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1. Introduction

CTL type branching-time temporal logics play a significant role in potential appli-
cations such as specification and verification of concurrent and distributed systems [9].
Two combinations of future time temporal operators <> (‘sometime’) and [J (‘always’),
are useful in expressing fairness [8]: <> [Jp (p is true along the path of the computation
except possibly some finite initial interval of it) and ] $p ( p is true along the compu-
tation path at infinitely many moments of time). The logic ECTL (Extended CTL [11])
was defined to enable the use of these simple fairness constraints. The logic ECTL™
further extends the expressiveness of ECTL by allowing Boolean combinations of ele-
mentary temporal operators and ECTL fairness constraints (but not permitting nesting
of temporal operators or fairness constraints). In [3, 4] a clausal resolution method has
been developed for the logic ECTL. The introduction of the corresponding technique
to cope with fairness constraints enabled the translation of ECTL formulae into the
normal form, to which we apply a clausal resolution technique initially defined for the
logic CTL. In this paper we present the translation to the normal form for any ECTL ™
formula. Similarly to ECTL, as a normal form we utilise the Separated Normal Form
developed for CTL formulae, called SNFcrp. This enables us to apply the resolution
technique defined over SNF ¢ as the refutation technique for ECTL" formulae.
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The main contribution of this paper is the formulation of the technique to
translate ECTL" formulae into SNFcrp and a proof of its correctness.

The structure of the paper is as follows. In section 2 we outline the syntax and
semantics of ECTL™ and in section 3 we recall those properties of ECTL™ that are
important for our analysis. In section 4 we review SNFcrr. Next, in section 5, we
describe the main stages of the algorithm to translate an ECTL™" formula into SNFcry,
give details of rules invoked in this algorithm and provide the example transformation.
The proof of the correctness of this transformation technique is given in section 6
and the proof of its complexity in section 7. Further, in section 8 we outline the
temporal resolution method defined over SNFcrp and apply it to a set of SNFerp
clauses (previously obtained in section 5.3). Finally, in section 9, we draw conclusions
and discuss future work.

2. Syntax and semantics of ECTL*

2.1. Syntax of ECTL*

Since we utilize ECTL™ for the purposes of formal specification and verification,
we define its language based upon the extended set of classical logic operators
A, V, =, -, the set of future time temporal operators [] (always), < (sometime), O
(next time), ¢/ (until) and W (unless) and path quantifiers A (on all future paths) and E
(on some future path). This will also unify our presentation with the definition of the
normal form (see section 4).

First, we fix a countable set, Prop = x,y,z,..., of atomic propositions. In the
syntax of ECTL™, similar to CTL and ECTL, we distinguish state (S) and path (P)
formulae, such that well formed formulae are state formulae. These are inductively
defined below (where C is a formula of classical propositional logic)

S = C|SASISVS|S =S|~ S|AP|EP
P u= PAP|PVPIP= P|-P|
S| S| O SIS U SIS W S| 0S| S

Examples of ECTL™ formulae that are not expressible in a weaker logic, ECTL,
are A(Q [ pACOp), E(Op Vv O-p (where p € Prop). These formulae express
the Boolean combination of fairness properties or temporal operators in the scope of a
path quantifier.

Note that a succinct representation of branching-time logics which invokes a
minimum set of temporal logic operators, U/ and O, (from which we can derive other
operators), can be found, for example, in [8].

2.2. Semantics of ECTL™

We precede the presentation of the ECTL™ semantics by the introduction of
notations of tree structures, the underlying structures of time assumed for the logic
under consideration.
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Definition 1 (Tree). A tree, 7, is a pair (S,R), where S is a set of states and R C
S x S is a relation between states of S such that

— 50 € S is a unique root node, i.e., there is no state s; € S such that R(s;, so);
— for every s; € S there exists s; € S such that R(s;, s;);

— for every s;,s;, ¢ € S, if R(s;,s;) and R(s;,s;) then s; = s;.

A path, x, is a sequence of states sj,Siy1,Si+2 ... such that for all j > i, (s,
Sjit1) € R. A path x, is called a fullpath. Let X be a family of all fullpaths of 7.
Given a path x;, and a state s; € x;,, (i < j) we term a finite subsequence [s;, s;] = s,
Sit1,--.,8; of x5, a prefix of a path x;, and an infinite sub-sequence s}, sj;1, Sj+2, ... of
Xs; @ suffix of a path x,, abbreviated Suf(xs,, s;).

Definition 2 (Countable w-tree). A countable w-tree, 7, is a tree (S,R) with the
family of all fullpaths, X, which satisfies the following conditions:

— each fullpath y € X is isomorphic to natural numbers;

— every state s; € S has a countable number of successors.

Definition 3 (Branching degree of a state). The number of immediate successors of
a state s; € S in a tree (S,R) is called the branching degree of s;.

Now we are ready to define the semantics for ECTL". A well-formed ECTL™
formula is interpreted in a structure M = (S, R, 50, X, L), where (S, R) is a countable w
tree with a root sy, X is a set of all fullpaths and L is an interpretation function
mapping atomic propositional symbols to truth values at each state and the following
conditions are satisfied:

— X is R-generable ([8]), i.e., for every state s; € S, there exists x; € X such that
s; € Xj, and for every sequence X; = 50, 51,52, . . ., the following is true: x; € X if,
and only if, for every i, R(s;, Si+1);

— atree (S,R) is of at most countable branching.

In figure 1 we define a relation  |=°, which evaluates well-formed ECTL™ formulae at
a state s; in a model M.

Definition 4 (Satisfiability). A well-formed ECTL" formula, B, is satisfiable if, and
only if, there exists a model M such that (M, s) E B.

Definition 5 (Validity). A well-formed ECTL" formula, B, is valid if, and only if, it
is satisfied in every possible model.



238 A. Bolotov and A. Basukoski| A clausal resolution method for branching-time logic ECTL™

sl. (M,s;) Ebp iff  pe€ L(s;), for p € Prop.
s2. (M,s;) E-A iff  (M,s;) A
s3. (M,s;) EAAB it (M,s;) = Aand (M,s;) =B
s4. (M,s;) EAVB iff (M,s;i) EAor (M,s;) EB
s5. (M,si) EA=B iff (M,s;)fEAor (M,s;) =B
s6. (M,s;) EAB iff  for each x,, (M, xs;) E B.
s7. (M,s;) EEB iff  there exists s, such that (M, xs,) = B
pl. M, xs,) EA iff (M, s;) |E A, for state formula A
p2. (M,xs;) = OB iff  for each s; € xs,,if 1 <j
then (M, Suf(Xs,, 5,)) |= B.
p3. M, xs,) E o iff there exists s; € x5, such that
i S .7 and (Ma SUf(Xs“ Sj)> |: B.
pad. (M, xs;) = OB iff (M, Suf(xs;,sit1)) | B.
p5. (M, xs;) EAUB  iff  there exists s; € xs; such that ¢ < j and

(M, Suf(xs;,s;)) E B and for each
Sk € Xs;, If 4 <k < jthen
(M, Suf (xeq, 50)) = A.

po. (M, xs;) FAWB il (M, xs,) F OAor (M, xs;) F AUB

Figure 1. ECTL" semantics.

As an example let us consider an ECTL™ formula
—E(0Op A OO —p) (1)

To show that (1) is valid we establish that the following formula, the negation of

(D
E(D0p A G O -p) (2)

is unsatisfiable. We will show this by refutation, i.e., assuming that there is a structure,
M, such that its root satisfies E((J {p A & [ —p) and deriving a contradiction from
this assumption. The steps of the refutation are as follows.

(1) (M, s0) FE(Op AG T —p).

(2) There exists a fullpath y,, such that (M, x,,) =[] Op A O [ —p, from (1) by s7
in the ECTL ™' semantics.

(3) (M, p5) 1O p A ) —p, from (2) fixing xy, as ¢,
4) (M, ) E IO p, from (2) by s3 in the ECTL™ semantics.
(5) (M, ;) E O O —p, from (2), by s3 in the ECTL™ semantics.

(6) There exists a state s; € ¢, (0 < i) such that (M, Suf (py,,s:)) E [ —p, from (5)
by p3 in the ECTL™" semantics.

(7) (M, Suf (¢, s;)) E [ —p, from (6) fixing s; as s;.
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(8) For every state si € Suf (5, 5;)(k = j), (M, s) = —p, from (7) by p2, pl in the
ECTL" semantics.

(9) For every [ = 0(M, Suf (py,,51)) E Op, from (4) by p2 in the ECTL' semantics.
(10) (M, Suf (s, 5j)) E Op, from (9) letting s; = ;.

(11) There exists a state s, € Suf(py,,s;)(j < m) such that (M,s,) = p, from (10)
by p3 in the ECTL' semantics.

(12) (M,sy) E p, from (11) fixing s,, as s,,.
(13) (M,s,) E —p, from (8) letting s, = s,,.
(14) contradiction: (12) and (13).

It is straightforward from the ECTL™' semantics that since (2) is unsatisfiable
then so is a stronger formula

A Op A [ —p) (3)

This formula will serve in our example of the transformation towards SNFcrp in
section 5.3.

Closure properties of ECTL' models. When trees are considered as models for
distributed systems, paths through a tree are viewed as computations. The natural
requirements for such models would be suffix and fusion closures. Following [8], the
former means that every suffix of a path is itself a path. The latter requires that a
system, following the prefix of a computation -, at any point s; € -, is able to follow
any computation 7y, originating from s;.

Finally, we might require that “if a system can follow a path arbitrarily long, then
it can be followed forever’’ [8]. This corresponds to limit closure property, meaning
that for any fullpath -, and any paths 7, @, . . . such that 7, has the prefix [so, 5;], 7,
has the prefix [s;, s¢], ¢, has the prefix [s, s/, etc, and 0 < j < k < [, the following
holds (see figure 2): there exists an infinite path «y, that is a limit of the prefixes

[S(),Sj], [Sj,Sk], [Sk, S]], e

Figure 2. Limit closure.
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In our definition of an ECTL™ model structure M the set of fullpaths X is
R-generable. Therefore, following [8], it satisfies all three closure properties, i.e., it
is suffix, fusion and limit closed.

3. Some useful features of ECTL™

Here we summarize those features of ECTL™ that are important in our analysis
and, thus, will affect both the translation of ECTL" formulae to the normal form and
the clausal resolution method.

In the rest of the paper, let T abbreviate any unary and T? any binary temporal
operator and P either of path quantifiers. Any formula of the type PT or PT? is called
a basic CTL modality.

Proposition 1 (Negation Normal Form correctness). Given an ECTL" formula G
and its Negation Normal Form NNFgcr + (G),

<M,S0> )Z G iff <M,S0> ’: NNFECTL* (G) [8]

Given a CTL formula F, we will abbreviate the expression ‘a state subformula F;
with a path quantifier as its main operator’ by P-embedded subformula of F. Now for
an ECTL" formula F, we define a notion of the degree of nesting of its path quan-
tifiers, denoted N(F), as follows.

Definition 6 (Degree of path quantifier nesting).

— if F is a purely classical formula then N(F) = 0;

— if F=TF,|F\T°F,, and F,, F, are purely classical formulae then N(TF;) =
N(F\T?*F,) = 0;

- lfF:—lF1|F1 /\Fz’Fl\/F2|F1 :>F2’TF1‘F1T2F2 then N(_|F1) :N(TFl) :N(Fl)
and N(F]/\Fz) :N(Fl\/Fz) :N(Fl = Fz) :N(FszFz) :max(N(Fl), N(Fz)),

— N(PF,) =N(Fy) + 1.

Emerson and Sistla [12] showed that by a continuous renaming of the P-
embedded state subformulae any CTL* (hence ECTL™) formula F with N(F) > 2 can
be transformed into F” such that N(F') = 2. For example, given G = A$(E(C $—p A
Ogq) VEQE [ p) we can obtain Red[G] as follows

Red[G] = A (x; = EJp)A
Al (x; = EQx)A
Al (x3 = E(CO—p A Og))A
A<>(]C3 \/Xz)
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Proposition 2 (Correctness of the procedure Red). For any ECTL" formula C,
(M, so) = C if, and only if, there exists a model M’ such that (M’,s¢) £ Red(C),
where Red is introduced in Definition 2 [12].

Recall that the logic ECTL" extends ECTL similar to the way how CTL™
extends CTL, namely, by allowing Boolean combination of temporal operators (but
not any nesting of them). However, while CTL™ is as expressive as CTL [10], ECTL™"
is strictly more expressive than ECTL. In our transformation procedure (see section 5)
we will utilize equivalences used for CTL"— CTL reduction, referring the reader to
[10] for other cases which involve the U/ operation. (In the formulae below B and C are
purely classical expressions.)

OB A OC)=PO (BAC)

) P(
) P(OBV OC) = PO (BVC)
) P
P

(OBAIC) =PI (BAC) A
d) P(OBV $C) = PO(BV C) (4)
¢) E(BV C) = EBVEC

(a
(b
(c
E
(f) ABAC) = AB A AC

Like ECTL, ECTL" allows limited nesting of temporal operators to express fairness
constraints. For some of them, namely, for A [0 {» and E <) [J cases, the validity of
the following equivalences can be easily shown:

(3) AC1OB = A [JAOB S
(b) EG T B = EOE (1B (5)

Next, we will give a number of obvious ECTL' equivalences that can be used in
simplifying formulae.

PT (false) = false PT(true) = true
P(RU false) = false P(RU true) = true
P(false /R) =R P (true UR) = POR (6)
P(R) false) =P (] R P(RW true) = true
P(false WR) =R P(true WR ) = true

where P is either of path quantifiers and T is either of the unary temporal operators.
We will use these equivalences in our transformation procedure, see section 5.
Further, applying procedure NNFgcr+ and standard classical logic trans-
formations, we can obtain for any ECTL" formula F (that has the degree of path
quantifiers nesting 1) its ‘special’ Disjunctive or Conjunctive Normal Form, abbre-
viated as DNFg(F) and CNFA(F).

Definition 7. (DNFg and CNF , for ECTL™ formulae). Let us call formulae of the
type T(F,), F\T?F,, $OF,, JOF, (where F| and F, are purely classical) as ele-
mentary formulae. Now, a formula in DNFy is of the type E(ay V...V «,) and a
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formula in CNF, is of the type A(ay A...A«y), where each o;(1 < i < n) is an
elementary formula.

For example, the following formula (which we considered in section 2 — See
Formula (3)) A(CJ Op A< [0 —p) is in CNF5. The proof of the following
proposition can be established immediately from the semantics of ECTL™.

Proposition 3 (Correctness of the DNFg and CNF,). For any ECTL" formula F
which starts with A (E) and has the degree of path quantifiers nesting 1, there exists its
DNFg(F) (CNFA(F)) such that F is satisfiable if and only if DNFg(F) and CNF s (F)
are satisfiable, respectively.

Similar to ECTL, a class of basic ECTL" modalities consists of basic CTL
modalities, enriched by the fairness constrains, P[] {) and P{> [J. Our translation to
SNFcrL and temporal resolution rules are essentially based upon the fixpoint char-
acterizations of basic CTL modalities (see [7]) namely, upon definition of P [J and
PV as maximal fixpoints and P<{) and P as minimal fixpoint. Thus, E [J p, A [J p,
E(pWgq), and A(pWVgq) can be understood as maximal fixpoints represented by
equations (7)—(10), respectively, while EQp, AOp and E(p U ¢), and A(p U q) are
given as minimal fixpoints represented by equations (11)—(14), respectively, (here, * 1’
is maximal fixpoint operator and ‘ i’ is minimal fixpoint operator).

E p=uv((p NEO(Q) (7)
ACp=uvn(pNAOn) (8)
E(pWq) =vi(qV (p NEOK)) 9)
A(pWq) = 1&gV (p NAOY)) (10)
EOp = pp(p VEO p) (11)
AOp =pur(pvVAOT) (12)
E(pUq) =px(qV (p NEOX)) (13)
A(pUq) =po(gV (p NAOE)) (14)

Next we recall some results on interpreting CTL-type branching time logics over
so-called canonical models. We will formulate these general results in relation to the
logic ECTL™, noting that they cover all CTL-type logics, including CTL.

Since underlying models for ECTL" are countable w trees, a state in such a
model can have an infinite number of successor states. However, following [12]
(Theorem 3.2), if a formula F is satisfiable in a CTL" (hence ECTL™) model then it
has a (finite) model, where each state has a branching degree < |F| (where < |F]| is the
length of F).
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Definition 8 (Branching factor of a tree structure). Given the set K = {k;, k2,
...k, }, of the branching degrees of the states of a tree, the maximal k;(1 < i < n) is
called the branching factor of this tree.

Definition 9 (Labelled tree). Given atree 7 = (S,R) (where S is a set of nodes and R
is a set of edges) and a finite alphabet, 3, a ¥-labelled tree is a structure (7, £) where
L is a mapping S — X, which assigns for each state, element of S, some label,
element of X.

Observe that in section 2.2 we introduced the notion of satisfiability and validity
of ECTL" formulae in relation to (M, so). Now, let us, following [16], call such a
structure a tree interpretation.

Next we recall a notion of a k-ary tree canonical model which plays a fun-
damental role in our correctness argument. For these purposes, again following [16]
and preserving its notation, we will look at tree interpretations as tree generators: the
root of the tree is understood as an empty string, A, and the whole tree is seen as a
result of unwinding of the root applying the successor function {(s, si)|s € [k]*,i € K},
where [k]" = S and si(i € K) is a set of successors of a state s.

Definition 10 (Tree canonical interpretation). Let 7 = (S, R) be a k-ary infinite tree
such that [k] denotes the set {1,...,k}, of branching degrees of the states in S and
R = {(s,si)|s € [k]*,i € K}. Now, given an alphabet 3 = 2777 a k-ary tree canonical
interpretation for an ECTL * formula F is of the form (M, \), where M = ([k]",R, T)
such that 7 : [k]* — 277°P is a function which assigns truth values to the atomic
propositions in each state.

As it is stated in [16], since in a canonical interpretation {(([k]", R, ), \), “the set
of states, the initial state and the successor relation are all fixed they reduce to a
function [k]*——2F7 that is to a labelled tree over the alphabet 2£77>’. We will refer
to this tree as a canonical model. Proposition 4 given below collects the results of [16]
(Lemma 3.5, page 145).

Proposition 4 (Existence of a canonical model for ECTL™). If an ECTL* formula
F containing n (existential) path quantifiers has a model, then it has an (n+ 1)-ary
canonical model.

Thus, given an interpretation (M, so) for an ECTL" formula F, there exists an
(n 4 1)-ary canonical tree interpretation (M’, \), where n is the number of existential
path quantifiers in F, such that F is satisfied in (M, sp) iff F is satisfied in (M, \).

These results were essentially used in the formulation of the transformation rule
for the ECTL fairness constraint A  [J [3, 4]. In this paper we will further extend
their applicability in the transformation procedure for ECTL ™.
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4. Normal form for ECTL™'

As a normal form for ECTL™, similarly to ECTL, we utilise a clausal normal
form, defined for the logic CTL, SNF¢r, which was developed in [2, 6]. The core
idea of SNFcrL is to extract from a given formula the following three types of con-
straints. Initial constraints represent information relevant to the initial moment of
time, the root of a tree. Step constraints indicate what will happen at the successor
state(s) given that some conditions are satisfied ‘now’. Finally, Sometime constraints
keep track on any eventuality, again, given that some conditions are satisfied ‘now’.
Therefore, similar to the linear-time case ([14]) an important part of the transformation
procedure for ECTL™ formulae into SNFcrp is the removal of all other, ‘unwanted’
modalities A, EC, AU, EU, AW, EW (see section 5.2).

Additionally, to preserve a specific path context during the translation, we incor-
porate indices.

Indices. The language for indices is based on the set of terms

IND = {{f), (g), (h), (LC(f)), {LC(g)), (LC(h)) ...}

where f, g, h... denote constants. Thus, EA s, means that A holds on some path labelled
as (f). A designated type of indices in SNFcrp are indices of the type (LC(ind)) which
represent a limit closure of prefixes associated with (ind). All formulae of SNFcrp of
the type P = EOQ or P = EQQ, where Q is a purely classical expression, are
labelled with some index. Labelling clauses of the normal form by indices makes paths
explicit and is related to the branching factor of the canonical model for the clauses
and will be explained later.

The SNFcrp language is obtained from the ECTL™ language by omitting the I/
and WV operators, and adding classically defined constants true and false, and a new
operator, start (‘at the initial moment of time’) defined as

(M,s;) Estart iff i=0

Definition 11 (Separated Normal Form SNFcr). SNFcrp is a set of formulae
A [/\i(P,- = F ,)} where each of the clauses P; = F; is further restricted as below,
each «;, o, s, @y, Bi, B, Br O 7 is a literal, true or false and (ind) € IND is some
index.

start = \/f;1 Bi an initial clause

/\Jl-:1 o= AO Vo i Bl an A step clause

Ny a, = EQO[V,_, 5] ingy an E step clause
Ny e = Ay an A sometime clause

Ao—i @ = ESviLc(ing) an E sometime clause
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Interpreting SNFcpp,. Let SNFcr(G) be a set of SNFcrp clauses obtained for
some ECTL™ formula G with n existential path quantifiers. As we will see (section 5),
at some stage of the transformation of G into SNFcrL(G) we associate every k €
1...n with a unique index ind; € IND and label each E step clause with the unique
ind; and each E sometime clause with the unique LC(indy) (which can be justified by
Proposition 4).

The underlying models of SNF¢rp similar to ECTL™ are countable w trees and
we obtain the SNFcrp semantics from the semantics of ECTL™ (section 2) by
preserving items s1—s7, and p3—p4. The natural intuition here is that the initial clauses
provide starting conditions while step and sometime clauses constrain the future
behaviour. An initial SNFct clause, start = F, is understood as ““ F is satisfied at the
initial state of some model M.”” Any other SNF ¢y, clause is interpreted taking also
into account that it occurs in the scope of A[].

Thus, a clause A[C](x = A Op) (see figure 3) is interpreted as “for any fullpath x
and any state s; € x(0 < i), if x is satisfied at a state s; then p must be satisfied at the
moment, next to s;, along each path which starts from s;”’.

Next, a clause A[J(x = EO q<ind>) (a model for which is given again in figure 3)
is interpreted as “for any fullpath x and any state s; € x(0 < i), if x is satisfied at a
state s; then ¢ must be satisfied at the moment, next to s;, along a path which starts
from s; and which is associated with ind”’. Speaking informally, we interpret A (x =
EO q<ind>) such that given a state in a model which satisfies x (the left hand side of the
clause), the label, ind, indicates the direction, in which the successor state which
satisfies ¢ can be reached (see similar developments in the construction of logic
DCTL*, [15]).

Finally, the labelling of the E sometime clause is justified based upon its fixpoint
characterization. Consider A[J(x = E<>p<LC(ind)>). This has the following meaning
“for any fullpath x and any state s; € x(0 < i), if x is satisfied at a state s; then p must
be satisfied at some state, say s;(i < j), along some path a;, which is the limit closure
of (ind) which departs from s;”’. Note that our interpretation of an LC index cor-
responds to the concept of a linear interpretation [16]. Speaking informally, the
meaning of the index LC(ind) is to indicate that once x is satisfied at some state, say s;,
of a model, a state which satisfies p, say s;, becomes reachable from s; along some path

pq P g P
% vz
Wt

Figure 3. Interpretation of step and sometime clauses.
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associated with LC(ind). This corresponds to the following understanding of E{
formulae based upon the equivalence (11)

EGp =pVEOE$p (15)

Thus, given EQp and recursively applying (15) we derive that either p is satisfied
at s; or, alternatively, there is a successor of s;, say s;, which satisfies EQp. Now,
again, either s; satisfies p or it has a successor, say si, which satisfies EQp, etc. In the
canonical model we are additionally assured that s; is an ind-th successor of s;, s; is an
ind-th successor of s;, etc, and thus the state satisfying p at which we eventually arrive
can be reached from s; on a linear path which is a limit closure of ind.

5. Transformation of ECTL" formulae into SNFCTL

In this section we first describe the algorithm to transform ECTL™ formulae into
SNFcrL, then we present rules involved into various stages of the algorithm, and,
finally, give an example transformation.

5.1. Algorithm to transform ECTL" formulae into SNF, CTL

As SNFcrp is a part of the resolution technique, to check validity of an ECTL™
formula G, we first negate the latter, translate —~G into its Negation Normal Form
deriving NNFgcr(—G) and simplify the latter. Let C be the result of these trans-
formations. We introduce the transformation procedure 7 = [r,[7;[C]]] applied to C,
where 7; and 7, are described, respectively, by the steps 1-2 and 3—10 below.

(1) Anchor C to start and rename C by a new proposition, say, xo obtaining
A [ (start = xo) A Al (xo = C)

(2) Apply equivalences (5) and procedure Red (see Definition 2) to C. Thus, we derive
a set of constraints of the following structure

==

Al

(start = xg) A [ (P = Q,-)”

J=0

where P; is a proposition, Q; is either a purely classical formula or if Q; contains a
path quantifier then the degree of nesting of path quantifiers in Q; is 1.
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Let us call a formula G in pre-clause form if 7[G] = G i.e., it is of the form P; =
Q; where P; is a literal, conjunction of literals, or start, Q; is a purely classical
formula or any of PTC;,P{ [0 C;,P [1C;, P(C;,T*C;,),P(TC;, A ... ATC,),
P(TCj, v...VTC;,) (for some n,m > 1) and C;,Cj,... are purely classical
formulae.

(3) For every pre-clause P; = Q;:
(3.1) If Q; is an ECTL* formula but not a CTL™" formula then do the following:
(3.1.1) obtain its DNFg(Q;) or CNFs(Q,) and apply equivalences 4-(e) or
4-(f), respectively.
(3.1.2) apply equivalences (5).
(3.1.3) apply procedure RED.
(3.2) If Q; contains Boolean combinations of temporal operators but does not
contain any fairness constraint then (as it is a CTL * formula) apply the pro-
cedure to transform CTL™ into CTL (see section 3).

(4) At this stage, renaming state subformulae (which are expressed by basic CTL
modalities) on the right hand-sides of the constraints derived at step 3 we obtain
the structure required for a pre-clause.

(5) For every pre-clause P; = Q;, by continuous renaming of the embedded classical
subformulae by auxiliary propositions together with some classical transforma-
tions we obtain the following conditions.

— If O, contains a basic CTL modality then

— If Q; = PTC; and PT is not PO then C; is a literal, else C; is a purely classical
formula.

— If Q; =E [0 OC; or Q; = A$ [ C; then C; is a literal,
— If Q; = P(C;,T>C},) then Cj, and C;, are literals.

-If Qi =E(ai A...ANa,) or Qj =A(B1 V...V 3,), where each a;(1 < k < n)
and (1 </ < m) is a temporal operator or a fairness constraint applied to
classical formulae (but not literals) we obtain the structure where they apply to
literals.

(6) Label each pre-clause containing the EO modality by an unique index (ind;) €
IND and any other pre-clause containing the E quantifier by an unique index
(LC(ind;)) € IND. Let LIST_IND be a list of all indices introduced during this
labelling.

(7) Transform pre-clauses with E [ <> and A< [J.
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(8) Transform pre-clauses containing E(ag A ... Acay,) or A(B1 V...V () (of the
structure obtained at step (5)).

(9) Remove all unwanted basic CTL modalities.

(10) Derive the desired form of SNF ¢t clauses. At this final stage we transform pre-
clauses P; = Q;, where Q; is either PO C; or a purely classical formula: for
every pre-clause P; = P O Cj, we obtain the structure where PO applies either
to a literal or to disjunction of literals. This can be achieved, again, by renaming of
the embedded classical subformulae, translating CJ’. into conjunctive normal form
(CNF), and distributing P O over conjunction, together with some classical trans-
formations. Further, for every remaining purely classical pre-clause P; = Q;, we
apply a number of procedures including those that are used in classical logic in
transforming formulae to CNF, some simplifications and the introduction of a
temporal context.

5.2. Transformation rules towards SNF -y

In the presentation below we omit the outer * A[]” connective that surrounds the
conjunction of formulae and, for convenience, consider a set of formulae rather than
the conjunction.

Simplification rules. Several classical simplification rules are used at different stages
of the transformation procedure.

To simplify formulae with false or true constrained as arguments of a basic
ECTL" modality we use the following equivalences (below R is any ECTL™
formula).

(R A true) =R (R A false) = false
(R V true) = true (R V false) = R
(R = true) = true (false = R) = false

(16)

Also, in simplifying formulae we utilize the equivalences (6) and standard rules
applied to Boolean connectives used to obtain CNF and DNF.
Next, for any ECTL™ formulae Q and S, we split conjuncts:

P=(QANS)
P=0
P=3S (17)
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Further, if Q is embedded within PO Q and is not of the form Q; A Q», then,
since Q is classical, we translate Q into CNF, applying the standard set of rules
required for such transformations.

Alternatively, i.e., if Q is of the form Q; A Q,, then we distribute PO over
conjunction. Here we distinguish two cases, when O is preceded by an A quantifier
and by a E quantifier. In the first case the rule applies without any restrictions as
follows.

P = AO(Qi N0

P=A00Q (18)
P=A00,

However, in the second case, when O is paired with the existential quantifier,
we must follow our requirement on preserving labelling of E-formulae.

P =EO(Q1AQ2) g
P = EO Qi jna) (19)
P = EQO Qg

The fact that both conclusions of this rule are labelled by the same index will be
useful in enabling the application of step resolution rules and also in searching for
loops as a part of the temporal resolution method (section 8).

Next, we present a transformation rule for purely classical formulae.

Temporizing. Given a purely classical formula P = Q, we introduce a temporal con-
text applying a rule called Temporizing:

P=0

start = PV Q (20)
true = AO (=P V Q)

A particular case of the temporising rule applies to a purely classical expression
with false as its consequent, for example, P = false. Here temporizing gives us a set
of formulae {start = —P V false,true = A O (—P V false)} which can be further
simplified to {start = —P, true = A O —P}.

Renaming rule. Renaming applies at various stages of the transformation procedure.
Since renaming involves replacing a subformula R within some complex formula F by
a new proposition symbol, x, it must be accompanied by associating the truth values of
x with the truth values of R in every model M. In branching-time framework, this link
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between the truth values of x and R must be provided in every state along every
path of the underlying model structure, i.e., = A[J(x = R) must hold. Note that in
the standard case, in general, a complex formula R to be renamed can be embedded
into F as its subformula under either positive or negative polarity. Therefore, in
providing the required link between the renamed subformula and a new variable used
for renaming, we must utilize the ° =’ operator. Below we give the inductive
definition of polarity of the embedded ECTL™ formulae adapting here the standard
definition.

Definition 12 (Polarity).

— Let p be an atomic proposition. Then p occurs positively (negatively) in p (—p).

— If AAB or AV B positively (negatively) occur in C then both A and B positively
(negatively) occur in C.

— If =A positively (negatively) occurs in C then A negatively (positively) occurs in C.

— If A = B positively (negatively) occurs in C then A negatively (positively) and B
positively (negatively) occurs in C.

— Let P abbreviate either of the path quantifiers, T abbreviate any unary and T either
of binary temporal operators, and A and B be state formulae.

Now,

e if PTA or P(AT?B) positively (negatively) occurs in C then both A and B posi-
tively (negatively) occur in C.

o if P[] QA or PO [0 A positively (negatively) occurs in C then A positively
(negatively) occur in C.

Observe, however, that, according to the transformation algorithm, a complex
P-embedded subformula B, to which we apply the renaming operation, occurs on the
right hand side of some formula R; = (A = B). Further, since the procedure NNFcpp
has been already applied, this occurrence of B within R; is always positive. Therefore,
to prevent the enlargement of the complexity of 7, we can accompany the renaming by
establishing the link between B and a new variable x used in renaming of B, by
requiring = A [J (x = B), rather than = A [J (x = B), thus, not duplicating renamed
subformulae.

Now, the general rule for renaming of the embedded ECTL ™ state subformulae is
as follows:

P = P(R)

P = P(R/x)
xX=R
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where P is either a purely classical expression or start and P(R) is an ECTL" formula
with the designated state subformula R and P(R/x) means a result of replacing R by a
new propositional symbol x in P.

Recall that after obtaining NNFcr(—G) for some input G, we simplify the
latter and anchor the result, C, to start deriving start = C. Next we rename C by
some new proposition (initial renaming). In other cases we apply the renaming
technique to reduce the nesting of P-embedded subformuale (as part of the procedure
Red), to obtain arguments of basic ECTL" modalities as literals (by renaming
complex classical subformulae embedded within the scope of basic CTL modal-
ities excluding PO), and, finally, we utilize renaming to manage embedded path
subformulae.

Managing embedded path subformulae in ECTL*. We incorporate rules to rename
purely path formulae embedded in ECTL™ fairness constraints from [3]. Let the
number of indices in LIST_IND be n(n = 0) and let (indy),...(ind,) € IND be the
constants occurring in these indices. If, however, for some index (ind) € LIST_IND
we do not have (LC(ind)) € LIST_IND then we upgrade LIST_IND by (LC(ind)) (in
the formulation below n is the number of indices in LIST_IND and x,xy,...,x, are
new propositions).

Renaming: E [ < case.

P = E [0 G0 c(ind)
P=E[] X(LC(ind))

x = EQO 1¢(ind)
Renaming: The A { [ case.
ifn=20 ifn>0
P=A0OQ P=A{ 00
P = E $ X(1¢(ind)) P = E & X1(¢(indy)
x = E [ Ouc(ing) x1 = E T OQuciind))

P = E & Xurc(ind,)
Xy = E [ Queind,)

Indices. Recall that at step 6 of the transformation procedure, we introduce labelling
of the SNF¢rp pre-clauses containing the E quantifier. The justification of this label-
ling is based upon fixpoint characterization of basic CTL modalities and was explained
in [2, 3] except for the new specific ECTL™ formulae in DNFg, form. The latter can be
explained simply based upon the SNFcrp semantics.
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Rules to remove basic CTL modalities. Removal rules are derived from the fixpoint
characterization of basic CTL modalities (7)—(14) (see also [6]). In the formulation of
these rules given below x is a new proposition:

Removal of A [] Removal of E []
P=A[] y P=EKE/[] y<LC(ind)>
P=yAx P=yAx
x=A0(yAx) x = EO (y AX)na

Removal of AU Removal of E U/

P = A(pUq) P = E(pU q)<LC(ind>>
P=qV(pAx) P=gqV(pAx)

x =A0(qV(pAx)) x = EO(qV (P AX))jnq)
P=Aq P = E ¢ quc(ing)

Removal of A W Removal of EW
P=qV(pAx) P=qV(pAx)

x=A0(qV(pAx) x =EO(qV (P AX)) i

Managing embedded Boolean combinations of path subformulae in ECTL™.
Recall that on step 8 of the transformation procedure we must further reduce formulae
of the form E(ay A ... A a,) and A(B; V ...V B,). The corresponding rules are given
below where ind’ is LC(ind) if the #; are not O, and ind otherwise, and n is the number
of indices in LIST _IND.

E(og A ... A ay),g case.

P = E(al /\ e /\ Oén)ind

uy = E(Oé] )ind’

u, = E(ay),,4

A(ap V...V ay)case.

ifn=0 if >0
P=ABiV...VB) P=A(BiV...V G
PiE(ﬁl\/...\/ﬁ,ﬂ P:>E(ﬁlv---\//8m),'nd1

PoE(V...V )

ind,
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5.3. Example transformation

As an example we translate into SNFcrp the formula:
E(Q O-pv OOp) (21)

To check if (21) is valid we apply procedure NNFpcp+(—(E($ Cl—p Vv
C10p))) = A(CD0Op A $LC—p) which was considered as an example of an unsatisfi-
able formula in section 2. From the translation algorithm, we derive steps 0—2, where x
is a new proposition.

0. start = A((CJ Op A [J—p) anchoring to start
1. start = x 0, Initial Renaming
2.x=A(O0p A O —p) 0, Initial Renaming

We proceed with formula 2, where the right hand side of the implication is
already in CNFA(F). Thus, we apply equation (4)-(f) to distribute the A over con-
junction in 2, obtaining 3, and then simplify the latter deriving 4 and 5. Next, we
simplify formula 4 applying equation (5)-(a) to get 6. The structure of the latter
enables us to apply procedure Red deducing 7 and 8 and introducing a new vari-
able y.

3.x= A000p ANAO O —p 2,equiv(4 — f)
4. x = ACIOp 3, SIMP
5.x=AQ0-p 3,SIMP

6. x = ALJAOp 4, equiv(5 — a)
7. x= Aly 6, Procedure Red
8.y=Alp 6, Procedure Red

Applying the renaming rule (A<{> [J case) to 5 we derive formula 9 and label it
with a new index (LC(f)) (since LIST_IND is empty). Applying equation (5) to 9 we
get x = EQE [0 —p(LC(f)) which is further reduced by procedure Red to 10 and 11,
where z is a new variable. Apply A ] removal rule to 7 and E [J] removal rule to 11,
where x; and z; are new variables.

9.x = E$ O —pucyy 5, Renaming
10. x = E<>Z<Lc<f)> 9, Red
1l.z = E U -puery 9, Red
12.x = yAx 7, Removal of A [J
13.x; = A0 (yAx) 7, Removal of A [
4.z = —p Az 11, Removal of E [J

15.21 = EO(-pAz1)y, 11,Removal of E [
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Next simplifying and temporising formulae 12 and 14 we obtain 16-19 and
20-23, respectively. Finally, we distribute A and E over O in 13 and 15.

16. start = —x Vy 12, Simp, Temp
17. start = —x V x; 12, Simp, Temp
18. true = AO (—xVy) 12, Simp, Temp
19. true = AO (—wVx;) 12, Simp, Temp
20. start = —zV —p 14, Simp, Temp
21. start = -z V 73 14, Simp, Temp
22. true = AO(—zV-p) 14, Simp, Temp
23. true = AO(—zV —z;) 14, Simp, Temp

24.x  =AQ0y 13, equiv (4) — (a)
25.x = AOx 13, equiv (4) — (a)
26.z; = EO-pgy 15, Distribution E O over A
27.z27 = EOzy 15, Distribution E O over A

The normal form of the given ECTL" formula is represented by clauses 1, 8, 10,
16-27.

6. Correctness of the transformation of ECTL' formulae into SNFCTL

Here we provide the correctness argument for our transformation procedure. A
significant part of this argument is either similar to the corresponding proofs given in
[2, 3] for CTL and ECTL or extends these proofs for new cases of ECTL*' formulae.
Therefore, we will only state such claims referring the reader to [2, 3] while we sketch
here proofs for new techniques used for ECTL™ transformations. Note also that in our
previous paper [3] we have not established the proof for the claim analogous to
Lemma 3 (see below). Therefore, providing our argument in this paper, we not only
show the desired correctness of the transformation procedure for ECTL™ but also
bridge this gap for ECTL.

Theorem 1. An ECTL™ formula, G, is satisfiable if, and only if, 7(G) is satisfiable.

To establish the correctness of this theorem we first show that an ECTL™ formula
G is satisfiable, if and only if 7;(G) is satisfiable (Lemma 1). At the next stage we
prove that the transformation procedure 7, preserves satisfiability (Lemma 2). Fi-
nally, (Lemma 3), we show that given an ECTL" formula G and its normal form,
SNFcr(G), if SNFcr(G) is satisfiable then G is satisfiable.
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Lemma 1. An ECTL" formula, G, is satisfiable if, and only if, 7 (G) is satisfiable.

Since 7 is taken from the translation of ECTL formulae to SNFcrp, the proof of
Lemma 1 follows from the correctness argument for ECTL ([3]).

Lemma 2. Given an SNFcry. formula G, if 71(G) is satisfiable then so is 72(71(G)).

Here we must show that the new techniques used in our transformation procedure
preserve satisfiability. This includes the correctness argument for DNFg and CNF s
and also for the cases of Boolean combinations of temporal operators, E(aj A ... A
Qp)ing Case and A(o V...V ) case. Corresponding proofs are established straight-
forwardly from the SNF 1 semantics, taking into account the meaning of indices and
Proposition 4 ([16]).

Lemma 3. Given an ECTL" formula G, if SNFcr.(G) is satisfiable then so is G.

Proof. From Lemma 1 it follows that given an ECTL" formula G, G is satisfiable if,
and only if, 71 (G) is satisfiable. Thus, for the proof of Lemma 3 we must show that the
following proposition takes place:

Proposition 5. Given an ECTL" formula G, if 7»(7(G)) is satisfiable then so is
T1 (G)

Here we sketch the proof for the new core technique introduced in our
transformation procedure. We will show that given (1) A LI (P = A(B1 V...V (Bn))
and having generated

(@) AP =E@BV...VBu)icind)

(1)
(an) ALl (P = E(ﬁl V...V 5"1)(LC(indn))

(where at least one of 3; (1 < i < m) has a form of ¢ [JQ or [JQ), if (§) is
satisfiable then (1) is satisfiable.

Proof. Consider a model M which satisfies (). We have (M, so) F (a;) A ...
A(ay,). Following [16], we know that if a formula with n path quantifiers has a model,
then it has an (n+ 1)’ary canonical model. We will now construct this canonical
model M’ and show that every state in the model also satisfies . The construction
proceeds by first selecting a path from M which satisfies one of the a; (1 < i < n)
clauses, say . This will be a basis path to construct a canonical model, which is also
referred to as the ‘leftmost’ path of the canonical model in [16]. Due to the labelling of
the states of this path, each of them satisfies P = E(81 V...V Bn) 1¢(ing,)- Then
inductively construct each of the n additional paths (corresponding to n somepath
quantifiers) from each state along (.
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Again, we label the states of these paths based on the original interpretations
from M such that each of them also satisfies P = E(81 V...V B) ¢ (ing) (for some
i). We then proceed in the same way to take each state of the newly constructed paths
and generate the n additional paths from each of them to derive the completed
canonical model.

Our ultimate task is to show that for any state in the canonical model M’ which
satisfies P, every path emanating from it satisfies 5y V ...V (3,. This will ensure that
P = A(B V...V (3y)) is satisfied at every state of M’, and, therefore, it is satisfied in
the root of M’. Consider an arbitrarily chosen path x; of M’ and a state s; € X, see
Figure 4. By the construction of M’, every one of the n paths emanating from s;
satisfies 31 V ...V [3,,. What is left is to show that Suf(x;,s;) (which corresponds to
the n 4 1 path emanating from s;) also satisfies 5 V ...V (,. The latter follows from
the labelling of the states of the path x; which is taken from one of the paths of M that
satisfies one of the ( ay,...,a,).

7. Complexity

Given an arbitrary formula, W, we present the maximum number of SNFctp
clauses, clauses(7(A [J(W)), generated after applying the translation procedure, and
also the maximum number of new propositions generated by the translation procedure
given by props(7(A [J(W)). Our proofs follow the format of analogous proofs of the
complexity for the linear-time case [14].

We now define the length 'len’ of an ECTL™ formula. In the following formulae
P refers to either of A or E quantifiers, / is a literal, n is the number of existential

Suf(Xi, k)

SOSO

Figure 4. (n + 1)’ary Canonical Model for {.
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quantifiers in the original formula, m is the number of elements in an A(B; V...V By)
clause, and const is true, —true, false or —false.

len(POI) = 1
len(hVibV...VI,) = 1for(n>1);
len(const) = 1;

lenPO(LVLV...VI)) = 1for(n = 1),
len(P [ A) = len(POA) =len(POA) =1+ len(A);
len(—P 0 A) = len(-POA) =len(-POA) =
1 + len(—A);
len(AVB) =len(ANB) = len(P(AU B)) = len(P(AWB)) = 1 + len(A) + len(B);
len(~(AV B)) = len(—(AAB)) =len(—-P(AUB)) =
len(=P(AW B)) =1 + len(—A) + len(—B);

len( (A=B) = 1+Ilen(A)+ len(—B);
en(A = B) = 1+ len(=A) + len(B);
len(PA) = 1+ len(A);
len(wPA) = 1+ len(-A).

7.1. Number of clauses generated

Theorem 2 (New SNFcrty, clauses). For any proposition symbol x and ECTL+
formula W, the maximum number of SNF¢7; clauses generated from the translation of
7[A [ (x = W)], denoted by clauses (7[AJ(x = W)]), will be at most (12x m x n?),
1.e.,

clauses(T[AC) (x = W)]) < (12 x m x n* x len(W)), (m,n = 1)

Proof. The proof is by induction on the length of W. The base case is where W
has length 1, i.e., it has the form PL LV ...V 1, true, false or POL V...V 1,).
As illustrated in section 5.2, 7[A [J (x = P{!)] produces one SNF¢y;, clause, 7[A [
(x= (I VIV ...V1,)] produces two SNF ¢, clauses, and 7[A [] (x = const)| pro-
duces two SNFcy;, clauses, and 7[A [ (x=PO(l; VL V...V I,)] produces one
SNFcr; clause. In each case if the number of SNFEq7; clauses is M,

M < (12 xm x n?), (m,n > 1)

For the inductive hypothesis we assume that the theorem holds for formulae of
length g and examine each case for length ¢ 4 1. Considering the transformations in
section 5.2, if the maximum number of SNF (7, clauses from removing any operator
(or negated operator) is M then M < (m x n*> x 12) which occurs in the A(B; V By V



258 A. Bolotov and A. Basukoski| A clausal resolution method for branching-time logic ECTL™

...V B,,) case where each B;(i < m) is of the form (A{ [0 C), and each C of the
form —=P(C; W C»).

For each B;(i < m) of the form (A{ [J C), since each B;(i < m) < 11, given
by the case =P(C; W C,) (see below) we have
clauses(T[A [0 (x = A(B1VByV...VBy)]) = nx[(nx (1+4len(E [J By))+
.+ (nx (14 len(ECIBy))]
Therefore,
clauses(7[A] 0 (x = A(B; VB,V ...VBy)]) < (nxmx [nx12])
Hence
clauses(T[A [ (x = A(B1 VB, V...V B,)]) < (m x n* x 12).

Now we provide the proof for —=P(C; W C,).

clauses(T[A [ (x = =P(C; W (2))]) = 11+ clauses(T[A O (y = =C)]) +
clauses(T[A [0 (z = =Cy)]).

Hence,

clauses(T[A [ (x = —P(C; W (C3))]) < (11 + (11 x len(—Cy))+
(11 x len(—C3))) =
11(1 + len(—=C1) + len(—C3)) =
11 x len(—|(C1 w Cz))

The cases for the other operators are similar.

Theorem 3 (Maximum number of SNF ¢y, clauses). For any ECTL ™ formula W, the
maximum number of SNF ¢ clauses generated from the translation into SNFcpp will
be at most 1 + (m x n? x 12 x len(W)).

Proof. Let W be a ECTL™ formula. To transform it into SNFcrp we apply the 7
transformations

TW] =7[A O (x = W)|AA [J (start = x)

From Theorem 2 above, we know the maximum number of SNFct. clauses from
7[A O (x = W)] is < (m x n* x 12); hence, the maximum number for the trans-
lation of W is 1 + (m x n* x 12) x len(W). m

Hence we conclude that the transformation procedure is polynomial on the length
of W and hence is in P.



A. Bolotov and A. Basukoski/ A clausal resolution method for branching-time logic ECTL™ 259
7.2. Number of new proposition symbols generated

Theorem 4 (New propositions). For any proposition symbol x and ECTL" formula,
W, the maximum number of new proposition symbols generated from the translation
of 7[A [ (x = W)], denoted by props(r[A](x = W)]), will be at most (m x n? x
5% len (W)), i.e.,

props(T[A O (x = W)]) < (5 x m x n* x len(W)), for(m,n = 1)

Proof. The proof is by induction on the length of W. The base case is where W has
length 1, i.e., it has the form POL LV ...V Ly, true, false or PO (I} V ...V I,). Each
of these produces no new proposition symbols so as 0 < 5 x 1 we are done. For the
inductive hypothesis we assume that the theorem holds for formulae of length ¢
and examine each case for length ¢ + 1. We note that the maximum number of
propositions added in the translation of a CTL formula is 4 which arises from the
translation of =P(A W B). When this occurs as C in (A< [JC) then we add 1 for the
translation of each E¢ [1C.

For each B;(i < m) of the form (A [0 C), and C of the form —=P(C; W ()

props(T[ALJ(x = A(B1 VB, V...V B,)])) = nx|[(nx(1+props(ECIBy))+
..+ (nx (14 props(ECJBy))]

N

Since the number of props in each B;(i < m) < 4,

props(T[AC)(x = A(By VB, V...V B,)])) < (m x n? x5).
The cases for the other operators are similar. |

Theorem 5 (Maximum number of SNFcry, propositions). For any ECTL™ formula
W, the maximum number of new propositions generated from the translation into
SNFcr, will be at most 1+ (m x n* x 5 x len(W)).

Proof. Let W be a ECTL" formula. To transform it into SNFc7; we apply the 7
transformation

T[W] = 7]A T(x = W)] A A C(start = x)

Let N be the maximum number of new proposition symbols, generated from
7[A O(x = W)]. From Theorem 5, N < (m x n*> x 5 x len(W)); hence, the maxi-
mum number for the translation of W is < (m x n* x5 x len(W)). Hence the
maximum number of new propositions from the translation of W is 1 + (m x n* x
5x len(W)). a
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8.  The temporal resolution method

Having provided the translation of ECTL™ formulae into SNF¢1r, we represent
all temporal statements within ECTL™ as sets of clauses. Now, in order to achieve a
refutation, we incorporate two types of resolution rules already defined in [2, 6]: step
resolution (SRES) and temporal resolution (TRES).

Step resolution rules. Step resolution is used between formulae that refer to the same
initial moment of time or same next moment along some or all paths. In the formu-
lation of the SRES rules below / is a literal and C and D are disjunctions of literals.

SRES 1 SRES 2
start = C V[ P=A0O(CVI)
start = DV =/ 0=A0 DV
start = C VD (PANQ)=AO(CVD)
SRES 3 SRES 4
P=A0(CVI) P=EO(CVI);
(PANQ)=EO(CVD);.q (PAQ)=EO(CVD);q

When an empty constraint is generated on the right hand side of the conclusion
of the resolution rule, we introduce a constant false to indicate this situation and, for
example, the conclusion of the SRES 1 rule, when resolving start = / and start = —/,
will be start = false, which is the terminating clause.

Temporal resolution rules. In the rules below / is a literal and the first premises in
the TRES rules abbreviate the A and E loops in / ([5]), i.e., the situation where, given
that P is satisfied at some point of time, / occurs always from that point on all or some
path, respectively.

TRES 1 TRES 2
P=A0OA! P=A0OA!
0 = AO-I Q = EOlic(ing))
Q0= A(-PW-I) Q = E(-PW _‘l)(Lc(ind»
TRES 3 TRES 4
P =EOE [ lirc(nd) P = EQOE O ljc(ingy
0 = AQ-I QO = EOlirc(ing))

Q= A(=PW -I) Q= E(=PW =) cing))



A. Bolotov and A. Basukoski| A clausal resolution method for branching-time logic ECTL™ 261

Correctness of the transformation of ECTL™ formulae into SNFcrp (section 6)
together with the termination and correctness of the resolution method defined over
SNFcrL (shown in [2, 6]) enables us to apply the latter as the refutation method for
ECTL".

Example refutation. We apply the resolution method to the set of SNFcr clauses
obtained for the ECTL™ formula A((CJ$p A $J—p) (Formula (21) in section 5.3). We
commence the resolution proof presenting at steps 1-13 only those clauses that are
involved in the resolution refutation in the following order: initial clauses, step clauses
and, finally, any sometime clauses.

1. start = x 8.x;y = AOQy
2. start = —x Vy 9.x1 = AQOx
3. start = -V x; 10. z; = EO —pys)
4. start = —zV —p 11. z; :>EOzl<f>
5. start = -z V 7 12.y = Adp

6. true = AQO ("Z V _|p) 13.x = E<>Z<Lc(f)>
7. true = AO (—zVz)

We apply step resolution rules between 1 and 2, and 1 and 3. No more SRES
rules are applicable. Formula 12 is an eventuality clause, and therefore, we are looking
for a loop in —p (see [5] for the formulation of the loop searching procedure). The
desired loop, E [] EO_‘p<Lc(f)> (given that condition z; is satisfied) can be found
considering clauses 10 and 11. Thus, we apply the TRES 3 rule to resolve this loop
and clause 12, obtaining 16. Next we remove E )V from 16 deriving a purely classical
formula 17 (y is a new variable). Simplify the latter, apply temporising, obtaining, in
particular, 19 and 20, and then a series of SRES rules to newly generated clauses.

14. start =y 1,2, SRES

15. start = x; 1,3, SRES

16.  y= A(—-z; Wp) 10,11,12 TRES 3
17. y=>pV -z Av 16, AW Removal
18. v=AO(pV-zAv) 16, AW Removal
19. start = -y Vp V iz 17, SIMP, TEMP
20. true = AO(—yVpV —z) 17, SIMP, TEMP
21. start = p V —z; 14,19, SRES 1
22. start = p V —z 5,21, SRES 1

23. start = —z 4,22, SRES 1

2. x1=A0((pV-z) 8,20, SRES 3

25. x1=A0(pV—z) 7,24, SRES 3

26. x1=A0-z 6,25, SRES 3

Now, as no more SRES rules are applicable, we find another eventuality, formula
13, and thus we next look for a loop in —z. This loop can be found considering
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formulae 9 and 26: A O A[C]—z given that condition x; is satisfied. Thus, we can apply
TRES 2 to resolve this loop and 13 deriving 27. Then we remove E WV from the latter
(on step 28, where w is a new variable, we use only one of its conclusions). Applying
simplification and temporising to 28 we obtain 29. The desired terminating clause
start = false is deduced by applying SRES 1 to steps 1, 15 and 23.

28. x=zV-ux  Aw 27 EVW Removal
29. start = -V z V 28 SIMP, TEMP
30. start = false 1,15,23 SRES 1

9. Conclusions and future work

We have described the extension of the clausal resolution method to the useful
branching-time logic ECTL". Here we have followed our general idea to expand the
applicability of the clausal resolution technique originally developed for linear-time
temporal logic [13], and further extended to branching-time temporal logics CTL and
ECTL [2, 3, 6]. This extension enables us to invoke a variety of well-developed meth-
ods and refinements used in the resolution framework for classical logic (see, for
example, [1]). The algorithm to search for loops needed for temporal resolution has
been introduced in [5]. With the proof that SNF¢rp can be served as the normal form
for ECTL™, the algorithm becomes fully functional for the latter. Another contribution
of this paper is providing the complexity analysis of the transformation of ECTL™
formulae into SNFcr, namely, we have now shown that the complexity of the trans-
formation procedure is polynomial in the length of the original ECTL" formula. Our
results have brought us one step closer to the final stage of our long-term project — to
define a clausal resolution method for CTL". Among other obvious tasks are to refine
the presented method and to analyse the complexity of the resolution method in whole
which would enable the development of the corresponding prototype systems.
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