
Ann Math Artif Intell (2009) 56:245–272
DOI 10.1007/s10472-009-9168-z

Flyspeck II: the basic linear programs

Steven Obua · Tobias Nipkow

Published online: 7 November 2009
© Springer Science + Business Media B.V. 2009

Abstract We present another step, Flyspeck II, towards a complete, formal and
mechanized proof of the Kepler Conjecture.

Keywords Flyspeck · Kepler conjecture · Interactive theorem proving · Isabelle ·
Higher-order logic · Computational logic · Finite matrices · Lattice-ordered rings ·
Linear programming · Hypermaps · Planar graphs

Mathematics Subject Classifications (2000) 03B35 · 68T15

1 The Flyspeck project

In 1998, the Kepler conjecture has been proven by Thomas Hales after remaining
the most famous open conjecture in discrete geometry for about 400 years. Since
then, both abbreviated [14] and more detailed [15] versions of the proof have been
published. But even the more detailed published proof falls short of a complete
account of the matter. Part of the 1998 proof are computer programs and logs of
runs of these programs, and no referee of the published proofs has even so much as
looked at them.

Therefore in 2003 Thomas Hales initiated the Flyspeck project. Its goal is to
formalize the proof of the Kepler conjecture in a mechanized proof assistant in order
to achieve the highest possible standard of mathematical rigour known to mankind.

Linear programming is an important part of the Kepler proof, there are several
gigabytes of log files available as a result of running linear programs in the original

S. Obua (B)
Universität des Saarlands, 66041, Saarbrücken, Germany
e-mail: steven@obua.com, obua@wjpserver.cs.uni-sb.de

T. Nipkow
TU München, Boltzmannstr. 3, 85748, Garching, Germany
e-mail: nipkow@in.tum.de

246 S. Obua, T. Nipkow

proof. In this article we present the second major part of the Flyspeck project,
the formalization of the creation and bounding of these linear programs in the
mechanical proof assistant Isabelle/HOL [25]. Most of what we describe in this article
can be found in greater detail in [29]. There have been other major advances in the
Flyspeck project; for an overview see [16].

2 The Kepler conjecture, tame graphs, and linear programs

In this section we explain how the notion of basic linear programs comes up in the
proof of the Kepler Conjecture.

The Kepler conjecture states that the best density one can hope for when packing
infinitely many balls of radius 1 in three-dimensional euclidean space is

π√
18

≈ 0.74 (1)

A packing that achieves this density is the face-centered cubic packing. This
packing consists necessarily of infinitely many balls. Figure 1 shows a local section
of this packing consisting of 13 spheres.

It is enough to consider only such local arrangements of spheres for the proof of
the Kepler conjecture. That this is so is a consequence of the entire proof, not the
other way around.

The systematic way to transition from a packing consisting of infinitely many balls
to a local arrangement of only finitely many balls is to pick any ball; this ball serves
as the origin. Now select all balls the centers of which have a distance from the center
of the origin of less than or equal to 2 t0 = 2.51 [15, p. 26]. Doing so leads from the
face-centered cubic packing to the arrangement of spheres in Fig. 1.

Connect then all such centers with straight lines if their distance is less than 2 t0.
The left picture in Fig. 2 shows the result; we show only the origin ball, the remaining
12 spheres are represented by their centers only.

Now project all of the straight lines onto the ball at the origin, and you get the
spherical plane graph depicted in the right picture of Fig. 2.

Fig. 1 Three layers of the
face-centered cubic packing

Flyspeck II: the basic linear programs 247

Fig. 2 The face-centered cubic packing as graphs in space and on the sphere

Choosing an interior point of the upper quadrilateral and applying stereographic
projection transforms the spherical plane graph into the plane graph shown in Fig. 3.

The specific notion of tameness captures all plane graphs that can arise from
packings which are dense enough to be candidates for packings of maximal density.
Flyspeck I [23] has been concerned with formalizing the notion of tameness and
producing an archive of 2771 plane graphs. This archive has been formally verified to
contain all tame graphs. This implies that it has been formally verified that there are
only finitely many tame graphs. This is one step of reducing the a-priori infinite-
dimensional optimization problem of finding all packings of optimal density to a
finite-dimensional one.

In the following we use the expression tame graph to describe any graph that is
contained in the archive.

Hales’s proof shows that optimal packings consist only of local configurations
of spheres which correspond to tame graphs. To complete the proof of the Kepler

Fig. 3 The face-centered cubic
packing as plane graph

248 S. Obua, T. Nipkow

conjecture, one has to further reduce the number of tame graphs that correspond to
possibly optimal packings until only two graphs are left, the graph in Fig. 3 induced
by the face-centered cubic packing, and the graph induced by the hexagonal close
packing. The local arrangement of the hexagonal close packing can be obtained from
the one in Fig. 1 by rotating the barely visible three balls of the lower layer by 60°
such that they are completely hidden by the three balls of the upper layer.

To carry out the reduction we relate the tame graphs, which carry only topological
information, back to the metric graphs in space (left picture in Fig. 2) as well as on the
sphere (right picture in Fig. 2). For the sake of distinguishing the two graphs, let us
call the metric graph in space the euclidean graph of the tame graph, and the metric
graph on the sphere its spherical graph. Note that this nomenclatura is somewhat
misleading because there are not necessarily unique euclidean and spherical graphs
corresponding to a tame graph; two different local arrangements of spheres may
induce the same tame graph.

Using the relation between tame, euclidean, and spherical graphs, certain real-
valued variables are introduced on tame graphs. Many of these variables have
straightforward geometric interpretations. For example, for any edge e of the tame
graph the variable ye e denotes the length of the corresponding edge in the euclidean
graph. Therefore 2 ≤ ye e < 2 t0 must hold. Similarly, for any face F of the tame
graph the variable sol F measures the size of the area of the corresponding surface
in the spherical graph. Because the whole surface of a unit ball is 4π , we have
4π = ∑

sol F, where the sum is taken over all faces of the tame graph.
The faces of a tame graph induce a partitioning of the volume around the origin.

The most important variable is the score σ F of a face F. Its geometric interpretation
is not so straightforward, but intuitively it relates to the density of the volume that
corresponds to F. Therefore, in order for the tame graph to qualify to be induced by
an optimal packing, the score cannot be lower than a certain threshold; in particular,
the inequality

8 ∗ pt ≤
∑

σ F (2)

must hold where pt ≈ 0.0553736. The sum is taken over all faces F of the tame graph.
Those tame graphs which fulfill this inequality are called contravening. The goal is to
show that there are only two contravening tame graphs.

There are more such real-valued variables. A complete list of all real-valued
variables on tame graphs we have used in our work appears in Section 6.

The reader might wonder why we call these entities real-valued variables instead
of real-valued constants. For example, for a given tame graph and a given edge e,
the real value ye e surely is a constant? The answer is that while ye e is constant
for a euclidean graph of the tame graph, it is not necessarily constant for the tame
graph but varies along with the multiple euclidean graphs that belong to a single
tame graph.

So far we have only mentioned linear relationships between the different real-
valued variables. But the default case is that relationships are highly non-linear. For
example, let E = ∑

ye e where the sum is taken over all edges of some fixed face
F. Certainly a very small E also leads to a very small sol F, but this is a non-linear
relationship which also depends non-linearly on the distance of the euclidean nodes
from the origin and so on.

Flyspeck II: the basic linear programs 249

The strategy of Hales proof of the Kepler conjecture is to list enough such
relationships between the real-valued variables of a tame graph until an inconsistency
with the assumption that the graph is contravening arises. The natural way to prove
this inconsistency is to solve a non-linear optimization problem in over 150 variables.
Unfortunately, there do not exist techniques yet for solving a generic problem of
this size in any practically relevant timeframe. Thomas Hales solved it anyway by
using his geometric intuition to relax the non-linear relationships yielding linear
relationships which can be subjected to linear optimization techniques. We selected
a subset of these linear relationships and call the linear optimization problems they
lead to basic linear programs, following [15, Sect. 23.3]. The subset has been selected
such that

– it is a superset of the linear relationships listed in [15, Sect. 23.3],
– it is large enough to prove the majority of tame graphs to be non-contravening,
– it is straightforward how to convert the linear relationships into linear optimiza-

tion problems without using techniques like branch-and-bound.

3 The approach

In order to prove that most tame graphs are not contravening we used the same
approach that Thomas Hales followed in his 1998 proof of the Kepler conjecture,
adjusted to the fact that we need to have a gapless, mechanically verified proof of
our result.

We first capture in the notion (this notion is specific to our work) of a graph
system the linear relationships that are necessary conditions for tame graphs to be
contravening. Essentially, a graph system is just a predicate GraphSystemP G on
tame graphs G. The complete definition of graph systems is given in Section 6.

We then apply the graph system predicate to a given tame graph G. Our goal is
to prove

GraphSystemP G =⇒ False (3)

as a theorem in the Isabelle theorem prover.
Because a graph system captures linear relationships between real-valued vari-

ables, we can prove

GraphSystemP G =⇒ A ∗ x ≤ b (4)

for an n × m matrix A, an m × 1 matrix x, and an n × 1 matrix b . The matrices A
and b contain terms consisting of real constants and basic arithmetical operations
like addition or division, for example terms like 0 or (4π + 7)/3. The matrix x is a
vector containing real-valued variables of the tame graph G, like ye 3 or sol 2, where
3 is some index of an edge of G, and 2 is some index of a face of G. We describe our
representation of matrices in Isabelle/HOL in Section 7.

For the proof of the above theorem we make heavy use of rewriting. Usually,
Isabelle’s Simplifier is the tool of choice for rewriting in Isabelle. But for our
application, the Simplifier was found to be much too slow. Therefore the HOL
Computing Library (HCL) has been developed, which has been used for all major
rewriting jobs. We present the HCL in Section 4.

250 S. Obua, T. Nipkow

Fig. 4 Refuting a counter
example to the Kepler
conjecture (picture
reproduced from [16])

The next step is to approximate the matrices A and b by other matrices A′, A′′
and b ′ such that these other matrices contain only concrete numerical values. The
results of this approximation are theorems A′ ≤ A ≤ A′′ and b ≤ b ′. From these
theorems we can derive a-priori bounds x′ and x′′ for x such that x′ ≤ x ≤ x′′ holds
[29, Sect. 3.8]. The approximation step again uses the HCL extensively.

From there we obtain via linear programming a certificate which allows us to prove
in Isabelle

A ∗ x ≤ b =⇒ False (5)

We describe this step in Section 7. Of course, checking the certificate again is based
on the HCL.

Now the original goal (3) follows trivially. Figure 4 visualizes our approach.

4 The HOL computing library

The HOL Computing Library (HCL) is an extension of the Isabelle system for
fast and trusted computing. It has been developed by the first author of this paper
specifically for its application to the Flyspeck project. Nevertheless, the HCL is a
general tool and none of its capabilities is there only to fulfill Flyspeck specific needs;
all of its features are features you would want in a general purpose computing tool
for HOL. A more detailed and in-depth description of the HCL than the one given
in this section is available [29, Chapt. 2].

The architecture of the HCL and how it fits into the overall architecture of the
Isabelle system is shown in Fig. 5.

The Isabelle theorem proving system follows a principle that has been pioneered
by the Edinburgh LCF theorem prover [10]. Theorems are represented as an
abstract datatype, and the logic is encoded as operations on this abstract datatype.
The implementation of this abstract datatype is called the kernel of the Isabelle

Flyspeck II: the basic linear programs 251

Fig. 5 Design of the HOL
computing library (HCL)

system. Usually, Isabelle tools like decision procedures or the Simplifier live outside
the kernel, manipulating theorems only through kernel operations. Even complex
Isabelle tools built this way can therefore be trusted to the same degree as the
relatively small kernel.

The Simplifier pays for its safety with its performance. It is much too slow for our
purposes of computing with matrices of dimensions 2000 × 150 and more. Therefore
the HCL bypasses the Isabelle kernel and manages its own internal representation
of terms, theorems and programs. While there are proofs on paper [29, Chapt. 2] of
key parts of the HCL, there is no formal mechanized proof of its correctness. Using
the HCL means putting the same trust into the implementation of the HCL as into
the implementation of the Isabelle kernel. A good analogy is to consider the HCL
as a cokernel which sits besides the Isabelle kernel just as mathematical coprocessors
used to accompany main processors.

The HCL consists of two components. Its administrative layer is responsible for the
safe translation between Isabelle kernel data structures like terms and theorems and
the corresponding HCL counter parts. For example, when Isabelle terms are passed
to the HCL, the types are stripped from the term and (possibly overloaded) constants
are encoded by integers. After computation, the resulting HCL term is converted
back to an equivalent typed Isabelle term. The administrative layer also converts
a list of Isabelle theorems into an HCL program. These Isabelle theorems must be
conditional rewrite rules, as for example produced by the function package [20].

The other component is the abstract machine interface and its implementations.
The abstract machine interface defines the rules for performing the actual compu-
tation, that is the rules for how to apply an HCL program to an HCL term. All

252 S. Obua, T. Nipkow

abstract machine implementations must obey these rules. Currently there are three
implementations available: The Barras mode, the Haskell mode, and the SML mode.
For Flyspeck II, we use the SML mode, because it is the fastest. It translates the HCL
program into a compiled Standard ML program. Similarly, the target of the Haskell
mode is a compiled Haskell program. The Barras mode works by interpreting the
HCL program using an evaluation strategy described in [3].

An advantage of this two-component architecture is that it decouples theorem
proving issues from computing issues. The administrative layer is responsible for
the safe embedding of the abstract machines into the theorem proving environment.
The abstract machine layer knows nothing about theorems. Therefore a compiler
technology expert who may know nothing about theorem proving technology could
design a high-performance abstract machine implementation.

Table 1 (adapted from [29, Sect. 2.3]) shows a performance comparison between
the Simplifier, the HCL, and a handwritten Standard ML program for computing the
factorial i! for increasing values of i. Note that the handwritten Standard ML program
does not use native integers, but the same data structure for binary numbers as the
Isabelle theory. The Simplifier and the HCL produce actual Isabelle theorems, the
handwritten SML program just the resulting binary number. The runtimes have been
scaled to the runtime of the SML program. Missing entries in the table do not indicate
nontermination but just that these measurements have not been taken.

For small i, the administrative overhead of the HCL dominates the runtime. For
large i, a clear trend emerges. The SML mode of the HCL is almost as fast as the
handwritten SML program. The Haskell mode is about 5 times slower than the SML
mode, and the Barras mode is about 90 times slower. And the slowdown factor of the
Simplifier compared with the handwritten Standard ML program increases linearly
with increasing i, becoming as large as 23000 for i = 1280!

The HCL is much faster than the Simplifier, but it is not as flexible. For example,
the HCL has no simplification procedures, and it has no congruence rules, but only
weaker conditional rules.

The reason why the HCL is nevertheless still very useful in a theorem proving
environment is that the high degree of flexibility provided by the Simplifier is usually

Table 1 Performance
comparison(

runtime of method
runtime for computing SML value

)
i Simplifier Barras Haskell SML Standard ML

Computing theorem Computing
SML value

10 433 133 61667 80 1
20 696 113 16521 41 1
40 1025 108 3333 16 1
80 1475 90 563 6 1
160 3195 97 38 3.5 1
320 6291 96 17 2 1
640 11646 95 13 1.5 1
1280 23099 91 8 1.3 1
2560 – 93 5 1.2 1
5120 – 89 5.5 1.2 1
10240 – – 5 1.03 1
20480 – – – 1.03 1

Flyspeck II: the basic linear programs 253

not needed for computation. Instead, the HCL implements a few features which are
useful when computing in a theorem prover:

Conditional rewrite rules Isabelle theorems which can be used as HCL rewrite rules
for a function f have the general form

A1 ≡ B1 =⇒ . . . =⇒ Am ≡ Bm =⇒ f p1 p2 . . . pn ≡ T (6)

The symbols ≡ and =⇒ denote Isabelle’s meta notions of equality and implication,
respectively. Furthermore, (p1, p2, . . . pn) must be a linear pattern. The body T and
the conditions Ai ≡ Bi may depend on variables bound in the pi. The HCL only
applies the rule if all its conditions hold. Condition i holds if after evaluating Ai and
Bi the resulting terms are structurally equal.

Symbolic computation The HCL cannot only be used for raw computation like
computing the factorial of some number but it can also do symbolic computation.
There are two reasons for this. First, HCL programs are created from arbitrary
conditional rewrite rules. Second, and most importantly, although the abstract
machines of the HCL only compute with closed HCL terms, that is there are no free
variables, the Isabelle terms which correspond to the HCL terms can be terms with
free variables. Free variables in the Isabelle term are simply mapped to constants in
the HCL term by the administrative layer.

Limited lazy evaluation A major use of congruence rules is to teach the Simplifier
that when for example simplifying an if-then-else expression, either the then or the
else branch does not need to be simplified if the condition can be simplified to True
or False. The HCL can be taught to exhibit the same behavior. Arguments of a
function can be marked to possibly not need evaluation depending on the value of
other arguments of that function. The way this marking is done is due to [3]. The HCL
uses this feature not only for computing if-then-else, but also for evaluating short-
circuit logical operators implies, and, or (Fig. 6). For each of these logical operators
the second argument is marked as lazy and its evaluation depends on the value of the
first argument. For example, if the first argument of implies evaluates to False then
the second argument won’t be evaluated. The lazy evaluation feature depends on the
abstract machine implementation which may choose to ignore the laziness markings
of arguments of a function. All current three abstract machine implementations
respect these markings. The Haskell mode does not even need these markings, as
it has built-in full lazy evaluation.

Computing in a context Rewrite rules may not only come with conditions, but also
with a context. A context is also a condition, but one which is not evaluated by the

Fig. 6 Short-circuit Boolean operators of type bool → bool → bool

254 S. Obua, T. Nipkow

HCL. Look for example at the following theorem which is the externalized form of a
theorem encountered in Section 6, Fig. 10 in localized form:

GraphSystem gs =⇒ gs-Face gs d ≡ Orbit (gs-face gs) d (7)

Note that gs is a variable, i.e., the above theorem holds for all gs. Throughout the
computation in which the above rule is applied, gs will be fixed but still arbitrary.
When the HCL applies the rule, it will keep in mind that it used the condition
GraphSystem gs. After the computation has finished, the condition is attached as
additional assumption to the result. As an example, applying the program that
consists only of the above rule to the term

gs-Face gs d (8)

again yields theorem (7).

Limited logical reasoning The most straightforward way of using the HCL is
applying a program to an Isabelle term t, yielding a theorem t ≡ t′ where t′ is the
result of evaluating t. Possibly this equation is augmented by contextual assumptions
as explained above [29, Sect. 2.6.3]. Often this simple interaction between the HCL
and the Isabelle kernel is not enough. Usually the theorem t ≡ t′ is not the final
theorem you are interested in, but will be used again to produce other theorems. For
example, you could use it to discharge the assumption of another theorem, possibly
instantiating free variables of this other theorem in the process. After that, you are
maybe interested in simplifying the conclusion of the resulting theorem by further
evaluating it. When doing this second evaluation, you would like to use the fact
that some parts of the term currently being evaluated stem from the instantiation
of variables with terms that already have been evaluated. These kinds of scenarios
are supported by the HCL that allows to mix modus ponens, delayed substitution
and computation without communicating with the Isabelle kernel [29, Sect. 2.6.4].

4.1 Related work

The idea of making computation an integral part of the theorem proving system has
been pioneered by the first-order Boyer-Moore theorem prover [6] and its successor
ACL2.

The COQ theorem prover provides executable recursively defined functions via
the Fixpoint command [7, Sect. 1.3.4]. The HCL incorporates the same idea. A
key difference is that in COQ defining a function and executing it are inseparably
intertwined. Contrarily, the HCL does not care how the functions it executes are
defined; it just needs a list of proven conditional equalities.

Berghofer [4] introduced code generation to Isabelle. Haftmann [12] developed
the code generation facilities of Isabelle further. Based on these facilities indepen-
dently of the HCL another method for producing theorems via computation has
been developed, called Normalization by Evaluation (NbE) [1]. According to [1]
NbE computation is about one order of magnitude slower than generated SML code.
This means that NbE computation is also compared with the SML mode of the HCL

Flyspeck II: the basic linear programs 255

about one order of magnitude slower. Furthermore, of the 5 main features of the
HCL, NbE supports only one, symbolic computation.

5 Tame graphs as hypermaps

For our work we choose to represent planar graphs by hypermaps. Hypermaps have
been introduced to mechanized theorem proving in [30]. To the attention of the
members of the Flyspeck project (particularly Thomas Hales) they came through
Gonthier’s usage of hypermaps in his proof of the Four Color Theorem [8, 9].

Hypermaps build on the notion of dart. Darts can be viewed as the oriented edges
of a graph. Gonthier chooses a different, but equivalent, point of view; he sees them
as angles between incident edges of the same face. Our view is basically the one found
in [30].

For our purposes only special hypermaps are of interest. An involutive, planar,
connected hypermap is a tuple (D, e, n, f) where D is called the set of darts and
e, n, f are permutations on D such that

e = e−1 = n ◦ f and |D/e| + |D/ f | + |D/n| = |D| + 2 (9)

holds. Here D/p denotes the set of equivalence classes induced by the permutation
p of D, where two darts α, β ∈ D are considered equivalent if α = pk(β) for some
integer k.

Note that all of the tame graphs in our archive fulfill these equations, so we do not
need to include them in the definition of the GraphSystem predicate in Section 6.

Fig. 7 A connected planar
graph (picture reproduced
from [28])

0

1

4

5 6

7

8

11

10

9
2

3

256 S. Obua, T. Nipkow

As an example, consider the connected planar graph in Fig. 7. Each dart is denoted
by a number, and we have D = {0, 1, 2, . . . , 11}. The permutations are given by

f = (0 �→ 1 �→ 2 �→ 3 �→ 4, 5 �→ 6 �→ 7, 8 �→ 9 �→ 10 �→ 11),

e = (0 �→ 11, 1 �→ 10, 2 �→ 9, 3 �→ 6, 4 �→ 5, 7 �→ 8),

n = (0 �→ 5 �→ 8, 1 �→ 11, 2 �→ 10, 3 �→ 9 �→ 7, 4 �→ 6). (10)

The equivalence classes of f represent the faces of the graph, those of n its nodes,
and those of e its edges. The darts themselves can also be viewed as faces, nodes
and edges. For example, there are three faces, face 0, face 5, and face 8 (to see why
there are three faces, not two, imagine how the graph looks when drawn on a sphere
instead of in the plane); and face 7 is the same as face 5.

The advantage of representing tame graphs as hypermaps is that the definition
of a hypermap is purely combinatorial. Important properties of the tame graph like
planarity and orientation are already built into the notion of hypermap, we do not
need extra definitions for these. The linear relationships we want to capture later are
most naturally expressed on hypermaps. Furthermore, faces, edges and nodes can be
represented in a uniform way as finite orbits under the respective permutation. Finite
orbits have the nice property that they are sets, but can be traversed just like lists.

We have converted the archive of tame graphs [22] into the hypermap representa-
tion and formalized them as binary search tree of type (nat × nat × nat) NatTreeMap
where

datatype ω NatTreeMap =
TIN nat ω (ω NatTreeMap) (ω NatTreeMap) | TNN (11)

An ω NatTreeMap represents a function via the eval function:

eval :: ω NatTreeMap ⇒ nat ⇒ ω option

eval TNN x = None
| eval (TIN x c a b) x ′ =

if x=x ′ then Some c else if x ′ < x then eval a x ′ else eval b x ′ (12)

The face, edge, and node permutations of a graph represented as value of type
(nat × nat × nat) NatTreeMap can therefore be accessed through the following three
functions:

map-face :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-face m d ≡ fst (the (eval m d))

map-edge :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-edge m d ≡ fst (snd (the (eval m d)))

map-node :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-node m d ≡ snd (snd (the (eval m d))) (13)

The representation of the permutation functions by binary search trees has been
chosen for efficiency because there can be up to about 100 darts in a tame graph
and we do frequent lookups. Actually, even this representation proved to be too
slow; therefore the HCL is used to calculate all lookups once; each lookup is then
represented by its own theorem which is added as rewrite rule. Using the SML mode

Flyspeck II: the basic linear programs 257

of the HCL we let Standard ML’s pattern matching do the lookup job for us from
then on.

The complete archive of 2771 tame graphs is given in our formalization as a
constant Archive of type (nat × nat × nat) NatTreeMap list, each element of the list
representing a tame graph. For convenience, there are also 2771 constants

graph-1, . . . , graph-2771

of type (nat × nat × nat) NatTreeMap, each constant representing a tame graph.
The conversion from the Flyspeck I format into the binary search tree format has

not been formally verified yet. It makes sense to defer such a verification until all
other pieces of Flyspeck are there; for example, it could be the case that all other
Flyspeck formalizations use hypermaps, in which case it would probably make more
sense to rework Flyspeck I in terms of hypermaps instead of verifying a conversion
routine.

6 Graph systems

In this section we are giving a definition of the GraphSystem predicate introduced in
Section 3. The predicate is rather long; nevertheless we will present it here almost
in full. The referees found an error in the definition of the predicate in an earlier
version of this paper. This error was also present in the actual Isabelle formalization,
so all basic linear programs had to be generated and solved again. The result was that
now we could only prove about 2% less tame graphs to be contravening! Therefore
we think it is important that most of the specification is presented.

We manage the data of a graph system as a record of type ω GS. The type
parameter ω denotes the type of darts. We require that there is a linear order defined
on ω. As in our application ω will always be nat, this is not a problem.

There are two kinds of record components: those members which describe the
topology of the planar graph (Fig. 8), and those members which represent the real-
valued variables on darts (Fig. 9).

Note that although e.g. the type of gs-σ is stated to be ω ⇒ real, it really is
ω GS ⇒ ω ⇒ real, taking an explicit graph system record as parameter.

Fig. 8 Planar graph record components

258 S. Obua, T. Nipkow

Fig. 9 Real variable record components

What turns a structure gs of type ω GS into a graph system is the set of axioms
it has to fulfill. All of these axioms are stated relative to gs. Because we have many
axioms, it would be nice to state them as concise as possible. The Isabelle locale
mechanism [2] fits our purpose. It allows entering a context in which chosen free
variables are fixed, that means within the context they are treated like constants, but
are generalized on exiting the context. We choose gs as fixed variable and can then
view all of the record components in Figs. 8 and 9 as constants with a built-in implicit
gs parameter. In the locale context we define e.g.

σ = gs-σ gs.

We introduce such an abbreviation for all of our record components and use these
abbreviations from now on (except at those rare occasions where we look at a graph
system from the outside).

6.1 Topology of a graph system

Let us first make sense of the components shown in Fig. 8. The leftmost box displays
the components which model a planar graph in hypermap representation: the set
of darts, and the edge, node and face permutations. We have no axioms actually
enforcing that these ought to be permutations on darts.

All other components displayed in Fig. 8 are defined in terms of these 4 primitive
components. The Face, Edge and Node functions assign to each dart its equivalence
class. The definition of those functions listed in Fig. 10 uses the notion of Orbit :

Orbit f s = {g. (∃ n ∈ �. g = f n s)} = {s, f s, f (f s), . . .} (14)

Fig. 10 Definition
of Face, Edge and Node

Flyspeck II: the basic linear programs 259

Fig. 11 Definition
of edgerep, facerep and
noderep

Sometimes we need to represent such an equivalence class by a single dart unique
to the class. This is why we require the type ω of darts to be totally ordered: so that
we can pick a single dart in a unique way out of each equivalence class. The edgerep,
noderep and facerep functions assign to each dart the unique representing dart that
belongs to the same equivalence class (Fig. 11). We also want to be able to address
all faces, or all edges, or all nodes. Thus, for each permutation, we form the set of all
representatives of that permutation (Fig. 12).

Finally, the rightmost box of Fig. 8 is made up of further notions which enrich the
topology related vocabulary of graph systems. Their definitions are listed in Fig. 13.
The Isabelle notation f ‘ S denotes the image of the set S under the function f , the
notation card S stands for the cardinality of S if S is finite. Note that we use the short-
circuit logical connectives introduced in Fig. 6 to avoid superfluous computation.

6.2 3-space interpretation of a graph system

We already explained in Section 2 how real-valued variables on tame graphs are
introduced to model the geometric relationship between a tame graph and its
euclidean and spherical graphs.

The real variable components of a graph system in Fig. 9 denote these real-valued
variables.

The real variable yn α interprets the dart α as a node; hence it must be invariant
under the node permutation. It denotes the distance that the corresponding center
of a ball in the euclidean graph has to the origin. Hence we have 2 ≤ yn α ≤ 2 t0.

The real variable ye α interprets α as an edge. It is invariant under the edge
permutation and measures the length of the corresponding edge in the euclidean
graph. Again, we have 2 ≤ ye α ≤ 2 t0.

The real variable sol α interprets α as a face. It measures the size of the area
of the corresponding surface in the spherical graph. It is invariant under the face
permutation. Because the whole surface of a unit ball is 4 π , we have 0 ≤ sol α ≤ 4 π .

To explain the real variable azim α, let us first interpret α as the arc in the
spherical graph that corresponds to the edge α in the tame graph. Applying the node
permutation to α yields another dart α′ which we also interpret as such an arc. The
two arcs have a point p in common, which is the node in the spherical graph that
corresponds to the node α. Now azim α measures the spherical angle between those
two arcs at p. Because azim α is an angle, we have 0 ≤ azim α ≤ 2 π .

The (in)equalities we have gathered so far are listed in Figs. 14 and 15 as further
axioms of a graph system.

Fig. 12 Definition
of edges, faces and nodes

260 S. Obua, T. Nipkow

Fig. 13 Topology vocabulary

Additional graph system axioms can be derived by basic geometrical considera-
tions. We know the sum of all angles around a point:

∀ N ∈ nodes. 2 ∗ π =
∑

α ∈ Node N. azim α (15)

So we add this equation to our axioms. In the plane, the sum of all inner angles of a
triangle is π . For a spherical triangle, this is not true. Girard’s Formula says that the
difference between the sum of all inner spherical angles of a spherical triangle and
π is just the area of that spherical triangle. Generalizing this result to faces with ≥ 3
edges gives another axiom:

∀ x ∈ darts. sol x = − real (card (Face x) − 2) ∗ π +
∑

α ∈ Face x. azim α (16)

The function real converts a value of type nat to a value of type real.
The real variables σ α (the score) and τ α are related to the density of the

volume the face α corresponds to. They are connected via the graph system axiom
[15, Eq. 20.1]

∀ x ∈ darts. τ x = sol x ∗ ζ ∗ pt − σ x (17)

where pt = 4 arctan(
√

2/5) − π
3 and ζ = 1/(2 arctan(

√
2/5)). For the graph system to

be contravening, that is to qualify as part of a packing with highest possible density,

8 ∗ pt ≤
∑

α ∈ faces. σ α (18)

must hold. This is the most important of our axioms. From [15] we can assume the
bounds shown in Fig. 16 as additional axioms.

The other real variables in the middle and rightmost box in Fig. 9 are special cases
of the real variables in the first box; their relationship with the real variables from the
first box is given by the axioms in Fig. 17. The significance of these other variables
lies in the existence of further axioms which have been converted from a database of
inequalities. See [29, Appendix B] for the complete list of these axioms.

Fig. 14 Axioms for invariance
under permutation

Flyspeck II: the basic linear programs 261

Fig. 15 Axioms for basic geometrical bounds

6.3 Additional constraints of a graph system

We are about to complete the specification of the axioms of a graph system. This
subsection enumerates all axioms that are still missing.

First, this axiom is a formalization of [13, Group 4, rule 1]:

∀α ∈ nodes. node-type α 4 implies
(∑

β ∈ Node α. σ β ≤ 33 / 100 ∗ pt
)

(19)

Second, here is an axiom that is a formalization of [13, Group 4, rule 3]:

∀ α ∈ nodes. node-type α 5 implies
(∑

β ∈ Node α. σ β + 419351 / 1000000 ∗ sol β − 2856354 / 10000000
)

≤ 0

(20)

Finally, Figs. 18 and 19 complete the set of axioms. The functions const-a and
const-d appearing in Fig. 19 map natural numbers to real numbers and correspond
to the functions a and b defined in [15, Sect. 18.2]. While all other axioms are more or
less a direct translation of the corresponding statements in [15], the axioms in these
last two figures need a little bit of explanation.

Lemma 10.6 in [15] demands v1, . . . , vk to be distinct vertices for some k ≤ 4 and
then states inequalities in terms of these vertices. In Fig. 18 we translate this by
treating each of the cases k = 1, 2, 3, 4 separately; for example, the first axiom treats
the case k = 4 and the vertices v1, v2, v3, v4 are denoted by the darts α, β, γ, δ.

Lemma 22.12 in [15] states an inequality for any separated set V of vertices. From
the definition of separated set [15, Sect. 18.2] we checked that the archive of tame

Fig. 16 Bounds for σ and τ from [15, Lemma 20.2]

262 S. Obua, T. Nipkow

Fig. 17 Variations of real variables

Fig. 18 Axioms from [15, Lemma 10.6]

Fig. 19 Axioms from [15, Lemma 22.12]

Flyspeck II: the basic linear programs 263

graphs contains no separated set V with more than three vertices. A case split on |V|
yields the 3 axioms in Fig. 19; for example, the last axiom treats the case |V| = 3 and
is formulated in terms of v1, v2, v3, where V = {v1, v2, v3}.

Thus we have defined the predicate GraphSystem of type ω GS ⇒ bool which
is true for some gs iff gs fulfills all the axioms and definitions listed in Section 6
(including those further axioms from the database of inequalities).

7 Generating and running the basic linear programs

In this section we describe how we prove formally within Isabelle/HOL that a given
tame graph is not a graph system.

7.1 Linking tame graph and graph system

For each tame graph, we assume that it fulfills all graph system axioms. In order to
express this assumption, we need to connect the abstract notion of a graph system
with our concrete representation of tame graphs. We do this via the relation PGS.

func-eq :: ω GS ⇒ (ω ⇒ ω′) ⇒ (ω ⇒ ω′) ⇒ bool
func-eq gs f g = (∀ d. d ∈ gs-darts gs −→ f d = g d)

PGS :: nat GS ⇒ (nat × nat × nat) NatTreeMap ⇒ bool
PGS gs S = (GraphSystem gs

∧ gs-darts gs = dom (eval S)

∧ func-eq gs (gs-face gs) (map-face S)

∧ func-eq gs (gs-edge gs) (map-edge S)

∧ func-eq gs (gs-node gs) (map-node S)) (21)

The PGS relation is necessary because we do not want to describe as part of the
graph system notion how to represent the permutation functions and the set of darts;
we want to keep the notion of graph system as abstract as possible. Currently we use
the binary search trees from Section 5 to represent permutation functions and darts;
but this may change at a later stage of the Flyspeck project.

For a given tame graph S, say S = graph-1, we can then enter the context PGS
gs S. The HCL (Section 4) allows us to perform computations within this context.
If the HCL did not have that capability, it would have been difficult, maybe even
impossible, to apply the HCL to our problem, because all of our computations need
to be done in a context which provides the underlying implicit assumption PGS gs S.
Our goal is to prove False in this context, i.e., to show PGS gs S =⇒ False.

Instead of defining a relation PGS, one could try to circumvent having to compute
within a context by defining a function Convert which maps a tame graph of type
(nat × nat × nat) NatTreeMap to a graph system record of type nat GS. Then the
goal would be to show GraphSystem (Convert S) = False. One problem with this
approach is that the expression GraphSystem (Convert S) expands to a big confusing
term that is hard to deal with. More importantly, it has basically the following
structure:

E1 ∧ E2 ∧ . . . ∧ En ∧ U (22)

264 S. Obua, T. Nipkow

The Ei are ∀-quantified equations that we would like to use to rewrite U . Also we
would like to hand this rewriting job over to the HCL. But we cannot use the Ei

directly as an HCL program because the HCL accepts only theorems, and the Ei are
mere terms. We could work around this problem by creating a program out of the
theorems Ei =⇒ Ei, effectively introducing a context consisting of n components. It
seems easier to avoid doing this and work from the start within the context PGS gs
S, i.e., to use theorems PGS gs S =⇒ E′

i to rewrite U ′.
The first theorems we compute with the HCL enable us to abstract from the

concrete tame graph representation. We demand that the set of darts is repre-
sented as the cyclic orbit of an executable function. We call Orbit f s cyclic if
s ∈ Orbit f (f s). For the tame graphs from the archive the orbit function is
defined via

natsection-gen n x = if n ≤ x + 1 then 0 else x + 1 (23)

For each tame graph S in the archive we prove a theorem of the form

PGS gs S =⇒ gs-darts gs = Orbit(natsection-gen m)0 (24)

where m depends on S. For example, for S = graph-1 we have m = 48. Then we
prove for each dart d ∈ gs-darts gs the theorems

PGS gs S =⇒ gs-face gs d = df

PGS gs S =⇒ gs-node gs d = dn

PGS gs S =⇒ gs-edge gs d = de (25)

where the df , dn and de obviously depend on S and d.
Computing first all needed theorems about the permutation functions and the

set of darts is not only useful for abstraction; that way, instead of computing the
permutation functions over and over again, we can convert the theorems into an HCL
program, effectively caching these computations. Evaluating a permutation function
is now done via a simple lookup. Because we use the SML mode of the HCL, the
lookup is implemented by compiled pattern matching code.

7.2 Folding the orbit

We have represented the set of darts, and the face, edge and node equivalence classes
as cyclic orbits. Many other objects appearing in the definition of a graph system are
obtained by operating on these cyclic orbits. Therefore it is important that we have a
convenient way of operating on and computing with cyclic orbits. Whether an orbit
is cyclic is stated via the orbit-terminates predicate:

orbit-terminates f x x′ = x ∈ Orbit f (f x′) (26)

Orbit f s is cyclic iff orbit-terminates f s s holds. If an orbit is cyclic, then we can
prove this by computing with the recursion equation

orbit-terminates f x x′ =
if f x′ �= x then orbit-terminates f x (f x′) else True (27)

A cyclic orbit is a set; nevertheless, computationally it is similar to a list. In particular,
we can canonically iterate through all elements of a cyclic orbit. Sets are nice for

Flyspeck II: the basic linear programs 265

reasoning; lists are nice for computing. For our application, cyclic orbits combine
these properties of sets and lists advantageously. We exploit this via the fold-section
functional which mimics folding over a list. It is defined by

fold-section continue h f g z a = For continue h (λ z. λ a. f (g z) a) z a (28)

In above definition we use the For combinator. This combinator allows to define
partial functions which are basically loops. The following loop in the programming
language C

for (i = i0, a = a0; continue(i); i = f(i))
a = A(i, a);

a1 = a;

can be modelled in HOL by the equation

a1 = For continue f A i0 a0. (29)

The For combinator is defined and explained in more detail in [28].
Computing with fold-section is done using the recursion equation

fold-section continue h f g x ac =
i f continue x then fold-section continue h f g (h x) (f (g x) ac) else ac (30)

Reasoning about fold-section on cyclic orbits is facilitated by connecting it with
the fold functional on finite sets which is described in [24]. The following theorem
establishes this connection:

ACf f =⇒ orbit-terminates h z z =⇒
fold f g a (Orbit h z) = fold-section (λ y. y �= z) h f g (h z) (f (g z) a) (31)

The condition ACf f expresses that because we are now talking about arbitrary finite
sets, which impose no order on their elements, we need the binary operation f to be
associative and commutative.

This gives us all the tools we need to define functions over cyclic orbits, and to
reason about and compute with these functions. For example, we define

sum-orbit f g x x′ a = fold-section (λ y. y �= x) f (λ u v. u + v) g (f x′) a
or-orbit f g x x′ a = fold-section (λ y. y �= x) f (λ p q. p ∨ q) g (f x′) a
and-orbit f g x x′ a = fold-section (λ y. y �= x) f (λ p q. p ∧ q) g (f x′) a (32)

Using Isabelle’s reasoning machinery for finite sets it is easy to prove

orbit-terminates f x x =⇒ (∀ y ∈ Orbit f x. P y) = and-orbit f P x x (P x)

orbit-terminates f x x =⇒ (∃ y ∈ Orbit f x. P y) = or-orbit f P x x (P x)

orbit-terminates f x x =⇒
(∑

y ∈ Orbit f x. q y
)

= sum-orbit f q x x (q x)

orbit-terminates f x x =⇒ card (Orbit f x) = sum-orbit f (λ y. 1) x x 1 (33)

We can give all of these theorems together with a bunch of similar theorems to the
HCL and run the resulting program on those graph system axioms that involve real
variables.

In many axioms we used instead of the normal implication operator −→ the short-
circuit operator implies from Fig. 6. This is essential in order to be able to execute
certain axioms like those in Figs. 18 or 19, which contain nested implications, in

266 S. Obua, T. Nipkow

reasonable time, because if the precondition of the implication evaluates to False,
which is much more often the case than not, then we don’t bother evaluating the
conclusion of the implication.

The result of using the HCL to normalize an instance of the graph system axioms
for a particular tame graph is a large conjunction of inequalities in the real variables.
We can further normalize this conjunction, again using the HCL, to yield the theorem

PGS gs S =⇒ A ∗ x ≤ b (34)

where A, b and x are finite matrices. The elements of the matrix A and the vector b
are terms denoting constant expressions like (4 ∗ π/

√
2), the elements of the vector

x are the real variables of the graph system.

7.3 Proving infeasibility with finite matrices

In this section we abridge material which can be found in much greater detail in
[29, Chapt. 3].

7.3.1 Finite matrices

Finite matrices have been introduced in [27]. Obviously, matrices should form a
type in HOL, but how does one deal with the dimension of a matrix? There are
no dependent types in HOL, so it seems impossible to have a parametrized family of
types where the dimension of the matrix would be the parameter. But it is possible;
one possibility that is pursued by Harrison [17] in his Hol-light system is to represent
the needed parameter by type variables! In our case this idea would cause serious
problems later on when we work with concrete matrix representations.

Our approach exploits the fact that the matrix elements commonly used in
mathematics [21] carry an algebraic structure, that of a ring, which always contains a
zero. We define the type of finite matrices of elements of type ω to be ω matrix, where
ω must contain a zero:

type ω infmatrix = nat ⇒ nat ⇒ ω

typedef ω matrix = { f :: (ω :: zero)infmatrix | finite {(j, i) | f j i �= 0}} . (35)

Therefore the type ω matrix can intuitively be understood to consist of those infinite
matrices that have finite support. Any finite matrix has a minimal dimension N × M
which depends on its support. But it can be used as a matrix of any dimension n × m
with n ≥ N, m ≥ M. For example, adding two finite matrices of different minimal
dimensions is no problem:

(
1 7 3
2 1 0

)

+

⎛

⎜
⎜
⎝

0
2

10
5

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 7 3
2 1 0
0 0 0
0 0 0

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

0 0 0
2 0 0
10 0 0
5 0 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 7 3
4 1 0

10 0 0
5 0 0

⎞

⎟
⎟
⎠

The first operand of above sum has minimal dimension 2 × 3, the second operand
has minimal dimension 4 × 1, and the resulting finite matrix has minimal dimension
4 × 3.

Birkhoff points out [5, Chapt. 17] that for a fixed n the ring of all n × n matrices
forms a lattice-ordered ring in a natural way if ω is one, too. The same is true for our

Flyspeck II: the basic linear programs 267

finite matrices! We used this fact extensively when reasoning about finite matrices in
Isabelle/HOL.

Note that we do not introduce special types for column or row vectors. A column
vector is just a finite matrix of minimal column dimension m ≤ 1, a row vector is a
finite matrix of minimal row dimension n ≤ 1.

7.3.2 Representing finite matrices

We are interested in calculating with concrete matrices of type real matrix. Let
us first explain how we represent concrete reals. One possibility would have been
to represent real numbers r by fractions r = a/b where a and b are integers. The
problem with fractions is that addition is an expensive operation. Instead, we chose
to represent reals as binary, arbitrary precision floating point numbers float(m, e)
instead:

float (m, e) = (real m) ∗ 2e (36)

In the above, the integer m is called the mantissa, and the integer e the exponent.
Note that (real m) denotes the conversion of the integer m to a real number. Floats
do not form a new type; they are just notation for certain real numbers.

A disadvantage of floating point numbers is that some fractions like 1/3 cannot be
represented by them; but this is not a problem, since we have to work with approx-
imations for real numbers like π anyway. Therefore, when doing computations, we
actually represent real numbers by intervals [f1, f2] of floats with f1 ≤ f2.

We have formalized executable basic arithmetical operations like addition, multi-
plication and division for intervals of floats. Recently there has been work to extend
the set of available executable functions on floats by those functions which have
Taylor approximations [18]. During Flyspeck II, these extensions have not been
available yet. Therefore we do not introduce π and other constants like

√
2 by their

usual mathematical definitions, but introduce unspecified symbols for them and state
bounds for them axiomatically. It should be easy now to remedy this.

Let us now explain how we represent matrices. We use sparse matrices for this
which we represent by lists; a sparse matrix is a sparse vector of sparse vectors of
reals; a sparse vector of elements of type ω is a list of pairs (i, w) where i is called the
index, and w is of type ω. The sparse-row-matrix morphism translates sparse matrices
to finite matrices like in the following example:

[(1, [(1, 7), (3, 13)]), (2, [(0, −4), (1, 47)])]

sparse-row-matrix−−−−−−−−−−−−−→

⎛

⎝
0 0 0 0
0 7 0 13

−4 47 0 0

⎞

⎠

The sparse-row-matrix morphism interprets the inner lists as the rows of the matrix.
It does not assume any sortedness constraints on sparse matrices, not even unique-
ness of indices; but the operations we have formalized for sparse matrices do assume
such constraints.

Basic executable operations like addition and multiplication have been formalized
for sparse matrices, following algorithms given in [11], and proven to be correct with
respect to their finite matrix counter parts and the sparse-row-matrix morphism,
assuming certain sortedness constraints. This is not too hard: all students of an

268 S. Obua, T. Nipkow

introductory Isabelle/HOL class taught at Technische Universität München have
been able to complete these proofs within four weeks as their final assignment with
varying help from their tutors.

7.3.3 Proving infeasibility

We need to prove

A ∗ x ≤ b =⇒ False (37)

Just like we need intervals to approximate real numbers, we make also use of inter-
vals to approximate matrices with reals as elements. The matrix A is approximated
by two matrices A1 and A2 that have only floats as entries and that bound A such that
A1 ≤ A ≤ A2 holds. The matrix b is approximated by a matrix b 0 such that b ≤ b 0.

Our strategy is to solve a linear program to prove above implication. We want to
use an external linear programming tool for this; the approximate solution of the
linear program will serve us as a certificate. It seems that in order to implement
this strategy systematically, we need to find matrices x1 and x2 consisting only of
floating point entries such that x1 ≤ x ≤ x2 holds. This is necessary because the
certificate introduces certain rounding errors; in order to bound these errors, we need
to bound x. Fortunately the structure of A always allows us to calculate such a-priori
bounds for x easily [29, Sect. 3.8]. Again, we calculate a certificate for these a-priori
bounds outside Isabelle/HOL, and then check it cheaply within the Isabelle/HOL
logic. The only alternative to needing the bounds for x seems to be to formalize
a linear programming algorithm within Isabelle/HOL. Even using the HCL, being
a purely functional algorithm this would probably be considerably slower than our
current approach; in order to be remotely competitive, the HCL would also need to
incorporate native floating point support, which it currently does not.

We choose a matrix A0 consisting only of floating point numbers such that A1 ≤
A0 ≤ A2, for example A0 = A1. Furthermore we choose a float K < 0, for example
K = −1. In theory, it does not matter which K < 0 we choose, but in practice a K too
close to 0 is dangerous; for numerical reasons K ≤ −1 is sufficient for our purposes.
We then define the linear program L as

Maximize c′ ∗ x′ where x′ is subject to the condition A′ ∗ x′ ≤ b ′,

where t is a new variable we introduce and

c′ = (
0 K

)
, x′ =

(
x
t

)

, A′ =
⎛

⎝
A0 b 0

0 1
0 −1

⎞

⎠ , b ′ =
⎛

⎝
b 0

1
0

⎞

⎠ .

The linear program L is feasible and bounded [29, Sect. 3.5] and we can therefore
solve its dual L′ by an external linear program solver, in our case the GNU linear
programming kit. The dual L′ is defined as

Minimize y′ ∗ b ′ where y′ is subject to the conditions y′ ∗ A′ = c′ and y′ ≥ 0.

Flyspeck II: the basic linear programs 269

This gives us an approximate solution y′ = (
y y1 y2

) ≥ 0 of L′. Here y is a row vector,
and y1 and y2 are floats. Plugging y and y1 into the Isabelle theorem

A ∗ x ≤ b =⇒ A1 ≤ A =⇒ A ≤ A2 =⇒ b ≤ b 0 =⇒ x1 ≤ x =⇒ x ≤ x2

=⇒ 0 ≤ y =⇒ 0 ≤ y1 =⇒
=⇒ 0 ≤ y ∗ b 0 + y1 + (

let s1 = −y ∗ A2; s2 = −y ∗ A1

in s+
2 ∗ x+

2 + s+
1 ∗ x−

2 + s−
2 ∗ x+

1 + s−
1 ∗ x−

1

)
, (38)

discharging all assumptions except A ∗ x ≤ b and computing the conclusion proves
(37) if (37) is true. If (37) is false we obtain the not very useful theorem A ∗ x ≤
b =⇒ 0 ≤ C for some non-negative float C.

In (38) the notations q+ and q− stand for the positive and the negative part of
q, where q belongs to some lattice-ordered ring. In our case, it is the ring of finite
matrices over the real numbers; the positive part of a finite matrix is the matrix you
get by replacing all negative entries by 0, the negative part is obtained by replacing
all positive entries of the matrix with 0.

The proof of (38) is via standard algebraic manipulations in lattice-ordered rings.

8 Results

We were able to prove the inconsistency of 2504 of the graph systems. This yields a
success rate of 2504/(2771 − 2) ≈ 90.4%.

The complete Flyspeck II formalization can be downloaded from [26].
We used the SML mode of the HOL Computing Library for all larger computa-

tions within the theorem prover Isabelle. The computing resources needed were still
enormous. Therefore we were forced to examine each tame graph by its own Isabelle
process. In the original verification each Isabelle process ran on a dedicated processor
of a cluster of 32 four processor 2.4 GHz Opteron 850 machines with 8 GB RAM per
machine. The quickest process needed 8.4 min, the slowest 67. The examination of all
tame graphs took about 7.5 h of cluster runtime. This corresponds to about 40 days
on a single processor machine.

Note that most of the computing time was spent generating the basic linear
program, approximating it, and calculating the a-priori bounds. The actual time
needed by the external linear program solver GLPK(GNU linear programming kit)
was only a matter of seconds for each tame graph. A considerable performance
speed-up should be experienced if caching were added to the HCL.

How reliable are our results? The major source of potential mayhem is that some
mistake might have been introduced in the specification of the basic linear programs.
Indeed, the referees discovered an error in the definition of the adjacent relation in
an earlier version of this article. There, instead of the definition now given in Fig. 13,
we used the wrong definition

∀ α β. adjacent α β = (∃ n ∈ Node α. edge α ∈ Node β) (39)

Another error, which was discovered by Hales while reviewing the PhD thesis of the
first author, was due to ambiguous phrasing in [15]. Instead of axiom (19) we wrongly
used

∀ α ∈ nodes. node-type α 4 implies ∀β ∈ Node α. σ β ≤ 33 / 100 ∗ pt (40)

270 S. Obua, T. Nipkow

Considering the length of the specification of a graph system, other errors might
have crept in and still hide in the formalization. The correctness of this specification
will only be established after using the obtained results in the larger context of
a complete formal proof of the Kepler conjecture. We can console ourselves that
the methods presented here are general enough so that a transfer to a corrected
specification should always be possible, and probably easy so.

Another potential source of mistakes is the use of the HOL Computing Library.
After all, it is just a piece of unverified software which has been tested by only a very
small number of persons, and there is no mechanized proof yet for its correctness.

So what about the remaining roughly 10% of tame graphs which still need to be
shown to be non-contravening? For them it is necessary to look at a more compli-
cated definition of what a graph system is. Remember, a graph system is a linear
approximation of the non-linear geometrical constraints imposed on contravening
tame graphs. For the remaining 10% of tame graphs this approximation is just not
good enough. This corresponds to what Thomas Hales did in his 1998 proof; he also
first arrived at the elimination of about 90% of tame graphs and then needed to study
the rest in more detail. To do so in Isabelle, too, one needs to expand the definition of
a graph system and the linear program generation process such that one tame graph
induces a series of linear programs, not only one basic linear program. This is future
work.

How much work has it been so far? From start to end it took about four years, but
not all of this time was exclusively devoted to the work presented in this paper. So it
is hard to say how much work it really is. Maybe the more interesting question is how
much time it should have taken given the right theorem proving infrastructure. A lot
of time was devoted to formalize things “the right way”. For example, finding the
finite matrices abstraction to talk about linear programming. Or then, after having
this abstraction, using it not only for reasoning, but also for computing. Another
example is using hypermaps for representing planar graphs; instead of using a list
based representation, hypermaps automatically suggested the development of the
orbit notion within Isabelle. Using these abstractions to the extent that we have done
would not have been possible without the HCL, which makes computing with them
efficient.

So, from this point of view, the right theorem proving infrastructure would already
include something like the HCL, there would already be formalizations of orbits,
finite matrices and how to prove bounds of linear programs; it would also include
interval arithmetic on floating point numbers, and executable Taylor approximations
of functions like sine and cosine. These are topics that are very likely interesting
not only to Flyspeck II, but to many other formalizations of mathematics and
mathematical algorithms. Given this infrastructure, Flyspeck II could have been
completed within a month.

The ultimate goal is to make theorem proving technology so accessible to mathe-
maticians that Hales would have done his work from the start in a mechanized and
formal setting. Flyspeck II would have been superfluous, then.

Acknowledgements Many thanks to Thomas Hales for his continuing support during this project;
without it its success would not have been possible. Also many thanks to the anonymous referees;
their diligence saved the day.

Flyspeck II: the basic linear programs 271

References

1. Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalization by evalua-
tion. In: Mohamed, A., Munoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 39–54.
Springer, New York (2008)

2. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo, M., Damiani,
F. (eds.) TYPES. Lecture Notes in Computer Science, vol. 3085, pp. 34–50. Springer, New York
(2003)

3. Barras, B.: Programming and computing in HOL. In: Aagaard, M., Harrison, J. (eds.) TPHOLs.
Lecture Notes in Computer Science, vol. 1869, pp. 17–37. Springer, New York (2000)

4. Berghofer, S.: Proofs, programs and executable specifications in higher order logic. Ph.D. thesis,
Technische Universität München (2003)

5. Birkhoff, G.: Lattice Theory. AMS, Providence (1967)
6. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic, New York (1979)
7. The COQ development team: The COQ reference manual, version 8.2. http://coq.inria.fr

(2009)
8. Gonthier, G.: A computer-checked proof of the four color theorem. http://research.

microsoft.com/∼gonthier/4colproof.pdf
9. Gonthier, G.: Formal proof—the four color theorem. Not. Am. Math. Soc. 55 (2008)

10. Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Interaction: Essays in
Honour of Robin Milner, pp. 169–185. MIT, Cambridge (2000)

11. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and permuted transpo-
sition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)

12. Haftmann, F.: Code generation from specifications in higher-order logic. Ph.D. thesis, Technische
Universität München (2009)

13. Hales, T.C.: Sphere packings III. arXiv:math/9811075v2
14. Hales, T.C., Ferguson, S.P.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185

(2005)
15. Hales, T.C., Ferguson, S.P.: The Kepler conjecture. Discrete Comput. Geom. 36, (2006)
16. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the

proof of the Kepler Conjecture. Discrete Comput. Geom. (2009)
17. Harrison, J.: A HOL theory of Euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005.

Lecture Notes in Computer Science, vol. 3603. Springer, Oxford (2005)
18. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: Proceedings of

the ACM SIGSAM 2009 International Workshop on Programming Languages for Mechanized
Mathematics Systems (PLMMS 2009) (2009)

19. Hurd, J., Melham, T.F. (eds.): Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3603. Springer, New York (2005)

20. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N. (eds.)
IJCAR. Lecture Notes in Computer Science, vol. 4130, pp. 589–603. Springer, New York (2006)

21. Lang, S.: Algebra. Addison-Wesley, Reading (1974)
22. Nipkow, T., Bauer, G., Schultz, P.: The archive of tame graphs. http://www4.informatik.

tu-muenchen.de/∼nipkow/pubs/Flyspeck (2006)
23. Nipkow, T., Bauer, G., Schultz, P.: Flyspeck I: tame graphs. In: IJCAR, pp. 21–35 (2006)
24. Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd, J., Melham,

T.F. (eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs
2005, Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3603, pp. 385–396. Springer, New York (2005)

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—a proof assistant for higher-order logic.
In: Lecture Notes in Computer Science, vol. 2283. Springer, New York (2002)

26. Obua, S.: Flyspeck II: the basic linear programs. http://www4.in.tum.de/~obua/flyspeckII
(2007)

27. Obua, S.: Proving bounds for real linear programs in Isabelle/Hol. In: Hurd, J., Melham, T.F.
(eds.) Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005,
Oxford, UK, 22–25 August 2005, Proceedings. Lecture Notes in Computer Science, vol. 3603,
pp. 227–244. Springer, New York (2005)

http://coq.inria.fr
http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf
http://arXiv.org/abs/math/9811075v2
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Flyspeck
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Flyspeck
http://www4.in.tum.de/~obua/flyspeckII

272 S. Obua, T. Nipkow

28. Obua, S.: Proof pearl: looping around the orbit. In: Schneider, K., Brandt, J. (eds.)
TPHOLs. Lecture Notes in Computer Science, vol. 4732, pp. 223–231. Springer, New York
(2007)

29. Obua, S.: Flyspeck II: the basic linear programs. Ph.D. thesis, Technische Universität München
(2008)

30. Puitg, F., Dufourd, J.-F.: Formal specification and theorem proving breakthroughs in geometric
modeling. In: Grundy, J., Newey, M.C. (eds.) TPHOLs. Lecture Notes in Computer Science,
vol. 1479, pp. 401–422. Springer, New York (1998)

	Flyspeck II: the basic linear programs
	Abstract
	The Flyspeck project
	The Kepler conjecture, tame graphs, and linear programs
	The approach
	The HOL computing library
	Related work

	Tame graphs as hypermaps
	Graph systems
	Topology of a graph system
	3-space interpretation of a graph system
	Additional constraints of a graph system

	Generating and running the basic linear programs
	Linking tame graph and graph system
	Folding the orbit
	Proving infeasibility with finite matrices
	Finite matrices
	Representing finite matrices
	Proving infeasibility

	Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

