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Abstract Exploratory Projection Pursuit (EPP) methods have been developed thirty
years ago in the context of exploratory analysis of large data sets. These methods
consist in looking for low-dimensional projections that reveal some interesting
structure existing in the data set but not visible in high dimension. Each projection is
associated with a real valued index which optima correspond to valuable projections.
Several EPP indices have been proposed in the statistics literature but the main
problem lies in their optimization. In the present paper, we propose to apply Genetic
Algorithms (GA) and recent Particle Swarm Optimization (PSO) algorithm to the
optimization of several projection pursuit indices. We explain how the EPP methods
can be implemented in order to become an efficient and powerful tool for the
statistician. We illustrate our proposal on several simulated and real data sets.

Keywords Clustering · Exploratory projection pursuit · Genetic algorithm ·
Particle swarm optimization

Mathematics Subject Classifications (2010) 62-07 · 62-09 · 62H99 · 68-04 · 68T20

A. Berro · S. Larabi Marie-Sainte
IRIT, University Toulouse 1, Toulouse, France

A. Berro
e-mail: berro@irit.fr

S. Larabi Marie-Sainte
e-mail: larabi@irit.fr

A. Ruiz-Gazen (B)
Toulouse School of Economics (Gremaq and IMT),
University Toulouse 1, Toulouse, France
e-mail: ruiz@cict.fr



154 A. Berro et al.

1 Introduction

Exploratory Projection Pursuit (EPP) methods are looking for interesting low di-
mensional projections of high dimensional multivariate data (see [5], for a recent
survey). The quality or “interestingness” of a linear projection is measured by a
criterion called a projection pursuit index. Thereby, the search for interesting linear
projections consists in optimizing an index. The idea originated in Kruskal [26] and
Friedman and Tukey [15] were the first to use the term “projection pursuit”. From
these pioneer papers and until the end of the nineties, the field of EPP widely
expanded in the statistical literature. Let us quote Huber [21], Jones and Sibson [22],
Friedman [14], Cook et al. [8], Sun [42], Posse [36], Nason [34] and Klinke [24] among
the most famous references of that period. In these articles, several projection indices
and optimization algorithms have been proposed and studied in detail. These studies
conclude that EPP is a powerful tool for statisticians in order to detect hidden non-
linear structure in high dimension data sets. The well known Principal Components
Analysis (PCA) belongs to the family of EPP methods with the variance as the
projection index. However PCA only takes into account second order moment and
may miss interesting hidden structure that can be easily discovered by another EPP
technique.

For all that, Caussinus and Ruiz-Gazen [5] noticed that the use of EPP is not
widely adopted when compared with the extensive use of PCA. This point was
already stressed in Nason [33]: “although there has been great interest in projection
pursuit methods there does not seem to have been corresponding interest in the
software” and, up to our knowledge, there is no recent proposal. In the present paper
we take advantage of the high performance computers available nowadays and revisit
the field of EPP. Our objective is to make the most of the existing literature and make
new proposals in order to obtain a powerful tool that should be implemented in the
current toolboxes of the data analyst. In order to reach our goal, we believe that three
important conditions have to be fulfilled.

The first condition relies on the suitability of the implemented projection indices.
In the literature, there already exist several indices that are suitable for various
structures and applications (see [5], for a detailed description). In the present paper
we propose a new index that complements the existing ones in the presence of
clusters.

The second condition concerns the optimization algorithm. It is commonly ac-
cepted that the role played by the optimization algorithm in the field of EPP is
crucial. Friedman and Turkey [15] states that “in order to be useful as a tool for
exploratory data analysis on data sets with complex structures, it is important that the
algorithm find several solutions that represent potentially informative projections for
inspection by the researcher”. So the problem is not to find only one global optimum
but several local optima. Many projection indices are differentiable functions and
usual gradient optimization methods have been proposed. In the present paper
we focus on stochastic heuristic algorithms because they can be used for any not
necessarily regular projection index and easily tuned to obtain different local optima.

The third component of a powerful EPP tool relies on the presentation of the
results. In our opinion, the existing implementations are not completely satisfactory
in this respect. Most of the implementations we are aware of (see for example the
computational statistics toolbox in Matlab by Martinez and Martinez [32]) only rely
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on a few random starts and usually lead to only one optimum of the projection index.
Other projections may be found by structure removal but there is no possibility of
direct inspection of several local optima. On the opposite side, the software GGobi
[10] is dynamic and the user can look at as many projections as he wants in an
interactive way. The initial starting values are either chosen at random or by the user
who looks at the point cloud rotating. For high dimension data sets with complex
structure, considering only one optimum of the projection index is likely not to
be sufficient while looking at rotating clouds for a long time may be tedious. We
believe that a proposal in between the two existing approaches is welcome. Following
Friedman and Tukey comment, we propose to run at least one hundred times the
optimization algorithm and submit the potentially informative projections that follow
to the inspection of the statistician.

Many evolutionary algorithms have been developed, such as genetic algorithm
[20]. These algorithms are stochastic search heuristics inspired by Darwinian evolu-
tion and genetics. The main idea is to create a population of candidate solutions to an
optimization problem, which is iteratively refined by alteration and selection of the
good solutions. Candidate solutions are selected according to the so-called fitness
function, which evaluates their quality with respect to the optimization problem.
In case of GAs, the alteration consists of crossover to recombine information of
different candidate solutions and mutation to randomly explore the local neigh-
borhood of existing solutions. One promising and recently introduced approach to
numerical optimization, which is rather unknown outside the search heuristics field,
is particle swarm optimization (PSO) [23]. A PSO algorithm is a population-based
search algorithm based on the simulation of the social behavior of birds within a
flock. In PSO, individuals, referred to as particles, are flown through search space.
Changes to the position of the particles within the search space are based on the
social-psychological tendency of particles to emulate the success of other particles.
PSO algorithm differs from the other evolutionary methods (typically, the genetic
algorithms) and are based on the notion of cooperation between particles. The
information exchanged between particles helps to solve difficult problems.

Up to our knowledge, only a few papers in the literature use genetic algorithms
in the context of exploratory projection pursuit [1, 11, 18]. These papers do not
consider several projection indices and focus on the search of one “global” optimum.
Moreover, there is no paper implementing the PSO method. In the present paper,
we highlight the interest of using several indices and propose the use of GA and
PSO algorithms in order to find several “local” optima. We also provide some plots
that help the statistician in interpreting the many different projections obtained.
An important advantage of the algorithms we focus on is their ability to cope with
local optima by maintaining, recombining and comparing several candidate solutions
simultaneously. Moreover, our experience is that the proposed algorithms are easy to
implement and have a fast convergence speed and good global and local convergence
adaptability. Hence, we believe that GAs and PSO can play a role in exploratory
projection pursuit and we illustrate this point in the application section.

Note that the idea of looking for several local optima is already studied in the
literature on evolutionary algorithms (see [12], Chapter 9 for a survey) and on
PSO [28] also. Such problems are said “multimodal” and several methods such as
fitness sharing and crowding exist for tackling these optimization problems. In the
present paper we do not implement such methods but we simply propose to run
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many times standard algorithms. As stated in Eiben and Smith ([12], pp. 158), this
idea is the simplest one in order to find several possible interesting solutions. Its
implementation is straightforward with no need of tuning more parameters. Another
advantage of this simple method in our particular context is that it does not only
provide the statistician with a list of possible interesting projections. It also gives
insight into the frequency of each local optima and into the differences between the
corresponding projection vectors when plotting several graphics as detailed in the
application section. Such plots are very helpful for the statistician in order to check
whether some projections appear accidentally or in a repeated way. However, for
large number of observations and dimensions, it may be worthwhile to accelerate the
procedure by using more efficient methods for multimodal problems than the one we
propose.

The present paper is dedicated to the analysis of the performance of GA and
PSO for the optimization of several one-dimensional projection pursuit indices. The
projected data are plotted using histograms and density estimators. The structures
we mainly focus on through several examples are clusters and outliers but EPP may
be useful to detect other types of structures [8].

This paper is organized as follows. Section 2 introduces four univariate projection
pursuit indices and describes their properties while the optimization methods we
focus on are considered in Section 3 for GA and Section 4 for PSO. Section 5
reports the main results on different data sets, and finally, Section 6 concludes our
study.

2 The projection pursuit approach

The aim of projection pursuit is to reveal possible interesting structures hidden in
high-dimensional data. To what extent these structures are “interesting” is measured
by an index. It has been argued by Huber [21] and by Jones and Sibson [22] that
the Gaussian distribution is the least interesting one, and that the most interesting
directions are those that show the least Gaussian distribution. An illustration of
the “interestingness” of a projection is illustrated on Fig. 1 where the data are
clearly divided into two clusters. However, the first principal component which is the
direction of maximum variance, would be vertical, providing no separation between
the clusters. In contrast, the interesting projection pursuit direction is horizontal,
providing optimal separation of the clusters.

Suppose that, for a set of N cases, P variables are recorded and denote by X the
data set matrix with dimension N × P. Then each case can be thought of as a point in
a P-dimensional space. Let Xi denote the ith column vector in �P associated with the
ith observation. Unfortunately, unless P is less than or equal to 3 it is not possible to
visualize these points in the P-dimensional space. However, it is possible to project
a P-dimensional set of points onto a one-dimensional line or a two-dimensional
plane, or a three-dimensional volume. In EPP, we try to find “interesting” low-
dimensional projections of the data. For this purpose, a suitable index function
I(α), depending on a normalized projection vector α, is used. This function will be
defined such that interesting views correspond to local and global maxima of the
function.
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Fig. 1 An illustration of the
“interestingness” of a
projection

Let us assume that the P-dimensional data set X is spherical, that is the mean
vector E(Xi) = 0 and the covariance matrix is V(Xi) = IP where IP denotes the
identity P-dimensional matrix. In practice, the expectation and the covariance of
the distribution of the Xi are unknown. People usually sphere the data before
implementing the projection pursuit procedure using the sample mean X̄ = 1

N

∑
Xi

and the sample covariance matrix �̂ = 1
N−1

∑
(Xi − X̄)(Xi − X̄)′. A simple way of

obtaining spherical data is to calculate

Zi = D̂− 1
2 Û ′(Xi − X̄), i = 1, · · · , N, (1)

where Û D̂Û ′ = �̂ is the spectral decomposition of �̂. In the following, we will
consider spherical data and will use the same notation X. Note that by taking
spherical data, we remove the effect of location, scale and correlation structure (see
[21], for more detail).

To see how EPP methods operate in the case of one-dimensional indices, it is first
worth noting that projections from �P to � are linear mappings. Let X = ((xij))i, j be
a matrix of which the (i, j )th element is the j th variable for observation i. We can
write the general projection from �P to � as Y = Xα. Here α is a P-dimensional
row vector defining the linear transformation, and Y is a N-dimensional column
vector which corresponds to the coordinates of the projected observations. Choosing
a projection is now a matter of choosing α.

There are many possible projection indices and the present paper focus only on
four particular one-dimensional indices. The Friedman–Tukey index is the first index
proposed in the context of EPP and it is interesting for the detection of outliers.
The Friedman’s index belongs to the family of the polynomial-based indices. When
compared with other indices from the same family, this index performs particularly
well in detecting separations or clusters [42]. We also consider a new proposal suited
to the detection of clusters called “discriminant index” and the kurtosis index that is
based on the fourth moment and has been recently studied in Peña and Prieto [35]
and Achard et al. [1].
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2.1 The Friedman–Tukey index

The search for interesting structures is done via a projection score like the Friedman–
Tukey index

IFT(α) = s(α)d(α).

It is composed of two parts, s which depends only on the covariance structure and
d which captures the “local clusters” of the data. The term s can be avoided if the
P-dimensional data X are spherical.

In Jones and Sibson [22], d is expanded as a kernel density estimate:

f̂Y(y) = 1
Nh

N∑

j=1

K
(

y − y j

h

)

with Y = Xα, yi = α′ Xi and h is a bandwidth. (2)

The Friedman–Tukey index can be written as:

ÎFT(α) = 1
N2h

N∑

i=1

N∑

j=1

K
(

yi − y j

h

)

(3)

It turns out that this index is an estimate of:

IFT(α) =
∫

R
f 2
Y(y)dy = EY( fY(y)) (4)

It is minimized by a parabolic density which is close to a standard normal density.
Thus a departure from a parabolic density is also a departure from the standard
normal density. For simplicity, Klinke [24] proposes to use the following uniform
kernel that we will also consider in what follows.

K(u) = 35
32

(1 − u2)3 I{|u|≤1} (5)

and where I� denotes the dummy variable associated with the set �.
Silverman [40] gives the formula for the bandwidth which minimizes the asymp-

totic mean integrated squared error. If the kernel is a radially symmetric probability
density function and the unknown density is bounded and has continuous second
derivatives, h is given by:

h = 3.12N− 1
6 (6)

So, in our work, we focus on the univariate Friedman–Tukey index:

ÎFT(α) = 1
N2h2

N∑

i=1

N∑

j=1

K
(

α′(Xi − X j)

h

)

(7)

with K defined by (5) and h defined by (6) and we look for α maximizing this index.
The main drawback of this index is that the projections associated with maxima

generally lead to the detection of outliers but may miss other interesting structures
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such as clusters. The results will confirm this point. Another drawback of this index
is that it is time-consuming.

2.2 The Friedman or Legendre index

The main idea of polynomial-based (Legendre, Hermite and Natural Hermite)
indices is to approximate a criterion measuring the departure from a reference,
in our case from the Gaussian, distribution using expansions based on orthogonal
polynomials. Following Cook et al. [8], the index considered here can be written in
the form:

∫

R
(pY(y) − φ(y))2g(y)dy (8)

where pY is the density of the projected data, φ is the univariate standard normal
density and g is a weight function. The orthogonal polynomials fn(x) applied in the
approximation of the indices are defined by

∫ b

a
ω(x) fn(x) fm(x)dx =

{
0 if n �= m
hn if n = m

(9)

with n, m ∈ N
In the case of the Legendre index, a = −1, b = 1, ω(x) = 1 and hn = 2/(2n +

1). The Legendre index, based on Legendre polynomials L j, was introduced by
Friedman [14], with the idea of up-weighting distances in the center of the distrib-
ution rather than in the tails. In practice, it was noticed that this index is attracted by
skewed distributions.

Let � be the cumulative distribution function of an N (0, 1) random variable
(r.v.). Denote the density function of Y = α′ X by pα . Assume that E(Yi) = 0 and
V(Yi) = I, the identity matrix. Under the transformation Y → R = 2�(Y) − 1 the
density pα(y) is transformed to the density function qα(r) of R = 2�(α′ X) − 1, and
a standard normal r.v. will be transformed to a uniform r.v. on (−1, 1). The m-terms
Friedman’s index IF

m is an estimate of the sum of the first m terms of Legendre
polynomial expansion of the L2 distance between qα and 1/2:

IF
m(α) =

m∑

j=1

2 j + 1
2

[
1
N

N∑

i=1

L j
(
2�(α′ Xi) − 1

)
]2

(10)

where the recursive definition of Legendre polynomials L j is given as follows:

L0(r) = 1, L1(r) = r, L2(r) = 1
2
(3r2 − 1),

L j(r) = 1
j
(2 j − 1)rL j−1(r) − ( j − 1)L j−2(r) for j = 3, · · ·

(11)

It is known that the Friedman’s index performs better than the Friedman–Tukey’s
index in detecting separations or clusters and that will be confirmed in our results
section.

The choice of the number m of terms included in this projection pursuit index
depends on the data dimension P and sample size N. Friedman [14] suggested that
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we choose 2 ≤ m ≤ 6 in most cases. Sun [42] showed that m should be at least 3.
Here, we use m = 3.

2.3 The discriminant index

The discriminant index is a new proposal. It follows in some sense the idea in
Friedman and Tukey [15] and, contrary to indices such as the Friedman index, it
is not dedicated to the search of non-gaussian projections. It is dedicated to the
research of clusters. The definition is based on the following argumentation. In the
case of supervised classification, i.e., if the clusters are known on a learning data
set, discriminant analysis can be easily interpreted as an EPP method [27]. For
spherical data, discriminant analysis can be interpreted as the search of projections
which minimizes the within-group variance of the projected data. In the present
paper, we assume that if clusters are present in the data, they are unknown and so
the within variance cannot be calculated and discriminant analysis is not a possible
alternative. Following Art et al. [2], Caussinus and Ruiz-Gazen [3] proposed a kind
of within matrix estimator in the context of Generalized Principal Components
Analysis (GPCA). As principal components analysis and discriminant analysis, the
proposed GPCA method does not really belong to the projection pursuit family
since the involved optimization step can be solved analytically by using a spectral
decomposition with no need of “pursuit”. In the present paper, we propose to use the
idea of minimizing the within variance of the projected data but in a true projection
pursuit context. This leads to the following definition of ID.

ID(α) =
∑N−1

i=1
∑N

j=i+1 w(α′(Xi − X j))(α
′(Xi − X j))

2

∑N−1
i=1

∑N
j=i+1 w(α′(Xi − X j))

(12)

where w is a decreasing and positive weight function. Note that, contrary to
the previous indices, potential interesting projections are associated with minima
of ID.

As in Caussinus and Ruiz-Gazen [3], we suggest the use of w(x) = exp(−x).
The main difference between our proposal and GPCA is the argument of the
weight function w which is α′(Xi − X j) for ID instead of [(Xi − X j)

′(Xi − X j)] 1
2

for GPCA. Minimization of ID in α cannot be solved analytically and requires the
use of optimization algorithm. Following Lee et al. [27], the method can be easily
generalized to two or three dimensional indices. The main drawback of this index is
that it is time-consuming.

2.4 The kurtosis index

Peña and Prieto [35] propose a one-dimensional projection pursuit algorithm based
on directions obtained by both maximizing and minimizing the kurtosis coefficient
of the projected data. As detailed in Peña and Prieto [35], maximizing the kurto-
sis coefficient of the projected data implies detecting outliers in the projections,
whereas minimizing the kurtosis coefficient implies maximizing the bimodality of the
projections.
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Let us assume that we are given a spherical sample of size N and dimension P,
Xi, i = 1, ..., N. The kurtosis index is simply the fourth moment of the projected data
and is defined by:

Ik(α) =
N∑

i=1

(α′ Xi)
4 (13)

As stated above local maxima and local minima may be of interest and we will
consider both minimization and maximization of Ik. The main advantage of this index
is its fast computation.

3 Genetic Algorithms (GA)

Genetic Algorithms (GAs) are evolutionary algorithms that use techniques inspired
by Darwinian evolutionary biology such as inheritance, mutation, selection, and
crossover. Evolutionary algorithms have been proposed independently by Fogel
et al. [13], Rechenberg [37] and Schwefel [39]. Genetic algorithms are implemented
in a computer simulation in which a population of candidate solutions (individuals or
creatures) to an optimization problem evolves toward better solutions.

The original version of a GA is introduced by Holland [20]. For traditional
genetic algorithms, solutions are represented in binary as strings of 0 and 1, but
other encodings are also possible. The evolution usually starts from a population
of randomly generated individuals covering the search space. Every individual of
this population has a function called fitness function which allows to measure its
quality or its weight and represents the objective function to be optimized. At each
generation, the fitness of every individual in the population is evaluated, multiple
individuals are stochastically selected from the current population (based on their
fitness), and modified (recombined and possibly randomly mutated) to form a new
population. The new population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when the termination condition has been
reached. Therefore, to solve a problem using GA we need the following :

1. A system of encoding the possible solutions or chromosome structure.
2. An initial population of solutions.
3. A function to evaluate a solution’s fitness.
4. A method of selection of solutions to be used to produce new solutions.
5. Recombination and mutation operators to create new solutions from the existing

ones.

3.1 Solution representation: chromosome structure

In traditional genetic algorithm, solutions are represented in binary as strings of 0
and 1. A major drawback of the binary encoding [16] is that two close points in the
variables space are not necessarily coded by two nearby chains of bits. This problem
is generally corrected by using different encoding types. In our case, the population
is encoded in real numbers. The chromosome represents the vector of projection
and is denoted by projection. The projection is defined as a normalized vector of P
dimension (see Section 2).
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3.2 Initial population

The first population is sometimes randomly created or by using an heuristic. In our
work, we randomly initialize the population of size T.

3.3 Evaluation function

This function takes a single solution as a parameter and returns a number indicating
how good the solution is. The best solution will be selected by comparing the fitness
value returned by all the possible solutions. In this work, we consider a projection
index as the fitness function.

3.4 Selection

Selection is a genetic operator that chooses an individual from the current generation
for inclusion in the next generation. During each successive generation, a proportion
of the existing population is selected to produce a new generation. Certain selection
methods rank the fitness of each solution and preferentially select the best solutions.
Other methods only rank a random sample of the population, since this process
may be very time-consuming. The selection helps keeping the diversity of the
population, preventing premature convergence to poor solutions. Popular and well-
studied selection methods include roulette wheel selection and tournament selection.

The roulette wheel it is the oldest selection method, where each individual occupies
a section of the wheel proportionally to its fitness function, the selection probability
of an individual ( j ) is:

Prob( j ) = Fitness( j )
∑T

j=1 Fitness( j )
(14)

If we want to select one solution, a spin of the wheel is made and proposes
a candidate. Better solutions have proportionally larger section of the wheel and
therefore there is a greater probability that they will be selected.

Tournament selection it consists in choosing randomly k individuals of the popula-
tion, without taking into account their fitness function value, and to choose the best
individual among them. The number of selected individuals has an influence on the
pressure of selection. When k = 2, the selection is said by binary tournament.

In our version, we use tournament selection of three participants.

3.5 Crossover (recombination)

Crossover is applied to randomly paired individuals with a probability denoted
pc. Pick a pair of individuals (two parents). With probability pc, recombine these
individuals to create two new individuals, called offspring (child), that are inserted
into the next population. While there are many different kinds of crossover (1-point,
2-points, n-points), the most common type is single point crossover. In single point
crossover, we choose a locus at which we swap the remaining alleles from one parent
to the other. The children take one section of the chromosome from each parent.
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The point at which the chromosome is broken depends on the randomly selected
crossover point.

In our algorithm, we apply a 2-point crossover with pc = 0.65 to all the population.

3.6 Mutation

After selection and crossover, a new population of individuals is created. Some are
directly copied, and others are produced by crossover. In order to ensure that the
individuals are not all exactly the same, a small probability of mutation is allowed.
Mutation is only executed on a single individual. It represents random and occasional
modification of one allele or some part of the chromosome. We loop through all
the alleles of all the individuals, and if that allele is selected for mutation, we can
either change it by a small amount or replace it with a new value. Typically the
mutation rate is applied with pm less than 10% probability. Mutation is, however,
vital to ensure genetic diversity within the population.

The mutation operator is applied in our case to all the individuals with pm = 0.05.

3.7 GA parameters

The parameters to be tuned by the user are:

1. The population size: it depends on the nature of the problem, but typically
contains several hundreds or thousands of possible solutions.

2. Probabilities of crossover and mutation: the values of these probabilities can vary
from an application to the other one. For example, the mutation probability is
generally very low, lower than 10%, a large probability may modify the best
individuals.

3. The termination criterion: either a maximum number of generations or a satis-
factory fitness level for the population.

3.8 Our GA version

In this part, we summarize our GA version using the Algorithm 1. The choices of
genetic operator parameters made in this study are based on some experimentation.

Algorithm 1 Genetic algorithm pseudocodes

input: Initial population of individual: randomly initialized and encoded in float point numbers.
Fitness function = a projection index.

Evaluate the fitness of each individual in that population.
Determine the best individual.
while a fixed number of iterations is not reached do

Apply a tournament selection of 3 participants.
Breed new individuals through genetic operators :

– Crossover with pc = 0.65
– Mutation with pm = 0.05

Evaluate the fitness of new individuals
end
Replace least-fitness population with new individuals
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We pay attention to choose the number of individuals and the number of training
iterations such that the optimum reached cannot be improved easily (by several
trials and experimentation). These parameters depend on the data set and on the
projection index [20].

4 Particle swarm optimization

Particle swarm optimization is a population based stochastic optimization technique
developed by Kennedy and Eberhart [23], inspired by social behavior of bird flocking
or fish schooling. The particle swarm paradigm has undergone many tweaks and
modifications since its discovery. Various researchers have analyzed and experi-
mented it. In the process, a certain body of lore has emerged to provide hypotheses
for research as well as guidelines for application.

PSO shares many similarities with evolutionary computation techniques such as
Genetic Algorithms. The system is initialized with a population of random solutions
and searches for optima by updating positions. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. In PSO, the potential solutions
are called particles. All the particles have fitness values which are evaluated by
the fitness function to be optimized, and have velocities which direct the flying of
the particles. The particles fly through the problem space by following the current
optimum particles.

In recent years, many extensions have been suggested to improve the performance
of classic PSO algorithm (e.g.: Krink et al. [25] and Lovbjerg and Krink [29]). In this
study, we use the original version introduced by Kennedy and Eberhat [23].

4.1 Parameters of the particle swarm

There are several explicit parameters whose values can be adjusted to produce varia-
tions in the way the algorithm searches in the problem space. The most important of
these parameters are the maximum velocity (denoted by Vmax) and the inertia. One
of these two parameters has to be set at the beginning of the trial and remain constant
throughout. Manipulation of these parameters can cause surprising changes in the
system’s behavior. In fact, Vmax is fixed to avoid that the particles move too quickly
from a region to the other one in the search space. The inertia factor controls the
influence of the velocity obtained in the previous step. A large inertia factor provokes
a large exploration of the search space while a small inertia factor concentrates the
search on a small space.

In our implementation, we use the Vmax parameter.

4.1.1 The f itness

The particle swarm use the concept of fitness, as do all evolutionary computation
paradigms. Let f : �P → � be the fitness function that takes a particle’s solution as
a parameter and returns a number indicating how good the solution is. In our work,
the projection pursuit index is the fitness function.
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4.1.2 Maximum velocity Vmax

The particle swarm algorithm proceeds by modifying the distance each particle
covers on each dimension per iteration. Changes in the velocity are stochastic, and
an undesirable result is that the particle’s trajectory, uncontrolled, can expand into
wider and wider cycles through the problem space, eventually approaching infinity.
Something needs to be done to dampen the oscillations so that the particle searches
usefully. The traditional method implements a system constant Vmax as described in
Algorithm 2.

Algorithm 2 Velocity limitation

if Vid > Vmax then Vid = Vmax

else if Vid < − Vmax then Vid = − Vmax

Thus the system parameter Vmax has the beneficial effect of preventing explosion
and scales the exploration of the particle’s search. The choice of a value for Vmax

depends on some knowledge of the problem and will be specified in the Subsec-
tion 4.3.1.

4.1.3 Dependent and independent variables

In an experiment, an independent variable is one that is manipulated, and a depen-
dent variable is one that is measured. PSO is initialized with a group of random
particles (solutions) and then searches for optima by updating positions. At each
iteration, each particle is updated by following two “best” values. The first one is
the best solution (fitness) it has achieved so far (the fitness value is also stored).
This value is called pbest. Another “best” value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in the population. This best
value is a global best and is called gbest. Besides, the particles move around inside a
neighborhood set (defined in Subsection 4.2) in close proximity to the best particle,
called the local best and denoted by lbest. Vmax is an independent variable while lbest,
pbest and gbest are dependent variables. Note that in a maximization optimization
problem, “best” simply means the position with the largest objective value.

After finding the two best values (i.e., pbest and lbest if the neighborhood notion
is applied or pbest and gbest otherwise) the particle updates its velocity and position
according to the following equations (see [7]) :

V = C1V + A(pbest − present) + B(gbest − present) (15)

present = present + V (16)

where

V is the particle velocity vector,
present is the current particle (solution) vector,
pbest is the memory of the particle’s own best position vector (as defined above),
gbest is the global best vector (as defined above).
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lbest is the local best, which is the best solution in the neighborhood of the
particle.

rand() is a random number between (0, 1),

A and B equal to Cmax ∗ rand() are two random matrices with each component
generally equal to a uniform random number between 0 and 1 multiplied by Cmax.

The original intent was to use a different random component per dimension,
rather than the same component for each dimension per particle.

1. C1 is a learning factor that says how much the particle is directed towards good
positions, usually C1 = 0.8 or 0.7 [7, 23],

2. Cmax is a learning factor which usually has a relationship with θ (defined as C1 in
the literature) through a transcendental function:

C1 = 1

(θ − 1 + √
θ2 − 2θ)

and Cmax = C1 ∗ θ (17)

Optimal “confidence coefficients” are therefore approximately in the ratio scale
of C1 = 0.7 and Cmax = 1.43.

The particle moves in the search space according to both factors pbest and gbest
(or lbest when using the neighborhood notion). A good choice of pbest, lbest and
gbest guarantees the diversity within the population.

4.1.4 The number of particles

Another question faced at the implementation time is: “how many particles should
we use?”. There is no pat answer to this question, but the experience of some authors
[7, 23] indicates some values which usually seem to work well when considering the
performance of the method or the convergence time.

4.2 The neighborhood

The particles move in the search space in close proximity to the local best into the
neighborhood set and do not explore the rest of the search space. So it is important
to specify the neighborhood appropriately. Note that smaller neighborhoods lead
to slower convergence while larger neighborhoods to faster convergence. With a
global best, the representation of a neighborhood consists of the entire swarm. In
our experimentation, we have tested three different versions of the neighborhood:

None neighborhood this version contains no neighborhood, i.e., the particle has no
neighbor. So, the practical application of the algorithm involves using gbest instead
of lbest.

Global neighborhood in this version, we consider that all the particles are neighbors
of each other. Then, the number of neighbors is the number of particles minus one.
Thus, in the algorithm, we use gbest instead of lbest.

Cosine neighborhood it consists in finding two particles forming an angle smaller
than 30 degrees. Each particle has at most two neighbors. The measure of proximity
between two vectors is the cosine of the angle between the two vectors. Note that in
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the case of spherical data, this cosine is also the correlation coefficient between the
two linear combinations associated with the two projection vectors.

From our experience, the Cosine Neighborhood version is the most appropriate
in the context of EPP because it gives several local optima (see Section 5).

4.3 The PSO algorithm

In this study, we decided to use the original version introduced by Kennedy and
Eberhart [23] modified by Clerc [7].

4.3.1 Control’s variables

– The dimension space of the problem is the number P of columns of the data
matrix,

– The number of particles is defined according to the data set ,
– The number of neighbors: it changes according to the defined neighborhood,
– The number of iterations: max_iterations,
– The maximum velocity: Vmax = (presentmax − presentmin)/2, where present is the

current particle (solution) vector. We note Vmin = −Vmax,
– Initial fitness: projection index: I = −∞,
– Best fitness: best_I = 0;
– Individual and collective coefficients: C1 = 0.7 and Cmax = 1.43,

In our case, the particle represents the vector of projection and is denoted by
“projection”. The projection is defined as a vector of P dimensions. This vector is
normalized (see Section 2), which implies that each component of this vector lies
between −1 and 1. Therefore, presentmax = 1 and presentmin = −1 which leads to
Vmax = 1 (and of course Vmin = −1).

4.3.2 Principal algorithm

The initialization of the algorithm is presented in Algorithm 3 and the principal
algorithm is detailed in Algorithm 4

Algorithm 3 Initialization of PSO algorithm

input: swarm: a vector of particles.
getNeighbor: a function to get a particle's neighbor in the swarm.

for j ← 1 to Nb Particles do
Projection ← swarm[ j];
/*Position and Velocity*/
for d ← 1 to Dimension Space do

Projection.NewPosition[d] ← random(0;1);
Projection.velocity[d] ← random(0;1);

end
Projection.best I ← I;
/*Neighborhood*/
for k ← 1 to Nb Neighbors do

Projection.neighbor[k] ← getNeighbor(swarm, j, k);
end

end
swarm[ j] ← Projection;
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Algorithm 4 The principal PSO algorithm

input: getBestNeighbor: a function to get a particle's best neighbor in the swarm.
while i  max iteration do

for j ← 1 to Nb Particles do
Projection[ j] ← swarm[ j];
for d ← 1 to Dimension Space do

Projection.present[d]←Projection.NewPosition[d];
end
f itness ← I;
if f itness > Projection.best I then

Projection.best_I ← f itness;
for d ← 1 to Dimension Space do

Projection.pbest[d] ← Projection.present[d];
end

end
end
for j ← 1 to Nb Particles do

Projection ← swarm[ j];
Projection.lbest ← getBestNeighbor(swarm; j;Nb Neighbors);
for d ← 1 to Dimension Space do

Projection.velocity [d] ← C1 ∗V [d]+ A[d][d](Pro jection.pbest[d]−
Projection.present [d]) + B[d][d](Projection.lbest[d]− Projection.present[d]);
Projection.newPosition[d] ← Projection.present[d]+ Projection.velocity[d];

end
end
i ← i + 1;

end

≤

5 Applications

Let us consider the four projection pursuit indices defined in the second section.
The present section illustrates on different data sets the use of the GA and PSO
algorithms as described in Sections 3 and 4. The algorithms are implemented in the
JAVA6 language.

5.1 The data sets

Let us analyze seven different data sets. Each one is represented by a matrix with N
rows (observations) and P columns (variables).

Lubischew data It consists in N = 74 insects and P = 6 morphological measures
[30] that are structured in three clusters. The first one (respectively the second and
the third) contains observations 1 to 21 (respectively 22 to 43 and 44 to 74). This data
file has already been studied in the context of EPP (see [5, 15]).

Simulated data These four data sets consist in N = 200 observations and P = 8
variables. The observations are distributed according to the following mixture:

⎧
⎨

⎩

200 × (1 − ε) observations follow a Normal distribution N8(08, I8)

200 × ε observations follow a normal distribution N8((μ, 0, ..., 0)T , I8)

(18)
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Table 1 Description of the
four simulated data sets

don1 don2 don3 don4

ε 0.5 0.5 0.05 0.05
μ 10 4 10 4

where 08 denotes the vector of zeros in 8 dimensions, I8 denotes the identity matrix
in 8 dimensions and the values of ε and μ are defined in Table 1.

Each data set consists in two clusters. Clusters are balanced in the first and the
second data sets while they are strongly unbalanced in the third and fourth data sets.
Furthermore, the first and third data sets are made of two well-separated clusters
while the second and fourth are made of overlapping clusters which are more difficult
to distinguish.

Olive data The file consists in the percentage composition of P = 8 fatty acids
found in the lipid fraction of N = 572 Italian olive oils. The 572 samples come from
three different Italian regions (Southern Italy, Sardinia, Northern Italy) subdivided
themselves into nine areas. This data set has been analyzed by several authors in
the context of exploratory multivariate analysis (see [4, 9, 17]). The structure of the
data set is quite complex with nine clusters which have different shapes in an eight-
dimensional space. It has been previously processed by means of various supervised
classification and clustering techniques. For example, Cook et al. [9] describe how to
combine classifiers (support vector machines) with visual (tour) methods, Caussinus
and Ruiz-Gazen [4] process the data by visualization/classification method without
taking into account the origin of the oils. Due to the large number of classes,
discovering all of them by using one-dimensional EPP is challenging but the results
below are very promising. Several groups are detected by processing the data with
different projection indices.

Reliability data The reliability data is a real data set from the industry under
confidential agreement. It consists in 2,856 high technology chips and 166 variables.
The purpose of the analysis is to detect multivariate outlying observations that may
represent flawed chips.

5.2 Results

Let us first precise our choice for the neighborhood of PSO and for the size of the
population and the number of iterations for GA and PSO methods. In Subsection 4.2,
we proposed three neighborhood notions for PSO. After some experimentation
that will not be detailed further in the present paper we conclude that the Cosine
neighborhood version is the most adapted to our framework leading PSO to find
several local optima. The None neighborhood and the Global neighborhood do not
often lead to several local optima because they only take into account the global best
particle. For small data sets like the Lubischew and the simulated data, the number of
individuals for GA and particles for PSO does not need to be large. For larger data
sets like the Olive and the reliability data, these values are increased. The number
of iterations has been obtained by carrying out some preliminary runs on each data
set and checking the convergence of the indices. Table 2 summarizes the values of
both the size of the population and the number of iterations for each method GA
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Table 2 Parameters of GA and PSO

Methods Parameters Small data sets: Large data set: Large data set:
Lubischew & simulated olive reliability

GA Individuals 50 100 200
Iterations 20 50 50

PSO Particles 20 50 50
Iterations 50 100 200
Fitness evaluations 1,000 5,000 10,000

and PSO. Note that the choice of the number of individuals/particles and iterations
is such that GA and PSO lead to the same number of fitness evaluations which make
the algorithms comparable. This number of evaluations is given in Table 2. We ran
100 times each optimization algorithm on the different data sets. We have to stress
that the results would not be exactly the same for different values of the number of
individuals/particles and iterations. But overall, when considering 100 runs (as we
do), the method is quite robust in the sense that the structures detected in the seven
data sets are the same for different values of these parameters.

In order to summarize the results in an efficient way, we draw the ranked values of
the indices and the corresponding cosines of the angle between the projection vector
associated with the best value of the index and the projection vector associated with
the 100 other optima. In order to make the indices curves comparable we plot the
opposite of the values of the minimum kurtosis and the discriminant indices since
they are minimized and not maximized like the other indices. As illustrated below,
such plots are particularly useful for statisticians in order to get insight into the
potential complex structure of a data set. An interesting feature of these plots is
that they are quite stable when we rerun the analysis which would not be the case if
we reduce the number of runs. Note that the number of runs may be increased for
larger or more complex data sets.

We also plot some histograms and kernel density estimators of the distributions
of the projected data associated with local optima of the different indices in order
to visualize possible structure(s). To save space, we do not display many projections
for each of the five indices (Friedman–Tukey, Friedman, discriminant, minimum and
maximum kurtosis index). We rather restrict ourselves to a selection of plots and give
a summary of the obtained results for the different indices and algorithms in the text.

5.2.1 The Lubischew example

Figure 2 plots the ranked indices (left curves) and the associated cosines of the
projection vector with the “best” projection vector (right curves) for the Friedman
(top curves), the minimum kurtosis (middle curves) and the discriminant index
(bottom curves) with GA. For the first two indices, the displays are quite similar.
They reveal that for more than 70 runs over 100, the obtained projection vectors are
the same (cosines equal to 1) but are different for the other 30 runs (cosines different
from 1) which mean that there are at least two potentially interesting views of the
data. For the discriminant index, the curves are quite different. The values of the
index decrease much faster and when looking at the cosines curve, there is much
more variability leading us to look at three or four projections. Note that the large
dot on the curves corresponds to the maximum of the indices over the 100 runs while
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Fig. 2 Lubischew example: plots of the ranked indices (left) and the associated cosines of each
projection vector with the “best” projection vector (right) for the Friedman (top curves), the
minimum kurtosis (middle curves) and the discriminant index (bottom curves) with GA

the vertical line corresponds to the objective value of a second best projection that
has been selected (run 68, resp. 72 and 6 for the Friedman, resp. minimum kurtosis
and discriminant index).

The histograms of the distribution of the projected data corresponding to the
maximum (resp. the second selected maximum) of the Friedman, minimum kurtosis
and discriminant indices are displayed on the left (resp. right) of Fig. 3. The vertical
bars below the histograms are helpful to understand the discovered structures since
they give the groups the observations belong to. We recall that this information is
not taken into account for the analysis but is used a posteriori to validate our results.

When looking at Fig. 3, we notice that the three indices do not lead to the
identification of the same cluster(s). On the “best” projection (left histograms of
Fig. 3), the Friedman index and the minimum kurtosis (resp. the discriminant) index
detects the third (resp. the second) cluster as different from the other two clusters.
On the second “best” projection (right histograms of Fig. 3), the minimum kurtosis
and the discriminant index detect the third cluster while the Friedman index detects
the second one.

No cluster structure is detected using the Friedman–Tukey index and the max-
imum kurtosis index. This result confirms the fact that these indices are more
adequate to detect outliers than clusters.

From this figure, we conclude that clusters are identified with the Friedman, the
minimum kurtosis and the discriminant indices. Moreover, this example suggests the
use of the different indices in a complementary manner for larger or more complex
data sets.
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Fig. 3 Lubischew example: histograms of the distribution of the projected data on the “best”
projection (left), and on a second “best” projection (right) for the Friedman (top plots), minimum
kurtosis (middle plots) and discriminant indices (bottom plots) for GA

Results obtained with the PSO algorithm on this example are very similar to the
ones presented for the GA and are omitted.

5.2.2 Simulated data

The Friedman index gives the best results for both GA and PSO : it detects the four
types of clusters on the projection associated with the maximum value of the index
for the 100 runs as displayed on the histograms of Fig. 4.

If we enter into details, we notice that the structure in two groups for the don1
data set is detected by approximately 30 runs over 100 for both GA and PSO (see
Fig. 4). The other projections are associated with smaller values of the indices and
the histograms do not display a clear structure. For the don3 data set, the structure is
perfectly identified by the 100 runs for GA and PSO. Concerning the don2 and the
don4 data sets, the structure is not so easy to detect and around ten runs only lead to
the discovery of the structure for GA and PSO.

Concerning the other indices, the minimum kurtosis index detects the groups for
the data sets don1 and don2 which correspond to balanced clusters but not for the
don3 and don4 examples. On the contrary, the Friedman–Tukey and the maximum
kurtosis indices give nice results when using the don3 and don4 examples which
correspond to unbalanced clusters with 190 observations in one cluster and ten
observations (that may be considered as outliers) in the other cluster. Finally, our
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Fig. 4 Simulated data sets:
plots of the Friedman index
and histogram for the “best”
projection for GA (left) and
PSO (right) for each of the
four data sets

results indicate that the discriminant index is only able to detect clusters for the third
data set. This result is quite disappointing since this index has been defined in order
to detect clusters and the reasons for such bad results deserve further research.
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Fig. 5 Olive example: plots of the indices (top left) and the cosines (top right) for the minimum
kurtosis index and PSO. Histograms (resp. kernel density estimator) for the “best” projection
(middle left, resp. bottom left) and for a second “best” projection (80th run, middle right, resp. bottom
right)

These data sets illustrate clearly that there are two families of projection indices:
one family is dedicated to clusters detection (Friedman and the minimum kurtosis)
while the second family is dedicated to outliers detection (Friedman–Tukey, the
maximum kurtosis and Friedman to a less extent). Note that the results obtained
by GA and PSO are very similar for the four data sets.

5.2.3 Olive data

The previous examples were small data sets structured in two or three groups. The
olive oils data set is larger and more complex. The main goal of our analysis is to
stress the importance of using several runs for different optimization methods and
several projection indices when exploring large and complex data sets. We tested
both stochastic methods (GA and PSO) using the five indices and we obtained
interesting results.

On Fig. 5, the index and cosine plots lead us to look at at least two projections.
We give (middle and bottom left plots) a projection obtained by PSO associated
with the minimum of the minimum kurtosis (or the maximum of minus the minimum
kurtosis) indices obtained from 100 runs. The plots lead clearly to the identification
of two groups. To be more precise, when looking at the histogram on the middle left
of the Fig. 5, the group on the left corresponds to olive oils from the southern region
of Italy which contains five areas while the group on the right corresponds to olive
oils from Sardinia and Northern Italy and contains four areas. When looking at the
middle and bottom plots on the right which correspond to a second best projection,
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Fig. 6 Reliability example: projections obtained by the GA (left) and the PSO (right) method for
the maximum kurtosis (top) and the Friedman (bottom) index

they lead us to detect another group structure. The same result is obtained using the
GA method.

Note that it is also possible to identify other clusters by considering local optima
of the Friedman index and other indices such as the Friedman–Tukey or the
discriminant indices. There is no cluster identified using the maximum kurtosis index
but some atypical oils are detected.

Another possibility from Fig. 5 is to split the data set in two groups and analyze
each group separately in order to detect more groups.

This idea of partitioning the data set in two groups once they have been identified
on a one-dimensional projection and iterate the procedure until no more group is de-
tected, has been developed in Peña and Prieto [35] and can be applied automatically.
It is an interesting procedure that could be used if the objective of the data analyst is
clustering. In the present paper, we do not go further in that direction but it is clear
that EPP is an important first step in order to detect whether clustering is adapted
or not to a given data set. It could even be used in order to provide guidelines in the
choice of the number of groups.

5.2.4 Reliability data

As explained previously, the data set comes from the industry and has high dimension
(P = 166). The problem is the detection of outliers in a high dimension data set of
chips. This problem is difficult and there is a significant literature on the subject in
robust statistics (see for example [38]). A projection pursuit approach for anomalies
detection has already been considered in the domain of hyperspectral imagery
[1, 6, 31]. Because of the very high number of dimensions of the reliability data set, we
also consider a PP approach. We focus on the maximum kurtosis index which is fast
to compute and dedicated to the detection of outliers (see [35]) and on the Friedman
index which is also fast to compute. This study is still a work in progress in partnership
with the industry and we only give some projection plots. In particular, we do not
provide details on the automatic procedure that will lead to the identification of
a certain percentage of outliers, taking into account different indices, optimization
methods and runs.
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Figure 6 displays projections obtained by GA and PSO using the maximum
kurtosis and the Friedman indices. A few chips are very far from the main bulk of
the data when one looks at the histograms of the selected projections. These high
technology chips may be considered as outlying and may be taken out of production.

6 Conclusion

In this paper, we use GA and PSO to optimize five projection pursuit indices. We
validate the performance of the methods on data sets that are structured in clusters or
contain outliers but other structures could also be considered. The main result of our
study is that it is crucial to use several projection pursuit indices, several optimization
methods and several runs in order to obtain a powerful EPP tool. This result is all
the more important if the data set is large and contains a complex structure. By using
several runs, we can have an insight into the number of local optima of the projection
index that may be interesting to consider.

From our experience, it seems that PSO (with a cosine neighborhood) and GA
are more or less equivalent in terms of finding several local optima. However, it
happens sometimes that GA gives better results than PSO. Some improvements of
the PSO method could be considered such that restart strategies for PSO particles or
a new version of PSO like Tribes [7]. This point will deserve further attention. Note
that both methods need several parameters to be tuned and in the present paper we
propose some particular choices of parameters that give good results on all the data
set considered so far.

Other evolutionary algorithms such as CMA-ES [19] or DE [41] could also be
considered. CMA-ES is a global optimization method known to be very robust to
local optima and DE is also a global optimization method. Such methods should
be adapted in order to detect local optima and this point will deserve further
investigation.

Concerning the indices results, the Friedman and the minimum kurtosis indices
give the best results with both GA and PSO. The discriminant index works fine for
the Lubischew and the third simulated data sets but not for the other simulated
data sets and this point deserves more attention. As far as the running times are
concerned, the minimum kurtosis is always the fastest index to compute while
the discriminant and the Friedman–Tukey indices are the slowest ones. Moreover,
when considering the same number of evaluations of the objective function, in our
implementation, GA is generally faster than PSO. For small data sets such as the
Lubischew or the simulated data, all the times are negligible. But for larger data
sets like the olive data set, the Friedman–Tukey and the discriminant indices take
quite a long time especially for PSO. The reliability data set is voluminous, so the
running times are larger than for the previous sets. The Friedman–Tukey and the
discriminant indices were not considered further since their computation times are
prohibitive. Notice however that in a context of large data sets, EPP is suitable for
parallelization by simply considering a run as a task and distributing each task to a
processor of a parallel computer.

From this study, our perspective is now to propose an automatic software that
allows the data analyst to be efficient in exploring multivariate data sets. Several
indices together with several optimization methods and the possibility of choosing
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the number of runs will be offered. The software should include an automatic choice
of parameters (number of individuals, particles, iterations) depending on the size
of the data set. We plan also to propose guidelines to choose the appropriate indices
according to the objective of the user but it will be highly recommended to use several
of them.
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