(d). Let us define E ′ := {g ∈ L : g + δ ∈ E ∀δ > 0}, and let us
prove that this is a coherent set of almost-desirable gambles. For this, we are going
to prove that it satisfies the axioms in Definition 13:

(PHM) Let g ∈ E ′, λ > 0. Then g + δ belongs to E for every δ > 0, and λ(g + δ) =
λg + λδ also belongs to E for every δ > 0, thanks to (PHM) in Proposition 2.
As a consequence, λg ∈ E ′.

(ADD) Given f, g ∈ E ′ and δ > 0, f + g + δ = ( f + δ
2 ) + (g + δ

2 ) ∈ E , thanks to
(ADD) and (APG) in Proposition 2. Hence, f + g ∈ E ′.

(ASL) Let g ∈ L satisfy sup g < 0. Then there is a δ > 0 such that g + δ < 0. Then
g + δ /∈ E because of (APL’). This implies that g /∈ E ′.

(ASG) Let g ∈ L satisfy inf g > 0. Then g + δ ∈ E for all δ > 0 because E satisfies
(APG) in Proposition 2, and as a consequence g ∈ E ′.

(CLS) Finally, if g + δ ∈ E ′ for every δ > 0, we deduce that g + δ′ ∈ E for all δ′ > 0,
and as a consequence g ∈ E ′.

Applying [19, Theorem 3.8.5], E ′ is equal to

{g ∈ L : P(g) ≥ 0 ∀P ∈ M(E ′)},
where

M(E ′) := {P : P(g) ≥ 0 ∀g ∈ E ′} = {P : P(g) ≥ 0 ∀g ∈ E} =: M(E) = M(R).

To see that M(E ′) = M(E), consider first that by definition g ∈ E ′ implies that g +
δ ∈ E for all δ > 0. For the inclusion M(E ′) ⊇ M(E), take P non-negative on all
the elements of E and g ∈ E ′; then P(g) + δ = P(g + δ) ≥ 0 for all δ > 0, and this
implies P(g) ≥ 0. As a consequence P is non-negative on all the elements of E ′. The
inclusion M(E ′) ⊆ M(E) is trivial. To see that M(E) = M(R), it suffices to prove
that M(E) ⊇ M(R), since the inclusion M(E) ⊆ M(R) is trivial as R ⊆ E . Take P
non-negative on all the elements of R. By definition g ∈ E implies that either g ∈ L+,
and then trivially P(g) ≥ 0, or g ≥ ∑r

j=1 λ jg j, for some r ≥ 1, g j ∈ R, λ j > 0. In this

second case, the linearity of P implies that P
(∑r

j=1 λ jg j

)
≥ 0 and its monotonicity

that P(g) ≥ 0. Hence,

{g ∈ L : P(g) ≥ 0 ∀P ∈ M(R)} = E ′ = {g ∈ L : g + δ ∈ E ∀δ > 0}.
It remains to prove that E ′ = E , where the closure is taken in the topology of

uniform convergence. To see that E ′ ⊆ E , note that for any gamble g in E ′, g is the
uniform limit of the sequence {g + 1

n : n ∈ N}, and that each element of the sequence
belongs to E ; as a consequence, g belongs to E . Conversely, to see that E ′ ⊇ E , let
(gn)n be a sequence of elements in E that converges uniformly to g. Then for every
δ > 0, there is some nδ ∈ N such that ‖gn − g‖ < δ ∀n ≥ nδ , whence g + δ ≥ gn ∀n ≥
nδ and therefore g + δ ∈ E , because E is closed under dominance. This implies that
g ∈ E ′. As a consequence, E ′ = E . ��

Proof of Theorem 5 Let f be a gamble on �, B ∈ B.

(1) Given μ < infω∈B f (ω), it follows from (SDb) that the gamble B( f − μ) belongs
to R, and as a consequence P( f |B) ≥ infω∈B f (ω).
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(2) Similarly, if R satisfies (SDa) then for every μ > supω∈B f (ω) the gamble B( f −
μ) does not belong to R, whence P( f |B) ≤ supω∈B f (ω).

(3) For every ε > 0, there is some μ ∈ R such that P( f |B) − ε ≤ μ < P( f |B), and
such that B( f − μ) ∈ R. Then for every μ′ < μ it holds that B( f − μ′) = B( f −
μ) + B(μ − μ′). If R satisfies (SDb), it follows that B(μ − μ′) belongs to R, and
then applying condition (ADD) we deduce that B( f − μ′) also belongs to R.

(4) To conclude with the fourth statement, we have showed above that condition
(SD) is sufficient for P(·|B) to be well-defined. To see that it is also necessary,
assume that R does not satisfy axiom (SDa), i.e., that there is a gamble f ≤ 0
and some B ∈ B such that supω∈B f (ω) < 0 and f ∈ R. Then it holds that the
gamble Bf ≥ f also belongs to R because this set is closed under dominance,
whence P( f |B) ≥ 0 > supω∈B f (ω). Similarly, if it does not satisfy (SDb), there
is a gamble f ≥ 0 and some B ∈ B such that infB f > 0 and f /∈ R. Since f ≥
Bf , we deduce that Bf /∈ R and therefore P( f |B) ≤ 0 < infω∈B f (ω). ��

Proof of Proposition 5 We begin with the direct implication in (15). Assume that
P(B) = 0. Then given any gamble g and μ > supB g, it holds that

0 ≥ P(B(g − μ)) = −P(B(μ − g)) ≥ −(μ − inf
B

g)P(B) = 0

whence P(B(g − μ)) = 0. From [19, Theorem 3.8.1], we deduce that B(g − μ) =:
f ∈ D.

Conversely, assume that there is a gamble f ≤ 0 in D such that supB f < 0.
Since f ∈ D implies that P( f ) ≥ 0, and since Bf ≥ f because f is non-positive, we
deduce that P(Bf ) ≥ 0, whence −P(−Bf ) ≥ 0, or, equivalently, P(−Bf ) ≤ 0. But
since −Bf ≥ 0 implies that P(−Bf ) ≥ 0, we deduce from this that 0 = P(−Bf ) ≥
infB(− f )P(B) ≥ 0, whence P(B) = 0.

The proof of the remaining part of the proposition is trivial given (15). ��

Proof of Theorem 6 Since the domain of P(·|B) is the linear set of gambles L,
separate coherence is equivalent to conditions (SC1)–(SC3). Let us show that these
conditions are satisfied when R satisfies the axioms (SD), (PHM) and (ADD):

(SC1) This follows from condition (SD) because of Theorem 5.
(SC2) Let f ∈ L, λ > 0. From (13), for every B ∈ B, it holds that P(λ f |B) =

sup{μ|B(λ f −μ)∈R}=sup{λμ′|B(λ f −λμ′)∈R}=sup{λμ′|λB( f −μ′)∈R}=
λ sup{μ′|λB( f − μ′) ∈ R} = λ sup{μ′|B( f − μ′) ∈ R} = λP( f |B), where the
one-but-last equality holds because, from (PHM), a gamble g belongs to R
if and only if λg ∈ R for every λ > 0.

(SC3) Consider gambles f, g ∈ R, and ε > 0. Then there are μ1 ∈ [P( f |B) − ε
2 ,

P( f |B)), μ2 ∈ [P(g|B) − ε
2 , P(g|B)) such that the gambles B( f − μ1) and

B(g − μ2) belong to R. Applying (ADD), we deduce that B( f + g − μ1 −
μ2) belongs to R and therefore P( f + g|B) ≥ P( f |B) + P(g|B) − ε. Since
we can do this for every ε > 0, we deduce that P( f + g|B) ≥ P( f |B) +
P(g|B). ��

Proof of Proposition 6 It suffices to prove the first point, since the second follows as
a particular case. Let us define the conditional upper prevision P(·|B) by

P( f |B) := −P(− f |B) = inf{μ : B(μ − f ) ∈ R}
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for every f ∈ L and every B ∈ B. It follows from Theorem 6 that P(·|B) is separately
coherent, and from [19, Theorem 6.2.6] that P( f |B) ≤ P( f |B) for every f ∈ L,

B ∈ B.
Assume that P(·|B) is a linear conditional prevision, i.e., P( f |B) = −P(− f |B) =

P( f |B) for every gamble f . Given some gamble g and some ε > 0, there are two
possibilities: either P(g|B) = P(g|B) > 0, and then since B(g − μ) ∈ R for every
μ < P(g|B) because of Theorem 5(3), we deduce that Bg belongs to R; or P(g|B) =
P(g|B) ≤ 0, whence the definition of P(g|B) and the same result implies that
B(ε − g) ∈ R for every ε > 0.

Conversely, assume (LC) holds and let us show that P( f |B) = P( f |B) for every
gamble f and every B ∈ B: assume ex-absurdo there is some gamble f for which
P( f |B) < P( f |B); take 0 < δ < P( f |B) − P( f |B), and ε := P( f |B) − P( f |B) − δ.
Then the definition of P( f |B) implies that B(( f − P( f |B)) − ε

2 ) does not belong to
R because ε > 0, and similarly the definition of P( f |B) implies that

B
(ε

2
− ( f − P( f |B) − ε

2
)
)

= B
(
ε − ( f − P( f |B))

) = B(P( f |B) − δ − f ) /∈ R.

This contradicts (LC). From the equality P( f |B) = P( f |B) for all f ∈ L and all
B ∈ B we deduce applying [19, Thm. 6.2.6(c)] that P(·|B) is a linear conditional
prevision. ��

Proof of Corollary 3 If D is a coherent set of almost-desirable gambles that satisfies
(SD), it satisfies the hypotheses of Proposition 6. As a consequence, if P(·|B) is a
linear conditional prevision, then given B ∈ B and a gamble f ∈ L either Bf ∈ D or
B(ε − f ) ∈ D for every ε > 0. But in this second case conditions (ASG) and (CLS)
imply that Bcε belongs to D, and using (ADD) we deduce that B(ε − f ) + Bcε =
ε − Bf belongs to D; since this holds for every ε > 0, we can apply (CLS) and deduce
that −Bf ∈ D. Conversely, it follows from axioms (APG) and (ADD) that if D is a
coherent set of almost-desirable gambles and −Bf ∈ D, then also B(ε − f ) ∈ D for
every ε > 0, so condition (LC) holds and therefore D originates a linear conditional
prevision. ��

Proof of Proposition 7 If R is coherent it avoids in particular partial loss, and
therefore E is coherent with respect to L thanks to Proposition 3(d). Since conditions
(APG) (with respect to L) and (APL’) guarantee that (SD) holds, we deduce from
Theorem 6 that P3(·|B) is separately coherent.

For the second statement, note first of all that if R satisfies (SD), Theorem 6
guarantees that the conditional lower prevision P2(·|B) is separately coherent, and
as a consequence so is P1(·|B), which is its restriction to Q.

Now, since R is a coherent set of really desirable gambles with respect to the linear
set Q, it follows that E = L+ ∪ {g ≥ h for some h ∈ R} (cf. (11)). As a consequence,

P3( f |B) = max{sup{α : B( f − α) ≥ h for some h ∈ R}, sup{α : B( f − α) ∈ L+}}
= max{sup{α : B( f − α) ≥ h for some h ∈ R}, inf

B
f }

= sup{α : B( f − α) ≥ h for some h ∈ R}
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for every f ∈ L and every B ∈ B, where last equality follows because, using the
separate coherence of P2(·|B),

sup{α : B( f − α) ≥ h for some h ∈ R}
≥ sup{α : B( f − α) ∈ R} = P2( f |B) ≥ inf

B
f. (31)

Let us prove that in fact

P3( f |B) = sup{α : B( f − α) ∈ R} = P2( f |B). (32)

Consider α < P3( f |B), and take h ∈ R such that B( f − α) ≥ h. Then for every
ε > 0,

B( f − (α − ε)) = h + εB + B( f − α) − h;
the gamble B( f − α) − h is non-negative, whence B( f − α) − h + εB is a non-
negative gamble which is strictly positive in B. Applying (SD), we deduce that
B( f − α) − h + εB belongs to R, and since R also satisfies (ADD), also h + B( f −
α) − h + εB = B( f − α) + εB belongs to R. As a consequence,

sup{μ : B( f − μ) ∈ R} ≥ α − ε for every α < P3( f |B), ε > 0,

whence sup{μ : B( f − μ) ∈ R} ≥ P3( f |B). Since the converse inequality is already
shown in (31), we deduce that (32) holds. From this we also deduce that B( f − α)

belongs to R for every α < P3( f |B).
To complete the proof, let us show that P3(·|B) is the natural extension of P1(·|B).

Since from the above result we see that P3( f |B) = P1( f |B) for every gamble f ∈ Q
and every B ∈ B, we see that P3(·|B) is a separately coherent extension of P1(·|B)

to all gambles, which from the fourth statement in Lemma 1 dominates the natural
extension E1(·|B) of P1(·|B). Conversely, given B ∈ B, f ∈ L and α < P3( f |B), the
gamble g := B( f − α) belongs to R ⊆ Q, whence P1(g|B) ≥ 0, and therefore

G1(g|B) − B( f − α) ≤ g − B( f − α) = 0.

As a consequence, given ε > 0,

G1(g|B) − B( f − α) − εB = G1(g|B) − B( f − (α − ε)) < 0

on S(g) ∪ B = B. This implies that E1( f |B) ≥ α − ε for every α < P3( f |B) and
every ε > 0, and therefore E1( f |B) ≥ P3( f |B). Hence, P3(·|B) coincides with the
natural extension E1(·|B) of P1(·|B) on all gambles. ��

Proof of Theorem 7 Assume they do not. Then taking into account Proposition 1,
there are ε > 0 and gambles f j for j = 1, . . . , m, not all of them equal to zero,
such that

sup
ω∈S( f j)

⎡

⎣
m∑

j=1

G j( f j|B j) + εS j( f j)

⎤

⎦ (ω) < 0.

For every j = 1, . . . , m and every B j ∈ B j, the gamble G j( f j|B j) + εB j belongs to R.
Applying (ADD), and taking into account that the partitions are finite, we deduce
that

∑m
j=1 G j( f j|B j) + εS j( f j) also belongs to R. But this is a non-positive gamble
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which is strictly negative on each B j ∈ S j( f j) for j = 1, . . . , m. This is a contradiction
with (SD). ��

Proof of Theorem 8 Consider f j ∈ L for j = 0, . . . , m, j0 ∈ {1, . . . , m} and B0 ∈ B j0 .
Let us show that

sup
ω∈S( f j)∪B0

⎡

⎣
m∑

j=1

G j( f j|B j) − G j0( f0|B0)

⎤

⎦ (ω) ≥ 0.

If the above supremum is equal to −δ < 0 then given δ′ := δ
m+1 > 0 it holds that

m∑

j=1

(G j( f j|B j) + δ′S j( f j)) − G j0( f0|B0) + δ′ B0 ≤ 0,

whence

G j0( f0|B0) − δ′ B0 ≥
m∑

j=1

(G j( f j|B j) + δ′S j( f j)). (33)

From the third statement in Theorem 5, we see that for every j = 1, . . . , m and every
B j ∈ S j( f j), the gamble B j( f j − P( f j|B j) + δ′) belongs to R. Applying (ADD), we
deduce that the right-hand-side in (33) belongs to R, and taking into account that
R includes all non-negative gambles and satisfies axiom (ADD), we deduce that
G j0( f0|B0) − δ′ B0 also belongs to R. But if B0( f0 − P j0( f0|B0) − δ′) belongs to R
we can increase the value of P j0( f0|B0). This is a contradiction with (13). ��

Proof of Proposition 8 Call R1 the set in the r.h.s. of the equality in the statement.
Take g := G j( f j|B j) + εB j from R. It is clear that gBc

j = 0, and also that g ∈ H j, as
it follows from the assumptions on the domains that have been done in Remark 1,
Section 2.2. Moreover, P j(g|B j) = P j(G j( f j|B j) + εB j|B j) = P j( f j|B j) −
P j( f j|B j) + ε > 0, where the second passage holds because of separate coherence
(see [19, Lemma 6.2.4 and Section 6.2.6]). Conversely, consider g ∈ R1. Then
there are j ∈ {1, . . . , m}, B j ∈ B j, such that g ∈ H j, gBc

j = 0, P j(g|B j) > 0. Let
ε := P j(g|B j). Then B j(g − (P j(g|B j) − ε)) = gB j = g, and hence g ∈ R. ��

Proof of Theorem 9 Let E1 denote the set of gambles satisfying condition (19), and
let E2 be the set of gambles satisfying condition (20). We shall make a circular proof
of the equalities E = E1 = E2.

Let us show that E ⊆ E1. Take g ∈ E . By definition, if g ∈ L+ then g ∈ E1. Other-
wise, g can be written as follows:

g ≥
m∑

j=1

n j∑

k=1

λk
j

(
G j

(
f k

j |Bk
j

)
+ εk

j Bk
j

)
=

m∑

j=1

n j∑

k=1

G j

(
f̃ k

j |Bk
j

)
+ ε̃k

j Bk
j ,

for some j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, λ
k
j > 0, f k

j ∈ H j, Bk
j ∈ B j, ε

k
j > 0, and

with f̃ k
j := λk

j f k
j , ε̃

k
j := λk

j ε
k
j , where the second passage is possible thanks to the

assumptions about the domains H j made in Remark 1.
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For the generic term G j

(
f̃ k

j |Bk
j

)
+ ε̃k

j Bk
j in the sum there are two possibilities:

(i) if Bk
j ∈ S j

(
f̃ k

j

)
, then we consider the gamble gk

j := f̃ k
j Bk

j , so that G j

(
f̃ k

j |Bk
j

)
+

ε̃k
j Bk

j = G j

(
gk

j |B j

)
+ ε̃k

j S j

(
gk

j

)
; (ii) If Bk

j /∈ S j

(
f̃ k

j

)
, then we consider the gamble

gk
j := ε̃k

j Bk
j so that, again, G j

(
f̃ k

j |Bk
j

)
+ ε̃k

j Bk
j = ε̃k

j Bk
j = G j

(
gk

j |B j

)
+ ε̃k

j S j

(
gk

j

)
.

As a consequence, if we take ε := min j,k ε̃k
j > 0, we can write

g ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
,

and this shows that E ⊆ E1.
We next prove that E1 ⊆ E2. Let us consider g ∈ E1. Again, we can assume that

g /∈ L+, since for that case the inclusion is trivial. Then there are j = 1, . . . , m, n j ≥
1, k = 1, . . . , n j, gk

j ∈ H j, B j ∈ B j, ε > 0, such that

g ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
. (34)

Let us show that the above choice of gambles gk
j make g belong to E2. We reason

ex-absurdo, assuming that g /∈ E2. There are two possibilities:

(i) If g � 0 in S

(
gk

j

)c
, then there is some ω ∈ S

(
gk

j

)c
such that g(ω) < 0. But

then it cannot hold that g(ω) ≥
[∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
+ εS j

(
gk

j

)]
(ω) = 0, a

contradiction with (34).

(ii) If inf
ω∈S

(
gk

j

)
[
g − ∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)]
≤ 0, then given the same ε > 0 there

is some ω ∈ S(gk
j ) such that

g(ω) ≤
⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) <

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω),

again a contradiction with (34). ��
We finally show that E2 ⊆ E . Take g ∈ E2. We skip the trivial case g ∈ L+.

Then there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk
j ∈ H j, gk

j �= 0, such that g ≥
∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
+ δ in S

(
gk

j

)
for some δ > 0, and g ≥ 0 in S

(
gk

j

)c
. Let ε :=

δ
m max j,k n j

. Then in S

(
gk

j

)
we have that

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
≤

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εm max

j,k
n j

=
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ δ ≤ g,
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and since, whenever S

(
gk

j

)c
is not empty, it holds that in S

(
gk

j

)c

g ≥ 0 =
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
;

it follows that g ≥ ∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
. But taking into account that

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
=

∑

B j∈S j

(
gk

j

)
G j

(
gk

j |B j

)
+ εB j,

it follows that G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
belongs to E . Since E is closed under finite

addition of gambles, and under dominance, we deduce that also g belongs to E . This
completes the proof. ��

Proof of Theorem 10 Let us begin with the first statement. Assume R avoids partial
loss. From Definition 11 and Corollary 2, this means that there is no g ≤ 0 in E ,
or, equivalently, that sup g > 0 for every g ∈ E . Consider j = 1, . . . , m, n j ≥ 1, k =
1, . . . , n j, gk

j ∈ H j not all of them zero gambles, ε > 0. Then the previous comment
implies that

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω) > 0, (35)

because the above gamble belongs to E . Applying Proposition 1 we deduce that
P1(·|B1), . . . , Pm(·|Bm) avoid partial loss.

Conversely, if P1(·|B1), . . . , Pm(·|Bm) avoid partial loss then Proposition 1 implies
that (35) holds and as a consequence sup g > 0 for every g ∈ E . Hence, R avoids
partial loss.

Let us turn now to the second statement. We begin with the direct implication.
Assume P1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss, and consider a gamble
g ∈ E . The case g ∈ L+ is trivial. For other g, we can apply statement (1) of
Theorem 9 to deduce that there are gk

j ∈ H j, n j ≥ 1, j = 1, . . . , m, k = 1, . . . , n j and

ε > 0 such that g ≥ ∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
. Then

sup g ≥ sup
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
≥ sup

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
≥ 0,

using that P1(·|B1), . . . , Pm(·|Bm) avoid sure loss.
Conversely, assume that sup g ≥ 0 for every g ∈ E , and take gk

j ∈ H j, n j ≥ 1, j =
1, . . . , m, k = 1, . . . , n j. Then again Theorem 9, statement (1), implies that for every
ε > 0

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
⎤

⎦ (ω) ≥ 0,
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whence

sup
ω∈�

⎡

⎣
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) ≥ −ε

m∑

j=1

n j,

for every ε > 0. As a consequence, P1(·|B1), . . . , Pm(·|Bm) avoid uniform sure loss.
��

Proof of Theorem 11 Let us show the equivalence between the first two conditions;
the equivalence with (3) follows from Lemma 1, statement 5.

Assume first of all that P j( f j|B j) = E j( f j|B j) for all j = 1, . . . , m, f j ∈ H j, B j ∈
B j. From Corollary 1, recalling also that P1(·|B1), . . . , Pm(·|Bm) are separately
coherent, and hence bounded, we deduce that P1(·|B1), . . . , Pm(·|Bm) avoid partial
loss. Theorem 10 then implies that R (and therefore E , through Proposition 3(c))
avoids partial loss.

Consider now g ∈ Q ∩ E . Then there is some f j ∈ H j, B j ∈ B j and ε �= 0
such that g = G j( f j|B j) + εB j. If g /∈ R, it follows from (17) that ε < 0. On
the other hand, if g ∈ E we deduce from Theorem 9 that either g ∈ L+ or
there are j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j, B j ∈ B j, δ > 0, such that g ≥
∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
+ δS j

(
gk

j

)
. In the first case, we deduce that infB j G j( f j|B j) ≥

−ε > 0, a contradiction with the separate coherence of P j(·|B j). In the second, we
deduce that

G j( f j|B j) + ε

2
B j ≥

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− ε

2
B j +

m∑

j=1

n j∑

k=1

δS j

(
gk

j

)
,

or, equivalently,

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B j

(
f j − (P j( f j|B j) − ε

2
)
)

≤ ε

2
B j −

m∑

j=1

n j∑

k=1

δS j

(
gk

j

)
< 0

on S(gk
j ) ∪ B j. Using (7) we deduce that E j( f j|B j) ≥ P j( f j|B j) − ε

2 . This is a con-
tradiction (remember that ε < 0). As a consequence, Q ∩ E ⊆ R and therefore R is
coherent.

Finally, if there is some j ∈ {1, . . . , m}, B j ∈ B j, f j ∈ H j and ε > 0 s.t. G j( f j|B j) −
εB j ∈ R, then there must be some j′ ∈ {1, . . . , m}, f ′

j ∈ H j′ , B′
j ∈ B j′ and δ > 0 s.t.

G j( f j|B j) − εB j = G j′( f j′ |B j′) + δB j′ , whence

G j′( f j′ |B j′) − G j( f j|B j) = −δB j′ − εB j ≤ − min{δ, ε} < 0

on B j ∪ B j′ ; this is a contradiction with the coherence of P j(·|B j), P j′(·|B j′).
Conversely, let us show that the first statement implies the second. First of all,

if R is coherent relative to Q, it also avoids partial loss, which guarantees, via
Theorem 10 and Lemma 1, statement 2, that the natural extensions are bounded,
and through Proposition 3(d) that E is coherent. Furthermore Lemma 1, statement 1,
establishes that E j( f j|B j) ≥ P j( f j|B j), for every j = 1, . . . , m, f j ∈ H j, B j ∈ B j.
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Assume ex-absurdo that there are j0 ∈ {1, . . . , m}, f0 ∈ H j0 , B0 ∈ B j0 , such that
P j0( f0|B0) < E j0( f0|B0). Then given 0 < δ < E j0( f0|B0) − P j0( f0|B0), the definition
of the conditional natural extension (7) implies that there are gk

j ∈ H j, n j ≥ 1, j =
1, . . . , m, k = 1, . . . , n j, such that

sup
S
(

gk
j

)
∪B0

[ m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B0( f0 − (P j0( f0|B0) + δ))

]
< 0,

and the second statement of Theorem 9 implies then that the gamble B0( f0 −
(P j0( f0|B0) + δ)) belongs to E . Since on the other hand (17) implies that the gamble
B0( f0 − P j0( f0|B0)) + δ

2 B0 belongs to R ⊆ E , we deduce from the coherence of E
(condition (ADD)) and the definition of Q that the gamble B0( f0 − P j0( f0|B0)) −
δ
4 B0 belongs to Q ∩ E , and as a consequence also to R, because this set is coherent.
But the first statement implies that this gamble cannot be in R because δ > 0.
This is a contradiction, from which we deduce that P j( f j|B j) = E j( f j|B j) for all
f j ∈ H j, B j ∈ B j and j = 1, . . . , m. This completes the proof. ��

Proof of Lemma 2 Since, P1(·|B1), . . . , Pm(·|Bm) avoid partial loss, Lemma 1 implies
that their natural extensions are coherent and using Theorem 10 and Proposition 3
we also deduce that E is coherent.

Let f ∈ E . B f is non-empty because f �= 0, and moreover f = B f f . If f ∈ L+
then for every ε > 0 s.t. Bε

f �= ∅ (and there is one such ε because B f = ∪ε>0 Bε
f ) we

have that E0( f |Bε
f ) ≥ E0(ε|Bε

f ) = ε > 0, so the result holds.
If f /∈ L+, we apply (20) to find j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk

j ∈ H j, δ > 0
such that

f = B f f >

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ δ

in S

(
gk

j

)
, and such that B f f ≥ 0 in S

(
gk

j

)c
. This second property implies that f (ω) >

0 for every ω ∈ B f \ S

(
gk

j

)
, and f (ω) ≥ ε for every ω ∈ Bε

f \ S

(
gk

j

)
and for every

ε > 0.
Fix ε ∈ [ δ

2 , δ). Then Bδ−ε
f f ≥ B f f − (δ − ε), and consequently

Bδ−ε
f f −

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)

≥ B f f −
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− (δ − ε) > δ − (δ − ε) = ε > 0

in S

(
gk

j

)
.

Now, let α > 0 be equal to inf
ω∈S

(
gk

j

)
∪Bδ−ε

f
[Bδ−ε

f f − ∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)
](ω).

This infimum is positive because it dominates min{ε, δ − ε} = δ − ε, which is posi-

tive. Then Bδ−ε
f f − α

2 Bδ−ε
f − ∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
≥ α

2 > 0 in S

(
gk

j

)
∪ Bδ−ε

f . As a
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consequence, E0( f |Bδ−ε
f ) > 0. Finally, note that we can do this for any ε ∈ [ δ

2 , δ), so

E0

(
f |Bδ−ε

f

)
> 0 for every δ − ε ∈ (

0, δ
2

)
.

For the second part it suffices to note that when � is finite there is some ε′ > 0
such that Bε

f = B f for all positive ε < ε′, and apply the first part. ��

Proof of Theorem 12 Since P1(·|B1), . . . , Pm(·|Bm) avoid partial loss, Lemma 1 im-
plies that all the natural extensions are bounded. We use this fact throughout the
proof.

(1) Given g ∈ EP, g = G0( f |B0) + εB0; since g = 0 in Bc
0, we can assume without

loss of generality that B f ⊆ B0; in fact, otherwise, it suffices to take f ′ :=
B0 f , which also satisfies G0( f ′|B0) + εB0 = g, thanks to separate coherence.
Moreover, separate coherence also implies that E0(g|B0) = E0(G0( f |B0) +
εB0|B0) ≥ 0 + ε > 0. As a consequence, for some α > 0 there are gambles
gk

j ∈ H j such that

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B0( f − α) ≤ −δ < 0

in S(gk
j ) ∪ B0 for some δ > 0. Since the support B f is included in B0, we

deduce that

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B f ( f − α) ≤

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− B0( f − α) ≤ −δ < 0

on S

(
gk

j

)
∪ B f , and as a consequence E0( f |B f ) > 0. This shows that EP is

included in { f : E0( f |B f ) > 0}. Conversely, if a gamble f satisfies E0( f |B f ) =
α > 0, then f = B f f = G0( f |B f ) + αB f belongs to EP.

(2) From the definition of the unconditional natural extension E0 (9), we have that
E0( f ) > 0 if and only if there is some α > 0 and gambles f k

j ∈ H j, n j ≥ 1, j =
1, . . . , m, k = 1, . . . , n j, such that

f − α ≥
m∑

j=1

n j∑

k=1

G
(

f k
j |B j

)
,

and this inequality implies that

f ≥
m∑

j=1

n j∑

k=1

G
(

f k
j |B j

)
+ εS j

(
f k

j

)
,

for ε := α∑m
j=1 n j

> 0. Using Theorem 9 we deduce that if E0( f ) > 0 then f ∈ E .

Since also L+ ⊆ E because this is a coherent set of really desirable gambles, we
deduce that { f : E0( f ) > 0} ∪ L+ ⊆ E .
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On the other hand, if f ∈ E , Theorem 9 implies that either f ∈ L+, and then the
coherence of E0 guarantees that E0( f ) ≥ 0, or there are gambles f k

j ∈ H j, n j ≥
1, j = 1, . . . , m, k = 1, . . . , n j, not all of them equal to zero, and ε > 0, such that

f ≥
m∑

j=1

n j∑

k=1

G
(

f k
j |B j

)
+ εS j

(
f k

j

)
.

We deduce that f ≥ ∑m
j=1

∑n j

k=1 G
(

f k
j |B j

)
, whence for every α > 0

m∑

j=1

n j∑

k=1

G
(

f k
j |B j

)
− ( f + α) ≤ −α < 0;

as a consequence, E0( f ) ≥ −α for every α > 0, and therefore E0( f ) ≥ 0. We
conclude that E ⊆ { f : E0( f ) ≥ 0}.

(3) Let us show that EP ⊆ E . Take g ∈ EP, that is, g = G0( f |B0) + εB0. By
definition of E0( f |B0), we know that for each ε > 0 there are j = 1, . . . , m, n j ≥
1, k = 1, . . . , n j, gk

j ∈ H j, such that

inf
ω∈S(gk

j )∪B0

⎡

⎣G0( f |B0) + εB0 −
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
⎤

⎦ (ω) > 0. (36)

We distinguish two cases.

(i) If gk
j = 0 for all j, k, from (36) we obtain that G0( f |B0) + εB0 > 0 in

B0. Since outside B0 we have that G0( f |B0) + εB0 = 0, it follows that
G0( f0|B0) + εB0 ∈ L+ ⊆ E .

(ii) If gk
j �= 0 for some j, k, we are going to prove that g ∈ E . For this, we are

going to use the equivalent expression (20) established in Theorem 9.
From (36), the first requirement in (20) is satisfied, so it suffices to

establish the second. Consider ω ∈ S

(
gk

j

)c
, provided S

(
gk

j

)c
is not empty.

There are two possibilities: either ω /∈ B0, whence trivially g(ω) = 0; or
ω ∈ B0, whence by applying (36) we conclude that g(ω) > 0. This shows
that f ∈ E .

We establish next that E ⊆ E P. Take f ∈ E . We know by Lemma 2 that
E0( f |Bε

f ) > 0 for every ε ∈ (0, ε) for some ε > 0. Setting α := E0( f |Bε
f ) > 0

for one such ε, the gamble G0( f |Bε
f ) + αBε

f belongs to EP, and it is equal
to G0( f |Bε

f ) + αBε
f = Bε

f ( f − (E0( f |Bε
f ) − α)) = Bε

f f . Now, since f = B f f
is the uniform limit, as ε goes to zero, of the gambles Bε

f f , we deduce that it

belongs to E P.
(4) To see that EP = E when � is finite, note that in that case we can deduce from

Lemma 2 that also E0( f |B f ) > 0 for every f ∈ E , and then the first statement
implies that E ⊆ EP.

(5) Let us show that E is the natural extension of EP: since E is a coherent set
of desirable gambles that includes EP, Proposition 3(b) implies that it must
include also its natural extension; conversely, any gamble in R is of the type
B j( f − P j( f |B j)) + εB j for some B j ∈ B j, f ∈ H j, ε > 0; since E0( f |B j) ≥
P j( f |B j) from Lemma 1(1), it follows that B j( f − P j( f |B j)) + εB j dominates



Notes on desirability and conditional lower previsions 305

the gamble B j( f − E0( f |B j)) + εB j which belongs to EP; as a consequence, R
is included in the natural extension of EP, and from Proposition 3(b) so is its
natural extension E . ��

Proof of Theorem 13 Consider an arbitrary j ∈ {1, . . . , m}, f j ∈ H j and B j ∈ B j. By
definition R contains the gambles G j( f j|B j) + εB j = B j( f j − (P j( f j|B j) − ε)) for all
ε > 0, whence P′

j( f j|B j) ≥ P j( f j|B j).
Now, let us assume ex-absurdo that P′

j( f j|B j) > P j( f j|B j), or, in other words,
that g := G j( f j|B j) − ε′ B j belongs to R for some ε′ > 0. Then g also belongs to the
natural extension E of R, given by (10).

If g ∈ L+, then we have that infB j G j( f j|B j) > 0, a contradiction with the separate
coherence of P j(·|B j). Then, if g ∈ E \ L+, we can apply Theorem 9 to deduce that
there are gk

j ∈ H j, not all of them equal to zero, for n j ≥ 1, j = 1, . . . , m, k = 1, . . . , n j

and ε > 0, such that

G j( f j|B j) − ε′ B j ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
.

As a consequence,

−ε′ B j − ε

m∑

j=1

n j∑

k=1

S j

(
gk

j

)
≥

m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
− G j( f j|B j),

whence the supremum of the right-hand side in S(gk
j ) ∪ B j is smaller than zero.

This is a contradiction with the coherence of the conditional lower previsions
P1(·|B1), . . . , Pm(·|Bm). ��

Proof of Theorem 14 It follows from Theorem 9 that E′
0( f |B0) is the supremum

value of α such that

B0( f − α) ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
(37)

for some j = 1, . . . , m, n j ≥ 1, k = 1, . . . , n j, gk
j ∈ H j, B j ∈ B j, ε > 0: to see this, note

that we can restrict our attention to the gambles in E \ L+, because with those in L+
we only attain infB0 f , and this infimum can also be achieved in (37) by considering
constant gambles.

On the other hand, from (7), E0( f |B0) is the supremum value of α such that there
are gk

j ∈ H j, n j ≥ 1, j = 1, . . . , m, k = 1, . . . , n j, δ > 0 such that

B0( f − α) −
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
≥ δ > 0 (38)

in S(gk
j ) ∪ B0.

Hence, given α < E′
0( f |B0), there are gk

j ∈ H j, B j ∈ B j, ε > 0 satisfying (37),

whence B0( f − α) − ∑m
j=1

∑n j

k=1 G j

(
gk

j |B j

)
≥ ε in S

(
gk

j

)
, and B0( f − α) ≥ 0 in B0 \

S

(
gk

j

)
. Given μ in (0, ε), we deduce that B0( f − α + μ) − ∑m

j=1
∑n j

k=1 G j

(
gk

j |B j

)
≥
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μ in S

(
gk

j

)
∪ B0, and therefore E0( f |B0) ≥ α − μ, from which it follows that

E0( f |B0) ≥ E′
0( f |B0).

Conversely, given α < E0( f |B0), there are gk
j ∈ H j, B j ∈ B j, δ > 0 satisfying (38).

Consider ε := δ
m max j,k n j

. Then

B0( f − α) ≥
m∑

j=1

n j∑

k=1

G j

(
gk

j |B j

)
+ εS j

(
gk

j

)
,

and as a consequence E′
0( f |B0) ≥ E0( f |B0). This completes the proof. ��

Proof of Proposition 9 Consider a gamble f ∈ E ′. If f ∈ L+ then trivially f belongs
to the coherent set E . If f /∈ L+, Theorem 9 and the fact that L is a linear
space implies that there are gambles g j ∈ L, j = 1, . . . , m and ε > 0 such that f ≥∑m

j=1 G(g j|B j) + εS j(g j). From the definition of P j(·|B j) and (ADD), we deduce
that the gamble G(g j|B j) + εS j(g j) = ∑

B j∈S j(g j)
G(g j|B j) + εB j belongs to E for j =

1, . . . , m, and applying then (ADD) and (APG) we deduce that f ∈ E . This implies
that E ′ ⊆ E . ��

Proof of Proposition 10 Let P1(·|B1), . . . , Pm(·|Bm) be coherent conditional lower
previsions, Q,R be the sets derived from them by means of (16) and (17), and let
E be the natural extension of R. We have to show that E satisfies condition (22).

Take f ∈ E . From Lemma 2, there is some ε̄ > 0 such that for every ε ∈ (0, ε̄),
E0( f |Bε

f ) > 0; this means that for every ε ∈ (0, ε̄) there is some δε > 0 such that
Bε

f ( f − δε) ∈ E , taking into account Theorem 14. This implies that condition (22)
holds. ��

Proof of Theorem 15 The second statement follows directly from Proposition 10,
so we focus on the first. Consider a coherent set of conditionally strictly desirable
gambles E . Fix ω0 ∈ �, and for every ∅ �= A � � that contains ω0 define the partition
BA := {A, Ac}, and let B� := {�}. Then we deduce from E the following set of
conditional lower previsions, each one defined on all L:

{P(·|BA)}ω0∈A⊆�, (39)

where, as usual, P( f |B) := sup{μ : B( f − μ) ∈ E} for all f ∈ L and ∅ �= B ⊆ �. It
follows from Corollary 4 that the conditional lower previsions in (39) are coherent.
Let R be the set of desirable gambles derived from those conditional lower previ-
sions, and EP the set derived from the natural extensions of the lower previsions,
as in (21). It is trivial that in the specific case of the lower previsions considered, it
holds that R = EP, because the lower previsions {P(·|BA)}ω0∈A⊆� already encompass
all their natural extensions. Therefore, since we know by Theorem 12 that EP is the
natural extension of R, what we are left to show is that EP = E .

That EP ⊆ E follows directly from Proposition 9. Conversely, given f ∈ E , it
follows by assumption (23) that P( f |B f ) > 0, whence given ε := P( f |B f ), the
gamble G( f |B f ) + εB f = B f ( f − (P( f |B f ) − ε)) = f belongs to R = EP. ��

Proof of Theorem 16 Assume first of all that (24) holds, and let us show that then
P(B) > 0.



Notes on desirability and conditional lower previsions 307

By contradiction, say that P(B) = 0. From the correspondence between coherent
sets of almost-desirable gambles and coherent lower previsions, B( f − μ) ∈ R if and
only if P(B( f − μ)) ≥ 0 for all P ∈ M, and therefore if P(B) = 0 we get that B( f −
μ) ∈ R for all μ ∈ R. This implies, through (24), that B( f − μ) ∈ R for all μ ∈ R,
and hence that P( f |B) = +∞. This means that P( f |B) is not well-defined according
to Definition 14, and since R is closed under dominance, we deduce from Theorem 5
that it does not satisfy (SD), a contradiction.

To see that moreover we also have the equality between R( f |B) and P( f |B), we
can start by exploiting some passages originally made with other purposes in [22, (12)
in Section 3.7]:

R( f |B) = inf{P(Bf )/P(B) : P ∈ M, P(B) > 0}
= sup{μ : P(Bf )/P(B) ≥ μ ∀P ∈ M, P(B) > 0}
= max{μ : P(Bf ) ≥ μP(B) ∀P ∈ M}
= max{μ : P(B( f − μ)) ≥ 0 ∀P ∈ M}
= max{μ : B( f − μ) ∈ R},

where the last passage is due to [19, Theorem 3.8.1]. As a consequence, P( f |B) =
R( f |B) if and only if sup{μ : B( f − μ) ∈ R} ≥ max{μ : B( f − μ) ∈ R} (the converse
inequality holds in general because R ⊆ R).

Let μ∗ := max{μ : B( f − μ) ∈ R}. From (24), we have that B( f − (μ∗ − ε)) ∈ R
for all ε > 0. This implies that {μ : B( f − μ) ∈ R} ⊇ {μ∗ − ε : ε > 0}, and hence that
sup{μ : B( f − μ) ∈ R} ≥ sup{μ∗ − ε : ε > 0} = max{μ : B( f − μ) ∈ R}. As a conse-
quence, R( f |B) = P( f |B).

Conversely, assume that P(B) > 0 and R( f |B) = P( f |B), or, equivalently, that
sup{μ : B( f − μ) ∈ R} ≥ max{μ : B( f − μ) ∈ R}. Take μ ∈ R such that B( f − μ) ∈
R, and consider ε > 0. Then it follows from the assumption that μ − ε < sup{μ′ :
B( f − μ′) ∈ R}, whence B( f − (μ − ε)) ∈ R. As a consequence, (24) holds. ��

Proof of Proposition 11 Consider a set of gambles D satisfying (WD1)–(WD5), and
let us define R by

R := { f ∈ D : − f /∈ D}.
Let us show that this subset of D is a coherent set of really desirable gambles. We

apply Proposition 2:

(APL) Trivially the gamble f := 0 coincides with − f , so we cannot have f ∈
D,− f /∈ D. Hence, 0 /∈ R.

(APG) Given a gamble f ∈ L+, it belongs to D because of (WD2). Since the
gamble − f � 0 does not belong to D because of (WD1), we deduce that
f ∈ R.

(PHM) Let f ∈ R, λ > 0; then f ∈ D, whence (WD3) implies that λ f ∈ D. If
−λ f ∈ D, then − f ∈ D and we contradict that f ∈ R.

(ADD) Given f, g ∈ R, it follows that f, g ∈ D, whence (WD4) implies that f +
g ∈ D. If f + g /∈ R, then it must be − f − g ∈ D, and applying (WD4) we
deduce that − f − g + g = − f ∈ D, which contradicts that f ∈ R. Hence,
f + g ∈ R.
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Applying (27), DR is given by DR := { f : f + g ∈ R ∀g ∈ R} ⊇ R. Given a gam-
ble f ∈ D \ R and g ∈ R, it holds that f + g ∈ D because of (WD4); if f + g /∈ R,
then it must be − f − g ∈ D, whence − f − g + f = −g ∈ D, and this contradicts that
g ∈ R. Hence, D ⊆ DR. To see that they coincide, consider a gamble f ∈ DR; since
for every δ > 0 the constant gamble on δ belongs to R because of (APG), it follows
from the definition of DR that f + δ ∈ R ⊆ D for every δ > 0. Applying (WD5), it
follows that either f ∈ D or f � 0; but this second possibility contradicts (WD1),
which DR satisfies because of [5, Proposition 5]. ��

Proof of Proposition 12 Let us denote by μ1, μ2 the left- and right-hand sides of (28),
respectively. Since R ⊆ DR, it suffices to prove that μ2 ≤ μ1. Consider any ε > 0.
Then since DR satisfies (WD4) and (WD2) from [5, Proposition 5], we deduce that
the gamble B( f − (μ2 − ε)) ∈ DR. Since on the other hand the gamble εB belongs
to R because of (APG), it follows from the definition of DR that B( f − (μ2 − ε)) +
Bε = B( f − (μ2 − 2ε)) ∈ R, whence μ1 ≥ μ2 − 2ε. Since we can do this for every
ε > 0, we deduce that μ1 ≥ μ2, and as a consequence they are equal. ��
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