
Ann Math Artif Intell (2008) 52:229–255
DOI 10.1007/s10472-009-9124-y

Distributed multirobot exploration, mapping,
and task allocation

Regis Vincent · Dieter Fox · Jonathan Ko ·
Kurt Konolige · Benson Limketkai · Benoit Morisset ·
Charles Ortiz · Dirk Schulz · Benjamin Stewart

Published online: 18 March 2009
© Springer Science + Business Media B.V. 2009

Abstract We present an integrated approach to multirobot exploration, mapping
and searching suitable for large teams of robots operating in unknown areas lacking
an existing supporting communications infrastructure. We present a set of algorithms
that have been both implemented and experimentally verified on teams—of what
we refer to as Centibots—consisting of as many as 100 robots. The results that we
present involve search tasks that can be divided into a mapping stage in which
robots must jointly explore a large unknown area with the goal of generating a
consistent map from the fragment, a search stage in which robots are deployed
within the environment in order to systematically search for an object of interest,
and a protection phase in which robots are distributed to track any intruders in the
search area. During the first stage, the robots actively seek to verify their relative
locations in order to ensure consistency when combining data into shared maps; they
must also coordinate their exploration strategies so as to maximize the efficiency
of exploration. In the second and third stages, robots allocate search tasks among
themselves; since tasks are not defined a priori, the robots first produce a topological
graph of the area of interest and then generate a set of tasks that reflect spatial
and communication constraints. Our system was evaluated under extremely realistic

R. Vincent (B) · K. Konolige · B. Morisset · C. Ortiz
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA
e-mail: vincent@ai.sri.com

D. Fox · J. Ko · B. Limketkai · B. Stewart
Department of Computer Science & Engineering, University of Washington,
Seattle, WA 98195, USA

D. Schulz
Department of Computer Science III, University of Bonn, Bonn, Germany

230 R. Vincent et al.

real-world conditions. An outside evaluation team found the system to be highly
efficient and robust.

Keywords Distributed Exploration · Distributed Mapping · Task allocation · Robots

Mathematics Subject Classifications (2000) 90C35 · 15A90 · 90C30

1 Introduction

Efficient exploration of unknown environments is a fundamental problem in mobile
robotics. Increasing efficiency is one of the key reasons for deploying teams of robots
instead of single robots. Compared to the problems occurring in single robot explo-
ration, the extension to multiple robots poses several new challenges, including (1)
coordination of robots during exploration, (2) integration of information collected
by different robots into a consistent map, (3) dealing with limited communication,
and (4) what we will refer to as “task inference” and also task allocation.

Coordination during exploration and mapping As the size of a robot team increases,
the problem of coordination between robots can also increase in difficulty. The
difficulty of the coordination task strongly depends on a robot’s level of knowledge:
if the robots know their relative locations and share a map of the area explored so
far, then effective coordination can be achieved by guiding the robots into different,
non overlapping areas of the environment [3, 4, 39, 48]. This can be done by assigning
the robots to different exploration frontiers, which are transitions from explored free
space to unexplored areas [3, 47]. However, if the robots do not know their relative
locations, then it is far less obvious how to effectively coordinate them, since the
robots do not share a common map or frame of reference.

Map merging To build a consistent model of an environment, the data collected by
each robot must be integrated into a single map. Furthermore, such an integration
should be done as early as possible, since the availability of a shared map greatly
facilitates the coordination between robots. If the initial locations of the robots are
known, map merging is a rather straightforward extension of single robot mapping
[9, 25, 42, 46], because the data traces of the individual robots can be treated as if they
were collected by a single robot. Consistent integration of data when the robots do
not know their relative locations is more difficult, since it is not clear how and where
the robots’ traces should be connected.

Limited communication During exploration of large-scale environments, communi-
cation between robots and a control station might fail. To achieve robustness against
such failures, each robot must be able to continue exploration on its own, i.e., without
guidance by a central control node. Furthermore, groups of robots should be able to
coordinate their actions without the need of a central control node, and each robot
should be able to take over the task of coordination.

Task inference and allocation The sorts of target problems we have discussed so
far differ from conventional multi-agent task allocation problems in which the set
of tasks to be allocated within a team is known a priori. Tasks here correspond to
sequences of navigating to a particular point, stopping, and rotating 360 degrees to

Distributed multirobot exploration, mapping, and task allocation 231

inspect an area for some object of interest (OOI). Although the mapping and search
stages could be combined, in our system they were accomplished using separate
resource pools. Since one of the goals of this project was to study the distributed
coordination of as many as one hundred robots, the cost of the laser sensors necessary
for mapping would have been prohibitive if we had tried to replicate the mapping
capability on each robot. We had two kinds of robots, the mapper are equipped with
laser range finder only can do mapping but can not detect the OOI. The other robots
have sonars and stationary cameras and need the map to move in the environment
and can detect the OOI. The group task is to search a large area systematically for
the OOI. However, any spatial area can be partitioned into sub areas in an infinite
number of ways; furthermore, the spatial layout of the area is not known ahead of
time. Consequently, the robots must decide how to divide up the area in the most
effective manner to support the search process. This group task is complicated by the
requirement that communications back to a command center (to report back with
results) be maintained. We refer to the problem of generating the task list as the
problem of task inference, which precedes the task allocation process. The latter is
one that must be supported on a persistent basis: that is, if a robot runs out of battery
power or breaks down, its task should be reallocated among teammates (Fig. 1).

In this paper we present an integrated multirobot system that addresses all of
these challenges. The approach is suitable for multirobot search problems that can be

Fig. 1 CentiBots development
and evaluation team. The four
larger robots in the back,
Pioneer IIs with SICK laser
range-finders, are used for
mapping and exploration. The
rest are Amigobots with
sonars, a camera and a small
PC on top

232 R. Vincent et al.

divided into the following three stages: map building, task allocation for searching for
an object, and area protection. Our system was evaluated thoroughly by an outside
evaluation team. The results of the evaluations demonstrated that our approach was
highly efficient and robust. The maps generated by the team of robots are consistently
more accurate than those generated by manual measurements of the locations and
extensions of rooms and objects.

This paper is organized as follows. In the next section, we provide an overview
of our multirobot coordinated mapping technique. Then, in Section 3, we show how
the data collected by multiple robots can be integrated into a consistent map of an
environment. Finally, we discuss the task inference and allocation process followed
by a description of the experiments supporting the reliability of our techniques. We
conclude in Section 6.

2 Decision-theoretic coordinated mapping

We will now discuss the concept underlying our multirobot coordination technique;
implementation details will be provided in the experimental results described in
Section 5.

2.1 Related work

Virtually all existing approaches to coordinated multirobot exploration assume that
all robots know their locations in a shared (partial) map of the environment. Using
such a map, effective coordination can be achieved by extracting exploration frontiers
from the partial map and assigning robots to frontiers based on a global measure of
quality [3, 4, 39, 41, 48]. As illustrated in Fig. 2, exploration frontiers are borders of

11

c

c

12

r

f1

f r

f
r f

4 9

f

7 8

2
1

3 2

4

3 6

5

r f

ff
f

Fig. 2 Coordination example: Partial map built by exploration cluster of four robots (circles
r1, . . . , r4). Additionally, two location hypotheses (circles c11, c21) have been generated for robot
c1, which is not yet part of the cluster. The map has nine exploration frontiers (f1, . . . , f9), indicated
by gray lines

Distributed multirobot exploration, mapping, and task allocation 233

the partial map at which explored free space is next to unexplored areas [3, 31, 47].
These borders thus represent locations that are reachable from within the partial
map and provide opportunities for exploring unknown terrain, thereby allowing the
robots to greedily maximize information gain [22, 44]. As a measure of the quality
of an assignment of robots to frontiers, the overall travel distance combined with
an estimate of the unexplored area at each frontier proved to be a highly measure
successful in practice [3, 39].

The assumption of the availability of a shared map, however, severely restricts
the scenarios that can be handled by such an exploration strategy. For instance,
a unique, globally consistent map can be generated only if the robots know their
relative locations. If the robots do not know their relative locations, then it is not
clear how they can combine their maps into a global, shared map. Knowledge about
relative locations is readily available only if all robots start at the same location or
have sensors that provide location estimates in a global frame of reference. While
the latter case can hold when using GPS for outdoor exploration [33], there exists
no global positioning sensor for indoor environments. Thus, to deal with more
general exploration settings, the robots must be able to handle uncertainty in their
relative locations, which directly translates into uncertainty in how to combine their
maps.

In a full Bayesian treatment, the robots could estimate posterior probability
distributions over their relative locations and then coordinate their actions based
on the resulting distribution over shared maps. While such an approach could lead
to a highly effective exploration strategy, it does not scale well since the number
of possible relative locations, and thus maps, grows exponentially in the number of
robots. To avoid this complexity, virtually all approaches to multirobot mapping
under position uncertainty let the robots explore independently until they have
reliable estimates of their relative location; at which time their maps are merged and
the robots begin to coordinate exploration strategies [5, 9, 19, 21, 42, 46]. To estimate
relative locations, Howard and colleagues rely on the robots’ ability to detect each
other [19]. Here, all robots independently explore until one coincidentally detects
another robot. During such encounters, robots are able to determine their relative
location and combine maps. While such an approach scales well in the number of
robots, it can result in inefficient exploration, since it can take arbitrarily long until
robots coincidentally detect each other. For instance, if one robot follows the path of
another robot without knowing, both robots might explore the complete map without
ever detecting each other. Other approaches establish relative locations between
pairs of robots by estimating one robot’s location in another robot’s map. This is
typically done under the assumption that one robot starts in the map already built by
the other robot [9, 42, 46] or that there exists an overlap between the partial maps [5].
Since these techniques do not verify location estimates, they might erroneously
merge maps, which typically results in inconsistent maps.

Our approach combines and extends these ideas in order to generate an efficient
and robust exploration system. In contrast to [5, 9, 42, 46], our techniques make no
assumptions about the relative locations of robots. Furthermore, our approach adds
robustness by verifying hypotheses for the relative location of robots. Similar to [19],
this is done by making use of information obtained when one robot detects another.
However, in contrast to [19], these detections are not coincidental; they are pursued
actively.

234 R. Vincent et al.

2.2 Decision-theoretic coordination

Our technique for exploration with unknown start locations integrates information
obtained during robot detections into a Bayesian, decision-theoretic exploration
strategy. Our system works as follows. Initially, the robots might not know their
relative locations: each robot will explore on its own, mapping an increasingly large
portion of the environment. As soon as two robots can communicate, they begin to
exchange sensor data and estimate their relative location. Once they have a good
hypothesis for their relative location, they actively verify this hypothesis using a
rendez-vous technique. If successful, the robots form an exploration cluster: they
combine their data into a shared map and start to coordinate their exploration
actions. If the relative location hypothesis turns out to be incorrect, the robots
continue to explore independently and exchange sensor data so as to refine the
estimates of relative location. During exploration, the size of exploration clusters
increases as more robots determine their relative locations, ending in a single cluster
containing all robots.

As long as a robot is not part of an exploration cluster, it individually explores an
environment by moving to the closest exploration frontier in its partial map [22, 47].
To coordinate the robots within an exploration cluster, we extend the decision-
theoretic approaches of [3, 4, 39, 48] to the case of relative position uncertainty [21].
To do so, we assume that the robots within an exploration cluster share a map and
that the positions ri of all robots in the shared map are known. Figure 2 shows an
exploration cluster of four robots sharing a partial occupancy grid map. Exploration
frontiers fi are indicated by thick green lines. The figure also shows hypotheses
c11 and c21 for the location of a robot not yet part of the cluster. In general, let
cij denote the i-th hypothesis for the unknown location of robot j and p(cij) is the
probability that robot j actually is at this hypothesized location (how hypotheses and
their probabilities are determined will be described in Section 3.1).

The robots in an exploration cluster trade off exploring unknown terrain and
verifying hypotheses for the locations of other robots. Hypothesis verification is
done by sending one of the robots to the hypothesized location and attempting to
physically sense the other robot. In our system, similar to [14], robot detections
are performed by marking robots with highly reflective tape and using laser range
finders to detect the markers. Once a location hypothesis is verified, the data of this
robot can be added to the cluster map and the robot can participate in coordinated
exploration. At any time, each robot in the exploration cluster can be assigned
either to an exploration frontier or to a hypothesized location of a robot outside
the cluster. Coordination between robots corresponds to the the problem of finding
an assignment from robots to frontiers and hypotheses that maximize a utility-cost
trade-off. To see how this is done, let θ denote an assignment that determines which
robot should move to which target (frontiers and hypotheses). Each robot is assigned
to exactly one target and θ(i, j) = 1 if the i-th robot in the exploration cluster is
assigned to the j-th target. Among all assignments we choose the one that maximizes
expected utility minus expected cost:

θ∗ = argmax
θ

∑

(i, j)∈θ

θ(i, j) (U(i, j) − C(i, j)) (1)

The cost and utility of each robot target pair (i, j) can be computed as follows.

Distributed multirobot exploration, mapping, and task allocation 235

Cost If the target is a frontier then the cost is given by the minimum cost path from
the robot’s position ri to the frontier position fk. Minimal cost paths can be computed
efficiently by A∗ search. For hypothesis verification, the cost is given by the minimal
path to a meeting point between the robots plus the cost to establish whether the two
robots actually meet or not.

C(i, j) =
{

dist(ri, fk) if j-th target is frontier fk

verify(ri, cpq) if j-th target is hypothesis cpq
(2)

Utilities If the target is a frontier, then the utility is given by the expected area that
the robot will explore at that frontier. That area is estimated using an estimate of
the size of the unknown area visible from the frontier [3]. If the target is a location
hypothesis, say cpq, then the utility is given by the expected utility of meeting robot rq.
The function coord estimates this utility by measuring the map size of the other robot
plus the expected utility of coordinated exploration versus independent exploration.
Since it is not known whether the other robot is at the location hypothesis, the utility
of meeting is weighted by the probability of the hypothesis, denoted p(cpq).

U(i, j) =
{

explore(ri, fk) if j-th target is frontier fk

p(cpq)coord(rq) if j-th target is hypothesis cpq
(3)

Once the pairwise utilities and costs are computed, we use a linear program solver
to find the optimal assignment. Finding optimal assignments can be performed in
O(mn) time, where m is the number of robots and n is the number of goals [15].
In exploration scenarios involving as many as six robots, we found the overall
computation time for this decision step to be negligible compared to the cost of
exploration (less than 1 second). Using the trade-off between Eq. 2 and Eq. 3, robots
typically move to exploration frontiers and choose a hypothesis as a target only if it
is not too far away and its probability is very high.

3 Multirobot map merging

We will now describe how to build a consistent map from data collected by multiple
robots.

3.1 Estimating relative positions

Before combining multirobot data into a global map, one has to determine the
relative locations of the robots. We now briefly discuss our algorithm for sequentially
estimating the relative locations between pairs of robots; more details can be found
in [12]. To perform this estimation, robots exchange laser range scans and odometry
motion information whenever they are in communication range. Our approach
considers only pairs of robots since the complexity of estimating relative locations
is exponential in the number of robots considered jointly.

We use an adapted particle filter in combination with a predictive model of indoor
environments to determine whether and how the partial maps of two robots overlap.
Existing approaches to robot localization have addressed the problem of localizing a
robot only in a complete map of an environment. Particle filters have been applied

236 R. Vincent et al.

with great success to this problem [10, 11, 20, 28]. The main difference between
localizing a robot in a complete map and in a partial map of an environment is that in
the latter case a robot might not be inside the partial map, which it can enter or exit
at any time. To deal with this problem, the particles in our approach represent entire
robot trajectories, similar to the application of Rao-Blackwellised particle filters for
mobile robot mapping [8, 18, 30]. These trajectories are extended whenever new
odometry and sensor information becomes available. Furthermore, at every time
step, new trajectories are initialized at the entry points, or frontiers, of the partial
map. These trajectories represent the possibility that the other robot might enter the
partial map at any time. Using a predictive model for observations outside the partial
map [14, 40], our approach additionally updates the probability of whether or not the
other robot is currently outside the partial map.

At each iteration of the particle filter, hypotheses for the location of a robot are
extracted from the sample set and then used by the decision-theoretic coordination
technique described in Section 2.2. Once the coordination approach considers a
hypothesis valuable enough, it verifies this hypothesis by assigning it to a robot. If
this robot detects the other robot at the hypothesized position, its data can be merged
into the cluster map, as described next. If, however, the hypothesis turns out to be
incorrect, then the particle filter naturally incorporates such information by giving
the samples at the wrongly hypothesized location extremely low weights. The low
weights result in the removal of these particles in the next resampling step, thereby
increasing the probability of alternative hypotheses.

3.2 SLAM paradigms and local maps

The key problem in mobile robot mapping is caused by the uncertainty in a robot’s
position as it explores an environment. This position uncertainty has to be considered
when generating a map from the observations made by the robot. It is this con-
nection between robot position and map uncertainty that makes the Simultaneous
Localization and Mapping (SLAM) problem computationally demanding [6, 43].
Over the last years, various research groups have developed efficient solutions to the
SLAM problem. These techniques range from splitting maps into submaps [34], to
thin junction-tree approximations [36], to sparse extended information filters [43], to
Rao-Blackwellised particle filters [8, 18, 30, 32], to graph structures modeling spatial
constraints [17, 23, 29]. In this project, we build on the latter class of techniques,
which are appropriate because they can be made to be independent of the coordinate
system in which the constraints are expressed [24], an obvious advantage when
combining local maps that have different coordinate systems. Here, we provide only
an intuitive description of our approach; more details can be found in [17, 24, 29];
a good exposition of general constraint graphs can be found in the Graph-SLAM
algorithm [44].

3.3 Map merging examples

The constraint graph is ideal for integrating map information with uncertain align-
ment. In the case of odometry and local scan matches, the system looks at just a small
local neighborhood to enforce consistency [17], which can be done in constant time.
The more interesting cases are enforcing global consistency involving loop closure in

Distributed multirobot exploration, mapping, and task allocation 237

a local map, and partial map merging. In loop closure, a robot is building a local map
using its own scans and the scans of any colocated robots. At some point, the robot
returns to a position it has previously visited, but accumulated error can cause it to
be misaligned (Fig. 3 left). Here the robot has traversed an interrupted loop, moving
out of the top of the figure before coming back. Once scan matching establishes
links with poses at the beginning of the loop, additional constraints can be added
to the graph. Based on the new constraints, the mapping algorithm determines the
optimal position for all scan locations by maximizing the posterior probability of
all constraints in the graph (see [13]). In practice, the initial solution established by
enforcing local constraints gives a “close enough” solution to start the minimization
process. On the right side of Fig. 3, scan matching has established links with poses
at the beginning of the loop, resulting in a consistent map after minimization of the
constraint system. Because the optimization is efficient, it can be performed online as
the robot explores an environment, causing no more than a second or so of hesitation
as consistency is enforced.

The constraint representation naturally facilitates the merging of partial maps
built by different robots. For example, the upper panels of Fig. 4 show three partial
maps built by three robots. Suppose we can link the pose marked “o” in the left
map to the pose marked “o” in the middle map, and the poses marked “x” in the
middle and the right maps. Then, the three maps can be registered in the same
metric space. This is done by taking each constraint in the middle map and adding
it to the constraint graph underlying the left map, just as if all scans were collected
by a single robot. In addition, we generate an initial solution as input to the global
optimization, by transforming all the poses in the middle map, and making a rigid
transformation so that they line up with the colocated pose at its correct position. At
this point, although the maps are aligned correctly for the colocated poses, they can
differ on poses that are distant from this point—see the lower right panel in Fig. 4. An
additional “zippering” process is performed, in which all the poses that are now close
in the colocated two partial maps are scan-matched for additional constraints. By
consolidating the poses into spatial buckets, this process can take place in order N,
the number of poses in the partial map. Finally, the scans observed by the third robot
are added to this map, using the same process. The occupancy grid map resulting
from optimizing the global constraint graph is shown in the lower left panel in Fig. 4.

Abstractly, the zippering process lets us take any partial maps produced by
robots and put them together, once a common location (colocation) between their
trajectories has been identified. In our system, colocation information is estimated
by the particle filter described in Section 3.1, and verified via actively triggered robot

Fig. 3 Pose constraints before
(left) and after (right) linking
the start and end of a loop.
Minimization of the
constraints after the robot
returned into the hallway to
the right results in consistent
scan locations. Robot
trajectory is shown in gray,
spatial constraints as thin black
lines attached to the trajectory

Current position

Start position

238 R. Vincent et al.

Fig. 4 Upper panels: partial maps built by three robots in the UW Allen Center. The ‘o’s and
‘x’s provide connection points between the left and the middle map, and the middle and the right
map, respectively. Lower panels: the left picture shows the map generated from the three partial
maps by optimization of the global constraint graph generated by “zippering” the maps together
at the connection points (right). Map generated by simply overlaying the partial maps, without any
additional global optimization (only laser scans are shown for clarity)

detections, as described in Section 2. Our map merging technique is transitive in the
sense that if robot A knows robot B’s location inside its partial map and robot B
knows the location of robot C inside its partial map, then it is possible to consistently
merge C’s map into A’s map (possibly after merging B’s map into A’s map). The
reader may notice that merging maps in different orders might lead to slightly
different maps, which is due to the approximations performed by our approach
(sequentially adding spatial constraints might result in different constraint systems).
In practice, however, we found this approach to map merging highly reliable.

4 Search

4.1 Task inference

The primitive actions available to a Centibot are of three types: perceptual, communi-
cation, and motion. Examples include turning a sensor on or off, sending a message,
and moving to or rotating around a particular point. In addition to primitive action
types, there are higher-level action types that can be constructed from the set of
primitives [27].

At the highest level, Centibots’ missions are defined in terms of the sequence
of three high-level stages discussed earlier, over some spatial area of interest. For

Distributed multirobot exploration, mapping, and task allocation 239

any mission, the system must identify the tasks to be performed by the team for
the mission to succeed. As part of the Centibots system, we developed the SPAtial
REasoning (SPARE) that identifies tasks as follows. Given the continuous nature
of the space, the first step, following the mapping stage, involves a process of task
inference, T. Let TG stand for what we will call a topological graph, S to the map
produced in the first phase, R to the resource pool, N to a set of task nodes, and E to
a set of edges connecting elements of N. Then, T is a mapping, T : S × R → TG =
〈N, E〉, where the set R conditions the set of task nodes according to the capabilities
reflected in the resource pool (in terms of the number of available resources and
types of sensors). Once a TG is computed, the distributed dispatcher, discussed in
the next section, allocates resources to each task.

At execution time, individual robots expand the instantiated act types to
an executable form. For example, if the robot is committed to search-
for(robot32,OOI, N85), it will expand that act type to a sequence of move-
ments (after computing a suitable navigation path) to point N85, stop, and then
rotate 360 degrees to search for the OOI. When executed, act types are commonly
referred to as behaviors [1]. Each robot can also combine act types at execution time,
corresponding to blended behaviors [38]. As we will describe, the task inference
process computes such combinations by balancing several constraints.

1) Spatial representation in SPARE The task inference process operates in a
number of steps. First the occupancy map (Fig. 5) produced during the first mission
stage is converted into a TG, such that each vertex of the TG corresponds to a goal
to cover to perform the OOI search, given the sensor capabilities, and the protection
task is reduced to distributing the robots in such a way that each node in N represents
a potentially interesting point to be covered.

Several constraints are imposed on each n ∈ N: (1) clearance: each n must be a
valid position in free space; (2) reachability: a valid trajectory must exist for any pair
of n’s; (3) completeness: the entire area must be covered by some n; and (4) time: task
execution time must be real time.

The algorithm computes the TG by first building a skeleton (Fig. 6) giving
the structure of the free space and then generating a TG from the skeleton such
that each vertex corresponds to a valid goal and each transition corresponds to
a valid trajectory. The skeleton is represented as a Voronoi Diagram, which is a
collection of polygons (regions) generated by a set of points (sites) such that any
point inside one of the regions is closer to that region’s site than to any other site. The
Vornoi Diagram is computed by wavefront expansion in the discretized map [2]. The
complexity of this process is linear with the number of cells in the grid, independent

Fig. 5 Occupancy map
produced by first wave of
mapper robots

240 R. Vincent et al.

Fig. 6 Part of the skeleton

of the shape of obstacles in the environment. The process consists of the following
steps: (1) a wavefront is propagated from some sites (“obstacle” cells in the bitmap),
and (2) a distance d gives the minimum distance between two sites, the cells at the
meeting of two or more waves belonging to the Voronoi Diagram.

From the skeleton we proceed as follows:

1) Vertex identification: cells with one edge or more than three edges are recorded.
2) Edge building between two vertices: the Voronoi components linking the ver-

tices are followed. The length of the component is recorded as a label for the
edge.

3) Graph filtering and simplification: redundant vertices are merged followed by a
reachability filtering process based on the closest distance recorded in each cell
of the diagram.

4) Spatial information: for each edge, we associate the corresponding component
of the Voronoi diagram

An additional step identifies the topological type (Fig. 7) of an area (i.e., whether
an area corresponds to an office or corridor). This is needed for navigation robustness
(speed and sonar parameters must be adjusted when entering a narrow area such as
an office) and for performing the searching and intrusion detection. For each edge,
heuristic determination of the topological type is based on the closest distance to
obstacles and the topological type of the previously classified edges in the neigh-
borhood. Once this process is completed, the topological type (room or corridor) is
added to the label of each edge (Fig. 8).

The next step considers the set of all possible assignments, α, from nodes of TG
to 1 or 0, depending on whether or not a robot is present at a node. We introduce a
cost function, C(α), which is a scalar function of the assignment. Since the number
of assignments is exponential in the number of nodes, we decompose the cost into
subcosts that can be easily calculated, and use an approximate method to determine a

Fig. 7 Part of the topological
graph

Distributed multirobot exploration, mapping, and task allocation 241

Fig. 8 Skeleton components
associated with edges

good assignment. In general, we want costs to be local to a single node, or at least to a
small neighborhood of nodes, so that incremental optimization algorithms will work
well. To this end, we determine the global cost by summing smaller cost functions:

C(α) =
p∑

i=0

wi

n∑

j=0

ci(v j, α)

where n is the number of nodes in TG, and p is the number of cost functions. The wi

are weights that can be changed to reflect the type of mission under consideration.
The weights were chosen empirically, to reflect the different priorities in the two
mission stages of searching for the OOI and protecting the OOI.

Note that, potentially, each local cost function ci could involve the whole as-
signment. In practice, there is only one such cost function, which is the difference
between the number of robots in the assignment, and the desired number of robots
for the mission. This cost is easily computed. We have chosen the following ten local
cost functions, by observing an expert choose assignment solutions and explain the
basis for each.

c1: Corridor occupancy. From TG, we are able to distinguish corridor areas from
office areas. c1 reflects the corridor occupancy. This function is equal to −1 if a
robot is allocated on a vertex with a type “corridor”, 0 otherwise.

c2: Office occupancy. In the same way as c1, c2 reflects office occupancy.
c3: Corridor only. If c1 favors a robot allocation in a corridor it does not prevent

allocations in offices. To have a more exclusive allocation in corridors c3

returns −1 if the allocated vertex is a type “corridor”, 1 otherwise.
c4: Offices only. In the same way c4 is added to prevent allocations in corridors.

Notice that c3 and c4 jointly exclude the allocation of robots to offices.
c5: Sensor coverage: the distance between two robots should not exceed the

maximal sensor range R to assure a consistent coverage of the environment. To
evaluate c5, the shortest distance between any pair of vertices is precomputed
using Johnson’s algorithm. This computation is done just after the construction
of TG. Each time a robot is allocated a vertex v, the distance d to the closest
allocated vertex v′ to v is computed. The value of c5 depends on d and R: an
excessive overlapping or too large of a distance between v and v′ is penalized
by c5. The difference d − R corresponds to discretized intervals. A specific cost
is returned for each interval.

c6: Communication coverage: The position of the OOI must be communicated
to the command center by the robot that found the OOI. The range of
wireless communication is limited. A backbone between the OOI and the
command center must guarantee such communication. To compute c6, each

242 R. Vincent et al.

vertex belonging to the shortest path between the OOI and the command
center is labeled “BB”. c6 equals −1 if the vertex v is labeled “BB”, 1 otherwise.

c7: Protection of the OOI: A strong density of robots must be present in the
neighborhood of the OOI. c7 equals 1 if the distance between the allocated
vertex and the position of the object of value exceeds a predefined threshold,
−1 otherwise.

c8: Visibility : c8 favors allocations on points with high visibility. The largest num-
ber of edges connected to a vertex (NEmax) is recorded during the construction
of TG. c8 is equal to NEmax − NE where NE is the number of edges connected
to the allocated vertex.

c9: Unique path between two areas of the environment: To compute c9, each vertex
corresponding to an articulation point in TG is labeled “AP”. c9 equals 0 if the
allocated vertex is tagged “AP”, 1 otherwise.

c10: Number of robots: The number of available robots to perform a task may vary
(breakdowns, empty batteries). This number should be controlled during the
resource allocation process. At each allocation, the number of allocated robots
NR is updated. c10 returns N∗

R − NR where N∗
R is the desired number of robots.

For each elementary cost function, ci, the above rules are used to compute the
value in the case of an allocation. Similarly, each ci returns a value in the case of a
deallocation (a vertex previously allocated is deallocated).

Each new weight distribution wi defines a new task for the system. For instance, if
we want to send n robots to the corridors to maintain the communication backbone,
only w1, w3, w5, and w9 will have a value different from 0. To send n robots around
the object of interest to maintain the backbone communication, only w5, w7, and w9

are considered.
In the context of our work, two main tasks have been implemented and extensively

tested. The first is OOI searching. Since this search must be done over the entire
environment (and not for a specific topological area), w1, w2, w3, and w4 are equal to
0. Since the OOI position is still unknown, w6 is also equal to 0. All the other weights
are considered. The second task is OOI protection. All intruders must be detected.
In a very large environment, we favor allocations in the corridors to limit the number
of robots, sensor coverage, global visibility and backbone communication. Then, to
perform this task, only w2 and w3 are set to 0.

2)Task resolution We want to find the n-tuple (v1, v2, ...vn) optimizing C with a
weight distribution wi specific to the task. We observed that the initial TG does not
contain enough vertices to provide good coverage of the environment and to obtain
a satisfying solution (no possibility to place a robot along a long edge). To obtain
better coverage of the environment, new vertices are, therefore, added to TG along
the skeleton component of each edge of TG (Figs. 8 and 9).

The search space associated with the optimization of C has a size 2n where n is
the number of vertices in TM (typically, several hundred). In this huge search space
and in the context of our application, our goal is not to find an optimal solution
but an approximate one in a reasonable time (within a few minutes). The quality
of a solution is determined by human expertise: a solution is considered good if no
misallocation is detected by a human analyzing the result.

We used simulated annealing to compute the solution based on a linear cooling
schedule (Tnew = Told − dt), where T is the temperature. The algorithm starts from

Distributed multirobot exploration, mapping, and task allocation 243

Fig. 9 Addition of vertices
along each component

an initial random allocation respecting the desired number of robots if w10 is not null.
While T is greater than 0, n vertices vi of TG are picked randomly. For each vi, Ci

is the current cost locally associated to vi. If vi is allocated (resp. not allocated), C′
i

is the new cost computed by deallocating vi (resp. allocating vi). If δC = C′
i − Ci < 0,

the allocation of vi is changed. If δC ≥ 0, the probability p to change the allocation
of vi depends on T and is computed with p = exp(−δC/T). If the allocation of vi has
been changed, Ci is updated. T is then updated and another cycle is started.

We also tried approaches other than simulated annealing but they were not
successful. For example, using genetic algorithms the initial population turns out
to consist of 10,000 genes, where the number of genes corresponds to the number
of vertices in the graph and the value for a gene (1 or 0) depends on whether it is
allocated or not allocated. The problem we noted was very slow computation time,
and convergence was difficult to control.

Results We generated TGs for environments as large as 24,000 square feet. The
size of the TG in such cases was approximately 500 nodes. During the search task,
the cost functions used were c5, c8, c10; a random solution had an average cost of
7,950 whereas our SPARE system was able to compute a solution with cost 3,200
with an average CPU time of 50 ms. For the protection task, the cost functions used
were c1, c5, c6, c7, c8, c9, c10. The average cost of a random solution was 11,530; the
average cost of a SPARE solution was −1,540, with an average CPU time of 200 ms
on a Pentium III 1 Ghz.

4.2 Distributed task allocation

Having identified the tasks that need to be performed, the robots are then assigned
to tasks and commitments secured for each robot using a process that we call
“dispatching”. Since the Centibots system is intended to operate over multiple robot
power cycles, the dispatcher must also be responsible for reallocating resources.
The system makes extensive use of the Jini [7] architecture. Each robot and each
algorithm is a network service that registers, advertises, and interacts independently
of physical location. Services include a map publisher that aggregates data from
mappers and publishes the map to other robots, the dispatcher that allocates tasks to
robots, and the user interface. The result is a very modular, scalable infrastructure.

Each robot is completely autonomous and is able to reach any node in the map by
using its own local path planner [26]. The metaphor we use to describe the dispatcher
system is that of a taxi dispatcher, where each robot corresponds to an independent
taxi. There are two modes of operation; one is managed and the second is auction
based. In the managed mode, when a robot (taxi) is ready to work, it informs

244 R. Vincent et al.

the dispatcher by communicating its position and battery level; the dispatcher then
assigns the taxi one fare (in our case, a node to navigate to and execute a predefined
behavior). In the auction-based mode, when a robot (taxi) is ready to work, it asks
for the list of jobs available and ranks them using its own preference function (e.g.,
current position, battery level). Once ranked, the robot (taxi) bids with its ranked
job list and the dispatcher allocates jobs in preference order. Subsection 5.5 explains
in more detail the differences in the two modes of operation.

4.3 Team-oriented behavior in Centibots

The question of whether a group of agents is truly collaborating on a task is a difficult
one. Rich belief-desire-intention (BDI) theories, such as SharedPlans, model the
constraints on the evolution of mental states necessary for collaboration [16]. Within
a real-time robotic system, explicitly representing and reasoning with such complex
theories is a major challenge. Given the limited computational resources available on
the sorts of simple robots that make up the Centibots system, it is more reasonable
to use such theories as “blueprints” for design; such an approach is one advocated in
[16], and is the one that we have adopted. SharedPlans is not the only such theory that
could provide such a blueprint, but it is one of the most complete existing theories of
collaboration.

According to SharedPlans, the following summarizes the major elements of
collaboration involving some task (the methods employed by Centibots to address
these requirements are shown in parentheses): (1) A set of agents has been identified
for the task (the dispatcher(s) monitors the robots and also runs auctions to identify
capable agents); (2) the agents agree on a recipe (currently, this is built in to
the behaviors represented and used by each robot within the Saphira system); (3)
agents provide help when needed (the system and individual agents make use of
an intelligent monitoring system, described elsewhere [45], to identify failures and
unexpected events that need to be addressed); (4) agents are committed to the
success of the joint activity (again, supported by the monitoring system and by the
dispatcher in making use of robot resources to ensure survivability of the team); and
(5) agents communicate when they need help (agents incorporate communication
constraints when localizing themselves to maintain team communication).

Another view of team collaboration is that explored by team theory [37] in which
teamwork is identified with agents that are working to maximize social welfare
or team utility. The Centibots system also satisfies this view of collaboration: the
construction of TG was based on the maximization of a weighted set of constraints.

5 Experimental evaluation

We will now describe the evaluation of our exploration system. Additional aspects
of the approach are evaluated in [14, 21, 23, 40].

5.1 Implementation details

1) Coordination and mapping: We implemented the decision-theoretic coordinated
mapping technique described in Section 2.2. Maps are represented compactly

Distributed multirobot exploration, mapping, and task allocation 245

as sets of laser range scans annotated with robot poses and probabilistic links
(scans are recorded only every 50 cm of translation or 30 degrees of rotation).
Within an exploration cluster, each robot integrates its observations into its own
map, and broadcasts the information to the other robots. While most of the
other robots only store this data, the team leader of the cluster integrates all
the sensor information it receives. Thus the team leader, which is chosen as
the robot with the smallest ID, has a complete and consistent map representing
the data collected by all robots in the cluster. This map is used to coordinate
the robots in the cluster. Whenever two clusters meet and merge their maps,
the team leader with the smaller ID becomes the leader of the new exploration
cluster. Frequently, the team leader broadcasts the map to the other robots to
guarantee consistency. This data can be sent very compactly, since only updated
robot poses and links have to be transmitted (scans are already stored by the
other robots). The most complex broadcast follows whenever a robot closes a
loop, since the optimization of the constraint system modifies all robot poses
in a map (Section 3). In practice, broadcasting even this information typically
involves sending only several kilobytes of data, which is well below the capacity
of typical 802.11 wireless communication capacity and can be done in a fraction
of a second.
A crucial situation occurs when a robot moves into the communication range of
a robot from another, possible single-robot, cluster. At this point in time, the ro-
bots exchange all their sensor and motion information and start estimating their
relative locations using a particle filter approach, as described in Section 3.1. Our
current system allocates this task to the team leader. The other robots in the
team do not generate hypotheses. In the worst case, if all robots are in single-
robot clusters and within communication range, the number of particle filters
run on each robot can be as high as the total number of robots minus one.
In simulation experiments, we found this simple approach to work efficiently
enough for as many as six robots. However, it does not scale to very large
teams of robots and more thought must be put into more intelligent allocation
of computation tasks.

2) Dealing with limited communication: Our exploration system achieves robust-
ness to communication loss by enabling every robot to explore the environment
on its own. Whenever a robot in an exploration cluster reaches an assigned
goal point, it keeps on exploring based on its own map until it receives a new
goal point. Thus, if a robot moves outside the communication range of its
cluster, it automatically keeps on building its own map until it gets back into
communication range. After getting back into communication, robots exchange
all the relevant data that had not been yet shared because of the communication
disruption. Such a “sync” operation only involves the communication of rather
small data sets and can typically be done in less than a second. Our approach
is also robust to loss of the team leader, since any other robot in the cluster
can explore on its own or take over the team leader role. In the extreme, if
none of the robots can communicate with each other, each robot will explore
the environment independently of the other robots. The result will still be a
complete map, only built less efficiently.
We added hand shaking and various timeouts to the decision making in order
to make active hypothesis verification robust to loss of communication. This
implementation task turned out to be rather tedious since it required extensive

246 R. Vincent et al.

testing of the system to determine all situations in which one robot might leave
the communication range of another robot. As an example of our approach,
when a robot sends a “Meet” signal to another robot for which it has a good
location hypothesis, it waits for an acknowledgment of this signal. If the acknowl-
edgment is not received after several seconds, the robot keeps on exploring and
reconsiders a meeting only after an additional timeout and the other robot is
back in communication.

5.2 Evaluation experiments

The exploration and mapping system that we have described was evaluated thor-
oughly as part of the Centibots project (involving SRI International, the Univer-
sity of Washington, and ActiveMedia Robotics) within the DARPA Software for
Distributed Robotics (SDR) program. The SDR program was unique in having an
experimental validation conducted by an outside group. For a week in January 2004,
the CentiBots were tested at a 650 m2 building in Ft. A.P. Hill, Virginia. Testing was
done under controlled conditions, with a single operator in charge of the robot team.
All computation was performed using state-of-the-art laptops onboard the robots.
The evaluation criteria for mapping included time to create a map, topological
accuracy, and percent of area mapped. Ground truth for mapping was given by a
manually constructed map (Fig. 10d). Extensive software tuning was circumvented

(a) (b) (c)

Furniture
position

Table
positions

Furniture
position

(d) (e)

Fig. 10 a–c Maps built during three autonomous exploration runs. The maps look almost identical,
even though they were built under very different circumstances. The similarity between the maps
illustrates the robustness of the system and supports our belief that these maps are more accurate
than the hand-built map. d Map overlayed with the ground truth CAD model of the building.
The CAD model was generated by manually measuring the locations and extensions of rooms and
objects. e Map generated from overlaying the three maps shown in a–c. White pixels indicate locations
at which all three maps agree, black pixels show disagreement on occupancy

Distributed multirobot exploration, mapping, and task allocation 247

by limiting access to only half of the experimental area during test runs. In addition,
the developer team was not allowed to visually inspect the complete environment
before the robots were deployed.

The results for five official mapping runs are summarized in Table 1. In all runs,
the robots autonomously generated a highly accurate map of the environment. The
average mapping time for single robot exploration was 24 min; this time was reduced
to 18 min when using two and 15 min when using three robots. It should be noted
that the robots frequently lost communication with the overall control center and
with other robots. In such situations, the robots explored on their own and combined
their sensor data as soon as they were in contact again.

In addition to demonstrating the robustness of our system, an important result of
this evaluation was the fact that the maps generated by the robot team were more
accurate than those built manually by the evaluation team. Figure 10d shows one of
our maps overlayed with the “ground truth” map. As can be seen, the two maps do
not match perfectly (see for instance the two tables in the upper middle room). Three
maps built by our robots in three different evaluation runs are shown in Fig. 10a–c.
These maps look virtually identical, even though they were built independently of
each other, using different trajectories of the robots. To better illustrate the similarity
of these three maps, we overlayed them on top of each other. Figure 10e shows the
pixels at which the overlayed occupancy grid maps are not identical. As can be seen,
the maps almost perfectly line up. Mismatches are only along the obstacles, which is
mostly due to the limited resolution of the maps.

5.3 University of Washington Allen Center Evaluations

We performed additional evaluation runs with three robots in the University of
Washington Allen Center. These runs confirmed the reliability of our system.
Figure 12 illustrates one of these runs. An animation of this run can be found at
http://www.cs.washington.edu/robotics/projects/centibots.

To evaluate the benefits of active colocation, we performed several simulation
runs involving three robots. We used the Saphira robot simulator along with a map
of the first floor of the Allen Center (see Fig. 11). The Saphira simulator accurately
models robots including noise in motion and sensing. A larger environment was
simulated by limiting the velocity of robots to 20 cm/s and the range of detections
to 1.5 m (Fig. 12).

Table 2 summarizes the results of 12 exploration runs, six of which were per-
formed using our active colocation approach (numbers are mean times along with
95% confidence intervals). The other six runs merged maps only when robots met
coincidentally, similar to the approach discussed in [19]. Our map-merging technique
generated accurate, consistent maps in all 12 runs. As can be seen, actively verifying

Table 1 Exploration runs
during the FT. A.P. Hill
evaluation

Run # Mapping robots Mapping time Map area

1 1 22 min 96%
2 1 26 min 97%
3 2 17 min 95%
4 2 19 min 96%
5 3 15 min 97%

http://www.cs.washington.edu/robotics/projects/centibots

248 R. Vincent et al.

Fig. 11 Map used for
simulation experiments

relative location hypotheses significantly reduces the overall exploration time. The
third and fourth columns of the table indicate why our active approach is more
efficient than its passive counterpart. The third column indicates the time until the
first two robots are able to merge their maps, and the fourth column gives the
time until the third robot joins the exploration cluster. As can be seen, by actively

R1R2

R3
R1 verifies hypothesis
for R2’s location

(a)

R1 and R2 met and their
maps are merged

R1R2

R3

(b) R3R2

R1

R2 and R3 meet
coincidentally

(c)

R3R2

R1

R3’s data is merged
into the map

(d)

R3 R1

R2

R1 closes loop

(e)

R3 R1

R2

After loop closure

(f)

Fig. 12 Sequence of partial maps generated during exploration with three robots. Shown is only the
map of robot R1 along with the locations of the other two robots. In this experiment, the robots do
not know their relative start locations. a R2 is in R1’s map and R1 has a high probability hypothesis
for R2’s location. R1 sends R2 a “Stop” command and decides to verify this hypothesis. b After
R1 meets R2 at the hypothesized location, the robots merge their maps. They now coordinate their
exploration. c R2 and R3 meet incidentally and d merge R3’s data into the map. e R1 closes a loop.
f Since all data is integrated into a global constraint graph, R1 is able to correct the odometry error.
The final map of this run is shown in the lower left panel of Fig. 4

Distributed multirobot exploration, mapping, and task allocation 249

Table 2 Exploration with and
without active colocation

Approach Mapping time First meeting Second meeting
[min] [min] [min]

Passive 35.2±3.8 15.0±4.1 25.2±7.9
Active 26.3±2.4 6.2±1.3 16.3±3.8

verifying hypotheses, the robots merge their maps earlier, which results in improved
coordination between their exploration strategies.

We performed further simulation runs in this environment using six robots, which
resulted in faster exploration of 22.8±4.5 min. All these runs resulted in globally
consistent maps. Furthermore, these runs involved active colocation between explo-
ration clusters of more than one robot each.

5.4 Search experimental results

We experimented with several task allocation strategies. The problem is to minimize
the search time, where all robots start from the same position. This problem is in the-
ory similar to a multiple traveling salesman problem with the following differences:
there is no a priori specification of the number of available salesmen and one can
fail at any time during execution. One obvious strategy is to expand the search from
the starting point, choosing the closest point from the current location. The second
obvious strategy is the opposite: the robots attempt to reach the farthest possible job.
The major difference between a real taxi dispatcher and our dispatcher algorithm has
to do with the utility and cost functions. In a real taxi operation, the longer the fare is,
the more money that is made. In our system, all nodes have equal reward and no cost
is incurred. The only metric the system is trying to minimize is the time to complete
a search.

We tested the system in three live, realistic experiments monitored by DARPA.
One experiment involved a 24,000 square foot area.1 The SPARE algorithm pro-
duced a TG with 499 nodes.

To simulate the environment in which the robots are performing the search, we
used a modified version of the Saphira simulator built for the robots. The simulator is
capable of simulating all the robot sensors and actuators (laser range finder, sonars,
motor controls) using the same programs. In addition, the map that the simulator
uses for the environment is the exact map produced by the mapper robots in the first
phase of an actual physical run. As far as the search robots are concerned there is no
difference between a simulated run and an actual run. We used this simulator to run
different task allocation strategies and observe the performance profiles of each of
them. The simulation lacks one key feature, which is the ability to simulate collisions
with other robots. In all simulations, robots are transparent to each other and do not
affect each other. This feature is crucial if we had to make performance predictions of
an algorithm in the real world but we were only interested in relative performance, in
the same setup, among alternative strategies. Figure 13 shows the search completion
time for that experiment: the strategy of choosing the closest job to the robot seems to
be the best one. When the strategy was actually executed, however, the performance

1A video of this experiment is available at the Centibots website: http://www.ai.sri.com/Centibots/
pictures/demo2_small_mov.html.

http://www.ai.sri.com/Centibots/pictures/demo2_small_mov.html
http://www.ai.sri.com/Centibots/pictures/demo2_small_mov.html

250 R. Vincent et al.

Fig. 13 Comparison of all obvious strategies for task allocation. The X axis represents time and the
Y axis represents the number of jobs completed. This data was collected in simulation

was worse than the graph predicted: because of the massive traffic jam created by the
robots. One way to avoid the traffic congestion problem is to disperse the group of
robots such that a robot will remain in the area originally assigned for any subsequent
“local” jobs. This strategy starts like the furthest away strategy for the initial job and
then switches to a closest possible strategy for the follow-on jobs; we refer to this
strategy as clustering. Figure 13 plots the performance of all strategies.

In contrast to the results shown in Fig. 13, which were done in simulation, Fig. 14
illustrates task allocation, using the clustering method, during an official DARPA
physical experiment involving 45 robots in which obstacle avoidance and real execu-
tion were taken into consideration. As one can see, the system demonstrated similar
performance.

Optimizations The physical experiments identified the need for several enhance-
ments to the clustering strategy. The first-needed optimization had to do with the
adhoc network employed by the system.2 The problem is that there is no guarantee
of connectivity between teammates when robots begin their tasks or when a robot
attempts to contact the dispatcher at the completion of a task to get assigned to
a new one. When this happens, a robot will wait for 2 min and then start moving
toward its starting point while checking for network connectivity. In this way, the
robot eventually reacquires network connectivity. One disadvantage to this approach
is that it can result in a great deal of unnecessary travel (and battery usage). We also
observed that if the delay is increased (that is, before the robot decides to return
to the starting point) other robots would tend to come to the vicinity and provide

2We used the Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) protocol [35].

Distributed multirobot exploration, mapping, and task allocation 251

Fig. 14 Graph of task allocation using the clustering method captured during an official experiment
using 45 robots.The X axis represents time and the Y axis represents the number of jobs completed

network connectivity. In the search stage, the system tried to minimize search time;
an idle robot would, therefore, not result in the most efficient search. We improved
the efficiency of idle robots by allowing them to search for nearby jobs. This new
strategy had several advantages: it simplified the computation of the ranked list of
jobs for each robot, it made better use of each robot that traveled outside the current
network zone, it decreased the number of messages for the system, and it gained time
for the robots to expand the network zone.

Since communication can never be guaranteed, a purely centralized dispatcher
has problems associated with it: exchanges with a dispatcher agent can take time.
As described earlier, in the Centibots system every algorithm or agent, including the

Fig. 15 Increasing the number
of robots available for
searching beyond 20 does not
yield a faster completion time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

500 robots
38 robots
30 robots
20 robots
10 robots
15 robots
12 robots

7 robots

252 R. Vincent et al.

dispatcher, is a network service. To avoid reliance on a single centralized dispatcher
service, we designed the dispatcher to support hierarchical dispatching. Each robot
can register with multiple dispatching agents, one of which is considered “preferred”.
Teams of robots are formed by a commander, and for each team, a dispatcher is
selected. Each team (robots plus preferred dispatcher) behaves exactly like the single
team we have described. The human commander assigns a set of jobs to each team
and the teams’ dispatchers distribute those tasks to individual robots. When a robot
has finished its assigned jobs, it notifies the dispatcher, making itself available, and
requests a new set of jobs. If a robot cannot contact its preferred dispatcher or if
its preferred dispatcher does not have more jobs available, the robot automatically
asks the other dispatchers for jobs. The latter option increases redundancy and
reliability while providing a means for load balancing: robots can be reallocated to a
dispatcher that has more work than other dispatchers. This load balancing is achieved
completely autonomously.

5.5 Auctioneer vs. dispatcher

The Centibots allocation system was designed to allow the dispatcher agent to act as
an auctioneer: robots can “bid” on the jobs for which they are the most competent.
We found that this feature, however, could introduce networking problems. The
robots have access to an 11-Mbps shared network; if, at the start of a search, all
100 robots start communicating, they will saturate the auctioneer and the network,
effectively preventing communication (i.e., network flooding would occur). As a
further complication, all the robots start from the same position, and therefore their
bids would all be more or less identical. However, once the robots have started the
search and have dispersed, the auctioneer and the network stabilize and produce
good performance. Since all the robots are starting from the same position and are
executing the same ranking algorithm, one option for avoiding the network flooding
problem would be to have the auctioneer compute the robot’s expected preferences
and then just assign the preferred jobs to the robot. This would decrease the network
congestion by reducing the size of messages (robots do not then need to be aware of
all of the hundreds of jobs that must be allocated). To implement this option, each
robot must periodically pass to the dispatcher/auctioneer its position, battery level,
and orientation. However, it turns out that this information is already circulating in
the system for use by the user interface: for display purposes, each robot is sending
status information to the command control station every second. It was trivial to have
each dispatcher/auctioneer eavesdrop on these update messages, and collect such
information for free (Fig. 15). As an additional improvement, since the dispatcher
knows where its team members are, we have incorporated a very robust real-time
monitoring system developed for past robotic projects that allows the dispatcher
to put jobs back in the queue if a robot is not heard from for an extended period
of time [45].

6 Conclusions

We have presented a distributed approach to mobile robot mapping and explo-
ration. The system enables teams of robots to efficiently explore environments from

Distributed multirobot exploration, mapping, and task allocation 253

different, unknown locations. The robots initially explore on their own, until they
can communicate with other robots. Once they can exchange sensor information
with other robots, they estimate their relative locations using an adapted particle
filter. To estimate whether or not the partial maps of two robots overlap, the
filter incorporates a hidden Markov model that predicts observations outside the
explored area. The parameters of the model are learned from previously explored
environments using a hierarchical Bayesian approach. During exploration, the robots
update their predictive models based on observations in the new environment. Our
experiments indicate that this approach supports map merging decisions significantly
better than alternative techniques.

The estimation of relative positions is integrated seamlessly into a decision-
theoretic multirobot coordinated mapping strategy. To overcome the risk of false-
positive map matches, the robots actively verify location hypotheses using a
rendezvous strategy. If the robots meet at a meeting point, are able to ascertain
their relative locations and can combine their data into a shared map. Mapping and
map merging uses a SLAM technique that models uncertainty by local probabilistic
constraints between the locations of laser range scans. Shared maps are used to
coordinate the robots and to estimate the location of other robots.

The task inference algorithm we have described identifies potential team com-
mitments that collectively balance constraints such as reachability, sensor coverage,
and communication access. We have described a dispatch algorithm for task dis-
tribution and management that assigns resources depending on either task density
or replacement requirements stemming from failures or power shortages. Since the
target deployment environments are expected to lack a supporting communication
infrastructure, robots manage their own network and reason about the concomitant
localization constraints necessary to maintain team communication.

Our mapping and exploration system was evaluated under very strict real-world
conditions. Prior to the evaluation, the developer team was allowed to test its robots
in only half of the test environment. During the evaluation runs, the robots were
forced to rely on their own adhoc wireless network to exchange information. The
robots successfully explored the environment in all four official evaluation runs.
All maps generated during these runs were virtually identical, indicating the high
accuracy and robustness of the system.

Acknowledgements We thank Doug Gage and DARPA for support under the Software for
Distributed Robotics Program (Contract #NBCHC020073). We also thank the evaluation team,
Erik Krotkov and Douglas Hackett, for extraordinary efforts in designing and running the eval-
uation experiments. Part of this research was funded by the NSF under CAREER grant number
IIS-0093406.

References

1. Arkin, R.C.: Behavior-based Robotics. MIT, Cambridge (1998)
2. Barraquand, J., Langlois, B., Latombe, J.C.: Robot motion planning with many degrees of

freedom and dynamic constraints. In: Miura, H., Arimoto, S. (eds.) Robotics Research, vol. 5,
pp. 435–444. MIT, Cambridge (1990)

3. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration.
In: Proc. of the IEEE International Conference on Robotics & Automation (ICRA) (2000)

4. Burgard, W., Moors, M., Stachniss, C., Schneider, F.: Coordinated multi-robot exploration. IEEE
Trans. Robot. 21, 376–386 (2005)

254 R. Vincent et al.

5. Dedeoglu, G., Sukhatme, G.S.: Landmark-based matching algorithm for cooperative mapping by
autonomous robots. In: Proc. of the 5th International Symposium on Distributed Autonomous
Robotic Systems (DARS) (2000)

6. Dissanayake, M.W.M., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to
the simultaneous localization and map building (SLAM) problem. IEEE Trans. Robot. Autom.
17(3), 229–241 (2001)

7. Keith Edwards, W.: Core Jini. Prentice Hall, Englewood Cliffs (2001)
8. Eliazar, A., Parr, R.: DP-SLAM: fast, robust simultaneous localization and mapping without pre-

determined landmarks. In: Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI) (2003)

9. Fenwick, J.W., Newman, P.M., Leonard, J.J.: Cooperative concurrent mapping and localization.
In: Proc. of the IEEE International Conference on Robotics & Automation (ICRA) (2002)

10. Fox, D.: Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res.
(IJRR) 22(12) (2003)

11. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: efficient position estima-
tion for mobile robots. In: Proc. of the National Conference on Artificial Intelligence (AAAI)
(1999)

12. Fox, D., Ko, J., Konolige, K., Limketkai, B., Stewart, B.: Distributed multi-robot exploration and
mapping. In: Proc. of the IEEE. Special Issue on Multi-Robot Systems (2006)

13. Fox, D., Ko, J., Konolige, K., Limketkai, B., Stewart, B.: Distributed multi-robot exploration and
mapping. In: Proc. of the IEEE, vol. 94(7). Special Issue on Multirobot Systems (2006)

14. Fox, D., Ko, J., Konolige, K., Stewart, B.: A hierarchical Bayesian approach to mobile robot map
structure learning. In: Dario, P., Chatila, R. (eds.) Robotics Research: the Eleventh International
Symposium. Springer Tracts in Advanced Robotics (STAR). Springer, New York (2005)

15. Gerkey, B., Mataric, M.: Multi-robot task allocation: Analyzing the complexity and optimality of
key architectures. In: Proc. of the IEEE International Conference on Robotics & Automation
(ICRA) (2003)

16. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artif. Intell. 86(1), 269–357
(1996)

17. Gutmann, J.S., Konolige, K.: Incremental mapping of large cyclic environments. In: Proc. of
the IEEE International Symposium on Computational Intelligence in Robotics and Automation
(CIRA) (1999)

18. Hähnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient FastSLAM algorithm for generating
maps of large-scale cyclic environments from raw laser range measurements. In: Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2003)

19. Howard, A., Parker, L.E., Sukhatme, G.S.: The SDR experience: experiments with a large-scale
heterogenous mobile robot team. In: Proc. of the International Symposium on Experimental
Robotics (ISER) (2004)

20. Jensfelt, P., Wijk, O., Austin, D., Andersson, M.: Feature based condensation for mobile robot
localization. In: Proc. of the IEEE International Conference on Robotics & Automation (ICRA)
(2000)

21. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach
to multi-robot mapping and exploration. In: Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2003)

22. Koenig, S., Tovey, C., Halliburton, W.: Greedy mapping of terrain. In: Proc. of the IEEE
International Conference on Robotics & Automation (ICRA) (2001)

23. Konolige, K.: Large-scale map making. In: Proc. of the National Conference on Artificial Intelli-
gence (AAAI) (2004)

24. Konolige, K.: SLAM via variable reduction from constraint maps. In: Proc. of the IEEE Interna-
tional Conference on Robotics & Automation (ICRA) (2005)

25. Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., Ko, J., Morisset, B.,
Schulz, D., Stewart, B., Vincent, R.: Centibots: very large scale distributed robotic teams. In:
Ang, M., Khatib, O. (eds.) Experimental Robotics: the 9th International Symposium, Springer
Tracts in Advanced Robotics (STAR). Springer, New York (2005)

26. Konolige, K.: A gradient method for realtime robot control. In: Proceedings of IROS (2000)
27. Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The saphira architecture: a design for auton-

omy. J. Exp. Theor. Artif. Intell. 9 (1996)
28. Lenser, S., Veloso, M.: Sensor resetting localization for poorly modelled mobile robots. In: Proc.

of the IEEE International Conference on Robotics & Automation (ICRA) (2000)

Distributed multirobot exploration, mapping, and task allocation 255

29. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton.
Robots 4, 333–349 (1997)

30. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the si-
multaneous localization and mapping problem. In: Proc. of the National Conference on Artificial
Intelligence (AAAI) (2002)

31. Moorehead, S.: Autonomous Surface Exploration for Mobile Robots. PhD Thesis, Carnegie
Mellon University (2001)

32. Murphy, K.: Bayesian map learning in dynamic environments. In: Advances in Neural Informa-
tion Processing Systems (NIPS) (1999)

33. Nettleton, E., Thrun, S., Durrant-Whyte, H.: Decentralised SLAM with low-bandwith commu-
nications for teams of airborne vehicles. In: Proc. of the International Conference on Field and
Service Robotics (2003)

34. Newman, P., Leonard, J.J.: Consistent convergent constant time SLAM. In: Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI) (2003)

35. Ogier, R.G., Templin, F.L., Lewis, M.G.: Topology dissemination based on reverse-path forward-
ing. IETF RFC 3684 (Experimental) (2004)

36. Paskin, M.A.: Thin junction tree filters for simultaneous localization and mapping. In: Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI) (2003)

37. Pynadath, D.V., Tambe, M.: Automated teamwork among heterogeneous software agents and
humans. J. Auton. Agents Multi-Agent Syst. 7, 71–100 (2003)

38. Saffiotti, A., Ruspini, E.H., Konolige, K.: Integrating reactivity and goal-directedness in a fuzzy
controller. In: Proceedings of the 2nd Fuzzy-IEEE Conference (1993)

39. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordina-
tion for multi-robot exploration and mapping. In: Proc. of the National Conference on Artificial
Intelligence (AAAI) (2000)

40. Stewart, B., Ko, J., Fox, D., Konolige, K.: The revisiting problem in mobile robot map build-
ing: a hierarchical Bayesian approach. In: Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI) (2003)

41. Stroupe, A., Ravichandran, R., Balch, T.: Value-based action selection for exploration and
dynamic target observation with robot teams. In: Proc. of the IEEE International Conference
on Robotics & Automation (ICRA) (2004)

42. Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robot.
Res. 20(5) (2001)

43. Thrun, S.: Robotic mapping: a survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial
Intelligence in the New Millenium. Morgan Kaufmann, San Francisco (2002)

44. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT, Cambridge (2005)
45. Wilkins, D.E., Lee, T., Berry, P.: Interactive execution monitoring of agent teams. J. Artif. Intell.

Res. 18, 217–261 (2003)
46. Williams, S.B., Dissanayake, G., Durrant-Whyte, H.: Towards multi-vehicle simultaneous locali-

sation and mapping. In: Proc. of the IEEE International Conference on Robotics & Automation
(ICRA) (2002)

47. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. of the Second Interna-
tional Conference on Autonomous Agents (1998)

48. Zlot, R., Stentz, A., Bernardine Dias, M., Thayer, S.: Multi-robot exploration controlled by a
market economy. In: Proc. of the IEEE International Conference on Robotics & Automation
(ICRA) (2002)

	Distributed multirobot exploration, mapping, and task allocation
	Abstract
	Introduction
	Decision-theoretic coordinated mapping
	Related work
	Decision-theoretic coordination

	Multirobot map merging
	Estimating relative positions
	SLAM paradigms and local maps
	Map merging examples

	Search
	Task inference
	Distributed task allocation
	Team-oriented behavior in Centibots

	Experimental evaluation
	Implementation details
	Evaluation experiments
	University of Washington Allen Center Evaluations
	Search experimental results
	Auctioneer vs. dispatcherQ6

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

