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Abstract We propose a new algorithm constructing the canonical implication basis
of a formal context. Being incremental, the algorithm processes a single attribute of
the context at a single step. Experimental results bear witness to its competitiveness.
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1 Introduction

Recent years have seen an increased mutual interest between the communities
of lattice theory [3] researchers, especially those working within the framework
of formal concept analysis (FCA) [10], and developers of intelligent data analysis
systems. This is attested by the workshops held at Stanford [18] and in Lyon [13],
as well as special issues of the Journal of Experimental and Theoretical Artificial
Intelligence (vol. 14, nos. 2–3, 2002) and Applied Artificial Intelligence (vol. 17, no. 3,
2003). Data analysis can be understood as the discovery of plausible dependencies
in data that can be used for data recovery, classification, etc. One kind of such
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dependencies is given by attribute implications in FCA, which are closely related
to functional dependencies in databases.

We discuss the construction of the canonical implication basis [12]; it is a non-
redundant implication set of minimal size from which all implications valid in the
dataset can be inferred by the Armstrong rules. This kind of construction is by no
means exotic or even original. It has appeared in many surrounding areas such as
the simplification of Boolean functions, Horn theories, compilation of knowledge in
artificial intelligence, up to the discovery or simplification of functional dependencies
for bettering the design of databases (see [16] and the references therein, as well
as more recent works, e.g., [2]). In these contexts, the main problem consists in
compressing a collection of implications (logical expressions, rules, etc.) without
loosing information, which can be “internally” done by removing redundancies (and
more efficiently by introducing external structures and algorithms based on trees,
directed acyclic graphs, etc. [16]). Here, our approach is somehow different, as the
input is a “context” (binary matrix) describing objects by binary attributes, and
since we adopt an attribute-incremental attitude that can be especially useful when a
database is refined by introducing new descriptors.

In what follows, we describe the most popular algorithm for basis construction,
Next Closure, and propose a new incremental algorithm. Essentially, an algorithm
can be incremental in one of two ways depending on whether it processes objects
or attributes. Adding a new object may invalidate some attribute implications, but it
will never generate new implications. On the other hand, when adding an attribute,
old implications remain valid, but new implications (involving the new attribute) may
appear. We deal only with the latter (easier) type of incremental update.

2 Formal contexts and implications

In formal concept analysis, data is represented by binary tables regarded as “con-
texts.” A (formal) context is a triple K = (G, M, I), where G is an object set, M is
an attribute set, and the relation I ⊆ G × M specifies which objects possess which
attributes [10].

Example 1 A formal context is usually visualized by a cross table (M = {1, . . . , 4}, for
which 1: has exactly four vertices; 2: has exactly three vertices; 3: has a right angle; 4:
all sides are equal):

G \ M 1 2 3 4

a: square × × ×
b: rectangle × ×
c: right triangle × ×
d: isosceles triangle × ×

For arbitrary A ⊆ G and B ⊆ M, the following derivation operators are defined:

AI = {m ∈ M | ∀g ∈ A(gIm)};
BI = {g ∈ G | ∀m ∈ B(gIm)}.
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In FCA, it is common to write A′ and B′ instead of AI and BI when this does
not result in ambiguity. Sometimes, it is convenient to use specific denotations for
derivation operators of different contexts; in these cases, we will provide necessary
definitions.

The two mappings A �→ (A′)′ and B �→ (B′)′ given by the composition of the
two derivation operators are closure operators (respectively, P(G) → P(G) and
P(M) → P(M)), i.e., they are idempotent, extensive, and monotone. We denote
(A′)′ by A′′ and (B′)′ by B′′.

A couple of sets (A, B) such that A ⊆ G, B ⊆ M, A′ = B, and B′ = A is called
a (formal) concept of the context K. The sets A and B are closed; they are called
respectively the extent and the intent of the formal concept (A, B). A concept (A, B)

is more general than a concept (C, D) if C ⊂ A (equivalently, B ⊂ D). The set of all
concepts of a context K ordered in this way is a lattice, which we denote by L(K).

An implication is an expression A → B where A, B ⊆ M. Set A is called the
premise and set B is called the conclusion or consequence of the implication A → B.
The implication A → B holds in the context K if A′ ⊆ B′ (equivalently, B ⊆ A′′),
i.e., every object possessing all attributes from A also possesses all attributes from B.

Implications obey the Armstrong rules [1], and, in this sense, we can speak
about a cover of a set of implications, i.e., a subset of implications from which all
other implications can be inferred by the Armstrong rules. Of special interest is
the canonical implication basis of the context (usually called the Duquenne–Guigues
basis), which is a minimal cover of the set of implications that hold in the context.
The fact that all bases (minimal covers) have the same cardinality was already known
in the database literature [16], but the specific role of the canonical basis in that was
made explicit in [23] and [24] (see also [10] Section 2.3). The canonical basis is defined
using the notion of a pseudo-closed set introduced below.

A set A ⊆ M is called quasi-closed (with respect to the closure operator ′′) if
B′′ ⊂ A or B′′ = A′′ for any B ⊂ A.

Example 2 In Example 1, the set {1} is quasi-closed, since it has only one
proper subset, namely, Ø, and Ø′′ = Ø ⊂ {1}. The other quasi-closed sets are
Ø, {2}, {3}, {4}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}.

A quasi-closed set A is called pseudo-closed if A 	= A′′ and B′′ ⊂ A for any quasi-
closed B ⊂ A. A pseudo-intent of the context is a pseudo-closed (with respect to ′′)
attribute set.

In [10], an equivalent recursive definition of a pseudo-closed set is given: a non-
closed set A is pseudo-closed if B′′ ⊂ A for any pseudo-closed B ⊂ A.

Example 3 In Example 1, pseudo-intents are {1}, {3, 4}, and {1, 2, 3}. In this context,
all other quasi-closed sets are closed (e.g., consider {3}′′ = {3}), though this is not
always the case.

The canonical implication basis of the context K (notation: B(K)) consists of all
implications P → P′′ where P is a pseudo-intent of the context K [12].

Example 4 The canonical basis of the context from Example 1 consists of implica-
tions {1} → {1, 3}, {3, 4} → {1, 3, 4}, and {1, 2, 3} → {1, 2, 3, 4}.
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Unlike in the case of lattice construction, there are only a few known algorithms
constructing the implication basis. The only relatively efficient algorithm that builds
the canonical basis directly is that of Ganter [9]. It is a modification of his Next
Closure algorithm for computing the concept set of a context. There are also
algorithms constructing other implication bases: direct basis [17, 24], proper basis
[20], etc. The output of these algorithms can then be reduced to the canonical basis
[6]. Such approach is justified if the algorithm is fast, the size of its output is not large
(with respect to 2|M|), and the reduction procedure is efficient.

The algorithm proposed below constructs the implication basis processing at-
tributes of the context one by one. Obviously, a new attribute does not cancel old
implications, but it may generate new ones. However, a new attribute can change the
set of pseudo-intents in an arbitrary way; therefore, addition of an attribute does not
always enlarge the canonical basis.

Example 5 Consider context (M, M, =), where M = {1, 2, 3, 4, 5}:

1 2 3 4 5

1 ×
2 ×
3 ×
4 ×
5 ×

Pseudo-intents of this context are exactly all two-element attribute sets, and the
canonical basis consists of ten implications. After adding new attribute 6

6

1 ×
2
3
4
5 ×

the basis consists of only nine implications. The new basis contains one implication
with 6 for every attribute of the initial context:

{5} → {6}
{4, 6} → {1, 2, 3, 5}
{3, 6} → {1, 2, 4, 5}
{2, 6} → {1, 3, 4, 5}

{1} → {6}
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However, the implications {1} → {6} and {5} → {6} make possible a more compact
representation of the set of implications with premises {m, n}, where m ∈ {1, 5} and
n ∈ {2, 3, 4}: one implication with attribute 6 replaces two implications with attributes
1 and 5.

3 Ganter’s algorithm for computing the canonical basis

One of the advantages of Ganter’s Next Closure algorithm is its universality. Let
M be a set, and σ : P(M) → P(M) be an arbitrary closure operator. Then, Next
Closure can be used to produce all σ -closed (i.e., closed with respect to σ ) subsets
of M.

Assuming a linear order < on the attribute set M, let min(C) be the minimal
element and max(C) be the maximal element of C ⊆ M with respect to <. Set A
is lectically smaller than set B if

min((A ∪ B) \ (A ∩ B)) ∈ B.

In particular, subsets are lectically smaller than their supersets. The idea of the
algorithm is to iterate through subsets of M in lectic order computing the closure
of each subset [10]. Several subsets may have the same closure, but only the last
generation of every closed set counts. In other words, regarding sets as strings of
attributes, the canonical generator of a closed set C is its minimal prefix whose closure
is equal to C. When a new closure C is generated canonically, the next set to be
processed by the algorithm is the set that follows C with respect to the lectic order.
On the other hand, if set A is not the canonical generator of its closure, the algorithm
skips all sets that differ from A only in that they contain some additional attributes
greater than max(A): obviously, such sets are not prefixes (hence, not canonical
generators) of their closures, either (due to the monotony of closure operators). This
makes it possible to avoid computing closures of a large number of sets.

It is well known that closed and pseudo-closed sets form together a new closure
system. Here, we call the closure operator corresponding to this system the saturation
operator1 and denote it by •. It can be defined as the transitive closure of the following
+ operator:

A+ = A ∪
⋃

{B′′ | B ⊂ A and B is pseudo-closed}
A• = A++···+

Note that {B′′ | B ⊂ A and B is pseudo-closed} = {C | B ⊂ A and B → C is in the
canonical basis}. Thus, A• can be obtained by applying to A implications from the
canonical basis, and even only those implications whose premises are subsets of A•.
This makes it possible to use Next Closure to compute all sets closed with respect
to •, i.e., all intents and pseudo-intents of the context. If the next generated set A• is
not closed with respect to ′′, then it is pseudo-closed and the implication A• → A′′
is added to the basis. When Next Closure processes A, it has already generated all
implications B → B′′ with B ⊂ A• from the basis, and it uses them to compute A•.

1The saturation operator is defined differently in [12].
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Algorithm 1 (Ganter’s algorithm)

Input A context K = (G, M, I)
Output The canonical implication basis of K

Begin
Basis := Ø, A := Ø
m := max(M)

while A 	= M
B := Saturate(A, Basis)
if there is no n ∈ B \ A such that n < m [the “canonicity” test]

then
if B 	= B′′ then Add B → B′′ to Basis
A := B
m := max({n | n ∈ M \ B})

else m := max({n | n ∈ M \ A and n < m})
A := A ∪ {m} \ {n | n ∈ A and m < n}

return Basis
End

To make the description of the algorithm self-contained, we describe a “naïve”
procedure to calculate the saturation. There are other suitable algorithms for this
purpose: LinClosure, which is well known in the database theory [16]; the one
proposed in [24], which has nonlinear time complexity but is claimed to be an
enhanced version of LinClosure; etc.

Algorithm 2

Saturate(NewPrem, Impl)
Input Attribute set NewPrem ⊆ M, implication set Impl
Output Saturation of NewPrem, i.e., NewPrem• (with respect to Impl)
Begin

NewClosure := NewPrem
UnusedImpl := Impl
do

OldClosure := NewClosure
for each (Prem → Cons) in UnusedImpl

if (Prem ⊆ NewClosure)
then

NewClosure := NewClosure ∪ Cons
UnusedImpl := UnusedImpl \ {Prem → Cons}

while OldClosure 	= NewClosure
return NewClosure

End
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Let us show how Ganter’s algorithm works on the context from Example 1.

A = Ø, B = Ø, B′′ = Ø
m = 4, A = {4}, B = {4}, B′′ = {4}
m = 3, A = {3}, B = {3}, B′′ = {3}
m = 4, A = {3, 4}, B = {3, 4}, B′′ = {1, 3, 4} {3, 4} → {1, 3, 4}
m = 2, A = {2}, B = {2}, B′′ = {2}
m = 4, A = {2, 4}, B = {2, 4}, B′′ = {2, 4}
m = 3, A = {2, 3}, B = {2, 3}, B′′ = {2, 3}
m = 4, A = {2, 3, 4}, B = M, the “canonicity” test fails
m = 1, A = {1}, B = {1}, B′′ = {1, 3} {1} → {1, 3}
m = 4, A = {1, 4}, B = {1, 3, 4}, the “canonicity” test fails
m = 3, A = {1, 3}, B = {1, 3}, B′′ = {1, 3}
m = 4, A = {1, 3, 4}, B = {1, 3, 4}, B′′ = {1, 3, 4}
m = 2, A = {1, 2}, B = {1, 2, 3}, B′′ = M {1, 2, 3} → {1, 2, 3, 4}
m = 4, A = M

Note that Ganter’s algorithm always generates the set of all intents as a by-
product. As said above, this algorithm is not designed specifically for implications,
but for an arbitrary closure operator. If, starting from A, it generates pseudo-intent
B (which is closed with respect to the saturation operator), the next set it processes
is the set following B according to the lectic order. However, if A is not a prefix of
B′′, then all supersets of A for which A is a prefix can be excluded from further con-
sideration: they cannot be pseudo-closed or even quasi-closed since they will contain
A, but not B′′ in spite of A′′ = B′′. In this case, to avoid unnecessary computation,
the next set for processing should be chosen as if B were not canonically generated.
Then, the main if condition in the algorithm can be restated, for example, as follows:

Algorithm 3 (Ganter+)

. . .
if there is no n ∈ B \ A such that n < m [the “canonicity” test]

then
if B 	= B′′ then Add B → B′′ to Basis
if there is no n ∈ B′′ \ B such that n < m

then
A := B
m := max({n | n ∈ M \ B})

else m := max({n | n ∈ M \ A and n < m})
else m := max({n | n ∈ M \ A and n < m})

. . .
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We have implemented both versions of the algorithm and tested them in our
experiments (Section 7); we refer to the second version as Ganter+.

4 Types of implications

To define an attribute-incremental procedure for generating the canonical basis,
let us start with some required notation and properties that will save the effort of
saturating all the candidate subsets as in the classical approach. Without loss of
generality, assume that the attribute set consists of natural numbers starting from
1, i.e., K = (G, M = {1, . . . , |M|}, I). For x ∈ M, the set Mx comprises all natural
numbers less than or equal to x: Mx = {m | 0 < m ≤ x}. Considering the context
Kx = (G, Mx, I ∩ G × Mx), we denote its derivation operator by x, while keeping ′
for the context K. Concepts, extents, intents, pseudo-intents, etc. of the context Kx

will be called x-concepts, x-extents, x-intents, x-pseudo-intents, etc.
Construction of the concept lattice L(Kx+1) from the lattice L(Kx) is well under-

stood [5, 7, 8, 11, 19, 21, 22]; see [15] for a survey. From practice, it turns out that some
incremental algorithms (which, at the xth step, process x first attributes or objects)
are more efficient in constructing the lattice of the context from scratch than their
batch counterparts.

Ganter’s algorithm builds the concept lattice L(K) and the implication basis B(K)

for the whole context. We propose a new algorithm that, receiving as input L(Kx),
B(Kx), and Kx+1, builds L(Kx+1) and B(Kx+1).

The main difficulty Ganter’s algorithm has to overcome when building the im-
plication basis (as opposed to building the concept lattice) is the need to compute
the saturation of attribute sets. This is a time-consuming operation because of the
reiteration (“while OldClosure 	= NewClosure” in the Saturate function above), and,
if possible, it is better to be avoided by testing the condition of being pseudo-closed
locally. With this in mind, we identify several types of implications and process each
type separately.

We call a set A ⊆ Mx x-modified if x ∈ (A \ {x})xx and x-stable otherwise (cf.
modified and old concepts in [11]). Thus, A is x-modified if and only if the implication
A \ {x} → x holds in K. An implication is x-modified if its premise is x-modified and
x-stable otherwise. The difference between x-stable and x-modified sets is that the
closure of an x-stable set does not change when moving from the context Kx−1 to Kx,
whereas the closure of x-modified set includes the new element x.

Example 6 Consider again the context from Example 1. The set {1, 2, 3, 4} is 4-
modified, since {1, 2, 3}→{4}. Note also that {1, 2, 3}44 ={1, 2, 3, 4}. Another example
of a 4-modified set is {1, 2}, which is the premise of the 4-modified implication
{1, 2} → {3}. On the other hand, {2, 3}44 = {2, 3}; therefore, {2, 3} and {2, 3, 4} are
4-stable.

Separate processing of modified and stable implications is the key principle behind
our algorithm. Let us formulate a few important properties of modified and stable
sets. From now on, we use y as a shortcut for x + 1.

Proposition 7 Subsets of x-stable sets are x-stable for any x ∈ M.
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Proposition 8 Supersets of x-modified sets are x-modified for any x ∈ M.

Proposition 9 For A ⊆ Mx (and y = x + 1), Ayy = Axx if and only if A is y-stable.
Ayy = Axx ∪ {y} if and only if A is y-modified.

Corollary 10 Axx = Ayy \ {y} for any A ⊆ Mx.

Proposition 11 The set A ⊆ Mx is y-modified if and only if Axx is y-modified.

Corollary 12 The set A ⊆ Mx is y-stable if and only if Axx is y-stable.

Thus, y-stable subsets of Mx form an order ideal of the Boolean lattice (P(Mx),
⊆) bounded above by x-intents. All other elements of this lattice are y-modified sets.
Note that, according to Proposition 11, elements of the same x-closure class are either
all y-modified or all y-stable.

Example 13 (Boolean lattice of attribute subsets of M3) See Fig. 1.

We consider four types of implications for y = x + 1:

A → B x + 1 	∈ A x + 1 ∈ A

(x + 1)-stable old stable new stable
(x + 1)-modified old modified new modified

Fig. 1 The attribute subset
corresponding to a node
consists of attributes that label
this node and all nodes to
which there is a downward
path from this node.
Dark-colored nodes are intents
of the context K3, while
light-colored nodes are its
pseudo-intents (see Example
1). 4-stable sets form an order
ideal of this lattice (greyed)

intent

pseudo-intent

1 2 3
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Proposition 14 For A, B ⊆ Mx (and y = x + 1), the implication A → B holds in the
context Kx if and only if it holds in Ky.

Proposition 15 For A, B ⊆ Mx, the implication A → B ∪ {y} holds in the context Ky

if and only if A → B holds in the context Kx and A is a y-modified set.

Propositions 14 and 15 cover all implications of the context Ky with premises that
are subsets of Mx. Which of these premises are pseudo-closed?

Proposition 16 A set A ⊆ My is y-quasi-closed only if A \ {y} is x-quasi-closed.

Proof Take a y-quasi-closed set A ⊆ My; show that A \ {y} is x-quasi-closed. For
every B ⊆ Mx, Bxx ⊆ Byy. Consider an arbitrary B ⊂ A \ {y}. Either Byy ⊂ A
or Byy = Ayy. In the former case, Bxx ⊂ A, and Bxx ⊆ A \ {y}, as y 	∈ Bxx. In
the latter case, (A \ {y})xx ⊇ Bxx = Byy \ {y} = Ayy \ {y} ⊇ (A \ {y})xx; therefore,
Bxx = (A \ {y})xx. ��

Lemma 17 A y-stable set A ⊆ Mx is y-pseudo-closed if and only if A is x-pseudo-
closed.

Proof As A is y-stable, every of its subsets is also y-stable. Consequently, ∀B ⊆
A : Byy = Bxx, and, by definition, A is x-pseudo-closed if and only if it is y-pseudo-
closed. ��

This means that all y-stable y-pseudo-closed subsets of Mx are premises of
implications from B(Kx), which suggests that y-modified implications should be
separated from y-stable implications in B(Kx). As we will see later, this idea makes
sense.

Example 18 See Fig. 2.

We know all y-stable implications of B(Ky) with premise from Mx and now
consider their y-modified counterparts.

Lemma 19 A y-modified set A ⊆ Mx is a y-pseudo-intent if and only if A is minimal
among y-modified x-pseudo-intents and x-intents.

Proof Note that being minimal among y-modified x-pseudo-intents and x-intents is
equivalent to being minimal among y-modified x-quasi-closed sets.

Let A be minimal among y-modified x-quasi-closed sets. If A is not a y-pseudo-
intent, then there is a y-pseudo-intent B ⊂ A such that Byy 	⊂ A. By Proposition 16,
B is x-quasi-closed. Since A is minimal, B is y-stable. Then, by Proposition 9, Bxx =
Byy 	⊂ A. From A being x-quasi-closed, it follows that Bxx = Axx. Hence, Bxx is
y-modified, which is impossible due to B being y-stable and Proposition 11.

Now, if y-modified A ⊆ Mx is a y-pseudo-intent, then A is x-quasi-closed by
Proposition 16. Let B ⊆ A be minimal among y-modified x-quasi-closed sets. As
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Fig. 2 The only 4-stable
pseudo-intent in K3 (see
Example 1) is {1}. Hence,
{1} → {3}, the only implication
in the basis of K3, is 4-stable,
and it keeps its place in the
basis of K4

intent

pseudo-intent

1 2 3

shown above, B is a y-pseudo-intent. However, y ∈ Byy 	⊂ A. Hence, B = A, which
concludes the proof. ��

Example 20 See Fig. 3.

Let us consider y-pseudo-closed sets from My that contain y.

Proposition 21 If y-stable A ⊆ My is y-quasi-closed and y ∈ A, then A \ {y} is
x-closed.

Proof From A being y-stable, it follows that A \ {y} is y-stable and (A \ {y})yy =
(A \ {y})xx 	= Ayy. Taking into account that A is y-quasi-closed, we obtain that
A \ {y} ⊆ (A \ {y})xx ⊂ A. Consequently, A \ {y} = (A \ {y})xx, which proves the
proposition. ��

Lemma 22 A y-stable set A ⊆ My with y ∈ A is y-pseudo-closed if and only if

(1) A is not y-closed;
(2) A \ {y} is x-closed;
(3) For each y-stable y-pseudo-intent B ⊂ A: if y ∈ B, then Byy ⊂ A.

Proof If A is y-pseudo-closed, then (1) and (3) are satisfied by definition and (2)
holds by Proposition 21. In the other direction, every subset of A is y-stable. If
B ⊂ A and y 	∈ B, then Byy = Bxx ⊆ (A \ {y})xx = A \ {y} ⊂ A. Hence, (3) ensures
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Fig. 3 There is only one
4-modified 3-intent, {1, 2, 3},
and no 4-modified
3-pseudo-intents in Example 1.
This adds the 4-modified
implication {1, 2, 3} → {4}
to the basis of K4

intent

pseudo-intent

1 2 3

that A contains the closure of every its y-pseudo-closed subset, which together
with (1) means that A is y-pseudo-closed. ��

Lemma 22 restricts the search space of pseudo-intents by indicating an efficient
method for their construction: simply add the new attribute to an old intent. Even
more interesting, Lemma 22 makes it possible to determine if the candidate for
being a pseudo-intent is saturated using only y-stable implications whose premise
contains y, i.e., those generated by Lemma 22 itself (new stable implications, as they
are called above). Note that we only have to check whether A is saturated, rather
than actually compute A• (the saturation of A), which is much harder. Thus, separate
storage of stable and modified implications will make saturation more efficient.

Example 23 See Fig. 4. Note that the set {1, 2, 3} has double coloring in Fig. 4: it is a
3-intent and a 4-pseudo-intent.

It remains to consider y-modified sets A ⊆ My with y ∈ A. Any y-modified y-
pseudo-intent can be obtained from a y-modified x-pseudo-intent in this or that way:
apparently, all the information conveyed by a y-modified implication A → B must
already be present in B(Kx) except for the information conveyed by the implication
A → y.

Assume that • is the saturation operator in the context Ky.

Lemma 24 A y-modified set A ⊆ My with y ∈ A is y-pseudo-closed if and only if
Ayy 	= A = B• for some y-modified x-pseudo-closed B ⊆ A \ {y}.
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intent pseudo-intent

1 2 3 4

Fig. 4 Consider again Example 1. To detect 4-stable pseudo-intents containing attribute 4, we add
4 to all 4-stable 3-intents of K3. 3-intents Ø, {2}, and {1, 3} generate 4-intents {4}, {2, 4}, and {1, 3, 4}.
The other sets generated by 3-intents are {3, 4} and {2, 3, 4}, which are not 4-intents. Obviously, {3, 4}
satisfies condition (3) of Lemma 22 (there are no 4-stable 4-pseudo-closed subsets of {3, 4}), and it is
a 4-pseudo-intent. Hence, we add the implication {3, 4} → {1, 3, 4} to the basis. Now, {3, 4} is a subset
of {2, 3, 4}, but its closure, {1, 3, 4} is not. Consequently, {2, 3, 4} is not 4-pseudo-closed

Proof The sufficiency is immediate from the definition of the saturation opera-
tor. Let us prove the necessity. Suppose that a y-modified A ⊆ My with y ∈ A
is y-pseudo-closed. Since A is y-modified, Ayy = (A \ {y})xx ∪ {y}. Therefore, as
A is not y-closed, A \ {y} is not x-closed. However, A \ {y} is x-quasi-closed by
Proposition 16. This implies that there is an x-pseudo-intent B ⊆ A \ {y} such that
Byy = (A \ {y})yy = Ayy. As B ⊂ A and A is a y-pseudo-intent, there are no
y-pseudo-intents or y-intents, i.e., sets closed under •, between B and A. Therefore,
B• = A. ��

Lemma 24 makes it possible to find all y-modified y-pseudo-intents A ⊆ My with
y ∈ A by saturating y-modified x-pseudo-intents.

Example 25 In Example 1, we are lucky enough to have no 4-modified 3-pseudo-
intents. Note that unlike in Next Closure, we do not have to consider the set {1, 4} as
a candidate, since {1} is a 4-stable 4-pseudo-intent. This suggests that on a big context
we can greatly reduce the time spent on saturation, which is a very computationally
expensive operation.

The four lemmas lead us to the following theorem:

Theorem 26 There is an injection from B(Kx+1) to L(Kx) ∪ B(Kx). In other words,
every pseudo-intent of Kx+1 corresponds to a distinct intent or pseudo-intent in Kx.
Therefore, |B(Kx+1)| ≤ |L(Kx)| + |B(Kx)|.



90 S. Obiedkov, V. Duquenne

5 Incremental construction of the canonical basis

In this section, we translate the results above into an algorithm constructing the
canonical implication basis incrementally. We give a precise and compact description
of the algorithm due to some simple though important precautions that have to be
taken care of in the way of evaluating the candidate premises, so that the interested
reader can adopt and develop this approach in his or her own procedures.

In the pseudo-code below, brackets [] denote lists. Concepts are pairs of sets
(Extent, Intent), while implications are represented by triples of sets (Extent,
Premise, Consequence), where Premise is a pseudo-intent, Consequence is the
consequence of the implication that has Premise as its premise (i.e., when the algo-
rithm terminates, Consequence = Premise′′), Extent = Premise′ is the set of objects
whose intents contain Premise. Using dot notation, we write, e.g., concept.Intent to
designate the intent of concept. All function parameters are in/out: a function call
may change the value of the variable passed as its argument.

The algorithm is attribute-incremental, i.e., it processes the input context K

attribute after attribute constructing the implication basis (and the concept set) for
each context Kx with x varying from 1 to |M|. The algorithm maintains the Elements
list containing concepts and implications of the basis ordered in a certain way. We
use y to denote the attribute being processed assuming that the Elements list contains
concepts and implications of the context Kx and y = x + 1.

Algorithm 4 (Incremental algorithm)

Input A context K = (G, M, I).
Output The canonical implication basis of K.
Begin

Elements := [(G, Ø)]
N := Ø
for each y in M

N := N ∪ {y}
AddAttribute(y, Elements, N)

return the set of all implications in Elements
End

The algorithm goes through the Elements list processing each element according
to its type. As the output, we get the four types of implications described by the
lemmas. Our algorithm maintains a separate set for each type of implications:

A → B y 	∈ A y ∈ A

y-stable OldStableImpl (Lemma 17) NewStableImpl (Lemma 22)
y-modified MinModImpl (Lemma 19) NonMinModImpl (Lemma 24)

Lemmas 17, 19, 22, and 24 provide a way to obtain all intents and pseudo-intents
of the context Ky from intents and pseudo-intents of the context Kx. Thus, we have
to deal with four types of “generators” of y-pseudo-intents: y-stable and y-modified
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x-intents and x-pseudo-intents. The following table shows which lemmas should be
consulted when processing different types of generators:

x-pseudo-intent x-intent

y-stable Lemma 17 Lemma 22
y-modified Lemma 19 and 24 Lemma 19

Many y-pseudo-intents are generated by immediate application of Lemmas 17, 19,
and 22 to x-intents and x-pseudo-intents. However, Lemma 24 suggests that some y-
modified x-pseudo-intents rejected by Lemma 19 can still prove useful in obtaining
y-pseudo-intents that contain the new attribute. These x-pseudo-intents, which are
not minimal in the sense of Lemma 19, are placed into the NonMinModImpl set.
In the end of the incremental step, when we have a cover of the new basis B(Ky)

available, the x-pseudo-intents are saturated by the Fuse procedure (see below) and
either accepted as y-pseudo-intents or ultimately discarded.

In the Elements list, a concept with a smaller intent or an implication with a
smaller premise must precede a concept with a larger intent or an implication with a
larger premise. This is the basis of the algorithmic steps involving minimality checks

Algorithm 5

AddAttribute(y, Elements, N)
Input New attribute y and its extent y′,

list Elements consisting of all concepts of L(Kx) and implications of B(Kx),
set N of all attributes already processed (N = Mx)

Output Elements consists of all concepts of L(Ky) and implications of B(Ky)

Begin
OldStableImpl := Ø
NewStableImpl := Ø
MinModImpl := Ø
NonMinModImpl := Ø
ModConcepts := Ø
for each element in Elements

if element.Extent ⊆ y′
then

if element is a concept
then ProcessModifiedConcept(y, element, Elements,

MinModImpl, ModConcepts);
else ProcessModifiedImplication(y, element, Elements,

MinModImpl, NonMinModImpl);
else

if element is a concept
then ProcessStableConcept(y, element, N, NewStableImpl);
else ProcessStableImplication(element, OldStableImpl);

Fuse(OldStableImpl ∪ NewStableImpl ∪ MinModImpl,
Elements, NonMinModImpl, ModConcepts);

End
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and saturation that occur in relation to Lemmas 19 and 22: e.g., to check if set A
is saturated, one should already have all implications from the basis with premises
that are subsets of A. Maintaining such an order does not involve a significant
computation overhead.

Let us consider how the algorithm processes the four types of generators.

1. According to Lemma 17, y-stable x-pseudo-intents are y-pseudo-intents; thus,
no special processing is required.

Algorithm 6

ProcessStableImplication(implication, OldStableImpl)
Begin

Add implication to OldStableImpl
End

2. A y-stable x-intent can serve a basis for a y-pseudo-intent A with y ∈ A if it
satisfies the conditions of Lemma 22, which are not difficult to check.

Algorithm 7

ProcessStableConcept(y, concept, CurrentAttributes, NewStableImpl)
Begin

NewExt := concept.Extent ∩y′
NewPrem := concept.Intent ∪{y}
NewCons := {n | n ∈ CurrentAttributes and NewExt ⊆ n′}
if NewCons = NewPrem

then
new_concept := (NewExt, NewPrem)

Add new_concept to Elements
else

if NewPrem = Saturate(NewPrem, NewStableImpl)
new_impl := (NewExt, NewPrem, NewCons)
Add new_impl to NewStableImpl and to Elements

End

The CurrentAttributes set contains all attributes processed at the point of
the procedure call, i.e., y and all the preceding attributes. The extent of the
attribute y is denoted by y′, as, for any k and l ≥ y, {y}k = {y}l . Thus, the
ProcessStableConcept procedure creates a new attribute set NewPrem adding
the attribute y to a y-stable intent. If NewPrem is y-closed, a new concept
is added to Elements. Otherwise, NewPrem is tested for being pseudo-closed.
According to Lemma 22, it suffices to verify that NewPrem is saturated by
the implications from NewStableImpl. If so, the implication NewPrem →
NewCons is added to NewStableImpl and to Elements.
There is no need in actual computation of the saturation of NewPrem: it
is enough to check whether NewStableImpl contains an implication whose
premise is a subset of NewPrem and whose consequence is not. This test can
be performed in a number of steps linear in the number of implications in
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NewStableImpl, which is generally much more efficient than the computation
of the saturation. However, NewStableImpl should already contain all relevant
implications of the y-basis whose premises are subsets of NewPrem. That is why
the order of processing is important.

3. (x + 1)-modified x-pseudo-intents demand special attention, as they give rise to
pseudo-intents of two types described by Lemmas 19 and 24.

Algorithm 8

ProcessModifiedImplication(y, implication, Elements, MinModImpl,
NonMinModImpl)

Begin
Add y to implication.Consequence;
if there is min ∈ MinModImpl such that min.Premise ⊆ implication.Premise

then
Add y to implication.Premise
Move implication from Elements to NonMinModImpl

else Add implication to MinModImpl
End

If an implication is y-modified, y should be added to its consequence. First, we
check the conditions of Lemma 19. They are satisfied if and only if MinModImpl
does not contain an implication whose premise is a subset of implication.Premise
(assuming that smaller x-pseudo-intents and x-intents are processed before
larger ones). In this case, implication.Premise is a minimal y-modified y-pseudo-
intent, and implication should be added to MinModImpl. Otherwise, it is
necessary to compute the saturation of implication.Premise, which can be y-
pseudo-closed according to Lemma 24. However, we will be in a position to
do it only when the set of implications equivalent to B(Ky) becomes available;
therefore, we put implication into NonMinModImpl and leave it there for a
while.

4. (x + 1)-modified x-intents are responsible only for implications described by
Lemma 19.

Algorithm 9

ProcessModifiedConcept(y, concept, Elements, MinModImpl,
ModConcepts)

Begin
if there is min ∈ MinModImpl such that min.Premise ⊆ concept.Intent

then Remove concept from Elements
else

new_impl := (concept.Extent, concept.Intent, concept.Intent ∪{y})
Add new_impl to MinModImpl
Replace concept with new_impl in Elements

Add y to concept.Intent
Add concept to ModConcepts

End
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Similar to the preceding case, we check the minimality. If concept.Intent is
a minimal y-modified y-pseudo-intent, the new implication with the premise
concept.Intent is substituted for concept in the Elements list and is added to
MinModImpl. As for concept, it is placed to the end of ModConcepts whether
or not the conditions of Lemma 19 are satisfied. This is necessary to maintain the
desired order.

Thus, we have four implication sets: OldStableImpl, NewStableImpl, MinModImpl,
and NonMinModImpl. The first three sets contain all implications of the basis (and
only them) except for those described by Lemma 24. Implications from these sets
are already in Elements. At the last step of the algorithm, implication premises
from NonMinModImpl are saturated and the implications together with modified
concepts from ModConcepts are added to Elements.

Algorithm 10

Fuse(Basis, Elements, ExtraImpl, ExtraElements)
Begin

for each impl in ExtraImpl
Remove impl from ExtraImpl
OtherImpl := Basis ∪ ExtraImpl
impl.Premise := Saturate(impl.Premise, OtherImpl)
if impl.Premise ⊂ impl.Consequence

then add impl to Basis and to ExtraElements
Sort ExtraElements
Add ExtraElements to the end of Elements

End

To prove that the algorithm is correct it remains to show that, at each point
of execution of the algorithm, concepts and implications in the Elements list are
arranged according to the order ⊆ of their intents and premises, respectively.

Before the Fuse procedure is called, the Elements list is extended only by new
pseudo-intents and intents obtained by processing stable x-intents that are supposed
to be in the right order. If A is an x-intent, then adding y-pseudo-intent or y-intent
A ∪ {y} to the end of the list does not violate the order. Indeed, for any A and B,
y 	∈ A, y 	∈ B: B ⊆ A ⇔ B ∪ {y} ⊆ A ∪ {y}.

At the moment when the Fuse procedure is called, the Elements list contains
all y-stable y-pseudo-intents and y-intents, as well as y-modified pseudo-intents A
such that y 	∈ A. The Fuse procedure adds to Elements y-modified y-intents and y-
pseudo-intents A such that y ∈ A. Obviously, such A cannot be a subset of a pseudo-
intent or an intent from the Elements list, since y-modified sets cannot be subsets of
y-stable sets and sets that contain y cannot be subsets of sets that do not contain
y. Therefore, sorting ExtraElements before adding them to Elements is sufficient to
preserve the order.

Let us estimate the complexity of the algorithm. Since the concept set and
canonical basis are, in general, of exponential size with respect to the number of
objects and attributes [14], we use the number of intents and pseudo-intents of the
“old” context Kx to estimate the complexity of the incremental step. We denote
l = |L(Kx)| and b = |B(Kx)|. Since there are at most as many new stable implications
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as there are stable concepts in L(Kx), the complexity of ProcessStableConcept is
bounded by O(y|G| + yl): as y = |CurrentAttributes|, the complexity of computing
the closure NewCons is O(y|G|), and O(yl) is the time needed to check whether set
NewPrem is saturated. We estimate the complexity of ProcessModifiedImplication
and ProcessModifiedConcept as O(y(l + b)), given that |MinModImpl| ≤ l + b (see
Theorem 26). Taking into account the if condition in the main loop of AddAttribute,
one can see that the complexity of the main loop, which runs l + b times, is bounded
by O(y|G|(l + b) + y(l + b)2).

Implications from ExtraImpl in the Fuse procedure have been generated by
ProcessModifiedImplication; hence, their number is limited by the number of
pseudo-intents in the original context, i.e., by b . Similarly, the number of concepts
in ExtraElements is limited by l. If properly implemented, e.g., using LinClosure
[16] instead of Saturate and the QuickSort algorithm for sorting ExtraElements,
the Fuse procedure will not add anything to the complexity of the main loop.
Therefore, the complexity of AddAttribute (an incremental step) is bounded by
O(y|G|(l + b) + y(l + b)2), where y is the number of attributes processed so far,
l = |L(Kx)|, and b = |B(Kx)|.

6 An example

Let us illustrate the work of the algorithm with the context from Example 1. Table
rows correspond to iterations of the main loop of the AddAttribute procedure. The
y column records the new attribute, and the element column contains the concept
or implication processed at this iteration. Every iteration has an identifier #. The
Elements cell contains the concept or implication added to the Elements list at the
iteration; it is empty if nothing has been added. The # identifier in the Elements cell

# y element Old New Min Mod Elements
Stable Stable Mod Concepts
Impl Impl Impl

0 (abcd, Ø)
1 1 (abcd, Ø) (ab, 1)

#3.2
stable concept (ab, 1, 13)

2.1 2 (abcd, Ø)
stable concept

(cd, 2)

2.2 (ab, 1) (Ø, 12)
stable concept #3.4

3.1 3 (abcd, Ø)
stable concept

(abc, 3)

3.2 (ab, 1) (ab, 1, (ab, 13)
modified concept 13)

3.3 (cd, 2)
stable concept

(c, 23)

continued on next page



96 S. Obiedkov, V. Duquenne

continued from previous page

# y element Old New Min Mod Elements
Stable Stable Mod Concepts
Impl Impl Impl

3.4 (Ø, 12)
modified concept

(Ø, 123)

(ab, 13)
Fuse (Ø, 123)

#4.7
(Ø, 123,
1234)

4.1 4 (abcd, Ø) (ad, 4)
stable concept

4.2 (ab, 1, 13) (ab, 1,
stable 13)
implication

4.3 (cd, 2)
stable concept

(d, 24)

4.4 (abc, 3) (a, 34, (a, 34,
stable concept 134) 134)

4.5 (c, 23)
stable concept

4.6 (ab, 13)
stable concept

(a, 134)

4.7 (Ø, 123) (Ø (Ø,
modified concept 123, 1234)

1234)
Fuse (Ø,

1234)

indicates that the generated element has been removed from the list at the iteration
denoted by the identifier. A table cell is split horizontally if the element has been
replaced by the element below. In our example, the NonMinModIml list is always
empty; hence, there is no such column in the table. When writing sets, we omit
commas and braces; i.e., we write 12 instead of {1, 2}, ab instead of {a, b}, etc.

7 Experiments

We programmed Ganter’s algorithm and our incremental algorithm in C# under
the .NET platform. Below, we give the time the algorithms spend on various
contexts, both real and artificial (if necessary, transformed into binary form using
FCA scaling techniques [10]). Even if these results are somewhat preliminary, and
the real difference in performance might be smaller after proper optimization, the
second numbers in the columns of algorithms suggest that, indeed, there should
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be considerable gain in performance.2 These are the total numbers of implications
participating in saturation, that is, the size of all Impl sets across all calls to the
Saturate procedure (see above).

Context Number Size of Ganter Ganter+ Incremental
of concepts the basis algorithm

(M, M, 	=),
|M| = 18

262144 0 1.7 sec;
0

1.6 sec;
0

4.3 sec;
0

|G| = 10,

|M| = 100,

|g′| = 25

129 380 7.9 sec;
4 815 975

4.3 sec;
2 391 767

0.7 sec;
101 089

|G| = 20,

|M| = 100,

|g′| = 25

716 2269 4 min 1 sec;
141 306 696

1 min
39 sec;
55 284 673

14.4 sec;
1 784 027

|G| = 10,

|M| = 100,

|g′| = 50

559 546 23.2 sec;
16 664 073

18.1 sec;
12 788 166

2.5 sec;
628 517

SPECT:
|G| = 267,

|M| = 23,
see [4]

21550 2169 2 min
42 sec;
113 690 618

2 min
30 sec;
108 125 700

9.4 sec;
3 890 328

Solar Flare:
|G| = 1389,

|M| = 49,
see [4]

28742 3382 6 min
26 sec;
108 792 590

5 min
56 sec;
86 593 347

1 min
15 sec;
6 474 343

Congressional
Voting:
|G| = 435,

|M| = 18,
see [4]

10644 849 18.1 sec;
134 374 733

15.9 sec;
80 964 720

2 sec;
1 315 122

8 Conclusion

Since its introduction in the early eighties, one has had at disposal a single efficient
algorithm — to our knowledge — for directly extracting the canonical basis of
implications holding in a context, namely, Next Closure. This algorithm can be used
for scanning through any closure operator, being therefore not specifically tailored
for the basis extraction, and is somehow slowed down in this situation by the necessity
of calculating many a “premise saturation,” which is a slow iterative process. Here,
we have presented a new approach that specifically addresses the introduction of

2We have also implemented the incremental algorithm in Java within Sergey Yevtushenko’s Concept
Explorer framework and compared its performance with Concept Explorer’s implementation of
Ganter’s algorithm. The results are very similar to those presented in this paper. Concept Explorer
is available at http://sourceforge.net/projects/conexp.

http://sourceforge.net/projects/conexp
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a “new” attribute in a context and, thus, avoids recalculating the “new” basis from
scratch by undertaking a revision of the “old” basis instead. Therefore, it is attribute-
incremental and is useful in refining a database by introducing new attributes to
object descriptions. It turns out to be quite competitive due to some “genealogic”
properties of implications that decrease the number of premise saturations (but
assume storage of all intents in return). An algorithm updating the implication basis
with the addition of a new object is a subject of further research.

Since both the concept set and the implication basis can be of exponential size with
respect to the context size in the worst case [14], any algorithm for basis construction
has necessarily exponential time complexity. However, in general, the exponential
sizes of the concept set and implication basis may be two different worst cases.
In practice, for an arbitrary closure operator coming from a database, the number
of pseudo-closed elements might be small regarding the number of intents (closed
elements), which makes it undesirable to carry over the latter when one only needs
to generate the former. A challenge would be to devise an efficient algorithm whose
complexity depends only on the size of the basis.
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