Ann Math Artif Intell (2006) 48:15-43
DOI 10.1007/s10472-006-9042-1

Mechanizing common knowledge logic using COQ

Pierre Lescanne

Published online: 7 March 2007
© Springer Science + Business Media B.V. 2007

Abstract This paper presents a formalization in CoQ of Common Knowledge Logic
and checks its adequacy on case studies. Those studies allow exploring experimen-
tally the proof-theoretic side of Common Knowledge Logic. This work is original
in that nobody has considered Higher Order Common Knowledge Logic from the
point of view of proofs performed on a proof assistant. As a matter of facts, it is
experimental by nature as it tries to draw conclusions from experiments.

Keywords Common knowledge logic - COQ - Epistemic logic -
Higher order common knowledge logic - Modalities

Mathematics Subject Classifications (2000) 03B42.03B15.03B35

1 Introduction

We must not judge humans by what they do not know, but by what they know and
by the way they know it.

Vauvenargues

Thoughts and Maxims

Epistemic Logic is the logic which formalizes knowledge of agents [12, 34]. Tt
is an extension of classical (or non classical) logic obtained by adding modalities.
Actually one modality is added for each agent: it describes the fact that the agent
knows a proposition or a fact. In this paper I am interested in a strong extension
of Epistemic Logic, namely Common Knowledge Logic, which adds a new modality
called common knowledge. It has been considered first by the philosopher Lewis

P. Lescanne (X))

Laboratoire de I'Informatique du Parallélisme,

Ecole Normale Supérieure de Lyon 46, Allée d’Italie, 69364 Lyon 07, France
e-mail: Pierre.Lescanne@ens-lyon.fr

@ Springer

16 P. Lescanne

[27] and later more formally by the economist Aumann [2] (see also the formal
presentation of Milgrom [35] where “formal” is not taken at the degree required by
a mechanization). Among many applications it is used in game theory and economic
behavior [3, 15], in artificial intelligence [18, 33], in databases [14], in verifying
cryptographic protocols [21] and in distributed systems [23].

Since its introduction Common Knowledge Logic has been studied as a logical
system, but most of the authors [12, 34] consider it from its model-theoretic point of
view. In this paper the proof-theoretic aspect and mostly the actual mechanization
of the Common Knowledge Logic is considered. Only a few approaches are close to
this paper. Let me cite Alberucci and Jéger [1], Kaneko [22] and, Lismont [29] but
these authors consider only the proof theory aspect whereas I look at how Common
Knowledge Logic can actually be implemented in a computer.

1.1 What should be expected from mechanizing logic?

Unlike human proofs which are sometime fuzzy and lacking on detail, mechanizing
proofs shows exactly (in every detail) how theorems are proved from axioms.
In particular, when experimenting with a proof assistant it is often the case that
weaknesses appear in axiom systems, which could not have been discovered by a
careful human examination. Those who have experienced mechanized proof know
that bugs are discovered at an amazingly early stage in the process. Most of the time
those bugs have to do with limit situations like initializations or “straightforward” or
less important cases. This was true in the experiment described in this paper. I do not
claim that I found bugs or an inconsistency, but I have shown that axiomatizations
proposed in the literature are erroneous, usually due to typos. More specifically 1
have shown that the axiom systems for Common Knowledge Logic proposed by a
classical textbook in Common Knowledge Logic is not robust. By robustness, I mean
the ability of a system of axioms to stay consistent even when its scope is extended.
In the case of a system of axioms for n agents, a natural question is: Is the system
still sound when n = 0? We will see (Section 4) that this is not trivial in the kind
of mechanization which I conducted, but this is an essential feature as it makes full
sense to start on 0 an inductive definition on n. I have also shown that often people
have difficulties in handling rules and/or common knowledge modalities. Actually in
hand made proofs, it is difficult to detect whether a specific implication lies in the
theory or in the metatheory. As a consequence, sometimes a proposition is modified
by a common knowledge modality because it is associated with a theory implication
and sometime it is not because it is associated with a metatheory implication (see
Section 6 and Appendix 3 for a discussion and examples). This confusion between
theory and meta-theory happens especially in applications to game theory.

I have chosen to embed Common Knowledge Logic into the CoqQ proof assis-
tant [6, 11]. There are many reasons for that. Coq, which is based on the calculus
of inductive constructions, offers a very general tool for representing logic theories,
in particular Higher Order Epistemic Logic can be easily implemented. In Coq,
proofs are first class citizens, i.e., they are mathematical objects that are built by a
sophisticated computer aided system and exchanged among researchers. Currently
Coq is used and developed by a large community of users and sophisticated tools are
offered. It is clear that the choice of Coq is not a key issue in what follows but its

@ Springer

Mechanizing common knowledge logic using COQ 17

strong logic background makes it really appropriate. However tools like Isabelle [36]
or Hol [16] could have been used.

In what follows, I am not going to fully introduce Coq as it is not the aim of this
paper and a good book exists [11], but I hope to give enough information for a reader
to catch much of the concepts necessary to understand the development of Common
Knowledge Logic presented here. Anyway, the main purpose of this paper is not the
use of Coq of any logical framework, but the fact that fully mechanized proofs have
been performed and lead to interesting discussions.

1.2 Shared knowledge, common knowledge

Common knowledge logic is also known as the logic of knowledge [18, 32, 33], it
deals with modalities, which are not part of traditional logic and which modify the
meaning of a proposition. For instance such a modality is the knowledge modality:
“agent Alice knows that ...,” written K 4. There is a notion of group G of agents
and there is one knowledge modality K; for each agent i in G, so when there are
n agents, there are n knowledge modalities. From the K;’s, one can build two new
modalities, namely a modality E¢ of shared knowledge, which modifies a proposition
@ into a proposition Eg(¢) and which means that “everyone in the group G knows
@” and a modality Cg of common knowledge. Not all approaches of Epistemic Logic
consider common knowledge, but for many people, it is essential for the application
and I put a strong emphasis on it. C; (@) would say “¢ is known to everybody in the
group G” in a very strong sense since knowledge about ¢ is known at every level of
knowledge. Slightly more precisely, if G is the group of agents and ¢ is a proposition,
Es (@) is the conjunction over the i € G of the K;(¢) and Cs(¢@) means something
like “everybody knows ¢ and everybody knows that everybody knows ¢ and ... and
everybody knows that everybody knows that everybody knows ... that everybody
knows ¢...” This infinite conjunction is handled by making Cs(¢) a fixpoint. For
philosophers and economists who, like Aumann [3], study game theory, common
knowledge is the basis of rationality. See Appendix 1 for an example where common
knowledge applies.

In this paper, the main goal of the implementation of Common Knowledge Logic
is to handle properly the concepts of knowledge of an agent, shared knowledge and
common knowledge, but also induction and higher order propositions. In Coq it is
possible to make assumptions on propositions, like there are propositions Alice knows
that she knows. For the reader who wants to learn more about Common Knowledge
Logic, the two textbooks [12, 34] are excellent introductions. Rules of Common
Knowledge Logic are given in Section 3.

1.3 Deduction rule and Hilbert-style presentation

The well-known deduction rule is as follows: if a statement p can be deduced from a
set {1, ..., P,,} of hypotheses augmented by ¢, then the theorem “¢ implies p” can
be deduced from {1y, ..., P,,}

1-])1! ...,‘Ll)m,¢ + P
ViU m9=p

@ Springer

18 P. Lescanne

F]((p

Tautologies K T
- - (Ko A Ki(¢ = W) = Kip FKio=¢
Fo Fo=vw .
Modus ponens Knowledge Generalization
L - K¢
—— Positive Introspection Negative Introspection
- Ki¢ = KKi¢ F =K@ = K;~K;

Fig. 1 The basic rules of epistemic logic: the system S5

Most logics, noticeably the calculus of inductive constructions, fulfill the deduction
rule, but modal logic and epistemic logic do not, therefore they cannot be represented
directly in CoqQ or in any logical framework. Indeed suppose that we have the
deduction rule in epistemic logic (or in modal logic by the way) and a rule like
Knowledge Generalization (Fig. 1)

Vi P @ oo
: We would have ¢ F ¢ and then

Uy, e, F Ki(@) ¢+ Ki(o)
and then using the deduction rule we would get - ¢ = K;(¢). This would translate
into if @ holds then agent i knows ¢ which is not what we want in formalizing
Epistemic Logic. Indeed we want to model agents who know part of the truth not
all the truth. However in modal logic the following rule is valid

Vi U E @
Ki(y), ..., Ki(b,,) = Ki(9)

This extension or a close one is usually used by people who formalize modal logic,
but this is a drastic extension of natural deduction which does not make it directly
embeddable in Coq.

Consequently, for an implementation of Common Knowledge Logic one has
either to implement the above rule or to formalize propositional logic and predicate
calculus in a Hilbert-style approach. Both approaches involve embedding the calcu-
lus as a specific theory in CoqQ. For the Hilbert style approach, one defines the set of
propositions as a Set in CoqQ and the property for a proposition of being a theorem as
a predicate on proposition. This kind of approach is called deep embedding and
requires a very expressive logic. The formalization one gets eventually is a higher
order Common Knowledge Logic in type theory.

(Gen)

1.4 Structure of the paper

The goal of this paper is to present Common Knowledge Logic, its implementation
in CoqQ and its application to classical examples taken from the literature. This work
is experimental by nature. It is structured as follows. In Section 2, I outline for
didactic reasons the implementation of predicate calculus in CoqQ (the reader which
is at ease with encoding logic in metalanguages or logical framework can easily skip

@ Springer

Mechanizing common knowledge logic using COQ 19

this section). In Section 3, I describe Common Knowledge Logic and, in Section 4,
I'show how it is implemented. Sections 5 and 6 are devoted to two examples. Section 7
presents related works and Section 8 is the conclusion.

The whole development in Coq is available on the WEB at http://perso.ens-lyon.
fr/pierre.lescanne/COQ/EpistemicLogic.v8.

2 Predicate calculus in COQ

In what follows I use a typewriter font for excerpts of the Coq script, e.g.,
proposition and I use italics for mathematical formulas, e.g., proposition.

2.1 A Hilbert-style presentation

As said, if one aims to introduce modal logic, natural deduction does not work
cleanly. A Hilbert-style presentation is required. Here is what one does: one embeds
a logic (or a theory) namely Common Knowledge Logic into a metatheory, namely
Coq. Both the theory and the metatheory have their implications and their quantifi-
cations. The difference will be indicated by syntactical notations. The implication in
the theory will be called just the implication when the implication in the metatheory
will be called the Coq implication, the same for quantifications.

2.2 The set of propositions

First, I introduce a type proposition which is an inductive Set in CoqQ. In a rough
description, this would give something like

p,q : proposition 1= p=q|V4aP|Kip|Cgp

where V4 depends on A, P:x+ P x is a function from A to proposition,' i is a
natural and, g is a list of naturals. For defining the set proposition, CoqQ uses an
inductive definition with four constructors, namely the implication Tmp (later written
==> as an infix), the quantifier Forall (later written \-/) and two operators for
modalities K and C. As noticed, Coq has its own quantification which is used in the
definition of Forall.?

Inductive proposition: Set :=

Imp : proposition -> proposition -> proposition |
Forall : forall A : Set, (A -> proposition)

-> proposition |
K : nat -> proposition -> proposition |
c : (list nat) -> proposition -> proposition.

L A quantification applies on a predicate and no variable binding is required a priori.

2However notice that Forall uses a quantification over all the inhabitants of Sets. Therefore it
requires to use impredicative Sets, a feature which is no more accepted by default in the versions of
Coq, greater or equal to 8. However the option - impredicative-set when invoking CoqQ enables
performing the experiments with the most recent versions of Coq.

@ Springer

http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8

20 P. Lescanne

In the inductive definition, Coq gives the signature of the constructors.> Now we are
ready to use abbreviations and I will write ==> for Imp and \ -/ for Forall. Notice
that the Coq keyword forall (with a lower case £) is the built-in CoqQ quantification,
whereas our temporary notation Forall is the quantification in the object theory.

Once one knows what a proposition is, one can introduce the concept of theo-
rem, for that I introduce a predicate theorem in the set proposition, abbrevi-
ated | -, which tells which propositions are theorems. For instance, |- p says that
proposition p is a theorem in the object theory representing Common Knowledge
Logic.* See in Appendix 2, the full Coq definition of theorem.

2.3 Propositional logic

The axioms of propositional logic say that some propositions are the basic theorems
of the theory. They use | - and they are:

Hilbert K: forall p g : proposition, |- p ==> g ==>p
Hilbert S: forall p g r : proposition,

|— (p ==> q ==> r) ==> (p ==> q) ==> p ==> ¥
Classic_NotNot: forall p : proposition, |- (——p) ==> p.

plus the modus ponens as a rule:
MP: forall p g : proposition, |- p ==>gq -> |- p -> |- q.

Here -> is the CoqQ implication, i.e., the implication in the metatheory. In the
propositions-as-types approach (a. k. a. Curry-Howard correspondence), - > is also
the type constructor for function spaces. Notice the notation fun x:A =>

for a function from A into some other set. A function in proposition -»>
proposition could be the identity written

fun p:proposition => p.

A rule in the theory is a way to deduce a new theorem from one or more previous
ones. A n-adic rule has the form

|- Hyp, -> ... |-Hyp, -> |- Conclusion.

If n =0, it is a logical axiom.

Rule MP is used to prove theorems as follows. Suppose that one has a theorem
of the form |- ¢ ==> 1 and a theorem | - ¢, it suffices to apply MP to these two
theorems to “produce” the new theorem | - 1. Actually, one is rather in the situation

3Technically Coq does not allow using infix abbreviations in definitions, but it allows replacing postfix
notations by infix ones. When a new constructor is introduced in an inductive definition, it has to be
prefix.

4Notice that I do not use the above stated rule about infix and prefix and to make formulae more
readable, I write | - p instead of the cumbersome theorem p, hoping that the reader will forgive me.
As the reader understands, this is improper in CoQ.

@ Springer

Mechanizing common knowledge logic using COQ 21

of trying to prove | - 1\ and one looks for two theorems with can be invoked with MP
to produce it. For instance, if one has to prove | - g ==> p ==> p, one invokes

apply MP with (p ==> p)

which produces two subgoals |- (p ==> p) ==> g ==> p ==> p (an instance
of Hilbert K)and |- p ==> p, an already proven meta-theorem.
2.4 Predicate Logic

2.4.1 The syntax

As said, instead of Forall A (fun x:A => @), [write \-/ (fun x:A => @)
where I use the notation \-/. Indeed Coq allows dropping A if CoqQ can infer A. It
is not needed to bind a variable when this is not necessary, i.e., when the function
is not given by an expression, but just by its name. Thus Coq allows writing the
shorter notation \-/P instead of \-/ (fun x:A => (P x)). Here I use the Coq
notation =>in fun x:A => (f x) whichshould not be confused with my notation
==> for the implication. The below axiom Forall2 is one of the few exceptions
where the two notations => and ==> are used in the same context.

2.4.2 The axioms

There are two axioms for universal quantification (see for instance [39] p. 68):

Foralll: forall (A: Set) (P:A -> proposition) (a:A),
|- (\-/P) ==> (P a)

Forall2: forall (A: Set) (P: A -> proposition)
(g: proposition),
|- (\-/(fun x:A => (g ==> P x)) ==> q ==> \-/P)

and there is one rule:

ForallRule: forall (A: Set) (P: A->proposition),
(forall x:A |- (P x)) -> |- \-/ P.

2.4.3 Explanations

The operator (or the quantifier) \ -/ whose signature is part of the definition of
proposition depends on a set A and builds a proposition from a predicate. In
Coq a predicate is a function (A -> proposition) — notice the use of -> as a
constructor for a function space — and the quantification \ - / takes a predicate P to
produce a proposition \-/ P.

Foralll is the translation in CoQ of (V,: A)P x = P a and Forall2 is
the translation in CoQ of F [(V,: A)(g = P x)] = q = (¥, : A)P x provided that
x does not occur freely in g. Notice how the expression provided that x does not
occur freely in q is taken into account in Coq. Indeed, in Forall2, the expression
fun x:A =>(g ==> (P x)) represents a predicate which depends on x. Declar-
ing that g is a proposition (not a function in A->proposition) means that g

@ Springer

22 P. Lescanne

does not depend on any parameter, in other words neither x nor any other variable
occurs in g, which means that g is just a propositional variable.

ForallRule is a rule that says that if for each x in A, (P x) is a theorem, then
\-/ Pisatheorem. It translates the monadic rule called V-introduction:

HPx
V. (PXx)

In the statement of Foral1lRule, notice the CoQ forall x:A.Indeed, an interest-
ing connection between the meta-quantification and the quantification in the object
theory is established by ForallRule. This presentation allows the user to get rid
of the machinery for handling free variables and captures, leaving that basic task
to Coq.

2.5 Other connectors and quantifiers

In intuitionistic logic each connector and each quantifier must be defined inde-
pendently of the others, unlike classical logic where one defines usually only two
connectors and one defines the other connectors from those two. In higher order
logic, the situation is similar to classical logic [41]. One can define all the connectors
and quantifiers from two of them, even in intuitionistic logic.” Hence I use the
connector ==> and the quantifier \ -/ as primitive and I derive the other connectors
namely AND, OR, TRUE, FALSE and, NOT together with the quantifier Exists.

Definition AND (p g : proposition) :=
\-/ (fun r:proposition => (p ==> q ==> r) ==> 1).

for

P Aq = (Y proposition)(p=q=r1)=r

Definition OR (p g : proposition) :=

\-/(fun r:proposition => (p ==> r) ==>
(@ ==> r) ==> 1r).
for
pVvq = (¥ : proposition)(p =r) = (q=1)=r
Definition FALSE := Forall proposition
(fun p:proposition => p).
Definition TRUE := Exist proposition
(fun p:proposition => p).
Definition NOT (p : proposition) := p ==> FALSE.

5 An axiomatization of higher order intuitionistic epistemic logic is obtained by removing the axiom
Classic_NotNot.

@ Springer

Mechanizing common knowledge logic using COQ 23

for

FALSE & (Yp : proposition) p TRUE £ (3, : proposition) p

-p £ p= FALSE.

As noticed by a referee, it should have been more natural to define TRUE as
FALSE = FALSE, but the above definition is this of the implementation I have
developed in Coq.

Definition Exist (A : Set) (P : A -> proposition)
\-/(fun p:proposition => \-/(fun a:A => P a ==> p) ==> p).

for
3,: A(Px) & (Y, @ proposition)[(¥Y, : A)(Pa = p) = p]

In what follows AND is written &, OR is written V and NOT is written —.

2.6 Lemmas and derived rules

For use in later examples, I proved lemmas like
Lemma OR _comm : forall p g : proposition, |- p V g ==> g V p.

which says that V is commutative. Often in a proof, one wants to reverse the order of
the components of a disjunction, for that its companion rule is more convenient:

Lemma rule_ OR_comm
forall p q : proposition, |- p Vg -> |- g V p.

It is used as follows. If the goalis | - g V p, it boils down to prove |- p V g.In
my experiments, I noticed that the Transitivity_of _Imp rule, namely

forall p q r:proposition, |- p ==> g -> |- g ==>
r-> |- p==>r.

was very handy. It corresponds to the rule

Fp=gq Fg=r

Fp=r

which means that to prove | - p ==> r one has to prove a theoremp ==> g and
atheorem g ==> r, where g is a newly introduction proposition.

Of course, I used it only after proving that it is a derived rule in the sys-
tem, I mean that I proved the Transitivity_of _Imp rule using the axioms and the
rules stated in CoqQ for the logic. Actually its proof comes from the proof of
forall p g r:proposition, |- (p ==>qg) ==> (r ==>p) ==>r ==> g
using twice the modus ponens.

From the definition of Exist, I proved the theorem

(Vi€ A (Px=@l=1[Er€A) Pxl=q x¢FV(g)
@ Springer

24 P. Lescanne

stated in CoqQ as

Lemma Exist2: (A: Set) (P:A -> proposition) (q:proposition)
|- (\-/ (fun x:A => ((P x) ==> q))) ==>
(Exist A P) ==> g.

The proof relies on a lemma (I called Forall_Imp) that says that for every predicate
Py and P, and every a in A, one has P, a = [(V, € A)(P; y == P, a, which is a
variant of [(V, € A)(P, y = P, y)] == P, a = P, a, which itself is an instance of
Foralll. Then one unfolds Exist in the statement of Exist2, getting

[(Vy € A) (Px = q)] = [(¥,, € proposition) (¥ € A)(Px = p)) = pl=q

Then one applies Forall_Imp with A as proposition, a as q, y as p, P| as y —
(Vy € A)(Px) = y,then Py qis(Vy € A)(Px = q)and Pi(p)is (Vy € A)(Px = p)
and P, as x — x,then P, yis p and P, ais q. This way, one obtains theorem Exist2
which should be compared with [(3, € A) (P x = q¢)] = [(3x € A) P x] = g which
is the similar rule in [39], on page 68 (it is fair to say that it is a typographic error)
and was my first attempt of a theorem I was unable to prove.

3 The rules of common knowledge logic

emiorapac: 1. know how to do, be able to do, capable of doing.
IL. . c. acc., understand a matter, know, be versed in or acquainted with.

Henry George Liddell, Robert Scott,
A Greek-English Lexicon

3.1 What is modal logic?

Modal logic has been introduced by Aristotle and deepened by Leibniz [24]. A modal
logic is a logic in which operators are added to modify the propositions. This can
be done to weaken (possibility), to strengthen (necessity), to extend the scope of a
proposition over time (temporal logic), to tell the effect of an action on a proposition
(dynamic logic) or to assume that an agent knows a fact (epistemic logic) or a group
of agents knows a fact (common knowledge).

3.2 What is common knowledge logic?

Common knowledge logic was suggested by the philosopher Lewis in 1969 [27] and
formally defined by Aumann [2] in the context of economy (see [15] for an introduc-
tion in that context) and further studied in the context of artificial intelligence [18]
and computer science [14, 17, 23]. In Common Knowledge Logic the modifiers of
proposition, e. g., the modalities are basically of three sorts, namely the knowledge
modality K; for each agent i, the shared modality E¢ for a group G of agents and,
the common knowledge modality C¢ for a group G of agents. Other modalities could
be considered but they will not be here. Let me recall what I have mentioned in
the introduction, namely that the knowledge modality K; applied to ¢ means that
agent i “knows” @, that the shared modality E¢ applied to ¢ means that the group

@ Springer

Mechanizing common knowledge logic using COQ 25

G of agents knows ¢ and that the common knowledge modality Cs applied to ¢
means that the shared modality is iterated ad infinitum to ¢. As we will see, common
knowledge is axiomatized by a fixpoint.

3.3 The rules of common knowledge logic

In this section, I give, with slight variation, the rules of Common Knowledge Logic
as they are usually given in the classical literature with no intent to discuss them or
propose alternative rules. The Common Knowledge Logic has the axioms and rules
given in Fig. 1. Notice that g ¢ means that ¢ is a classical tautology.

K is sometime called Distribution Axiom or Normalization axiom. It can be
also written - K;(¢ = V) = K;p = Kb where one sees how K; acts as a kind of
morphism over =. These two forms are equivalent as proven in Coq. T is sometime
called Knowledge Axiom. The logic defined by the set { Tautologies, Modus ponens,
Knowledge Generalization, K, T} is called T.

Let us suppose that we have a group G of agents. The knowledge of a fact ¢ can
be shared by the group G, i. e., each agent in G knows ¢@. We write Eg(¢) and the
meaning of Eg is easily axiomatized by the equivalence given in Fig. 2 which can also
be seen as the definition of Eg; it is called shared knowledge.

In Common Knowledge Logic, there is another modality, called common knowl-
edge which is much stronger than shared knowledge. It is also associated with a group
G of agents and is written Cg. Given @, Cs (@) is the greatest solution of the equation

x & oA Egx).
“Greatest” should be taken w.r.t. the order induced by <. A proposition 1 is less
than a proposition p if 1 < p. As well known in the fixed point theory, the greatest
solution of the above equation is also the greatest solution of the inequation:

x = oA Egx).

The axiomatization of Fig. 2 characterizes C; (@) by two properties. Together with
the system T and the definition of E it forms the system CKg. It asserts two things.

1. Cg(@) is a solution of the inequation x = ¢ A Eg(x), axiom Fixpoint,
2. If p is another solution of the inequation, then p implies Cg (@), which means
that p is greater than C(@)). This is rule Greatest Fixpoint.

Definition of E
FEq(9) <= N\Kio F Co(9) = 9 NE(Co(9))

icG

Fixpoint

Fo=pAEG(9)

Greatest Fixpoint
F o= Cg(v)

Fig. 2 The rules for common knowledge

@ Springer

26 P. Lescanne

One can prove that Cg satisfies axioms and rules of T, where K; is replaced by C¢
even when G = (. Thus we have proved in CoqQ:
Kc —T¢ Fe
F(Cco A Co(p =) = Co FCco= o - Coo

KGc¢

KG stands for Common Knowledge Generalization.

Notice that the axiom and the rule given in Fig. 2 for C are not the axiom and
the rule given in [12]. The difference is in axiom (Fixpoint). I have chosen those
ones since they are robust, i.e., they stay consistent on a large domain taking the
same concept of robustness as this known in software design [40] or statistics [37].
More precisely a robust axiomatization of common knowledge should work even for
an empty group of agents. An empty group of agents arises naturally on definitions
by induction which are routine in a theorem prover based on type theory like Coq.
Indeed, one defines shared knowledge on the empty group of agents first and one
extends it by adding one agent at a time. Cg (even when G is empty) satisfies the
axioms of modalities namely K and T. Let us look at other systems of axioms and
rules.

3.4 The axioms of Meyer and van der Hoek

On page 46 of [34] the axioms of common knowledge are

(A6) Ec(9) & Ki(@) A ... A Ky(9)
(A7) Co(p) = ¢
(A8) Co(o) = Ec(Co(9))

(A9) Co(@) ACo(o =) = Co(¥)
(A10) Cole = EGE;P)) = ¢ = Cs(o)

(R3)

Co (o)

This system of axioms is close to ours, as axioms (A7) and (A8) are a splitting of
my axiom Fixpoint (see Appendix 3 for more detail). Rule (R3) which is a version
of rule Knowledge Generalization adapted to the modality Cg is easily proved in my
system. The main interesting axiom is (A10). (A10) can be proved using CoQ in my
system of axiom and rule. The Coq proof is sketched in Fig. 3. Uses of propositional

Co(9= Eg(9)) = (0= Ec(¢))

Co(® = Eo(9)) = Eo(Co(0 = Ec(9))) Ca(9= Eg(9)) A ¢ = Eq(9)

Co(¢=Eg(9)) Ao = EG(CG((PéEG((p)))AEG((P)Alemmaofcommon

knowledge logic.

Co(9=Eg(9)) No=¢ Co(0= Eg(9)) Ao = Ec(Co(9= Ec(9))A®)

Co(9=Eg(9))N¢ = 9NEG(C(9 = Ec(9)) A¢)

Greatest Fixpoint
Ca(9= Eg(9)) Ao = Ca(9)

Co(¢ = Eg(9)) = ¢ =Cs(9)

Fig. 3 A proof of Meyer and van der Hoek’s axiom (A10)
@ Springer

Mechanizing common knowledge logic using COQ 27

calculus are assumed and are not shown. Notice that the proof uses (A7) and (A8)
which can be proved elsewhere.

Vice-versa, the rule Greatest Fixpoint can be derived in Meyer and van der Hoek’s
system as follows.

@ =P A Eg(p) ¢ =VPAEg(p)
¢ = Eg(p) o=
—(R3) —— (R3)
Co(o = Eg(9)) Ca(p =)
— " (A10+4MP) ———— "~ (A9+ MP)
@ = Cs(p) Cs(@) = Cc(¥)

(Transitivityof =)
¢ = Co()

3.5 Sato’s axioms

In [38], Masahiko Sato presents an axiomatization (due to John McCarthy et al. [33])
of common knowledge, which relies on the existence of a specific agent who has the
common knowledge. Let us call O this agent. It satisfies

(Vi € G) F Ko(@) = K;(Ko(9)).

Notice that in Coq it is possible to state by a unique statement the above propo-
sition although it is quantified over the set of agents. From this one can deduce
Ky(@) = @ A Eg(Ko(@)) then by (Greatest Fixpoint) Ky(9) = Cs(¢). Symmetri-
cally Cg (@) = Ko(@) is a consequence of T¢. On another hand it is easy to prove
that fori € G,0 € G and - Ko(¢@) = Cg(@) then - Ko(¢) = K;(Ko(@)). Therefore
McCarthy et al. axiomatization can be proved in CoQ to be equivalent to mine.
Actually this axiomatization accepts the group of plain agents to be empty, just take
G = {0}.

3.6 The axiom of Fagin et al

The Fixpoint axiom given on p. 35 in [12] (see also [1]) is

Co(@) & Eg(o A Ca(9))
Combined with the definition
Eg(9) & /\ Ki()
i€eG
this yields Ey(¢@) = true which induces Cy(@) < true, in contradiction with Exer-
cise 3.11 which asks to prove - Cs (@) = @. It is fair to say that this book essentially

considers models. In this case it is meaningless to speak about an empty set of agents
and actually on page 49 line 4, the set of agents is explicitly said to be non empty.

4 Modal logic and epistemic logic in COQ

Reports that say something hasn’t happened are always interesting to me,
because as we know, there are known knowns; there are things we know we know,

@ Springer

28 P. Lescanne

We also know there are known unknowns; that is to say we know there are
some things we do not know. But there are also unknown unknowns — the ones
we don’t know we don’t know.

Defense Secretary of USA Donald Rumsfeld,
at a news briefing in February 2002

Common knowledge logic requires knowledge modalities which satisfy the axioms
of modal logic. I introduced infinitely many modalities (K 1) (see Section 2) even
though most of the examples require only finitely many ones. Indeed in Coq this is an
easy task because the Set nat is given as a primitive. Therefore, K has the signature
nat -> proposition -> proposition. From now on, I restrict myself to the
logic T. The other axioms for S5 are easily introduced, but not used in examples.
There are two axioms for T:

K K: forall (i:nat) (p g:proposition),
|- (Ki1ip) ==> (Kip==>qg) ==> (K1iq).

K T: forall (i: nat) (p:proposition), |- (K1 p) ==>p.
and a rule
K rule: forall (i: nat) (p:proposition), |- p -> |- (K i p).

Common knowledge logic requires to introduce a modality E for shared knowl-
edge. This is done in CoqQ by using the operator Fixpoint

Fixpoint E (g : list nat) (p:proposition) {struct g}:
proposition
match g with
| nil => TRUE
| 1 :: g1 => K i p & Egl p
end.

E is defined by structural induction on the group g of agents as said by the annotation
{struct g}.Ittakes a proposition p and returns a proposition (E g p).E defined
by structural induction on g means that

Enilp=TRUE
E(consigi) p=(Kip) & (Eg p)

Notice the case when the group is empty. E enjoys nice properties that can be proved
in Coq like

forall (g : list nat) (p g : proposition),
|-Egp&Egqg ==>Eg (p&aq.
C is the modality for common knowledge, it is defined by the axiom
forall (g : list nat) (p : proposition),
|- (Cgp ==>p &Eg (Cgp))
@Springer

Mechanizing common knowledge logic using COQ 29

and the rule

forall (g : list nat) (p g : proposition)
|- (@ ==>p &Egaq -> |- (q

=> C g p) .
i.e.,

Fp=(@nEg(p)
FCae(p) = p A Ec(Cs(p)) Fp= Cs(q)

4.1 Lemmas about C

one has for instance

Lemma C_T: forall (g:list nat) (p:proposition),

|- (cgp) ==>p.
Lemma C_CE: forall (g:list nat) (p:proposition),
|- (Cgp) ==> (Cg (Egp)).

ie., Cg(p) = pand F Cs(p) = Cg(Eg(p)) or a fixpoint property like

forall (g:list nat) (p:proposition),
|- (p & (Eg (Cgp))) ==> (Cgp).

Le, = p A Eg(Ca(p) = Co(p).
This shows that Cg(p) is a solution of the equation p A Eg(¢@) < ¢ with
unknown ¢. The rule shows that if 1\ is another solution of that equation then

P = Co(p).

4.2 Rumsfeld’s theorems

To show the power of higher order as implemented in Coq, let me prove three
statements due to Rumsfeld. These statements are interesting not because of the
depth of their proofs, but because like the definition of connectors &, V and Exist
they make quantifications over propositions which are impredicative.

The first statement says that we know there are known knowns, in other words
every agent knows there is a proposition that he knows that he knows.

Theorem Rumsfeldl:
forall i:nat,
|- K i (Exist _ (fun p : proposition => K i (K i p))).

The proof of this statement requires Positive Introspection. The actual known
proposition is TRUE. The second statement says that we know there are known
unknowns in other words if one considers any agent, he knows there is a proposition
that he knows that he does not know.

Theorem Rumsfeld2:
forall i:nat,
|— K i (Exist _ (fun p:proposition => K i1 —-(K 1 p))).
We code the sentence agent i does not know p by —K;p. A referee suggested
the translation —K;p A =(K;—p). This is debatable and philosophers argue on the

@ Springer

30 P. Lescanne

2 & 1R ¥ @
& % .
& &

There is at least
/| one child with mud
m on his head.

Fig. 4 The muddy children

formal translation of this kind of sentence. This discussion of discussion is out of
the scope of this paper (see for instance [42]) and this section should be considered
as an exercise to test the ability of our implementation to handle higher order
statements, i.e., statements with quantifications over propositions. The proof of this
second statement requires Negative Introspection. The actual known proposition is
FALSE. The third statement there are unknows unknows means (as expound by its
author) there is a proposition ¢ such that we don’t know that we don’t know o, i.e.,
(3¢ € proposition)—K;(—K;@), which implies (3 ¢ € proposition)K; ¢, then TRUE
is such a proposition.

5 The muddy children

Let us go quickly to the house to clean my head, said Paul.
Countess de Ségur, Les malheurs de Sophie

This problem is considered by Fagin et al. [12] as the illustration of Common
Knowledge Logic, especially of common knowledge. Let us give the presentation
of [34]. A number, say n, of children are standing in a circle around their father. There
are k(1 < k < n) children with mud on their heads. The children can see each other
but they cannot see themselves. In particular, they do not know if they themselves
have mud on their heads. ... Father says aloud: There is at least one child with mud
on its head. Will all children who know they have mud on their heads please step
forward?... This procedure is repeated until, after the kth time Father has asked the
same question, all muddy children miraculously step forward (see Fig. 4). I propose a
proof of the correctness of the puzzle under reasonable and acceptable hypotheses.
The main question is What does it mean to say that the children see each other and
what consequences do they draw from what they see? For me, the children see means
that

— They know whether the other children have mud on their head,
— They notice the children stepping forward or not.

@ Springer

Mechanizing common knowledge logic using COQ 31

The main interest of the muddy children puzzle lies in the use of common
knowledge (modality C).

I define two predicates depending on two naturals, namely At least and
Exactly. (At _least n p) is intended to mean that among the n children,
there are at least p muddy children, whereas Exactly means that among the n
children, there are exactly p muddy children. Exactly (n p : nat) is defined
as (At _least n p) & —(At_least n p+1).

Moreover [:n:] stands for list [n — 1, ...0], that is the group of the n children.

5.1 The hypothesis

Suppose that after the statements of Father, we have reached a situation where

Fact 1 All the children know that there are at least p muddy children,
Fact 2 All the children know that there are not exactly p muddy children.

Fact 1 is there since the children know that there are p muddy children because
they see them or because they acquired that information by deduction. Fact 2 is the
knowledge shared by the group [:n:] on the non exactness of the number p of
muddy children. The absence of step forward of children makes Fact 2 known by
every child. Therefore Fact 2, namely (E [:n:] —(Exactly n p)),is known by
every child,i.e., XK 1 (E [:n:] —(Exactly n p)).In other words, after no child
has stepped forward, every child knows that all the children know that there are not
exactly p children. To summarize at step p,

— Factlis (E [:n:] (At _least n p))
— Fact2is (E [:n:] —(Exactly n p)),
— Conclusionisk i (E [:n:] —(Exactly n p)).

and Factl = Fact2 = Conclusion. In other words, I can state the axiom:

Axiom Knowledge Diffusion : forall n p,i : nat
|- (E [:n:] (At least n p))
==> (E [:n:] —(Exactly n p))
==> (Ki (E [:n:] —(Exactly n p))).

which is in usually mathematical notation:
F Epng(At_least(n, p)) = Epng(—Exactly(n, p)) = Ki(Epn(—Exactly(n, p)).

This axiom typically describes dynamic in Common Knowledge Logic [34], Chapter
4. From it, I prove two lemmas:

Lemma E_Awareness : forall n p :nat
|- (E [:n:] (At least n p))
> (E [:n:] —(Exactly n p))
> (E [:n:] (E [:n:] —(Exactly n p))).

ie.,
F E[:n:](Al_leLlSl‘(l’l, P)) = E[:n:](_'ExaCﬂy(n’ P)) = E[:n:](E[:n:] (—'EmCﬂ)’(n, P)))

Lemma C_Awareness : forall n p:nat
|- (C [:n+1:] (At _least n+l p))

@ Springer

32 P. Lescanne

(E [:n+1:] —(Exactly n+l p))
—(Exactly n+l p)).

I
Il
vV Vv
(@}
B
+
[y

Le.,

F Crny1(At_least(n + 1, p)) = Epniry(—Exactly(n + 1, p))
= Cpni17(—Exactly(n + 1, p))

Notice that the lemma C_Awareness can only be proved for a non empty group
of children. I use these lemmas to prove the main result, I called Progress, which
shows how the knowledge of the children progresses.

Lemma Progress:
|- (C [:n+1:] (At least n+l p)) & (E [:n+l:] —(Exactly
n+l p)))
==> (C [:n+1:] (At least n+l p+1))). ie.,

F Cruy1(At_least(n + 1, p)) A Eppyrq(—Exactly(n + 1, p))
= Cpny19(At_least(n + 1, p + 1))

In other words: If it is a common knowledge that there are at least p muddy children
and if every child knows that there are not exactly p muddy children then it is a
common knowledge that there are at least p+1 muddy children. Therefore a child
knows that there is at least p + 1 muddy children and if he sees p muddy children,
he steps forwards. This is the secret of the apparent miracle.

5.2 Discussion

After the above statement, the proof is almost complete, but here I give complements
for the interested reader that can be skipped in a first reading.

5.3 A lemma on Exactly and At_least

Before starting the proof, a lemma is needed. Assume Knowledge diffusion and
assume that the children reason perfectly.® They should conclude that there is at
least p+1 muddy children, as shown by the following lemma proven in Coq.

Lemma At least p_and not_ Exactly p: forall n p:nat
|- (At _least n p) & —(Exactly n p) ==> (At least
n p+1).

5.4 The knowledge diffusion axiom

Here I address one of the main difficulties of using Common Knowledge Logic
in practice, namely translating a statement of a scenario (a puzzle or a real live
situation) into logical statements. In my case, I have to translate i.e., to formalize
the verb “to see” in a formal formula. Dynamic logic [9, 13, 19, 20] can be used for
this (see [34] chapter 4 and [10]). The axiom I propose expresses this.

6“Perfect reasoning” of the agents is a (debatable) assumption of Common Knowledge Logic.

@ Springer

Mechanizing common knowledge logic using COQ 33

Now suppose that I am one of these children and that I am the agent Paul.
After all the previous statements of Father, suppose that everyone knows (shared
knowledge) that there is at least p muddy children. Moreover suppose that everyone
knows (again shared knowledge) that there is not exactly p muddy children. Then
I know by watching the scene that everybody knows there is not exactly p muddy
children. This implication I see then I know everybody knows is what is meant in the
Knowledge_diffusion. Thus

Axiom Knowledge Diffusion for Paul : forall n p:nat
|- (E [:n:] (At _least n p))
==> (E [:n:] —(Exactly n p))
==> (K Paul (E [:n:] —(Exactly n p))).
I have taken Paul as a generic name but this can be generalized to all the children,

hence the universal quantification on i (see above). Note that this axiom does not
involve any common knowledge.

5.5 Why progress in common knowledge and not in shared knowledge?

One may wonder why one makes progress in common knowledge and not in shared
knowledge. Actually this may work if one would have been able to prove a lemma of
the form

F Epng(At_least(n, p)) = Epn(—Exactly(n, p))
= Epyg(—Exactly(n, p+ 1))
but one is only able to prove a lemma like
F Epng(At_least(n, p)) = Epn(—Exactly(n, p))
= Epp(Eppg(—Exactly(n, p + 1))

with two levels of E in the consequent. This does not allow us to use a generalization
rule for E as I was able to do in the proof of

F Crng1q(At_least(n + 1, p)) = Epyt1(—Exactly(n + 1, p))
= Cpnt1:(=Exactly(n + 1, p + 1))

and this is the key of proof of the C_Awareness lemma.

5.6 On the strength of common knowledge and on the importance of Father first
statement

In Common Knowledge Logic, it is always difficult to acquire a common knowl-
edge. For instance, cryptographic communication through a network relies on the
common knowledge of assignments of given public keys to given persons and we
know that that these assignments and this common knowledge of the assignments
require careful protocols in public key infrastructures. Similarly, in the coordinated
attack problem (see [12] section 6.1), generals will be unable to acquire a common
knowledge on the agreement for the attack hour on a asynchronous and unreliable
network. We also know that teaching traffic regulations on roads requires training
and the training is aimed to acquire the common knowledge among the drivers. In

@ Springer

34 P. Lescanne

our problem, an initial common knowledge is given by Father at the beginning and
the lemma I called Progress shows how this common knowledge can be enlarged
by the other statements that do not involve common knowledge. Without this first
statement the kids will not be able to acquire any kind of common knowledge in this
respect. They will not be able to increase their common knowledge and even their
shared knowledge as well.

5.7 Finishing the proof

To complete the proof I consider a given muddy child and 1 try to prove that
eventually this muddy child knows there are as many muddy children as children
around Father. For that, I declare three variable nb_children, nb muddy and
muddy child for the total number of children, for the number of muddy children
and for a given muddy child. The role of the variable muddy child is to take one
child who has a muddy face and to see that at the end of the process he knows that
he has a muddy face. This can be seen as a kind of Skolemization and take the place
of a statement like “at the end, there is child who knows that his face is muddy and
therefore steps forwards.” Moreover one needs a few more axioms.

Axiom At_least 1: (le (1) nb children).
Axiom Muddy child is_a child: (In muddy child

[:nb children:]).
Axiom First Father Statement:

|- (C [:nb _children:] (At least nb children (1))).
Axiom What they saw: forall g:nat (1t g nb muddy) ->

|- (E [:nb _children:] —(Exactly nb children q)).
Axiom What the muddy child sees:

|- (K muddy child — (At least nb children nb muddy+1)) .

The first axiom says that there is at least one child. The second one says the muddy
child is a child. The third one translates the first Father statement. The fourth one
translates what is seen when the children step forward. The last one is what that
muddy child sees, that is that there could not be more that nb_muddy+1 muddy
children as he (she) sees nb_muddy-1 muddy children.

By induction, one proves

If nb_muddy > 0 then bt Cppp_chitdren (At_least(nb_children, nb_muddy)).

If the number of muddy children is greater than 0, then this is a common knowledge
that there are nb_muddy muddy children. Then one gets

If nb_muddy > 0 then = Kaay_cnia(Exactly(nb _children, nb _muddy)).
that is the muddy child knows that there are nb_muddy muddy children.

6 The king, the three wise men and the hats

So King Solomon exceeded all the kings of the earth for riches and for wisdom.
The First Book of the Kings, X, 23
@ Springer

Mechanizing common knowledge logic using COQ 35

6.1 Is common knowledge needed?

A question that proof theorists ask regularly is whether a given hypothesis is actually
required in the proof of a given theorem in a given deduction system. Here the
hypothesis is common knowledge of fact(s), the theorem to prove is the solution of
a known and classical puzzle and the deduction system is the Common Knowledge
Logic as implemented and mechanized in CoqQ. The question is Is common knowledge
of the hypotheses required in the proof? Since often hand proofs are somewhat sloppy,
nothing is better than an implementation to actually verify which statements are used
or not used in a proof.

6.2 The statement of the puzzle

The classical puzzle I consider is the puzzle of the king, the three wise men and their
hats (Fig. 5). In [12], Exercise 1.3, it is presented as There are three wise men. It is
common knowledge that there are three red hats and two white hats. The king puts a
hat on the head of each of the three wise men and asks them (sequentially) if they know
the color of the hat on their head. The first wise man says that he does not know; the
second wise man says that he does not know; then the third man says that he knows.
To ease the reference to them, in what follows the wise (wo)men are called agents
with names Alice, Bob and Carol. Actually in Coq, Alice, Bob and Carol are taken as
abbreviations for 0, 1 and 2. In general, the usual assumption is that the statements
of the problem are common knowledge among the agents.

The experiments show that no common knowledge is required and in addition I
have shown that the two middle sentences can be weaken in It is a fact that there are
red hats and two white hats. The king puts hats on the head of each of the three wise
men and asks them (sequentially) if they know whether they wear a white hat on their
head.

The puzzle is based on a function

Definition Kh := fun i => (K i (white 1)) V (K 1 (red 1)).

which says that the agent i knows whether or not she (he) wears a white hat. With a
minimal set of hypotheses, I am able to prove

|- (K Bob—(Kh Alice)) &—(Kh Bob) ==> (red Carol).

Fig. 5 The three wise
(wo)men

Carol Bob Alice
@ Springer

36 P. Lescanne

In other words, If Bob knows that Alice does not know whether she wears a white
hat and if Bob himself does not know whether he wears a white hat, Carol wears only
red hats. If (red Carol) is provable from the two premises, then Carol knows that
fact; therefore if she knows that if Bob knows that Alice does not know whether she
wears a white hat and if Bob himself does not know whether he wears a white hat,
Carol wears only red hats, then she knows that the color of her hats and even more
(since she knows that the color of all her hats is red).

The above involved sentences are typical assertions about knowledge. Phrased in
English, they are hard to understand for a human. Stated formally they are better
understood and they can be checked by a computer.

6.3 What are the assumptions?

There are five.
— An agent wears a white hat xor red ones. xor is the exclusive or written |.
forall i:nat |- (white 1) | (red 1).

— There are only two white hats. Actually I do not need such a general statement.
I only have to state that If Bob and Carol wear a white hat, then Alice wears red
hats. which translates in CoqQ into

|- ((white Bob) & (white Carol) ==> (red Alice)).

Note that we are not interested in a statement like “If Carol and Alice wear
a white hat, then Bob wears red hats.” Moreover the number of red hats is
irrelevant and surprisingly an agent can wear more than one hat (like in Fig. 5).

— Each agent knows the color of the hats of the two other agents. Actually we are
even more restricted than that, namely Alice knows when Bob (resp. Carol)
wears a white hat and Bob knows when Carol wears a white hat.

K Alice (white Bob)).
(K Alice (white Carol)).
(K Bob (white Carol)).

|- (white Bob) ==>
|- (white Carol) ==
| _

vV V. —~

(white Carol) ==

These hypotheses assert that the agents can be supposed to be in a row Carol,
Bob, Alice and that each agent knows the color of the hats of the agents before
her or him. This is sometime a presentation of this puzzle (see for instance [12]
Exercise 1.3 (b)). Actually, I saw in my proof, that the fact that the color of a hat
is red is of no interest for any agent.

It should be emphasized that I made actually less hypotheses than in the usual
statement of the puzzle.

6.4 The proof

The proof requires just eight small lemmas and needs only modal logic, i. e., no
common knowledge. This comes from the fact that “common knowledge” has been

7Sato [38] makes the same comment.

@ Springer

Mechanizing common knowledge logic using COQ 37

replaced by assertion of facts. The mechanization of the proof shows us that many
hypotheses made in classical presentation of this puzzle are redundant. Perhaps a
careful human analysis of the problem would have lead to the same hypotheses, but
what is interesting in this experiment is that this comes naturally from the mechanical
development of the proof. One makes the proof and then one traces the hypotheses
which are actually used. For instance, in a first attempt I made much more statements
about the knowledge of the agents about the color of the hat of the other agents
than actually needed. Afterward, in cleaning up the proof I removed the useless
hypotheses leading to the weakening of the initial statement.
The main lemmas are

F (white Bob) & (white Carol) = (K Alice (red Alice)).

F —((white Bob) & (white Carol)) = (red Bob) v (red Carol).
F = (Kh Alice) = (red Bob) Vv (red Carol).

F —(Kh Alice) & —(red Carol) = (red Bob).

where the second one requires a classical proof. The final theorem is
| — (K Bob —(Kh Alice)) & —=(Kh Bob) = (red Carol).
with the corollaries:

(K Carol (K Bob—(Kh Alice)) & —(Kh Bob)) = (K Carol (red Carol)).
~ (K Carol (K Bob—(Kh Alice)) & —(Kh Bob)) = (Kh Carol).

The last corollary means If Carol knows that Bob knows that Alice does not know
whether or not she wears a white hat and Bob does not know whether or not he wears
a white not, then Carol knows whether she wears or not a white hat. If there only one
hat on each head then Carol knows that she wears a red hat.

6.5 Is common knowledge needed after all?

I have chosen to state hypotheses as meta-axioms (axioms in CoqQ) of the form
| - Facts and to prove results of the form |- Result. Another possibility is to
prove statements of the form |- Hyp ==> Result in the theory. In that case
hypotheses have to be made common knowledge, i.e., Hyp is C [:n:] Facts.
Indeed asserting a fact as a meta-axiom makes it automatically common knowledge
by the rule of Knowledge Generalization, in other words if something is a fact it is
common knowledge. I am currently experimenting the king, three wise men and, hats
puzzle along those new lines.

7 Related works

Epistemic logic is usually mechanized by model checking [30, 31]. The work pre-
sented in this paper is to my knowledge the first exposition of the mechanization
of the proof theory of Common Knowledge Logic based on rules. Concurrently
Paulien de Wind has made her own mechanization using Coq based on an extension
of natural deduction with several levels [43] using basically the above rule (Gen).
It is close to reasoning in Kripke models and she has not investigated common
knowledge. Notice that Common Knowledge Logic is more than modal logic. Not

@ Springer

38 P. Lescanne

surprisingly there are many attempts to implement modal logic in logical frameworks.
The LF group in Edinburgh has shown the difficulties of such an enterprise, with the
clear conclusion that modalities are not easily coded in a logical framework [4, 5, 28].
Notice that I am not faced to that problem as I perform a deep embedding of a
modal logic not just a coding of modalities in the logical framework. However the
most noticeable papers exploring the connection between logical framework and
modal logic are due to Basin, Matthews and Vigano [7, 8]. See there for a survey
of the other approaches. Their implementation is not made in natural deduction,
but in a modified natural deduction the so called labelled natural deduction for
modal logic. Sequent calculus and natural deduction for Common Knowledge Logic
has been studied by several authors [1, 22, 29, 38], but none has studied Higher
Order Common Knowledge Logic and none considers mechanization. For instance,
Common Knowledge Logic in presence of induction or quantification has not been
considered and even less quantification over propositions (see Section 4).

8 Conclusion

Since one cannot be universal and know everything on everything, one must know

something on everything. Indeed it is much more beautiful to know something

on everything than to know everything on something; this universality is more
beautiful.

Blaise Pascal

Pensées

Let me draw some lessons of my experiments.

8.1 The strength of higher order:

Coq supports higher order. Therefore one can state propositions with any kind of
quantification, even quantifications over propositions like in Rumsfeld’s theorems
and one has induction for free. Moreover inductions (induction on natural or
structural induction) are built-in and used extensively.

8.2 The proofs

Building proofs in a Hilbert-style system is said often to be more difficult than
in natural deduction as one does not have the ability to discharge hypotheses.
Fortunately the use of rules like modus ponens, Transitivity_of_Imp or rules specific
to modal logic and Common Knowledge Logic allows us to organize the proof. One
can postpone the proof of some statements of the form - --- and one can divide
and conquer proofs. I foresee that some of the tasks of the proof developers can
be lightened by tactics to be developed. Anyway, my experience has shown me that
after a training the implementation become easy to use. The difficulty lies more in
understanding epistemic statements.

@ Springer

Mechanizing common knowledge logic using COQ 39

8.3 What logic is needed?

The above examples have answered a question one may have when using modal
logic, namely: which fragment of logic is required to reason? Our conclusion is
that one definitely needs classical logic as a basis. Indeed at some places reasoning
based on excluded middle is necessary. On the other hand, except for the noticeable
exception of Rumsfeld’s theorems, no positive or negative introspection is needed,
then T is enough. Moreover higher order plays a key role in expressing fixpoints and
inductions and it is explicitly used in Rumsfeld’s theorems where a quantification
over propositions is part of the statement.

8.4 Right modeling and acceptable hypotheses

A challenge in building proofs in Common Knowledge Logic is to state reasonable
and acceptable hypotheses. Unfortunately acceptable hypotheses are not known a
priori. I noticed that I built often proofs of properties backward from the conclusion
I wanted to prove. Usually there is not so much facility offered by proof assistants,
for that. A good approach is to state temporary axioms for the intermediary lemmas
and see what can be proved from them and proceed backward, until an acceptable
hypothesis is reached.

8.5 Common knowledge vs statements of facts

One of the issue in formalizing problems or situation involving Common Knowledge
Logic is to choose whether hypotheses have to be written as facts i. e., stated as
axioms or added as premises of the implications in the theories. In the second case,
they have to be made common knowledge or at least made known by some of the
agents. In Coq, we have to choose between |- Fact ->|- Conclusion and |-
(C G Fact) ==> Conclusion. The question of choosing between facts stated as
axioms and premises as common knowledge has still to be investigated.

Acknowledgements 1 acknowledge René Vestergaard for lively discussions on this topic and
related ones. I would like to thank Masahiko Sato for pointing me the work done in the context of
artificial intelligence in the middle seventies by John Mc Carthy and his coworkers. Daniel Dougherty
and Luigi Liquori deserve a special mention for their careful reading and for their interest in this
work. A referee gave very accurate comments which contributed to improve greatly the paper.

Appendix 1: A metaphor of common knowledge

A metaphoric example (with the weakness of all metaphor) for common knowledge
is traffic regulations or more precisely its reification in actual life where drivers are
supposed to drive on the right side of roads (common knowledge). When, as a driver,
Alice enters an intersection she knows that Bob on her left will let her go, moreover
she knows that he knows that she has the right to go and she is sure (she knows)
that he will not go because he knows that she knows that he knows that she has
the right to go etc. Actually she passes through an intersection with a car on her
left, because there is common knowledge on the rule of priority between her as a

@ Springer

40 P. Lescanne

driver and Bob the driver of the other car. But those who travel have experienced
the variability of common knowledge (for instance of the actual implementation
of traffic regulations), because common knowledge is a specificity of a group of
agents (a country or a community of countries) and changes as the group of agents
changes. Actually common knowledge is (a consequence of) the culture or (of) the
rationality of a given group of agents. Take a stop sign. In Europe it means that
the person who has a stop sign will let the other pass through the intersection.® In
other countries the meaning is different since it is common knowledge among the
drivers that nobody will respect the traffic signs and therefore everybody will act
appropriately, i.e. nobody will ever assume that the fact that a driver has a stop sign
will mean he will let the other pass.

Appendix 2: The C0oQ definition of theorem
Inductive theorem : proposition -> Prop :=

(% =mmmmmmmm e Propositional calculus ---------------- *)

(» Hilbert axioms for intuitionistic propositional logic =)
| Hilbert K : forall p g : proposition, theorem (p ==> g ==> D)

| Hilbert S : forall p r proposition,
theorem ((p ==> q ==> r) ==> (p ==>) ==> p ==> r)
| (% Classic «)
Classic NotNot : forall p : proposition, theorem (——p ==> p)
| (x Modus Ponens %) (*+ p ==> g , p |- g *)

MP : forall p g : proposition, theorem (p ==> g) -> theorem p
-> theorem g

| Foralll : forall (A : Set) (P : A -> proposition) (a : A),
theorem (\-/P ==> P a)

| (# x not in FV(q) (\-/x (g ==> (P x))) ==>qg ==> (\-/x(P x)) *)
Forall2 : forall (A : Set) (P : A -> proposition) (g
proposition),
theorem (\-/(fun x : A => (g ==> P X)) ==> q ==> \-/P)

| ForallRule : forall (A : Set) (P : A -> proposition),
(forall x : A, theorem (P x)) -> theorem (\-/P)

| (% Distribution Axiom *)
K K : forall (i : nat) (p g : proposition),

8In the USA, the common knowledge is different since there are intersections of two crossing roads
with four stop signs and this has puzzled more than one European. Clearly the common knowledge
on the meaning of traffic signs is different between the USA and Europe.

@ Springer

Mechanizing common knowledge logic using COQ 41

theorem (K i p ==> K 1 (p ==> ¢q) ==> K 1 q)
| (* Knowledge Axiom «)
K T : forall (i : nat) (p : proposition), theorem (K i p==>p)
| (# Knowledge rule «)
K rule : forall (i : nat) (p : proposition), theorem p ->
theorem (K i p)
| (+ Positive introspection =)
K 4 : forall (i : nat) (p : proposition), theorem (K i p ==>
Ki (K1ip))
| (# Positive introspection «)
K 5 : forall (i : nat) (p : proposition), theorem (= K i p
==> K i (= K 1ip))

(% —mmmmmmmm - Common knowledge logic --------------- *)

| Fixpoint C : forall (g : list nat) (p : proposition),
theorem (C g p ==>p & E g (C g p))

| Greatest Fixpoint C : forall (g : list nat) (p g

proposition),
theorem (g ==> p & E g gq) -> theorem (g ==> C g p) .

Appendix 3: More on Meyer and van der Hoek

It is clear that from axiom (A10) Cg(@ = Eg(9)) = ¢ = Cg(@) and rule (M P)
we derive

Co(o = Eg(9))
¢ = Cs(p)

and, using rule (R3), a new rule

¢ = Ec(p)
¢ = Cs(p)

(nR10)

Notice that (nR10) has a flavor of induction for defining C. We could consider rule
(nR10) as weaker than axiom (A10), this is not the case. Here is a sketch of the proof
of (A10) using (nR10). Let us state A * = Cg(@ = Eg()) in this proof. First, let us
prove AA @ = Cg(A A @).

Colo=Eg(9)= (o= Eg(9)| (AT

Colo = EGe) = EGCG(e = EG(9)) Co@=EGoNre=@=EGoNAe (0= EG@)Ae = EG)

AN9= EG(A) Cle= Eg(e) A= Eg(e)

Ane = EG(AAQ)
T 3 0))
AN = Cs(ANQ)

The rest, namely A A @ = Cg (@), comes from (A A @) = @, then Cg((A A @) =
@) and, Cg(A A @) = Cs(@) by (R3), (M P) and transitivity of =.

@ Springer

42 P. Lescanne

Appendix 4: Barcan’s formula

The axioms of epistemic logic given in Fig. 1 are in propositional logic. The Barcan
formula

(VP: A — Bool) [(Vx: A)K;(Px)] = K;((Vx: A)Px)

is a proposition stated in predicate calculus. It defined the connection between K and
\ - /. It can be written readily in Coq:

forall (i: nat) (A:Set) (P:A->proposition),
|- (\-/ fun x:A => K i (P x)) ==>K i (\-/ P)

It says that if it occurs that for each element in a set A, if an agent knows a fact, then
he knows necessarily that the fact holds for each element in A. This a very strong
property which I do not consider except to show that it can be stated easily in Coq.

References

1. Alberucci, L., Jdger, G.: About cut elimination for logics of common knowledge. Ann. Pure Appl.
Logic 133, 73-99 (2005)

2. Aumann, R.J.: Agreeing to disagree. Ann. Stat. 4(6), 1236-1239 (1976)

3. Aumann, R.J.: Backward induction and common knowledge of rationality. Games Econom.
Behav. 8, 6-19 (1995)

4. Avron, A., Honsell, F., Mason, I.A.: An overview of the Edinburgh logical framework. In: Cur-
rent Trends in Hardware Verification and Automated Theorem Proving, pp. 323-340. Springer,
Berlin Heidelberg New York (1989)

5. Avron, A., Honsell, F., Miculan, M., Paravano, C.: Encoding modal logics in logical frameworks.
Stud. Log. 60(1), 161-208 (1998)

6. Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy, Y., Delahaye, D., de Rauglaudre, D.,
Filliatre, J.-C., Giménez, E., Herbelin, H., Huet, G., Laulhere, H., Muioz, C., Murthy, C., Parent-
Vigouroux, C., Loiseleur, P., Paulin-Mohring, C., Saibi, A., Werner, B.: The Coq Proof Assistant
Reference Manual. INRIA, version 6.3.11 edn (May 2000)

7. Basin, D.A., Matthews, S., Vigano, L.: Labelled propositional modal logics: theory and practic.
J. Log. Comput. 7(6), 685-717 (1997)

8. Basin, D.A., Matthews, S., and Vigano, L.: Labelled modal logics: Quantifiers. J. Logic, Lang.
Inf. 7(3), 237-263 (1998)

9. Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Deterministic propositional dynamic logic: Finite models,
complexity, and completeness. J. Comput. Syst. Sci. 25, 402-417 (1982)

10. van Benthem, J.: Games in dynamic epistemic logic. Bull. Econ. Res. 53(4), 219-248 (2001)

11. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development Coq’Art: The
Calculus of Inductive Constructions. Springer, Berlin Heidelberg New York (2004)

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge, MA (1995)

13. Fischer, ML.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst.
Sci. 18, 194-211 (1979)

14. Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Epistemic and temporal logics, epistemic
aspects of databases. In: Handbook of Logic in Artificial Intelligence and Logic Programming.
Clarendon Press, Oxford, UK (1995)

15. Geanakoplos, J.: Common knowledge. In: Aumann, R., Hart, S. (eds.) Handbook of Game
Theory, vol. 2, pp. 1437-1496. Elsevier, Amsterdam (1994)

16. Gordon, M.J.-C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher
order logic. Cambridge University Press, Cambridge, UK (ISBN 0-521-44189-7) (1993)

17. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment.
In: PODC ’84: Proceedings of the third annual ACM symposium on Principles of distributed
computing, pp. 50-61, New York, NY. ACM, New York (1984)

@ Springer

Mechanizing common knowledge logic using COQ 43

18.
19.
20.
21.

22.
23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.
40.
41.
42.

43.

Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge
and belief. Artif. Intell. 54(3), 319-379 (1992)

Halpern, J.Y., Reif, J.H.: The propositional dynamic logic of deterministic, well-structured
programs. Theor. Comp. Sci. 27, 127-165 (1983)

Harel, D., Kozen, D., Tiuryn, J. Dynamic Logic. MIT Press, Cambridge, MA (2000)

Howell, J., Kotz, D.: A formal semantics for SPKI. In: Proceedings of the Sixth European
Symposium on Research in Computer Security (ESORICS 2000), pp. 140-158. Springer, Berlin
Heidelberg New York (October 2000)

Kaneko, M.: Common knowledge logic and game logic. J. Symb. Log. 64(2), 685-700 (June 1999)
Lehmann, D.: Knowledge, common knowledge and related puzzles (extended summary). In:
PODC ’84: Proceedings of the third annual ACM symposium on Principles of distributed com-
puting, pp. 62-67, New York, NY. ACM, New York (1984)

Leibniz, G.W.: Discours de métaphysique. Published in [25], translated into English in [26] (1686)
Leibniz, G.W.: Discours de métaphysique. Collection historique des grands philosophes, vol. 1.
In: Alcan, F. (ed.) Introduction et notes, par Henri Lestienne; préface de Auguste Penjon, Paris
(1907) (available on http:/gallica.bnf.fr/)

Leibniz, G.W.: Discourse on Metaphysics and the Monadology (trans. George R. Montgomery).
Prometheus Books, Amherst, NY (1992) (first published by Open Court, 1908)

Lewis, D.: Convention: A Philosophical Study. Harvard University Press, Cambridge, MA (1969)
Liquori, L., Honsell, F., Lenisa, M.: A framework for defining logical frameworks. http://hal.
inria.fr/inria-00088809 (August 2006)

Lismont, L.: Common knowledge: relating anti-founded situation semantics to modal logic neigh-
bourhood semantics. J. Logic, Lang. Inf. 3, 285-302 (1995)

Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using CSP and FDR.
In: Margaria, T., Steffen, B. (eds.) Tools and Algorithms for the Constrcution and Analysis of
Systems, TACA’96, volume 1055 of Lecture Notes in Computer Science, pp. 147-166 (1996)
Marrero, W., Clarke, E., Jha, S.: Model checking for security protocols. Technical Report CMU-
CS-97-139, Carnegie Mellon University (1997)

McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial
intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463-502. Edinburgh
University Press (1969) http://www-formal.stanford.edu/jmc/mcchay69.pdf.

McCarthy, J., Sato, M., Hayashi, T., Igarashi, S. On the model theory of knowledge. Technical
Report AIM-312, Stanford University (1977)

Meyer, J.-J.Ch., van der Hoek, W.: Epistemic logic for computer science and artificial intelli-
gence. In: Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University
Press, Cambridge, UK (1995)

Milgrom, P.: An axiomatic characterization of common knowledge. Econometrica 49(1), 219-222
(1981)

Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P., (ed.) Logic in Computer
Science. Academic, New York (1990)

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Robust estimation. In: Numerical
Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn., pp. 694-700. Cambridge
University Press, Cambridge, UK (1992)

Sato, M.: A study of Kripke-type models for some modal logics by Gentzen’s sequential method.
Publ. Res. Inst. Math. Sci. 13(2), 381-468 (1977)

Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction, vol. I. North
Holland, Amsterdam, The Netherlands (1988)

Utas, G.: Robust Communications Software: Extreme Availability, Reliability and Scalability for
Carrier-grade Systems. Wiley, New York (2005)

van Dalen, D.: Logic and Structure. Springer, Berlin Heidelberge New York (1994)
Vestergaard, R., Lescanne, P., Ono, H.: The inductive and modal proof theory of
Aumann’s theorem on rationality. Technical Report IS-RR-2006-009, JAIST (2006) (avai-
lable as http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf)

de Wind, P.: Modal logic in COQ. Master’s thesis, Vrije Universiteit Amsterdam (2002) (avail-
able at http://www.cs.vu.nl/~pdwind/thesis/thesis.pdf)

@ Springer

http://gallica.bnf.fr/
http://hal.inria.fr/inria-00088809
http://hal.inria.fr/inria-00088809
http://www-formal.stanford.edu/jmc/mcchay69.pdf
http://www.jaist.ac.jp/~vester/Writings/vestergaard-IS-RR-2006-009.pdf
http://www.cs.vu.nl/~pdwind/thesis/thesis.pdf

	Mechanizing common knowledge logic using COQ
	Abstract
	Introduction
	What should be expected from mechanizing logic?
	Shared knowledge, common knowledge
	Deduction rule and Hilbert-style presentation
	Structure of the paper

	Predicate calculus in Coq
	A Hilbert-style presentation
	The set of propositions
	Propositional logic
	Predicate Logic
	The syntax
	The axioms
	Explanations

	Other connectors and quantifiers
	Lemmas and derived rules

	The rules of common knowledge logic
	What is modal logic?
	What is common knowledge logic?
	The rules of common knowledge logic
	The axioms of Meyer and van der Hoek
	Sato's axioms
	The axiom of Fagin et al

	Modal logic and epistemic logic in Coq
	Lemmas about C
	Rumsfeld's theorems

	The muddy children
	The hypothesis
	Discussion
	A lemma on Exactly and At_least
	The knowledge diffusion axiom
	Why progress in common knowledge and not in shared knowledge?
	On the strength of common knowledge and on the importance of Father first statement
	Finishing the proof

	The king, the three wise men and the hats
	Is common knowledge needed?
	The statement of the puzzle
	What are the assumptions?
	The proof
	Is common knowledge needed after all?

	Related works
	Conclusion
	The strength of higher order:
	The proofs
	What logic is needed?
	Right modeling and acceptable hypotheses
	Common knowledge vs statements of facts

	A metaphor of common knowledge
	The Coq definition of theorem
	More on Meyer and van der Hoek
	Barcan's formula
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

