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Abstract It is widely accepted that spatial reasoning plays a central role in artificial
intelligence, for it has a wide variety of potential applications, e.g., in robotics,
geographical information systems, and medical analysis and diagnosis. While spatial
reasoning has been extensively studied at the algebraic level, modal logics for spatial
reasoning have received less attention in the literature. In this paper we propose a
new modal logic, called spatial propositional neighborhood logic (SpPNL for short)
for spatial reasoning through directional relations. We study the expressive power
of SpPNL, we show that it is able to express meaningful spatial statements, we
prove a representation theorem for abstract spatial frames, and we devise a (non-
terminating) sound and complete tableaux-based deduction system for it. Finally,
we compare SpPNL with the well-known algebraic spatial reasoning system called
rectangle algebra.

Keywords Qualitative spatial logic · Deduction systems based on tableaux
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1 Introduction

The principal goal of qualitative spatial representation and reasoning is to capture the
common-sense knowledge about space and provide a calculus to handle with spatial
information without recursing to a often intractable (or unavailable) quantitative
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model. Although a qualitative formalism may provide only approximate solutions,
it copes with the indeterminacy of spatial data and allows inferences based on
incomplete spatial knowledge.

As for other qualitative reasoning formalisms (e.g., temporal reasoning), spatial
reasoning can be viewed under three different, somehow complementary, points of
view. We may distinguish between the algebraic level, that is, purely existential the-
ories formulated as constraint satisfaction systems over jointly exhaustive and mutu-
ally disjoint set of topological, directional, or combined relations; the first-order level,
that is, first-order theories of topological, directional, or combined relations; and
the modal logic level, where a (usually propositional) modal language is interpreted
over opportune Kripke structures representing space. The latter approach, though
computationally less efficient than the algebraic one, it is often very expressive
and allows one to formalize a wide variety of natural language expressions. Spatial
reasoning can be also classified in topological-based and directional-based (in which
we are interested here), depending on the type of relations considered. Topological
relations can be defined between objects (viewed as set of points) without referring
to their shape or their mutual position, while directional-based spatial reasoning (in
this paper, we fix our attention on two-dimensional space) is closely related with
the shape of the considered object, and the reference system becomes important
for the choice of the set of relations. Recent work has been focused on algebraic
systems for mixed relations. For a comprehensive, rather recent survey on the various
formalisms (topological, directional, and combined constraint systems and relations)
see, e.g., [10].

According to [15], we distinguish three different types of reference systems,
namely intrinsic ones, which depends on some inherent properties of a certain object
which serves as relatum, relative ones, which rely on a viewpoint that is distinct from
relatum or the object to be localized, and absolute ones, which, impose a fixed and
immutable orientation (e.g., defined by gravity or some other physical property).
From now on, we focus our attention on a relative reference system.

In this work we present a new modal logic, called spatial propositional neighbor-
hood logic (SpPNL for short), for reasoning about two-dimensional space by means
of directional relations. Regions are approximated by their minimum bounding box,
and four modal operators allow one to move along the x- and the y-axis. We present a
first-order theory for abstract spatial frames, i.e., we prove a representation theorem,
devise a non-terminating sound and complete external tableaux-based deduction
system for SpPNL, and, finally, we study the expressive power of SpPNL by showing,
on the one hand, that it is able to express useful spatial properties and, on the
other hand, by comparing SpPNL with rectangle algebra. It is worth noticing that
comparing our approach with the previous (modal) ones presents some difficulties,
basically because most of the previous work is based on topological relations instead
of directional relations. Nevertheless, the expressive power of SpPNL can be com-
pared with Lutz and Wolter’s modal logic of topological relations [16] over a region
structure in the Euclidean space D × D, where regions are limited to rectangles
(see next section); to some extent, SpPNL can be considered as a fragment of it.
Preliminary results on SpPNL have been presented in [18, 21, 22].

The present work is organized as follows. First, we briefly review the state-of-
the-art on modal logics for spatial reasoning, comparing in some way our approach
to the previous ones, and in Section 3 we formally present syntax and semantics of
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SpPNL. In Section 4 we provide a representation theorem for abstract spatial frames,
while in Section 5 we show some simple examples of application of SpPNL and study
the expressive power of SpPNL by means of a comparison with rectangle algebra.
Finally, in Section 6 we devise a non-terminating tableaux-based deduction system
for it, before concluding.

2 Modal logics for spatial reasoning

In this section we briefly review the literature on modal logics for spatial reason-
ing, and we compare the approach of SpPNL to spatial reasoning with the one of
previous work.

In the context of modal logics for spatial reasoning, we mention Bennett’s work
[6, 7], later extended by Bennett himself, Cohn, Wolter and Zakharyaschev in [5].
In [6], Bennett proposes to interpret regions as subsets of a given topological space,
and shows how it is possible to exploit both the classical propositional calculus and
the intuitionistic propositional calculus, together with certain meta-level constraint
concerning entailments between formulas, for reasoning about space with topologi-
cal relations. In such a way, a spatial topological constraints problem can be solved
by checking the satisfiability of a logical formula. In [7] Bennett extends his approach
by the use of modal languages. Bennett takes into consideration the modal logic S4,
and interprets the modal operator in a topological sense, as the interior operator of a
given topology. Moreover, in the same work, a modal convex-hull operator is defined
and studied, by translating a first-order axiomatization into a modal schemata. In [5],
the authors consider a multi-modal system for spatio-temporal reasoning, based on
Bennett’s previous work. Further research on this issue can be found in [24], where
Nutt gives a rigorous foundation of the translation of topological relations into modal
logic, introducing generalized topological relations. It is worth to point out that
Bennett, Cohn, Wolter, Zakharyaschev, and Nutt’s results basically exploit the finite
model property and decidability of the classical propositional logic, the modal logic
S4, and of some of their extensions. For a recent investigation concerning the major
mathematical theories of space from a modal standpoint, see [2].

Unlike Bennett, Cohn, Wolter and Zakharyaschev’s work, an important attempt
to exploit the whole expressive power of modal logic for reasoning about space
(instead of using it for constraint solving) is that of Lutz and Wolter’s modal logic for
topological relations [16]. Lutz and Wolter present a new propositional modal logic,
where propositional variables are interpreted in the regions of topological space, and
references to other regions are enabled by modal operators interpreted as topological
relations.

There are many possible choices for the set of relations. For example, the
set RCC8 [11, 25] contains the relations equal (eq), disconnected (di), externally
connected (ec), tangential proper part (tpp), inverse of tangential proper part (tppi),
non-tangential proper part (ntpp), inverse of non-tangential proper part (ntppi), and
partially overlap (po). Among other possibilities, we mention a refinement of RCC8
into 23 relations, and the set RCC5, obtained from RCC8 by keeping the relations
eq and po, but coarsening the relations tpp and ntpp into a new relation (proper
part), the relations tppi and ntppi into a new relation (inverse of proper part), and the
relations ec and dc into a new relation disconnected (see e.g. [10, 12] for a detailed
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discussion). Regions are defined as non-empty regular closed subsets of a topological
space with no further assumption and Lutz and Wolter analyze the computational
properties and the expressive power of the modal logic for different interpretations.
They consider the Euclidean space R

n (n > 1), where R is the set of real numbers,
with different topologies, among others: (1) the set of all non-empty closed subsets
of topological space; (2) the set of all (hyper)-rectangles; (3) substructures of the
above region structures. The modal logic for topological relations presents a bad
computational behavior, and it turns out to be generally undecidable. For the matter
of a comparison with the present work, Lutz and Wolter have shown that the
satisfiability problem for the modal logic of RCC8 relations when the set of basic
regions is exactly the set of all (hyper)-rectangles on R

2 is not even recursively
enumerable, which means that it is not even possible to devise a semi-decidability
method for it.

As for directional relations we mention Venema’s compass logic introduced in [26]
and further studied in [19]. Compass logic features four modal operators, namely �,
�, �, and �, and propositional variables are interpreted as points in the Euclidean
two-dimensional space. The modalities are interpreted as the natural north, south,
east, and west relations between two given points. For example, given a point with
coordinates (dx, dy) such that p holds on it, one is able to reach a point with
coordinates (d′

x, dy), where dx < d′
x, such that q holds on it, by the formula p ∧ �q.

In [19], Marx and Reynolds show that compass logic is undecidable even in the
class of all two-dimensional frames. Moreover, Güsgen [13], and Mukerjee and
Joe [17] introduced rectangle algebra (RA), which has later been studied by Balbiani,
Condotta, and Del Cerro [3, 4]. RA allows one to express any relation between
two rectangles in an Euclidean space D × D. To our knowledge, the set of all 169
relations between any two rectangles has not been studied at the modal logic level.
Nevertheless, it easy to see that the natural propositional modal logic based on RA is
not recursively enumerable at least when interpreted in the same classes of frames as
Lutz and Wolter’s modal logic of topological relations. Indeed, by a straightforward
translation it is possible to express the RCC8 relations in RA, which means that the
modal logic of topological relations in the topological space of all rectangles on some
Euclidean space D × D is a fragment of the modal logic based on RA.

3 Syntax and semantics of SpPNL

Spatial propositional neighborhood logic can be considered as the natural two-
dimensional extension of an interval-based temporal logic called propositional neigh-
borhood logic (PNL) [14]. The language for PNL contains a set of propositional
variables AP , the propositional logical connectives ¬ and ∨, and the modalities 〈A〉
and 〈A〉, the dual operators of which will be denoted by [A] and [A], respectively.
The remaining classical propositional connectives can be considered as abbrevia-
tions. Formulas are recursively defined as follows:

φ = p | ¬φ | φ ∨ ψ | 〈A〉φ | 〈A〉φ.

The semantics of PNL is given in terms of linear-time models, over which are
defined intervals of the type [d, d′], and the modalities 〈A〉 and 〈A〉 correspond
to Allen’s relations met by and meets, respectively (see [1]). PNL has been deeply
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studied (see, e.g, [14, 20]); as we will see, we will be able to adapt some of the results
concerning PNL to the spatial case.

The language for SpPNL consists of a set of propositional variables AP , the
logical connectives ¬ and ∨, and the modalities 〈E〉, 〈W〉, 〈N〉, 〈S〉. The other logical
connectives, as well as the logical constants � and ⊥, can be defined in the usual way.
SpPNL well formed formulas, denoted by φ,ψ, . . ., are recursively defined as follows
(where p ∈ AP):

φ = p | ¬φ | φ ∨ ψ | 〈E〉φ | 〈W〉φ | 〈N〉φ | 〈S〉φ.

Given any two linearly ordered sets H = 〈H,<〉 and V = 〈V,<〉, we call spatial
frame the structure F = (H × V), and we denote by O(F) the set of all objects
(rectangles), that is, O(F) = {〈(h, v), (h′, v′)〉 | h < h′, v < v′, h, h′ ∈ H v, v′ ∈ V}. The
semantics of SpPNL is given in terms of spatial models of the type M = 〈F, O(F),V〉,
where F is a spatial frame, and V : O(F) 
→ 2AP is a spatial valuation function. The
truth relation for a well formed SpPNL-formula φ in a model M and an object
〈(h, v), (h′, v′)〉 is given by the following clauses:

• M, 〈(h, v), (h′, v′)〉 � p if and only if p ∈ V(〈(h, v), (h′, v′)〉), for any p ∈ AP ;
• M, 〈(h, v), (h′, v′)〉 � ¬φ if and only if it is not the case that M, 〈(h, v), (h′, v′)〉

� φ;
• M, 〈(h, v), (h′, v′)〉 � φ ∨ ψ if and only if M, 〈(h, v), (h′, v′)〉 � φ or M, 〈(h, v),

(h′, v′)〉 � ψ ;
• M, 〈(h, v), (h′, v′)〉 � 〈E〉φ if only if there exists h′′ ∈ H such that h′ < h′′, and

M, 〈(h′, v), (h′′, v′)〉 � φ;
• M, 〈(h, v), (h′, v′)〉 � 〈W〉φ if only if there exists h′′ ∈ H such that h′′ < h, and

M, 〈(h′′, v), (h, v′)〉 � φ;
• M, 〈(h, v), (h′, v′)〉 � 〈N〉φ if only if there exists v′′ ∈ V such that v′ < v′′, and

M, 〈(h, v′), (h′, v′′)〉 � φ;
• M, 〈(h, v), (h′, v′)〉 � 〈S〉φ if only if there exists v′′ ∈ V such that v′′ < v, and

M, 〈(h, v′′), (h′, v)〉 � φ;

As usual, we denote by [X] the dual operator of the modality 〈X〉, where 〈X〉 ∈
{〈E〉, 〈W〉, 〈N〉, 〈S〉}, and by M � φ the fact that φ is valid on M.

In order to give a first idea of the expressive power of SpPNL, we list hereby some
simple valid formulas:

1. p → [E]〈W〉p (i.e., if p holds in the current rectangle, then no matter how we go
on some rectangle to the east of the current one, we are always able to go ‘back’
to p);

2. (〈W〉〈W〉� ∧ 〈E〉〈W〉p) → p ∨ 〈W〉〈E〉〈E〉p ∨ 〈W〉〈W〉〈E〉p (i.e., the horizontal
domain is linearly ordered);

3. 〈N〉〈E〉p → 〈E〉〈N〉p (i.e., the relations N and E are commutative).

In the rest of this section, we prove that the satisfiability problem for SpPNL is
undecidable. To this end, we prove that the satisfiability problem for compass logic
[26], which has been shown to be undecidable [19], can be polynomially reduced
to the one for SpPNL. As recalled in the previous section, compass logic features
four modal operators, namely �, �, �, and �, and propositional variables are
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interpreted as points in the Euclidean two-dimensional space. Well formed formulas,
here denoted by f, g, . . ., can be obtained by the following abstract syntax:

f = p | ¬ f | f ∨ g | � f | � f | � f | � f.

The modalities are interpreted as the natural north, south, east, and west relations
between two given points. For example, given a point with coordinates (dx, dy) such
that p holds on it, one is able to reach a point with coordinates (d′

x, dy), where
dx < d′

x, such that q holds on it, by the formula p ∧ �q. Usually, compass logic is
interpreted on the Euclidean space D × D, where D = 〈D, <〉 is any linearly ordered
set; nevertheless, in the context of the following proof, for both SpPNL and compass
logic it does not matter whether or not the spatial frame is built from the Cartesian
product of two identical sets or not. Thus, for reasons of simplicity, in the rest of
this section, we will work under the hypothesis that both logics are interpreted over
an Euclidean space of the type D × D, and we will denote points by the symbols
dx, dy, d′

x, . . . in both cases.
Consider the following translation τ from compass logic formulas to SpPNL-

formulas:

• τ(p) = p;
• τ(¬ f ) = ¬τ( f );
• τ( f ∨ g) = τ( f ) ∨ τ(g);
• τ(� f ) = 〈N〉τ( f );
• τ(� f ) = 〈E〉τ( f );
• τ(� f ) = [N]〈S〉〈S〉τ( f );
• τ(� f ) = [E]〈W〉〈W〉τ( f ).

Now we prove that for any compass logic formula f , we have that f is satisfiable
if and only if the SpPNL-formula τ( f ) is satisfiable. We consider a particular class
of SpPNL-models. Given a finite set of propositional variables AP and any SpPNL-
model M = 〈F, O(F),V〉, where F is a spatial frame of the type D × D; then we say
that M is upright local (with respect to AP) if, for every propositional letter p ∈ AP
and every object 〈(d′

x, d′
y), (dx, dy)〉, we have that p ∈ V(〈(d′

x, d′
y), (dx, dy)〉) if and

only if p ∈ V(〈(d′′
x, d′′

y), (dx, dy)〉) for all d′′
x < dx and d′′

y < dy. This class of SpPNL-
models features a uniform valuation of the propositional letters in AP over all
objects having the same upright corner. Such a upright locality constraint is definable
in the language of SpPNL by the following formula:

�(AP) = ∧
p∈AP′

(
p ↔ ([E]〈S〉[N]px ∧ [N]〈E〉[W]py)

∧ ¬p ↔ ([E]〈S〉[N]¬px ∧ [N]〈E〉[W]¬py)

where, for every p ∈ AP, we extended the language with new propositional variables
px and py. The length of �(AP) is polynomial in |AP|.

Lemma 1 Given a SpPNL-model M and a finite set of propositional variables AP′, if
M,� �(AP), then M is upright local with respect to AP.

Let AP| f be the set of all propositional variables occurring in f . By using a
technique similar to the one which can be found in [8], it is possible to prove that
τ( f ) is satisfiable over upright local SpPNL-models if and only if f is satisfiable,
by providing a suitable translation between compass logic models and upright local
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SpPNL-models, and vice versa (notice that the universal operator is definable in
SpPNL, as we will see in the Section 5).

Lemma 2 If f is any compass logic formula, then f is satisfiable if and only if τ( f ) is
satisfiable in the class of all upright local SpPNL-models.

Theorem 3 The satisfiability problem for SpPNL is not decidable.

4 Representation theorem for spatial frames

In this section we consider the problem of finding a sound and complete first-
order representation for spatial frames. As we have recalled in the Introduction,
in the literature of spatial reasoning some attention has been given to (existential)
theories such as rectangle algebra and region connection calculus; nevertheless, for
some reason, no representation theorems have been shown for spatial frames (based
on directional relations) so far. Some results on this topic can be found in [16], and
in [3].

Let us start with some useful definitions.

Definition 4 An abstract spatial frame (ASF) is a triple ASF = 〈U, E, N〉, where U
is any non-empty set, and E, N ⊆ U × U .

Abstract spatial frames are first-order structures built up from a non-empty
universe U and two binary relations E (east) and N (north). The main problem
is now to provide opportune first-order conditions on E and N in order to make
an abstract spatial frame isomorphic to a (concrete) spatial frame defined as in the
previous section. Elements of U will be called (abstract) objects. Intuitively, E (resp.,
N) correspond to the RA-relation (mi, e) [resp., (e, mi)]. As observed in [3], these
two relations must be sufficient to express any other RA-relation.

Definition 5 Let ASF = 〈U, E, N〉 be an abstract spatial frame. Then, the relation
W ⊆ U × U is defined as follows: ∀x, y(xWy ↔ yEx), and the relation S ⊆ U × U is
defined as follows: ∀x, y(xSy ↔ yNx).

Now, let R1 = EW ∪ EEW ∪ EWW, R2 = SN ∪ SNN ∪ SSN, and consider the
following first-order conditions:

• Same objects have the same endpoints:

A1) ∀x, y(∃z(xEz ∧ zWy) → ∀z(xEz → zWy));
A2) ∀x, y(∃z(xWz ∧ zEy) → ∀z(xWz → zEy));
A3) ∀x, y(∃z(xNz ∧ zSy) → ∀z(xNz → zSy));
A4) ∀x, y(∃z(xSz ∧ zNy) → ∀z(xSz → zNy));

• Abstract spatial frames are plane:

B1) ∀x, y, z[xEy ∧ xEz → y = z ∨ ∃w(∀k(zEk → yEw ∧ wEk) ∧ ∀k(kWw →
kWz∧wWy))∨∃w(∀k(yEk→zEw ∧ wEk) ∧ ∀k(kWw → kWy ∧ wEz))];
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B2) ∀x, y, z[xWy ∧ xWz → y = z ∨∃w(∀k(zWk → yWw ∧wWk)∧∀k(kEw →
kEz∧wEy))∨∃w(∀k(yWk→zWw ∧ wWk) ∧ ∀k(kEw → kEy ∧ wEz))];

B3) ∀x, y, z[xNy ∧ xNz → y = z ∨ ∃w(∀k(zNk → yNw ∧ wNk) ∧ ∀k(kSw →
kSz ∧ wSy)) ∨ ∃w(∀k(yNk → zNw ∧ wNk) ∧ ∀k(kSw → kSy ∧ wNz))];

B4) ∀x, y, z[xSy ∧ xSz → y = z ∨ ∃w(∀k(zSk → ySw ∧ wSk) ∧ ∀k(kNw →
kNz ∧ wNy)) ∨ ∃w(∀k(ySk → zSw ∧ wSk) ∧ ∀k(kNw → kNy ∧ wSz))];

• Relations are pseudo-transitive:

C1) ∀x, y, z, w(xEy ∧ yEz ∧ zEw → ∃k(xEk ∧ kEw));
C2) ∀x, y, z, w(xWy ∧ yWz ∧ zWw → ∃k(xWk ∧ kWw));
C3) ∀x, y, z, w(xNy ∧ yNz ∧ zNw → ∃k(xNk ∧ kNw));
C4) ∀x, y, z, w(xSy ∧ ySz ∧ zSw → ∃k(xSk ∧ kSw));

• Abstract objects have non-zero area:

D1) ∀x, y, z, w(xEy ∧ yWz ∧ zWw → x �= w);
D2) ∀x, y, z, w(xNy ∧ ySz ∧ zSw → x �= w);
D3) ∀x, y, z, w(xWy ∧ yEz ∧ zEw → x �= w);
D4) ∀x, y, z, w(xSy ∧ yNz ∧ zNw → x �= w);

• Abstract spatial frames are normal:

E1) ∀x, y(∀z(zEx ↔ zEy) ∧ ∀z(zWx ↔ zWy) ∧ ∀z(zNx ↔ zNy) ∧ ∀z(zSx ↔
zSy)) → x = y;

• Abstract spatial frames are standard (there are no ‘holes’):

F1) ∀x, y, z(xEy ∧ yNz → ∃k(xNk ∧ kEz));
F2) ∀x, y, z(xWy ∧ ySz → ∃k(xWk ∧ kSz));

• Abstract spatial frames are connected:

G1) EW(R2)∪EEW(R2)∪EWW(R2) and W E(R2)∪W EE(R2)∪WW E(R2)

are the universal relation on U ;
G2) SN(R1) ∪ SNN(R1) ∪ SSN(R1) and NS(R1) ∪ NSS(R1) ∪ NNS(R1) are

the universal relation on U .

Theorem 6 (Representation theorem) Every abstract spatial frame such that condi-
tions from A to E are respected is isomorphic to a (concrete) spatial frame.

Proof Let ASF = 〈U, E, N〉 any ASF such that it respects all given conditions. We
construct an underlying point-based spatial frame F = (H × V) and the set of all
objects on that frame.

First, we have to define the endpoints of abstract objects. Let u be any abstract
object for the universe U . We identify the minimum horizontal coordinate as follows:

hmin(u) = {x ∈ U | xW Eu},
and the minimum vertical coordinate as follows:

vmin(u) = {x ∈ U | xSNu}.
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Similarly, we can define functions hmax(u) and vmax(u). Now, we have to relate
somehow horizontal and vertical coordinates. In order to do that, we first observe
that the relations EW, W E, NS, and SW are equivalence relations in U (by con-
ditions A). This means that Phmin = {[u]hmin(u) | u ∈ U}, Phmax = {[u]hmax(u) | u ∈ U},
and their vertical counterparts are partitions of U . Now, it is not difficult to see that
the functions λh and λv , defined as follows:

λ
([u]hmax(u)

) = [x]hmin(x)

where uEx, and

λ
([u]vmax(u)

) = [x]vmin(x)

(where uNx), are isomorphisms. Thus we restrict our attention to the set of minimum
coordinates (both in the horizontal and the vertical sense). We now define the sets
H = Phmin (and we denote its elements by h, h′, . . .) and V = Pvmin (v, v′, . . .), and,
for each one of them, a relation < as follows:

h < h′ ↔ hW EEh′,

and

v < v′ ↔ vSNNv′.

The relations < are total ordering relations; we now restrict our attention on
the relation < defined in the set H, since the considerations for V are completely
analogous. In order to show that < totally orders H we have to prove that:

1. < is irreflexive. Suppose that h < h for some h ∈ H; this means that there
is some u ∈ U such that [u]hmin(u)W EE[u]hmin(u), that is, uW EEu, which is in
contradiction with conditions D;

2. < is transitive. Suppose that h < h′ and h′ < h′′ for some h, h′, h′′ ∈ H; this
means that for some u, v, w ∈ U it holds that [u]hmin[u]W EE[v]hmin[v], and that
[v]hmin[u]W EE[w]hmin[v], that is, uW EEv and vW EEw; by conditions A, we have
that EW E ⊆ E, and, thus, it holds that uW EEEw; by conditions C, it results that
uW EEw, that is, [u]hmin(u)W EE[w]hmin(w), and, finally, h < h′′;

3. < is linear. Suppose that h < h′ and that h < h′′ for some h, h′, h′′ ∈ H; this
means that for some u, v, w ∈ U it holds that [u]hmin[u]W EE[v]hmin[v], and that
[u]hmin[u]W EE[w]hmin[v], that is, uW EEv and uW EEw; now, by conditions B, for
some t ∈ U it must be the case that uWt and that there are t ′, t ′′ ∈ U with tEt ′,
tEt ′′, t ′ Ev, and t ′′ Ew; by conditions B, we have three possibilities: (1) t ′ = t ′′,
which implies, by conditions A, that u = w, and, thus, that hmin(v) = hmin(w),
that is, h′ = h′′; (2) there exists some abstract object z such that t ′ Ez and that z for
each abstract object k, zEk ↔ t ′′ Ek, that is, zEw, which implies that vEt′, t′ Ez,
and zEw, i.e. vW EEw, or, in other words, hmin(v) < hmin(w) by definition; (3)
similarly to (2), but exchanging the roles of t ′ and t ′′;

4. < is total. Directly from conditions G.

Finally, let H = 〈H,<〉 and V = 〈V,<〉, and let O(F) = {〈(h, v), (h′, v′)〉 | h < h′
v < v′, h, h′ ∈ H v, v′ ∈ V}. We have to show that O(F) is isomorphic to U . Consider
the mapping μ : U 
→ O(F) defined as

μ(u) = 〈([u]hmin(u), [u]vmin(u)

)
,
(
λ

([u]hmax(u)

)
, λ

([u]vmax(u)

))〉
.
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Clearly [u]hmin(u) < [u]hmax(u), and [u]hmin(u) < [u]hmax(u), which means that 〈([u]hmin(u),

[u]vmin(u)), (λ([u]hmax(u)), λ([u]vmax(u)))〉 is a well defined rectangle in O(F). We
have to show that μ is an isomorphism. (1): μ is injective. Let μ(u)=μ(v);
now, 〈([u]hmin(u), [u]vmin(u)), (λ([u]hmax(u)), λ([u]vmax(u)))〉 must be equal to 〈([v]hmin(v),

[v]vmin(v)), (λ([v]hmax(v)), λ([v]vmax(v)))〉 (component by component). By definition,
for all t, t′ such that uEt and vEt′ (resp., W, N, S), we have that [t]hmin[t] = [t′]hmin[t′].
By conditions A, we have that u and v ‘see’ the same abstract objects on each of
the four directions, and, by conditions E, u = v. (2): μ is surjective. Let h, h′ ∈ H,
v, v′ ∈ V, and let 〈(h, v), (h′, v′)〉 ∈ O(F), and we have to show that there exists some
u ∈ U such that μ(u) = 〈(h, v), (h′, v′)〉. If 〈(h, v), (h′, v′)〉 ∈ O(F), then h < h′ and
v < v′, and there exist t, s, w, z ∈ U such that, [t]hmin(t) = h,[s]hmin(s) = h′,[w]vmin(w) =
v,[z]vmin(z) = v′. By definition, we have that tW EEs and wSNNz, which implies the
existence of some t′, w′ ∈ U such that tW Et′, t′ Es, wSNw′, and w′Nz. Now, from the
existence of t′, w′, we can show that it is possible to go from t′ to w′ (and the other way
around) through opportune elements of U (by exploiting conditions G, that is, the
connectedness of the abstract spatial frame), and to deduce the existence of a certain
object u ∈ U such that [u]hmin(u) = h,[u]hmax(u) = h′, [u]vmin(u) = v, [v]vmax(u) = v′ (by
conditions F), which is exactly the abstract object we are searching for (3): μ respects
the relations. This is immediate by the definitions. ��

5 Simple applications and expressive power of SpPNL

As we will see below, in SpPNL only 25 out of 169 (see Fig. 1) possible basic RA-
relations are directly expressible. Anyway, very natural relations such as southeast or
northwest can be easily expressed; for example, we can define the modal operator for
southeast as follows:

〈SE〉φ = 〈E〉〈S〉φ ∨ 〈E〉〈S〉〈S〉φ ∨ 〈E〉〈E〉〈S〉φ
∨〈E〉〈E〉〈S〉〈S〉φ.

Notice that the above definition captures any region to the south-east of the
current one, no matter if their MBB meet (on either of the two axes) or not. Also,
in SpPNL it is possible to express 2 out of the 8 RCC8 topological relations (namely
disconnected and equal) in the topological space of all rectangles.

As another example, we can translate in SpPNL a natural language statement
borrowed from the geographical context such as: suppose that at the southeast of the
current region there exists a region containing water (w) at the northeast of which there
are no trees (t) at all; so we can deduce that there exists at least one region at the east of
the current one (with no side in common with it) with no trees. Such a statement can
be expressed by means of the following (valid) formula:

〈S〉〈E〉(w ∧ 〈E〉� ∧ ¬〈N〉〈E〉 t) → 〈E〉〈E〉¬t.

Now we focus our attention on the so-called rectangle algebra (RA). The con-
sidered objects in RA are rectangles whose sides are parallel to the axes of some
orthogonal basis in a bidimensional Euclidean space D × D, where D = 〈D, <〉 is a
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Fig. 1 The basic relations between two rectangles

linearly ordered set.1 Since we are going to compare SpPNL with RA, for simplicity
of notation we consider that SpPNL is interpreted over a spatial frame D × D

generated by any linearly ordered set 〈D,<〉, and we denote points by dx, d′
x, . . .

when they belong to the x-axis, and by dy, d′
y . . . for the y-axis. A basic RA-relation

(or, simply, a basic relation) between two rectangles O1 and O2 is a pair R = (ri, r j),
where ri and r j (called components) are Allen’s interval relations. As standard,
we denote by r−1 the inverse of a basic Allen’s relation r. As for example, if the
rectangle O1 is entirely included into the rectangle O2, and no side of O1 touches
any of the sides of O2, then the relations between O1 and O2 is (d, d), where d
represents Allen’s relation during. In this way, there are 132 = 169 possible basic
relations between any two given rectangles, as shown in Fig. 1. For RA, the basic
operations of inverse, composition, and intersection are defined. A relation R̂ in RA
is a set {R1, R2, . . . , Rn}, where, for each i, Ri is a basic RA-relation. The set of basic

1It is worth noticing that original results concerning rectangle algebra, such as consistency checking
of a network of constraint, have been given for a spatial frame of the type R × R, where R is the set of
real numbers; nevertheless, RA-relations and the problem of consistency of a network of constraint
can be defined for any spatial frame.
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RA-relations is denoted by B; thus, any RA-relation belongs to the set 2B, which
means that there are 2169 possible relations.

Definition 7 Let O(F) be the set of all rectangles defined in the Euclidean space
F = D × D. We call RA-constraint the expression (Oi R̂ Oj), where Oi, Oj ∈ O(F),
and R̂ is any RA-relation. A RA-network N is a pair N = 〈O,R〉 where O is a set
of variables which take values over O(F) and R is a set of binary RA-constraints
between elements of O.

Given any RA-network N, the main problem is to know whether it is or not
consistent.

Definition 8 A RA-network 〈O,R〉 is said to be consistent if and only if there exists
a concrete instance of the whole set O such that it respects any constraint in R.

In simple words, an RA-network is said to be consistent if and only if the spatial
information represented by N is coherent. Generally speaking, the consistency
problem is NP-complete [17]; Balbiani, del Cerro, and Condotta [3, 4] study tractable
sub-fragments of RA.

Now, we will show how it is possible to check the consistency of any given RA-
network N by checking the satisfiability of a SpPNL-formula φ(N); to this end, we
first show how it is possible to express any (basic and non-basic) relation in SpPNL.
Consider the following shorthand:

hor(φ) = [W][W][E]φ ∧ [W][E][E]φ ∧ [E][E][W]φ ∧ [E][W][W]φ.

The operator hor(φ) states that the formula φ is satisfied by any rectangle
〈(h, v), (h′, v′)〉 such that v, v′ are the same as the current rectangle. Similarly, an
operator ver(φ) can be defined. This means that in SpPNL it is possible to express
the difference operator:

[�=](φ) = hor(ver(φ) ∧ φ),

and, thus, to simulate the universal modality and nominals:

u(φ) = φ ∧ [�=]φ and n(p) = p ∧ [�=](¬p),

where n(p) states that p holds in the current rectangle and nowhere else. In the
following, we will use simulation of nominals in the following in order to translate
basic RA-relations into SpPNL-formulas. For a given set of propositional letters AP ,
and set of object variables O1, O2, . . ., we define the set of propositional letters AP ′

as an extension of AP which contains at least a new propositional letter p(Oi) for
any object variable Oi. Now, for a generic RA-constraint (Oi R̂ Oj), where Oi, Oj

are object variables, and R̂ is a RA-relation, we want to write a formula φR̂(Oi, Oj)

such that it respects the RA-constraint (Oi R̂ Oj).

Definition 9 Given any RA-constraint (Oi R̂ Oj), we say that the SpPNL-formula
φR̂(Oi, Oj) respects (Oi R̂ Oj) if and only if for any spatial model M = 〈F, O(F),V〉,
we have that M, 〈(dx, dy), (d′

x, d′
y)〉 � φR̂(Oi, Oj) if and only if, if it is the case that
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p(Oi) ∈ V(〈(dx, dy), (d′
x, d′

y)〉), then we have that p(Oj) ∈ V(〈(d′′
x, d′′

y), (d
′′′
x , d′′′

y )〉) for

some rectangle 〈(d′′
x, d′′

y), (d
′′′
x , d′′′

y )〉 such that 〈(dx, dy), (d′
x, d′

y)〉 R̂ 〈(d′′
x, d′′

y), (d
′′′
x , d′′′

y )〉.

To begin with, we consider basic relations. It turns out that 169 different formulas
are needed in order to translate all the basic RA-relations. We can divide such
relations into three groups, as follows.

Direct relations These are the 25 basic relations that can be directly expressed in
SpPNL (see Fig. 2). For example, we have that the basic constraint (O1 (e, e) O2)

can be expressed by the formula p(O1) → p(O2). As another example, the basic
constraint (O1 (b , b) O2) can be expressed by the formula p(O1) → 〈E〉〈E〉〈N〉〈N〉
p(O2).

Lemma 10 For any direct basic RA-constraint (Oi R Oj), there exists a SpPNL-
formula φR(Oi, Oj) that respects (Oi R Oj).

Partially indirect relations A partially indirect RA-relation R = (ri, r j) is any basic
RA-relation such that exactly one of its components can be directly expressed in
SpPNL. Focusing the attention onto a single axis, there are five Allen’s relations

Fig. 2 The basic relations between two rectangles directly expressible in SpPNL
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expressible in SpPNL, namely {e, m, b , m−1, b−1}. This means that there are 80
partially indirect RA-relations: if R = (ri, r j) is a partially indirect relations, then ri

can be chosen in a set of five Allen’s relations, and ri in the remaining set of eight
Allen’s relations, or the other way around; for example, the relation (d−1, b−1) is
partially indirect. It turns out that, if (Oi R Oj) is partially indirect, using at most two
(simulation of) nominals it is possible to write a SpPNL-formula φR(Oi, Oj) respect-
ing R. Consider for example the relation O1 (d−1, b−1) O2, depicted hereafter:

The propositional variable denoted by R1 represents a nominal that can be used in
order to express the relation (d−1, b−1). Consider the formula φ(d−1,b−1)(O1, O2) =
p(O1) → 〈E〉 n(pR1) ∧ 〈W〉 〈E〉〈E〉 (〈E〉〈E〉 n(pR1)∧ 〈S〉〈S〉 (p(O2))), where p(O1)

and p(O2) are propositional variables representing objects, and pR1 is a propositional
variable used here to simulate a nominal.

Proposition 11 The formula φ(d−1,b−1)(O1, O2) respects the RA-constraint
(O1 (d−1, b−1) O2).

Proof Suppose that there exists a spatial model M such that M, 〈(dx, dy), (d′
x,

d′
y)〉 � φ(d−1,b−1)(O1, O2). This means that M, 〈(dx, dy), (d′

x, d′
y)〉 � p(O1) → 〈E〉

n(pR1) ∧ 〈W〉〈E〉 〈E〉 (〈E〉〈E〉 n(pR1) ∧ 〈S〉〈S〉 (p(O2))). Thus, suppose that p(O1) ∈
V(〈(dx,dy), (d′

x,d′
y)〉). In this case, we have that at some object 〈(d′

x,dy), (d̂x, d′
y)〉

such that d′
x < d̂x it holds pR1 , and nowhere else. So, since at the object 〈(dx, dy),

(d′
x, d′

y)〉 it holds 〈W〉〈E〉 〈E〉 (〈E〉〈E〉 n(pR1) ∧ 〈S〉〈S〉 (p(O2))), the only possible way
to place p(O2) is over an object 〈(d′′

x, d′′
y), (d

′′′
x , d′′′

y )〉 such that dx < d′′
x, d′′′

x < d′
x, and

d′
y < dy. Thus, 〈(d′′

x, d′′
y), (d

′′′
x , d′′′

y )〉 is in the relation (d−1, b−1) with 〈(dx, dy), (d′
x, d′

y)〉.
��

The proof of the following lemma would require 80 different cases, but it goes
exactly as in the above proof.

Lemma 12 For any partially indirect basic RA-constraint (Oi R Oj), there exists a
SpPNL-formula φR(Oi, Oj) that respects (Oi R Oj).

Indirect relations An indirect RA-relation R = (ri, r j) is any basic RA-relation
such that none of its components can be directly expressed in SpPNL. As we have
seen above, 8 out of 13 Allen’s relations (involving the projections of two objects
on a single axis) cannot be directly expressed SpPNL. Such relations are those
belonging to the set I − {e, m, b , m−1, b−1}, where I is the set of all Allen’s relations.
This means that there are 64 indirect RA-relations: if R = (ri, r j) is a partially
indirect relations, then both ri and r j can be chosen in a set of 8 Allen’s relations;
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as for example, the relation (o, o−1) is indirect. It turns out that, if (Oi R Oj) is
indirect, by using four (simulation of) nominals it is possible to write a SpPNL-
formula φR(Oi, Oj) respecting (Oi R Oj). Consider for example the constraint
(O1 (o, o−1) O2), depicted hereafter:

The propositional variables denoted by R1, R2, R3 and R4 represent propositional
letters that can be used as simulation of nominals in order to express the relation
(o, o−1). Consider the formula φ(o,o−1)(O1, O2) = p(O1) → n(pR1) ∧ 〈W〉n(pR2)∧
〈E〉 〈E〉 〈W〉([W]¬pR1 ∧ [W] [W]¬pR1 ∧ 〈W〉 〈W〉 pR2 ∧ (n(pR3)∧〈N〉n(pR4)∧
〈S〉 〈S〉 〈N〉 (p(O2)∧[N] ¬pR3 ∧ [N][N]¬pR3∧〈N〉 〈N〉 pR4))).

Proposition 13 The formula φ(o,o−1)(O1, O2) respects the RA-constraint (O1 (o,

o−1) O2).

Proof Suppose that there exists a spatial model M such that M, 〈(dx, dy), (d′
x, d′

y)〉 �
φ(o,o−1)(O1, O2), and M, 〈(dx, dy), (d′

x, d′
y)〉 � p(O1). This means that the same rec-

tangle 〈(dx, dy), (d′
x, d′

y)〉 makes true pR1 , and pR1 is false everywhere else. Moreover,
by 〈W〉n(pR2), we have that at some rectangle 〈(d′′

x, dy), (dx, d′
y)〉 with d′′

x < dx the
propositional letter pR2 is true, and nowhere else. Now, the only way to place pR3 is
at some rectangle 〈(dx, dy), (d′

x, d′
y)〉 such that its x-projection [dx, d′

x] overlaps the

segment [dx, d′
x]. In this way, pR3 is true at 〈(dx, dy), (d′

x, d′
y)〉 and nowhere else,

and pR4 is true at some rectangle 〈(dx, d′
y), (d′

x, d′′
y)〉, with d′

y < d′′
y, and nowhere

else. By using the same strategy as above, p(O2) must be placed at some rectangle
〈(dx, d̂y), (d′

x, d̂′
y)〉 such that its y-projection [d̂y, d̂′

y] is overlapped by [dy, d′
y]. ��

Again, by exploring 64 different cases it is possible to prove the following lemma.

Lemma 14 For any indirect basic RA-constraint (Oi R Oj), there exists a SpPNL-
formula φR(Oi, Oj) that respects (Oi R Oj).

Now we consider a generic RA-constraint of the type (Oi R̂ Oj), where R̂ =
{R1, . . . , Rn}. Such a constraint is interpreted as a logical disjunction: (Oi R̂ Oj) holds
if and only if it holds

∨n
i=1((Oi Ri Oj)). Thus, we have the following results.

Lemma 15 Given any RA-constraint of the type (Oi R̂ Oj), where R̂ = {R1, . . . , Rn},
the SpPNL-formula φR̂(Oi, Oj) = ∨n

i=1(φRi(Oi, Oj)) respects (Oi R̂ Oj).

Finally, we have to prove the main result, that is, that for any RA-network
N = {R̂1, . . . , R̂n} there exists a SpPNL-formula which is satisfiable if and only if
N is consistent. Consider any RA-network N, and let {O1, . . . , Ok} be the set of all
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objects involved in N. Now, for a given constraint of the type (Oi R̂p Oj), where
R̂p = {R1, . . . , Rn} and 1 ≤ p ≤ n, with a little abuse of notation, let us denote by
φR̂(Oi, Oj,Np) the SpPNL-formula respecting R̂p such that Np is the set of all
propositional variables pRl used to simulate nominals in φR̂(Oi, Oj). Consider the
following formula:

φ(N) =
k∧

i=1

(e(n(p(Oi)))) ∧
n∧

i=1

(u(φR̂i
(Ol, Om,Ni))),

where e(φ) is the existential operator (which is definable in SpPNL, as a conse-
quence of the definability of the universal one), for each i, p(Oi) is a propositional
letter, for all 1 ≤ i, j ≤ n, if i �= j then Ni ∩ N j = Ø, and, for all 1 ≤ i ≤ k, Ni ∩
{p(O1), . . . , p(Ok)} = Ø.

Theorem 16 Let N be any RA-network. Then N is consistent if and only if the
SpPNL-formula φ(N) is satisfiable.

6 A tableau-based method for SpPNL

In this section we devise a tableau-based method for SpPNL; in this section, all
considered formulas will be in negated normal form. We first introduce some basic
terminology. A finite tree is a finite directed connected graph in which every node,
apart from one (the root), has exactly one incoming edge. A successor of a node n is
a node n′ such that there is an edge from n to n′. A leaf is a node with no successors;
a path is a sequence of nodes n0, . . . , nk such that, for all i = 0, . . . , k − 1, ni+1 is a
successor of ni; a branch is a path from the root to a leaf. The height of a node n is the
maximum length (number of edges) of a path from n to a leaf. If n, n′ belong to the
same branch and the height of n is less than (resp. less than or equal to) the height of
n′, we write n ≺ n′ (resp. n � n′).

Definition 17 If Ch = 〈Ch,<〉 and Cv = 〈Cv, <〉 are finite linearly ordered sets, a
labeled formula, with label in C = (Ch × Cv), is a pair (φ, 〈(hi, v j), (hk, vl)〉), where
φ ∈ SpPNL and 〈(hi, v j), (hk, vl)〉 ∈ O(C). For a node n in a tree T , the decoration
ν(n) is a triple ((φ, 〈(hi, v j), (hk, vl)〉), C, un), where (φ, 〈(hi, v j), (hk, vl)〉) is a labeled
formula, with label in C, and un is a local flag function which associates the values 0
or 1 with every branch B in T containing n.

The value 0 for a node n with respect to a branch B means that n can be expanded
on B.

Definition 18 A decorated tree is a tree in which every node has a decoration ν(n).

For every decorated tree, we also use a global flag function u acting on pairs (node,
branch through that node), and defined as u(n, B) = un(B). For any branch B in
a decorated tree, we denote by CB the spatial frame belonging to the decoration
of the leaf of B (and, similarly, we can refer to ChB and CvB ), and for any node
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n in a decorated tree, we denote by �(n) the formula in its decoration. If B is a
branch, then B · n denotes the result of the expansion of B with the node n. Similarly,
B · n1 | . . . | nk denotes the result of the expansion of B with k immediate successor
nodes (producing k branches extending B).

Definition 19 Given a decorated tree T , a branch B in T , and a node n ∈ B such
that ν(n) = ((φ, 〈(hi, v j), (hk, vl)〉), C, u), with u(n, B) = 0, the branch-expansion rule
for B and n is defined as follows (in all the considered cases, u(n′, B′) = 0 for all new
pairs (n′, B′) of nodes and branches):

1. If φ = ¬¬ψ , then expand the branch to B · n0, with ν(n0) = ((ψ, 〈(hi, v j), (hk,

vl)〉), CB, u);
2. If φ = ψ ∧ θ , then expand the branch to B · n0 ·n1, with ν(n0) = ((ψ, 〈(hi, v j),

(hk, vl)〉), CB, u) and ν(n1) = ((θ, 〈(hi, v j), (hk, vl)〉), CB, u);
3. If φ = ¬(ψ ∧ θ), then expand the branch to B · n0 | n1, with ν(n0) =

((¬ψ, 〈(hi, v j), (hk, vl)〉), CB, u) and ν(n1) = ((¬θ, 〈(hi, v j), (hk, vl)〉), CB, u);
4. If φ = [E]ψ and there exists ho ∈ ChB , such that hk < ho that ho has not been

used yet to expand the node n on B, then take the least such ho and expand the
branch to B · n0, with ν(n0) = ((ψ, 〈(hk, v j), (ho, vl)〉), CB, u);

5. If φ = [W]ψ and there exists ho ∈ ChB , such that ho < hi that ho has not been
used yet to expand the node n on B, then take the least such ho and expand the
branch to B · n0, with ν(n0) = ((ψ, 〈(ho, v j), (hi, vl)〉), CB, u);

6. If φ = [N]ψ and there exists vo ∈ CvB , such that vl < vo that vo has not been
used yet to expand the node n on B, then take the least such vo and expand the
branch to B · n0, with ν(n0) = ((ψ, 〈(hi, vl), (hk, vo)〉), CB, u);

7. If φ = [S]ψ and there exists vo ∈ ChB , such that vo < v j that vo has not been
used yet to expand the node n on B, then take the least such vo and expand the
branch to B · n0, with ν(n0) = ((ψ, 〈(hi, vo), (hk, v j)〉), CB, u);

8. If φ = 〈E〉ψ , then, if hk+m is the last element of ChB , expand the branch to B ·
nk+1| . . . |nk+m|n′

k+1| . . . |n′
k+m+1, where:

a. For all hz ∈ ChB such that hk < hz, (k + 1 ≤ z ≤ k + m), ν(nz) =
((ψ, 〈(hk, v j), (hz, vl)〉), CB, u);

b. For all k ≤ z ≤ k + m, let C
′
hB

be the linear ordering obtained by inserting a
new element hw right after hz, and ν(n′

z) = ((ψ, 〈(hk, v j), (hw, vl)〉), C
′
hB

, u);

9. If φ = 〈W〉ψ , then, if h0 is the first element of ChB , expand the branch to B ·
n0| . . . |ni−1|n′

0| . . . |n′
i, where:

a. For all hz ∈ ChB such that hz < hi, (0 ≤ z < i), ν(nz) = ((ψ, 〈(hz, v j), (hi,

vl)〉), CB, u);
b. For all 0 ≤ z ≤ i, let C

′
hB

be the linear ordering obtained by inserting a new
element hw right before hz, and ν(n′

z) = ((ψ, 〈(hw, v j), (hi, vl)〉), C
′
hB

, u);

10. If φ = 〈N〉ψ , then, if vl+m is the last element of CvB , expand the branch to B ·
nl+1| . . . |nl+m|n′

l+1| . . . |n′
l+m+1, where:

a. For all vz ∈ CvB such that vl < vz, (l + 1 ≤ z ≤ l + m), ν(nz) =
((ψ, 〈(hi, vl), (hk, vz)〉), CB, u);

b. For all l ≤ z ≤ l + m, let C
′
vB

be the linear ordering obtained by inserting a
new element vw right after vz, and ν(n′

z) = ((ψ, 〈(hi, vl), (hk, vw)〉), C
′
vB

, u);
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11. If φ = 〈S〉ψ , then, if v0 is the first element of CvB , expand the branch to B ·
n0| . . . |n j−1|n′

0| . . . |n′
j, where:

a. For all vz ∈ CvB such that vz < v j, (0 ≤ z < j), ν(vz) = ((ψ, 〈(hi, vz), (hk,

v j)〉), CB, u);
b. For all 0 ≤ z ≤ j, let C

′
hB

be the linear ordering obtained by inserting a new
element vw right before vz, and ν(n′

z) = ((ψ, 〈(hi, vw), (hk, v j)〉), C
′
hB

, u);

Finally, for any node m ( �= n) in B and any branch B′ extending B, let u(m, B′) =
u(m, B), and for any branch B′ extending B, u(n, B′) = 1, unless φ = [X]ψ (in such
case u(n, B′) = 0).

Now, we define the notions of open and closed branch. We say that a node n in a
decorated tree T is available on a branch B if and only if u(n, B) = 0. The branch-
expansion rule is applicable to a node n on a branch B if the node is available on
B and the application of the rule generates at least one successor node with a new
labeled formula. This second condition is needed to avoid looping of the application
of the rule on universal modalities.

Definition 20 A branch B is closed if and only if there are two nodes n, n′ ∈ B such
that ν(n) = ((φ, 〈(hi, v j), (hk, vl)〉), C, u) and ν(n′) = ((¬φ, 〈(hi, v j), (hk, vl)〉), C, u)

for some formula φ, otherwise it is open.

Moreover, we define a branch-expansion strategy for a branch B in a decorated
tree T , as follows: (1) apply the branch-expansion rule to a branch B only if it is
open, and (2) if B is open, apply the branch-expansion rule to the first available
node one encounters moving from the root to the leaf of B to which the branch-
expansion rule is applicable (if any). Clearly, an initial tableau for a given formula
φ ∈ SpPNL is the decorated tree T with only one node root such that ν(root) =
((φ, 〈(h0, v0), (h1, v1)〉), C, 0), where Ch = {h0, h1} (h0 < h1), Cv = {v0, v1} (v0 < v1).
Finally, we define a tableau for SpPNL as follows.

Definition 21 A tableau for a given formula φ ∈ SpPNL is any finite decorated tree
isomorphic to a finite decorated tree T obtained by expanding the initial tableau for
φ through successive applications of the branch-expansion strategy to the existing
branches.

As in the classical case, a tableau for SpPNL is closed if and only if every branch in it
is closed, otherwise it is open.

In Fig. 3 we show an example of a tableau for the negation of the Axiom 5, which,
clearly, results in a tree such that all its branches are closed. In Table 1 the spatial
domains used in the tableau are explained.

6.1 Soundness and completeness

Definition 22 Given a set S of labeled formulas with labels in C, we say that S is
satisfiable over C if there exists a spatial model M = 〈F, O(F),V〉, such that F is an
extension of C and M, 〈(hi, v j), (hk, vl)〉 � ψ for all (ψ, 〈(hi, v j), (hk, vl)〉) ∈ S.
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Fig. 3 A closed tableau for the formula 〈E〉〈W〉p ∧ 〈E〉[W]¬p

If S contains only one labeled formula, the notion of satisfiability of a (labeled)
formula over C is equivalent to the notion of satisfiability given in Section 3.

Theorem 23 (Soundness) If φ ∈ SpPNL and a tableau T for φ is closed, then φ is not
satisfiable.

Proof We will prove by induction on the height h of a node n in the tableau T
that if every branch including n is closed, then the set S(n) of all labeled formulas
in the decorations of the nodes between n and the root is not satisfiable over C,
where C is the spatial frame in the decoration of n. If h = 0, then n is a leaf and
the unique branch B containing n is closed. This means that S(n) contains both the
labeled formulas (ψ, 〈(hi, v j), (hk, vl)〉) and (¬ψ, 〈(hi, v j), (hk, vl)〉) for some formula
ψ . Take any model M = 〈F, O(F),V〉, such that F is an extension of C. Clearly

Table 1 Spatial frames for the tableau in Fig. 3

i C
i
hB

C
i
vB

0 {h0, h1}(h0 < h1) {v0, v1}(v0 < v1)

1 {h0, h1, h2}(h0 < h1 < h2) {v0, v1}(v0 < v1)

2 {h0, h1, h2, h3}(h0 < h1 < h3 < h2) {v0, v1}(v0 < v1)

3 {h0, h1, h2, h3}(h0 < h1 < h2 < h3) {v0, v1}(v0 < v1)

4 {h0, h1, h2, h3, h4}(h4 < h0 < h1 < h3 < h2) {v0, v1}(v0 < v1)

5 {h0, h1, h2, h3, h4}(h0 < h4 < h1 < h3 < h2) {v0, v1}(v0 < v1)
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M, 〈(hi, v j), (hk, vl)〉 � ψ if and only if M, 〈(hi, v j), (hk, vl)〉 �� ¬ψ . Hence, S(n) is
notover C. Otherwise, suppose h > 0. Then either n has been generated as one of
the successors, but not the last one, when applying the branch-expansion rule in
the case ∧, or branch-expansion rule has been applied to some labeled formula
(ψ, 〈(hi, v j), (hk, vl)〉) ∈ S(n) −{�(n)} to extend the branch at n. We deal with the
latter case, for he former can be dealt with in the same way. Let C be the interval
structure from the decoration of n. Notice that every branch passing through any
successor of n must be closed, so the inductive hypothesis applies to all successors
of n. We consider the possible cases for the branch-expansion rule applied at n,
dealing with the most interesting ones only:

• Let ψ = ξ0 ∧ ξ1. Then there are two nodes n0, n1 ∈ B such that ν(n0) =
((ξ0, 〈(hi, v j), (hk, vl)〉), C, u), ν(n1) = ((ξ1, 〈(hi, v j), (hk, vl)〉), C, u), and, without
loss of generality, n0 is the successor of n and n1 is the successor of n0.
Since every branch containing n is closed, then every branch containing n1 is
closed. By the inductive hypothesis, S(n1) is not satisfiable over C since n1 ≺
n. Since every model over C satisfying S(n) must, in particular, satisfy (ξ0 ∧
ξ1, 〈(hi, v j), (hk, vl)〉), and hence (ξ0, 〈(hi, v j), (hk, vl)〉) and (ξ1, 〈(hi, v j), (hk, vl)〉),
it follows that S(n), S(n0), and S(n1) are equi-satisfiable over C. Therefore, S(n)

is not satisfiable over C;
• Let ψ = [N]ξ . Suppose by contradiction that S(n) is satisfiable over C. Then,

since ([N], 〈(hi, v j), (hk, vl)〉) ∈ S(n), there is a model M = 〈F, O(F), V〉 such
that F is an extension of C and M, 〈(hi, v j), (hk, vl)〉 � [N]ξ . So, for every vm ∈
Cv such that vl < vm, we have that M, 〈(hi, vl), (hk, vm)〉 � ξ . By construction,
the immediate successor of n is n1 such that, for an element vo with vl < vo,
(ξ, 〈(hi, vl), (hk, vm)〉) is in the decoration of n0. By inductive hypothesis, since
n1 ≺ n, S(n1) and is not satisfiable over C. Thus, such a model M cannot exist,
and S(n) is not satisfiable over C;

• Let ψ = 〈N〉ξ . Assuming by contradiction that S(n) is satisfiable over C,
there is a model M = 〈F, O(F),V〉 such that F is an extension of C

and M, 〈(hi, v j), (hk, vl)〉 � θ for all (θ, 〈(hi, v j), (hk, vl)〉) ∈ S(n). In particular,
M, 〈(hi, vl), (hk, vm)〉 � ξ for some vm such that vl < vm. Consider two cases:

1. If vm ∈ Cv , then vm = vo for some vl < vo. But among the successors of n
there is a node no where ν(no) = ((ξ, 〈(hi, vl), (hk, vo)〉), C, u), and since no ≺
n, by the inductive hypothesis S(no) = S(n) ∪{(ξ0, 〈(hi, vl), (hk, vo)〉)} is not
satisfiable over C, which is a contradiction, and S(n) is not satisfiable over C;

2. If vm /∈ Cv , then there is an o such that l < o and vl < vo. Hence, there
is a successor no of n such that ν(no) = ((ξ, 〈(hi, vl), (hk, vo)〉), Cv∪ {vo},
u), and since no ≺ n, by the inductive hypothesis S(no) = S(n) ∪{(ξ,

〈(hi, vl), (hk, vo)〉)} is not satisfiable over C
′ (obtained by adding vo to Cv)

which, again, is a contradiction, and S(n) is not satisfiable over C;

• The remaining cases can be dealt with in a similar way. ��

Definition 24 If T0 is the initial tableau for a given SpPNL-formula φ, the limit
tableau T for φ is the (possibly infinite) decorated tree obtained as follows. First,
for all i, Ti+1 is the tableau obtained by the simultaneous application of the
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branch-expansion strategy to every branch in Ti. Then, we ignore all flags from the
decorations of the nodes in every Ti. Thus, we obtain a chain by inclusion of

decorated trees: T1 ⊆ T2 ⊆ . . ., and we define T =
∞⋃

i=0
Ti.

Notice that the chain above may stabilize at some Ti if it closes, or if the branch-
expansion rule is not applicable to any of its branches. If T is a limit tableau, we

associate with each branch B in T the spatial frame CB =
∞⋃

i=0
CBi , where, for all i,

CBi is the spatial frame from the decoration of the leaf of the (sub-)branch Bi of B
in Ti. The definitions of closed and open branches readily apply to T .

Definition 25 A branch in a (limit) tableau is saturated if there are no nodes on that
branch to which the branch-expansion rule is applicable on the branch. A (limit)
tableau is saturated if every open branch in it is saturated.

Now we will show that the set of all labeled formulas on an open branch in a limit
tableau has the saturation properties of a Hintikka set in first-order logic.

Lemma 26 (saturation lemma) Every limit tableau is saturated.

Proof Given a node n in a limit tableau T , we denote by k(n) the distance (number
of edges) between n and the root of T . Now, given a branch B in T , we will prove by
induction on k(n) that after every step of the expansion of that branch at which the
branch-expansion rule becomes applicable to n (because n has just been introduced,
or because a new point has been introduced in the spatial frame on B) that rule is
subsequently applied on B to that node. Suppose the inductive hypothesis holds for
all nodes with distance to the root less than l. Let k(n) = l and the branch-expansion
rule has become applicable to n. If there are no nodes between the root (incl. the
root) and n (excl. n) to which the branch-expansion rule is applicable at that moment,
the next application of the branch-expansion rule on B is to n. Otherwise, consider
the closest-to-n node n∗ between the root and n to which the branch-expansion
rule is applicable or will become applicable on B at least once thereafter. (Such a
node exists because there are only finitely many nodes between n and the root.)
Since k(n∗) < k(n), by the inductive hypothesis the branch-expansion rule has been
subsequently applied to n∗. Then the next application of the branch-expansion rule
on B must have been to n and that completes the induction. Now, assuming that
a branch in a limit tableau is not saturated, consider the closest-to-the-root node n
on that branch B to which the branch-expansion rule is applicable on that branch.
If �(n) is not a universal modality, then the branch-expansion rule has become
applicable to n at the step when n is introduced, and by the claim above, it has been
subsequently applied, at which moment the node has become unavailable thereafter,
which contradicts the assumption. Suppose that �(n) = [N]ψ . Then an application
of the rule on B would create a successor with label (ψ, 〈(hi, vl), (hk, vm)〉) on B.
But v j, vl, vm have already been introduced at some (finite) step of the construction
of B and at the first step when the three of them, as well as n, have appeared on
the branch, the branch-expansion rule has become applicable to n, hence is has
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been subsequently applied on B and that application must have introduced the label
(ψ, 〈(hi, vl), (hk, vm)〉), which, again, contradicts the assumption. The same holds for
the remaining universal modalities. ��

As a corollary of the previous result, we have that if φ be a SpPNL-formula and
T is the limit tableau for φ, then for every open branch B in T , the following closure
properties hold:

(1) For a node n ∈ B such that ν(n) = ((¬¬ψ, 〈(hi, v j), (hk, vl)〉), C, u), there is a
node n0 ∈ B such that ν(n0) = ((ψ, 〈(hi, v j), (hk, vl)〉), C, u0);

(2) For a node n ∈ B such that ν(n) = ((ψ0 ∧ ψ1, 〈(hi, v j), (hk, vl)〉), C, u), there is a
node n0 ∈ B such that ν(n0) = ((ψ0, 〈(hi, v j), (hk, vl)〉), C, u0) and a node n1 ∈ B
such that ν(n1) = ((ψ1, 〈(hi, v j), (hk, vl)〉), C, u1);

(3) For a node n ∈ B such that ν(n) = ((¬(ψ0 ∧ ψ1), 〈(hi, v j), (hk, vl)〉), C, u), there
is a node n0 ∈ B such that ν(n0) = ((¬ψ0, 〈(hi, v j), (hk, vl)〉), C, u0) or a node
n1 ∈ B such that ν(n1) = ((¬ψ1, 〈(hi, v j), (hk, vl)〉, C, u1);

(4) For a node n ∈ B such that ν(n) = ((〈N〉ψ, 〈(hi, v j), (hk, vl)〉, C, u), then,
for some vm ∈ Cv such that vl < vm there is a node n0 ∈ B such that
ν(n0) = ((ψ0, 〈(hi, vl), (hk, vm)〉), C

′, u′) (and similarly for the other existential
modalities);

(5) For a node n ∈ B such that ν(n) = ([N]ψ, 〈(hi, v j), (hk, vl)〉, C, u), vm ∈ Cv

such that vl < vm there is a node n0 ∈ B such that ν(n0) = ((ψ, 〈(hi, vl),

(hk, vm)〉), C
′, u′) (and similarly for the other universal modalities).

Lemma 27 If the limit tableau for some formula φ ∈ SpPNL is closed, then some
finite tableau for φ is closed.

Proof Suppose the limit tableau for φ is closed. Then every branch closes at some fi-
nite step of the construction and then remains finite. Since the branch-expansion rule
always produces finitely many successors, every finite tableau is finitely branching,
and hence so is the limit tableau. Then, by König’s lemma, the limit tableau, being a
finitely branching tree with no infinite branches, must be finite, hence its construction
stabilizes at some finite stage. At that stage a closed tableau for φ is constructed. ��

Theorem 28 (Completeness) Let φ ∈ SpPNL be a valid formula. Then there is a
closed tableau for ¬φ.

Proof We will show that the limit tableau T for ¬φ is closed, whence the claim
follows by the previous lemma. By contraposition, suppose that T has an open
branch B. Let CB be the spatial frame associated with B and S(B) be the set
of all labeled formulas on B. Consider the spatial model built on it, where for
every object 〈(hi, v j), (hk, vl)〉 and p ∈ AP , p ∈ V(〈(hi, v j), (hk, vl)〉) iff (p, 〈(hi, v j),

(hk, vl)〉) ∈ �(B). We show by induction on ψ that, for every (ψ, 〈(hi, v j), (hk, vl)〉) ∈
S(B), M, 〈(hi, v j), (hk, vl)〉 � ψ . We proceed on the complexity of ψ :

• Let ψ = p or ψ = ¬p where p ∈ AP . Then the claim follows by definition,
because if (¬p, 〈(hi, v j), (hk, vl)〉) ∈ S(B) then (p, 〈(hi, v j), (hk, vl)〉) /∈ S(B) since
B is open;
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• Let ψ = ¬¬ξ . Then by the consequences of the saturation lemma, (ξ, 〈(hi,

v j), (hk, vl)〉) ∈ S(B), and by inductive hypothesis M, 〈(hi, v j), (hk, vl)〉 � ξ . So
M, 〈(hi, v j), (hk, vl)〉 � ψ ;

• Let ψ = ξ0 ∧ ξ1. Then by the saturation lemma, (ξ0, 〈(hi, v j), (hk, vl)〉) ∈ S(B) and
(ξ1, 〈(hi, v j), (hk, vl)〉) ∈ S(B). By inductive hypothesis, M, 〈(hi, v j), (hk, vl)〉 � ξ0

and M, 〈(hi, v j), (hk, vl)〉 � ξ1, so M, 〈(hi, v j), (hk, vl)〉 � ψ ;
• Let ψ = ¬(ξ0 ∧ ξ1). Then by the saturation lemma, (¬ξ0, 〈(hi, v j), (hk, vl)〉) ∈

S(B) or (¬ξ1, 〈(hi, v j), (hk, vl)〉) ∈ S(B). By inductive hypothesis M, 〈(hi, v j),

(hk, vl)〉 � ¬ξ0 or M, 〈(hi, v j), (hk, vl)〉 � ¬ξ1, so M, 〈(hi, v j), (hk, vl)〉 � ψ ;
• Let ψ = 〈N〉ξ . Then by the saturation lemma, (ξ0, 〈(hi, vl), (hk, vm)〉) ∈ S(B)

and for some vm ∈ CvB such that vl < vm. Thus, by inductive hypothesis,
M, 〈(hi, vl), (hk, vm)〉 � ξ , and thus M, 〈(hi, v j), (hk, vl)〉 � ψ (and similarly for
the other existential modalities);

• Let ψ = [N]ξ . Then by the saturation lemma, for all vm ∈ CvB such that vl < vm,
(ξ, 〈(hi, vl), (hk, vm)〉) ∈ S(B). Hence, for any such vm, by the inductive hypothe-
sis M, 〈(hi, vl), (hk, vm)〉 � ξ . Thus, M, 〈(hi, v j), (hk, vl)〉 � ψ .

This completes the induction. In particular, we obtain that ¬φ is satisfied in M, which
is in contradiction with the assumption that φ is valid. ��

7 Conclusions

In this paper we considered a new modal logic for qualitative spatial reasoning by
means of directional relations and approximation of objects with minimum bounding
boxes. SpPNL can be viewed as the natural bi-dimensional extension of the interval-
based temporal logic PNL [14], and it has been shown to be quite useful for the
formalization of natural spatial expressions. We presented a representation theorem
and devised a tableau-based proof system for it. Moreover, we showed that SpPNL,
despite its simplicity, is powerful enough to solve any rectangle algebra constraint
network. As a future work, we plan to generalize SpPNL and related results to the
case of n dimensions (n > 2), and to test an implementation of the tableaux method
with real examples in the context of a project financed by the Spanish Ministry of
Education. From a theoretical point of view, the results presented in this paper and
in [18, 21, 22] leave as open, among others, the following interesting questions:

Question 1 Is it possible to find out some kind of syntactically defined sub-logic of
SpPNL whose satisfiability/validity problem is decidable?

Question 2 There are cases in interval-based temporal logic of decidable fragments
of undecidable logics have been obtained by interpreting formulas over non-standard
frames presenting some kind of ‘hole’ (see [23]). It is possible to find a similar result
for SpPNL?

Question 3 Very recently, an interesting functional completeness result has been
found for PNL [9]; is it possible to extend such a result for some suitable fragment
of first-order logic? and, if it is not the case, for which fragment of SpPNL is that
possible?
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