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It is well known that the complexity of testing the correctness of an arbitrary update to a

database view can be far greater than the complexity of testing a corresponding update to the

main schema. However, views are generally managed according to some protocol which

limits the admissible updates to a subset of all possible changes. The question thus arises as

to whether there is a more tractable relationship between these two complexities in the

presence of such a protocol. In this paper, this question is addressed for closed update

strategies, which are based upon the constant-complement approach of Bancilhon and

Spyratos. The approach is to address a more general question Y that of characterizing the

complexity of axiomatization of views, relative to the complexity of axiomatization of the

main schema. For schemata constrained by denial or consistency constraints, that is,

statements which rule out certain situations, such as the equality-generating dependencies

(EGDs) or, more specifically, the functional dependencies (FDs) of the relational model, a

broad and comprehensive result is obtained in a very general framework which is not tied to

the relational model in any way. It states that every such schema is governed by an

equivalent set of constraints which embed into the component views, and which are no more

complex than the original set. For schemata constrained by generating dependencies, of

which tuple-generating dependencies (TGDs) in general and, more specifically, both join

dependencies (JDs) and inclusion dependencies (INDs) are examples within the relational

model, a similar result is obtained, but only within a context known as meet-uniform

decompositions, which fails to recapture some important situations. To address the all-

important case of relational schemata constrained by both FDs and INDs, a hybrid approach

is also developed, in which the general theory regarding denial constraints is blended with a

focused analysis of a special but very practical subset of the INDs known as fanout-free
unary inclusion dependencies (fanout-free UINDs), to obtain results parallel to the above-

mentioned cases: every such schema is governed by an equivalent set of constraints which

embed into the component views, and which are no more complex than the original set. In

all cases, the question of view update complexity is then answered via a corollary to this

main result.
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1. Introduction

In a seminal work [3], Bancilhon and Spyratos showed how well-behaved update

strategies for database views can be modelled in a very general framework using the

so-called constant complement strategy. Despite the classical nature of this work, it

has seen significant recent application; for example, in [13], these ideas are applied to

problems in the synchronization of tree-structured data.

The theory of constant-complement update strategies has also been advanced in

recent years. In [19] and [20], it is shown that by augmenting this basic framework

with natural order structure, true uniqueness for so-called order-based updates may be

obtained, in the sense that there is but one way to represent an update to the view in

terms of an update to the main schema, regardless of the choice of complement.

In addition to the questions of which updates to a view to allow, and how to reflect

those updates back to the main schema, the question of tractability is also of

fundamental importance. Specifically, it is important to know how difficult it is to

determine whether a proposed view update is admissible under the constraints inherited

from the main schema. Issues surrounding this complexity question are the focus of

study in this paper.

Example 1.1 (A simple view with complex constraints). The complexity of the

constraints which govern a view can be much greater than those of the schema over

which the view is taken, as the following simple example illustrates. Let E1 be the

single-relation schema with relation name R½ABCD� on four attributes, constrained by

the set F 1 ¼ fA! D;B! D;CD! Ag of functional dependencies (FDs). For a

relation M not to satisfy the constraints of F 1, it must fail to satisfy at least one of the

FDs, and this may be determined by identifying a specific pair of tuples in M for

which that FD fails. In other words, to check whether M satisfies the constraints of F 1,

it suffices to test each pair of tuples in M. Thus, such testing has complexity bound

Oðn2Þ for (worst-case) time, with n the size of the relation.1

Now consider the simple projection view �ABC on E1, which maps any relation

M on R½ABCD� to its projection �ABCðMÞ on R½ABC�. As shown in Appendix A, this

view is not finitely axiomatizable. More precisely, for any odd positive integer k, there

is a ternary relation Mk, containing exactly k tuples, with the property that there is

no relation N on R½ABCD� which satisfies the dependencies in F 1 and for which

�ABCðNÞ ¼ Mk, yet for every proper subset M0
====
� Mk, there is a relation N0 on R½ABCD�

which satisfies the dependencies in F 1 and for which �ABCðN0Þ ¼ M0. In other words,

it is not possible to test, in time OðnkÞ for any finite k, whether a given ternary relation

1 It is of course possible to do better in certain cases via the use of appropriate data structures. Indeed,

upon using the number of disk accesses as the measure of complexity, key constraints may be checked

in constant time [28]. However, the focus of this paper is a general theory based only upon the size of

databases; the nuances of such special cases will not be considered.
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M is of the form �ABCðNÞ for some relation N on R½ABCD� which satisfies the

constraints of F 1.

While this example shows that checking the legality of a candidate state of a

view is not a universally easy one, it does not establish that it is universally difficult

either. Testing an arbitrary proposed update to a view for correctness is far more

general a task than is testing a proposed update under a disciplined update strategy. A

simple example, based upon example 1.1, makes this clear.

Example 1.2 (The complexity of view update). Let E2 be the relational schema with

the five-attribute relation S½ABCDE�, constrained by F 2 ¼ F 1 [ fA! Eg. Thepairof

projections f�ABCD;�ABCEg, with the obvious semantics, forms a lossless de-

composition, since the FD A! E implies ABC! E, which implies the join de-

pendencyffl ½ABCE;ABCD� [26, Thm. 3.7]. Thus, �ABCD is a complement of �ABCE in

the classical sense of [3]. The decomposition into these two views is furthermore

dependency preserving, since F 1 embeds in �ABCD, while fA! Eg embeds in �ABCE.

Now consider updating the view �ABCE while holding �ABCD constant. All constraints

in F 1 will be satisfied after the update, since these constraints embed in �ABCD. Thus,

to guarantee that a the new relation M on S½ABCE� is legal, it suffices to check that it

satisfies the single constraint A! E. This observation is critical because �ABCE is not

finitely axiomatizable, for the same reason that E1 of example 1.1 is not. The

knowledge that the complement is held constant while performing updates is critical in

keeping the complexity within bounds.

The above example notwithstanding, it is reasonable to ask why it is desirable to

characterize the constraints within the views themselves. It is quite possible simply to

take a proposed update to the view, reflect is back into the main schema using the

constant-complement strategy, and accept it iff the resulting state of the main schema

satisfies all of the constraints. The complexity of testing an update in this fashion de-

pends only upon properties of the constraints on the main schema, and not upon those of

the views. For example, if the main schema is constrained by FDs (as is E2 in example

1.2), then the complexity of testing admissibility of a view update is Oðn2Þ, with n the

number of tuples in the main schema. (Note that a join must be computed to check

update correctness in this way, but the time complexity to construct it is also Oðn2Þ.)
The goal of the work reported here, as well as that of the preceding work [15, 19,

20], is to investigate view update strategies which are closed. Roughly speaking, this

means that updating a view should be no different than updating a main schema. The

constraints on the view, as well as the updates which are allowed, must be understand-

able within the context of the view alone. In particular, it must not be necessary to consult

the complementary view (or, equivalently, the main schema) to determine whether a

view update is admissible. Clearly, the strategy of reflecting the view update back to the

main schema, and performing the test for correctness there, is not closed.
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While not all situations involving view updates demand closed strategies, it is

certainly reasonable to expect that many will. The ideas surrounding this topic, with

many illustrating examples, are developed in detail in [20, Section 1], There it is

argued that closed update strategies have further desirable properties; more precisely,

they are precisely those which are free of update anomalies.

A pair of views which supports a closed update strategy is called a meet
complementary pair. In this case, there is a view which is common to these two, called

the meet, and it is necessary and sufficient to hold this meet constant to ensure that

updates respect the constant-complement strategy. The details are rather technical;

they are developed in great detail in [20, Section 2], and summarized in 2.1 of this

paper. It is, however, possible to give a rather simple characterization within a

common relational context. Specifically, if R½U� is a relational schema constrained

by a set of full dependencies, and W1;W2 � U, then f�W1
;�W2

g, the pair of views

defined by the projections of R½U� onto these attributes, forms a meet-complementary

pair iff the associated decomposition is both lossless and dependency preserving, in

the classical sense [20, 2.17]. Furthermore, the meet in this case is just �W1\W2
, the

projection onto the common column of the two views. An example will help illustrate.

Example 1.3 (Closed and non-closed update strategies). Continue with the example

E2 of example 1.2. The set f�ABCD;�ABCEg forms a meet complementary pair, since

the decomposition is both lossless and dependency preserving. The meet of these

views is �ABCD\ABCE ¼ �ABC. The theory of closed updates ensures that to check

whether an update to �ABCE under constant complement �ABCD satisfies the

constraints, it suffices to check whether it holds �ABC constant (in addition to

verifying that it satisfies the local view constraints Y in this case fA! Eg). Note that

�ABC may be regarded as a view of S½ABCE�; thus, whether the update is admissible

does depends only upon the state of S½ABCE�, and not upon the specific state of

S½ABCD�. In other words, the test for admissibility of an update to �ABCE may be

checked entirely within that view, provided that it is known that the current state of

�ABCD is legal.

Now, let E3 have the same five-attribute relation S½ABCDE�, but with the

additional constraint D! E. That is, the constraint set is F 3 ¼ F 2 [ fD! Eg. This

decomposition is not dependency preserving (although it is lossless), since D! E
cannot be embedded in either view. Furthermore, the associated update strategy on

�ABCE with constant complement �ABCD is not closed. Indeed, let M1 ¼ fða1; b1; c1;
d1; e1Þ; ða2; b2; c2; d2; e1Þg, and let M2 ¼ fða1; b1; c1; d1; e1Þ; ða2; b2; c2; d1; e1Þg, Clear-

ly, each is a legal state of E3. In each case, the associated state of �ABCE is N ¼
fða1; b1; c1; e1Þ; ða2; b2; c2; e1Þg. Consider the update to N which changes ða1; b1;
c1; e1Þ to ða1; b1; c1; e2Þ. This update is legal if the state of E3 is M1, but not if it is M2.

Thus, the admissibility of this proposed update depends upon not only the state of

�ABCE, but also on the state of the complement �ABCD. Hence, the associated strategy

is not closed.
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The theory developed in this paper includes the decomposition of E2 into �ABCD

and �ABCE, but excludes the same decomposition of E3.

These examples illustrate that the question of the complexity of checking the

correctness of candidate view updates with respect to a closed update strategy may

be answered by studying a more general problem Y that of determining the com-

plexity of the constraints in an embedded cover (into the views of the decom-

position) for the constraints of the main schema. It is primarily this latter question

which forms the topic of investigation in this paper. From these examples, it might

appear that the answer to this question is a rather trivial one, since the constraints

which embed into the views are precisely those which are specified on the main

schema. However, this presupposes that the constraints on the main schema are

already expressed in a fashion which allows them to be embedded into the views.

With FDs, this is not a problem, since it is easy to determine when an FD embeds

into a projection (although in general it is necessary to determine whether some

cover of the FDs embed [26, Def. 3.7]), but with more general families of con-

straints, particularly those which generate new elements, the representation of the

constraints on the main schema as an equivalent family of constraints which embed

in the views is far from trivial. Furthermore, there is no guarantee that this re-

representation of full constraints as embedded ones can be achieved with no change of

complexity.

The main results of this paper are along two dimensions. For schemata con-

strained by rules which check consistency (e.g., the equality generating dependencies

(EGDs) [26, Section 3.6] of the classical relational theory), a result is established, in a

very general set-based context, independently of any particular data model, which

states that there is an embedded cover of those constraints into the views which is no

more complex than the original constraints. On the other hand, for situations in which

rules which generate new elements are allowed, (e.g., the tuple-generating dependen-

cies (TGDs) of the classical relational theory, including the implicational dependen-

cies and inclusion dependencies of the classical relational theory [26, Section 3.6]), the

general results are somewhat more limited. It does not appear that the techniques for

the consistency-checking rules can be extended in a way that includes the behavior of

such dependencies within a broad range of applications.

To remedy this limitation, at least partly, an investigation of decompositions of

multi-relational schemata constrained by EGDs together with fanout-free unary

inclusion dependencies (UINDs) is also conducted. The approach combines the

general results for constraint-checking dependencies with a detailed investigation of

how such UINDs decompose. The result is a positive one Y both the EGDs and the

UINDs have embedded covers within the views with no increase in complexity. It is

also a potentially practical one, since UINDs are adequate to model referential

integrity constraints, or foreign-key dependencies, which are commonly employed in

real-world database systems. While these results, which are found in Section 6, are

formally based upon the the framework presented earlier, the reader may nonetheless
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wish to look through this section to obtain an idea of the power of this approach within

the relational setting.

The organization of this paper is as follows. Section 2 provides a concise over-

view of the key ideas of the constant-complement update strategy, including in par-

ticular recent work on uniqueness within order-based frameworks. In Section 3, the

principles of PF-schemata and PF-views, the abstraction of these database concepts

used in this paper, is elaborated and related to those used in earlier papers. In Section

4, the key ideas of the decomposition results of the earlier paper [20] are translated to

this framework, and specialized notions essential to the measure of complexity are

developed. In Section 5, the general decomposition results, including in particular the

embedding theorems for consistency-checking constraints, are established. Section 6

contains the detailed investigation within the context of multi-relational schemata

constrained by both EGDs and UINDs. Section 7 offers some further directions and

comparisons to the literature. Finally, Appendix A provides the details surrounding the

axiomatizability issues of the example scheme E1 of example 1.1.

To close this section, some basic information on posets and relational notation

which will be used throughout the paper is presented.

Discussion 1.4 (Posets, isomorphisms, and basic relational notation). A partially

ordered set (poset) is a pair P¼ðP;rÞ in which P is a set and r is a partial order on P.

For Pi¼ðPi;rÞ posets for i ¼ 1 and i ¼ 2, a morphism f : P1 ! P2 is a function

f : P1 ! P2 with the property that for all x; y 2 P, x r y implies f ðxÞ r f ðyÞ. For any

(not necessarily finite) set X, the poset PPP f ðXÞ ¼ ðP f ðXÞ;�Þ consists of all finite

subsets of X, ordered by set inclusion. For additional background on posets, the reader

is referred to [9].

As a general principle, following the standard mathematical convention [2, 3.8],

in all contexts an isomorphism will be taken to be a morphism which has both an left

and a right inverse. Thus, if f : X ! Y is an morphism in some context C, it is an

isomorphism iff there is a morphism g : X1 ! X2 with the properties that g � f ¼ 1X1

and f � g ¼ 1X2
, with 1Xi

the identity morphism on Xi. In the context of sets and

functions, an isomorphism is a bijection, while in the context of posets, it is a bijection

which both preserves and reflects order; i.e., f is a poset isomorphism iff it is a

bijection with the additional property that, for all x; y 2 P, f ðxÞ r f ðyÞ iff x r y.

Frequently, examples will be based upon the classical relational model, and the

terminology and notation which has become standard over the past 30 years will be

used without additional clarification. For any questions, the reader is referred to [26] or

[1]. For this paper, it suffices to remark that given a universal relational schema R½U�
on attribute set U, and a subset W � U, �W will be used to denote the projective view

of R½U� onto the attributes in W, while �W : R½U� ! R½W� will be used to denote the

database mapping underlying this view. The notation DomðAÞ will be used to denote

the domain of A; i.e., the set of values associated with the attribute A 2 U.

Finally, the notation CardðAÞ will be used to denote the cardinality of the

set A.
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2. An overview of previous work

While the results presented in this article do not deal with update strategies

explicitly, they do address complexity issues which are cast within a context in which

view updates are modelled and analyzed. Therefore, it is helpful to understand the

underlying constant-complement update strategy. To provide the reader with this

essential background, this section contains two summaries. Summary 2.1 recaps the

necessary aspects of closed update strategies within the relevant set-based framework.

It provides ideas which originated with the work of Bancilhon and Spyratos of [3],

although it is recast within the formalism of [19, 20]. Summary 2.2 sketches the key

ideas developed in [19, 20] which are necessary to extend the set-based ideas to the

order-based context. These summaries include only the notions which are essential to

the understanding of the current paper; the reader is referred to the aforementioned

references for details and further clarification. Since [20] is an expanded and corrected

version of [19], for the most part, only references to [20] will be given, even in the

case that both papers contain the relevant material.

Summary 2.1 (The classical results in the set-based framework). In the original work

of Bancilhon and Spyratos [3], a database schema D is just a set. To maintain

consistency with the more structured frameworks to be introduced shortly, this set will

be denoted LDBðDÞ and called the legal databases of D. Thus, a database schema is

modelled by its instances alone; constraints, schema structure, and the like are not

represented explicitly. A morphism f : D1 ! D2 of database schemata is a function

f : LDBðD1Þ ! LDBðD2Þ. A view of the schema D is a pair � ¼ ðV; �Þ in which V is a

schema and � : D! V is a surjective database morphism. A morphism f : �1 ! �2 of

views �1 ¼ ðV1; �1Þ and �2 ¼ ðV2; �2Þ is a morphism f : V1 ! V2 of schemata such

that the diagram of figure 1 commutes. The congruence of � is the equivalence

relation on LDBðDÞ defined by ðM1;M2Þ 2 Congrð�Þ iff �ðM1Þ ¼ �ðM2Þ. It is easy to

see that the views �1 ¼ ðV1; �1Þ and �2 ¼ ðV2; �2Þ of D are isomorphic iff

Congrð�1Þ ¼ Congrð�2Þ.
A pair f�1 ¼ ðV1; �1Þ;�2 ¼ ðV2; �2Þg of views of the schema D is called a

subdirect complementary pair if it defines a lossless decomposition of D. More pre-

cisely, the product �1 � �2 ¼ ðV1�1
��2

V2; �1 � �2Þ has LDBðV1�1
��2

V2Þ ¼ fð�1ðMÞ;
�2ðMÞÞ j M 2 LDBðDÞg. The decomposition morphism �1 � �2 : D! V1�1

��2
V2 is

given on elements by M 7! ð�1ðMÞ; �2ðMÞÞ. The set f�1;�2g of views forms a

Figure 1. View morphism.
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subdirect complementary pair, and �1 and �2 are called subdirect complements of one

another, just in case �1 � �2 is a bijection. In other words, f�1;�2g is a subdirect

complementary pair precisely in the case that the state of the schema D is recoverable

from the combined states of V1 and V2.

To define an update strategy on a view, the way in which such updates are

reflected back to the main schema must be specified. In a constant complement
update strategy, as first presented in [3], a (subdirect) complement is held constant.

Thus, to update �1 from N1 to N2 in the above context, the state of the schema V2

of the complement �2 is held fixed. Since the decomposition morphism is injective,

it is easy to see that there can be only one way to translate an update in such a

context.

A fundamental condition in the study of view updates, as reported in [19, 20],

and [21], is that the update strategies should be closed. The formal definition of an

update strategy, and the list of conditions which render it closed, are quite technical

and are not needed to understand the work reported here. The reader is therefore

referred to [20, 3.1] for the complete, formal specification. For this work, it suffices to

understand the basic idea that a closed update strategy has the property that whether or

not a given update is allowed does not depend upon the particular state of the

complement. Thus, if a given update from N1 2 LDBðV1Þ to N01 2 LDBðV1Þ is allowed

for some state N2 2 LDBðV2Þ of the complement, then it must be allowed for all states

N02 2 LDBðV2Þ with the property that ðN1;N
0
2Þ 2 LDBðV1�1

��2
V2Þ.

Although every closed update strategy is definable via constant complement, not

every subdirect complement of a view �1 gives rise to closed update strategy. The

property that a constant-complement update strategy be closed was termed �2-

translatability in [3, Def. 5.1]. However, it was not characterized explicitly until [15,

2.10], in which it was shown that �2-translatability is characterized precisely by the

property that the congruences of the views commute. Formally, the set f�1;�2g of

views of D is called a fully commuting pair if Congrð�1Þ � Congrð�2Þ ¼ Congrð�2Þ �
Congrð�1Þ, with F�_ denoting ordinary composition of binary relations; i.e.,

ðM1;M2Þ 2 Congrð�1Þ � Congrð�2Þ iff there is an M3 2 LDBðDÞ such that ðM1;M3Þ 2
Congrð�1Þ and ðM3;M2Þ 2 Congrð�2Þ. A subdirect complementary pair f�1;�2g
which is fully commuting is called a meet-complementary pair, and �1 and �2 are

called meet complements of one another. In this case, Congrð�1Þ � Congrð�2Þ is also

an equivalence relation on LDBðDÞ, and so it is possible to define (up to isomor-

phism) the view �1 ^ �2 ¼ ðV1�1
^�2

V2; �1 ^ �2Þ with Congrð�1 ^ �2Þ ¼ Congrð�1Þ �
Congrð�2Þ, called the meet of f�1;�2g. It is, in effect, a well-behaved greatest lower

bound of f�1;�2g. The situation is summed up in figure 2. Note that V1�1
^�2

V2 is (the

schema of) a view not only of D, but of V1 and V2 as well. The mappings �h�i;�1 ^
�2i : Vi ! V1�1

^�2
V2 for i ¼ 1; 2 are the morphisms of the associate relative views

(see [20, 2.8]; or definition 3.12 for a development within the special context of this

paper). In the context of updates, if f�1;�2g forms a meet-complementary pair, then

an update to the schema of �1 is allowed with constant complement �2 iff that update

keeps the state of the meet schema V1�1
^�2

V2 constant. Since the meet schema may be
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regarded as a view of �1, knowledge of the precise state of the view of �2 is not

necessary.

For a concrete example, identify D with the schema E2 of Examples 1.2 and 3,

identify �1 with �ABCE, and identify �2 with �ABCD. Then, as sketched in example 1.2,

V1�1
^�2

V2 ¼ �ABC. The mapping �h�ABCE;�ABCi is the projection �ABC : S½ABCE� !
S½ABC�. Similarly, �h�ABCD;�ABCi is the projection �ABCS½ABCD� ! S½ABC�. On the

other hand, �1 ^ �2 is the projection �ABC : S½ABCDE� ! S½ABC�. More generally, in

the context of relational schemata and views defined by projection, a pair of views

forms a meet-complementary pair iff the decomposition is both lossless and

dependency preserving [20, 2.17]. In this case, the meet view is just the projection

on the common columns. To obtain an example in which the views form a subdirect

complementary pair but not a meet complementary pair, it suffices to consider an

example which is lossless but not dependency preserving, as sketched in 1.3.

In [17], the connection between decompositions of database schemata and

commuting congruences is investigated thoroughly.

Summary 2.2 (The order-based framework). Despite its simplicity and elegance, the

set-based framework for closed update strategies has a substantial shortcoming;

namely, the update strategy depends upon the choice of the complement. For example,

let F0 be the relational schema with the single relation R½ABC�, constrained by the

single FD B! C, and let �AB be the view defined by the projection mapping �AB.

Define �BC similarly. Since the pair f�AB;�BCg forms a lossless and dependency-

preserving decomposition of F0, it also forms a meet-complementary pair [20, 2.17].

Indeed, �BC is the Fnatural_ complement of �AB, and the one which yields the

Fobvious_ strategy for reflecting updates to �AB back to F0. However, as shown in [20,

1.3], it is possible to find other complements of �AB which have exactly the same

meet, and so support exactly the same updates to �AB. Although these alternate

complements are a bit pathological, the set-based theory outlined above in Summary

2.1 does not prefer �BC to them in any way.

To formalize this preference, additional structure must be incorporated into the

model. Most database models incorporate some sort of order structure. In the relational

Figure 2. Relative views.
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model, the databases may be ordered via relation-by-relation inclusion. Furthermore,

the common database mappings built from projection, selection, and join are all order

preserving with respect to this natural order structure. In particular, while the views

�AB and �BC are order mappings, the alternate views identified in [20, 2.17] are not.

The theory developed in [20] provides a systematic extension to the results

outlined in Summary 2.1 above to the order-based setting. An order schema D is taken

to be a poset ðLDBðDÞ;rDÞ. An order database mapping f : D1 ! D2 is an order-

preserving function; i.e., M1 rD1 M2 implies f ðM1Þ rD2 f ðM2Þ. An order view � ¼
ðV; �Þ of D consists of an order schema V and an open surjection � : LDBðDÞ !
LDBðVÞ; that is, a surjection which is order preserving and, in addition, which satisfies

the property that whenever N1 rV N2, there are M1;M2 2 LDBðDÞ with the properties

that M1 rD M2, f ðM1Þ ¼ N1, and f ðM2Þ ¼ N2. For the pair of order views f�1;�2g to

form a subdirect complementary pair in the order sense, the mapping �1 � �2 : D!
V1�1
��2

V2 must be an order isomorphism (i.e., an order database mapping which is an

isomorphism), and not merely an order-preserving bijection. To obtain a closed update

strategy in the oder-bases sense, the formal conditions which apply in the set-based

framework must be augmented with special conditions which guarantee that the

update strategy respects the order structure [20, 3.1]. Modulo these modifications, it is

fair to say, at least in a general way, that [20] extends the classical set-based constant

complement theory to the order-based setting. As a rich source of classical but

important examples, all SPJR-mappings (Select, Project, Join, Rename) in the classical

relational setting define order views [20, 2.5]. The results of the current paper are cast

within a more restrictive order-based context in which selection and projection, but not

join, define views.

In [18], a theory of direct decomposition (i.e., situations in which the views are

independent and so the meet is trivial) of order-based schemata is presented.

3. PF-schemata and PF-views

The database schemata with order of [20] and summarized in Summary 2.2

model only those databases which satisfy the constraints of the schema; those which

fail to satisfy those constraints are simply not part of the formalism. In order to model

the complexity of constraint checking, it is necessary to employ a formalism which

includes all databases, including those which fail to satisfy those constraints.

Furthermore, to have a basis for measuring the complexity, the extended formalism

must provide some notion of size of a database.

In this section, the foundations of such a framework are presented. Although it

has much in common with the earlier work [21], it differs in a very fundamental way.

Specifically, in [21], the starting point was the so-called semantic schemata Y those

which include only the databases which satisfy the constraints of the schema. From the

semantic schemata the more general syntactic schemata Y those which embody all
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databases, regardless of whether or not they satisfy the constraints Y were constructed,

using a sort of Fcompletion_ operation. While this approach is effective, it is also

somewhat limiting, in that it presupposes sufficient structure on the semantic schemata

and their morphisms to yield unique and well-defined completions. This requirement

is, unfortunately, not always met in practical examples. In the approach taken here, the

starting point is the syntactic schema, with the semantic properties imposed later. As

will be seen, this allows a more general class of constraints to be modelled, since

unique completions are no longer required.

Definition 3.1 (CFA-schemata and morphisms). In order to capture the complexity of

checking constraint satisfaction, the formal notion database schema must contain two

pieces of information which are not present in the general order-based schemata of

[20]. First of all, the order schema model of [20] contains only the legal databases; the

idea that there are also databases which do not satisfy the constraints is not represented.

Second, there is no measure of database size, without which there is no possibility of

measuring complexity. To address these issues, in [21] the notions of CFA-schema and

CFA-morphism were introduced. In the current paper, these notions have been

replaced by the more flexible PF-schema and PF-morphism, respectively. The purpose

of this subsection is to tie the FCFA_ notions to their newer FPF_ counterparts, and may

safely be skipped by the reader not interested in the evolution of these ideas.

In [21], the set of all databases, legal or not, was modelled by P f ðXÞ for some

(not necessarily finite) set X, while the legal databases were modelled by a special type

of sub-poset of P f ðXÞ, called a CFA-poset. Clearly, choosing the databases to be finite

sets gives a simple measure of size Y the cardinality of the set. Furthermore, taking the

legal databases to be a subset of the set of all databases is completely natural and

obvious. In the context of the classical relational model, think of X as the set of all

possible tuples of the relation(s).

Formally, a CFA-poset over X is a sub-poset of P f ðXÞ which contains all

singleton sets, as well as the empty set. This choice was made for the model of a data-

base schema because it facilitated the definition of database morphisms within this

context. Specifically, if P ¼ ðP;�Þ is a CFA-poset, define AtomsðPÞ ¼ ffxg j x 2S
Pg, ExtAtomsðPÞ ¼ AtomsðPÞ

S
f;g, and FoundationðPÞ ¼ [ AtomsðPÞ. For any

M 2 P, the basis of M is BasisPðMÞ ¼ ffxg j x 2 Mg. A CFA-schema is just a CFA-

poset. CFA-morphisms were then modelled as basis-preserving mappings; that is, if

P ¼ ðP;�Þ and Q ¼ ðQ;�Þ are CFA-posets, then a CFA-morphism is a function f :
P! Q with the property that, for all M 2 P; f f ðaÞja 2 BasisPðMÞg n f;g ¼
BasisQðf ðMÞÞ.2 In other words, a CFA-morphism is completely defined by its action

on singletons, and the image of each singleton must itself be a singleton or the empty

2 Unfortunately, the definition given in [21] is incorrect. The condition that f f ðaÞj a 2 BasisPðMÞgn
f;g ¼ BasisQ f ðMÞ, which is the one intended, is expressed incorrectly as

S
f f ðaÞ a 2 BasisPðMÞg ¼

BasisQð f ðMÞÞ.
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set. The advantage of this definition is that it embodies the syntactic morphism as well

as the syntactic one. More precisely, a morphism f : P! Q may be extended to �ff :
P f ðFoundationðPÞÞ ! P f ðFoundationðQÞÞ by defining �ff ðMÞ ¼

S
f f ðfxgÞ j x 2 Mg.

This �ff is the syntactic extension of f to all databases, legal or not. (As a concrete

example, think of f as specifying a projection on the legal relations of a universal

schema. �ff extends f to all relations, regardless of whether or not they satisfy the

constraints.)

Definition 3.2 (PF-schemata). In a CFA-schema, all singletons, as well as the empty

set, are legal databases. Translated to a universal relational schema, this means that the

empty relation and all relations containing just one tuple are legal. If all constraints are

typed and universal (e.g., equality generating dependencies and full implicational

dependencies), this condition is automatically satisfied. However, relational schemata

governed by dependencies involving existential quantification, such as embedded join

dependencies, inclusion dependencies, and even foreign-key dependencies, will not

have this property. Since the scope of the work here is to include specifically such

flavors of constraints, the model of CFA-schema must be augmented. The trick is to in-

clude two pieces of information with each schema. The first provides the equivalent of

the foundation of a CFA-schema, and the second gives the legal databases, taken as a

subset of the finite powerset over that foundation. While this may seem to be a bit

heavy handed, remember that this is a mathematical model, not a blueprint for

implementation. It is the most convenient means of recapturing all of the information

necessary.

(a) A PF-schema is an ordered pair D ¼ ðSynFndðDÞ; LDBðDÞÞ, in which SynFndðDÞ
is a nonempty set (not necessarily finite), with LDBðDÞ � P f ðSynFndðDÞÞ: ðThe

prefix PF- is derived from the notation P f ð�Þ:Þ The set SynFndðDÞ is called the

syntactic foundation of D, and LDBðDÞ is the set of legal databases of D.

Note that there is no requirement that each x 2 SynFndðDÞ occur in some M 2 LDBðDÞ,
much less that fxg 2 LDBðDÞ and ; 2 LDBðDÞ hold, so that the limitations of CFA-

posets do not apply. In the context of a classical one-relation schema, think of

SynFndðDÞ as the set of tuples which the relation may contain, and LDBðDÞ as the set

of relations over those tuples which satisfy the constraints of the schema.

For the rest of this subsection, assume that D is a PF-schema. There is not one

but three order relations associated with D.

(b) The poset of legal databases of D is just LDBPosetðDÞ ¼ ðLDBðDÞ;�Þ

Note that LDBPosetðDÞ is a database schema with order, in the sense of [20], although

it is not necessarily a CFA-schema in the sense of [21], since it need not contain all

singletons and the empty set. It is the syntactic foundation poset which contains the

representation of the latter.
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(c) The extended syntactic foundation of D is ExtSynFndðDÞ ¼ SynFndðDÞ [ f�Dg, in

which �D is a special symbol, called the null element of D, which does not occur in

SynFndðDÞ.

(d) The syntactic foundation poset of D is SFPosetðDÞ ¼ ðExtSynFndðDÞ; rSFðDÞÞ. The

ordering rSFðDÞ is defined to be that in which �D rSFðDÞ x for all x 2 SynFndðDÞ, but

is otherwise flat.

In other words, x rSFðDÞ y holds iff x ¼ �D or else x ¼ y. SFPosetðDÞ is trivially a

database schema with order. Think of �D as a special marker which represents the

empty set as a database. Its rôle will become apparent later, in Definition 3.4 for the

definition of a PF-morphism and in Proposition 3.9 for the modelling of an atomic

equivalence relation.

The third poset is the disjoint union of the first two. Its use is purely technical;

it makes it possible to consider a PF-schema as an order schema in the sense of

[20].

(e) Define ExtSynFndðDÞdLDBðDÞ to be the disjoint union of these two sets, and

define the order rdðDÞ on ExtSynFndðDÞdLDBðDÞ to be the (disjoint) union of � on

LDBðDÞ and rSFðDÞ on ExtSynFndðDÞ.

(f) Define the combined poset of D to be DJPosetðDÞ ¼ ðExtSynFndðDÞ d LDBðDÞ;
rdðDÞÞ:

DJPosetðDÞ ¼ ðExtSynFndðDÞ d LDBðDÞ; rdðDÞÞ is clearly a database schema with

order, in the sense of [20]. It is not necessarily a CFA-poset, although it embodies the

information necessary to extend LDBPosetðDÞ uniquely to a CFA-poset.

The syntactic schema of D, defined below, is constructed directly from the

extended syntactic foundation; its elements represent all databases, legal or not. Note

that this schema is itself a PF-schema, in the sense of (a) above, and all properties

associated with PF-schemata apply to it as well.

(g) For D¼ðSynFndðDÞ; LDBðDÞÞ, define D¼ðSynFndðDÞ; DBðDÞÞ to have DBðDÞ¼
P f ðSynFndðDÞÞ. D is called the syntactic schema over which D is taken.

To avoid confusion, when ; is considered as an element of LDBðDÞ or DBðDÞ, it will

sometimes be written as ?D and ?
D

, respectively.

Finally, for a database M, it is occasionally advantageous to be able to augment

M with the null element for D. This augmentation has no special semantics, but is

useful in establishing certain results in which the empty set behaves like an atom.

(h) For M 2 DBðDÞ, Define NullExtðMÞ ¼ M [ f�Dg.

Example 3.3 (PF-schema). Let E4 be the two-relation schema consisting of R1½ABC�
and R2½DEF�. Define F 4 ¼ fA! B;D! EFg, and assume that these constraints

hold on the schema. SynFndðE4Þ consists of all tuples over these relations; that is, it
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consists of all tuples on DomðAÞ � DomðBÞ � DomðCÞ, together with all tuples on

DomðDÞ� DomðEÞ � DomðFÞ. These tuples must somehow be tagged, so that it is

known to which relation they belong. In this example, domain elements will be

represented by (possibly subscripted) lower case letters which match the domain name;

so, for example, ða1; b1; c1Þ is associated with R1, while ðd1; e1; f1Þ is associated with

R2. Thus, the tagging is implicit in the naming convention.

The set SynFndðE4Þ is then just the set of all such tuples. The extended syntactic

foundation ExtSynFndðE4Þ adds one additional element, which would be called �E4
in

the notation of Definition 3.2. The ordering on the syntactic foundation poset

SFPosetðE4Þ has �E4
at the bottom, with all tuples otherwise incomparable.

The set DBðE4Þ is the finite powerset of SynFndðE4Þ; that is, the set of all finite

subsets of tuples, while LDBðE4Þ is the subset of DBðE4Þ consisting of sets which

satisfy the constraints in F 4. Note that in this formalism it is necessary to collect the

set of all tuples of a database instance into a single set, rather than the more common

practice of having a separate set of tuples for each relation. Since the tuples are tagged,

this amounts to an inessential syntactic variation which has no impact upon the

underlying theory.

Definition 3.4 (PF-morphisms). In the same manner that PF-schemata PF-schemata

generalize CFA-schemata, PF-morphisms generalize CFA-morphisms. In the PF-

context, it is no longer possible to stipulate the basis-preserving property directly on

the mappings between legal databases, because the basis itself may not be embedded

in those states. Rather, the starting point for a PF-morphism is a mapping between the

extended syntactic foundations, which replace the bases of the CFA-context. The

mapping between legal databases is then defined as an extension of the mapping

between the foundations.

To begin, it is necessary to formalize the notion of an elementary mapping, as

well as its extensions. For the remainder of this subsection, let D1 ¼ ðSynFndðD1Þ;
LDBðD1ÞÞ and D2 ¼ ðSynFndðD2Þ; LDBðD2ÞÞ be PF-schemata.

(a) An elementary mapping is a function e : ExtSynFndðD1Þ ! ExtSynFndðD2Þ with

the property that eð�D1
Þ ¼ �D2

.

(b) The full extension of the elementary mapping e is the function eþ : DBðD1Þ !
DBðD2Þ given on elements by M 7! feðxÞ j x 2g n f�D2

g:

A few remarks are appropriate at this point, regarding how null elements are involved

in the above definitions. In the definition of CFA-morphism in Definition 3.1, a basis

preserving morphism was required to map atoms to extended atoms; that is, each atom

was mapped either to another atom or else to the null set. However, the members of

SynFndðDiÞ are foundation elements, and not atoms (i.e., they are of the form t, not
ftg). Therefore, it is necessary to employ the special marker �Di

as a sort of surrogate

for ; ¼ fg with one set of brackets stripped away. More concretely, observe that

S. J. Hegner / Complexity of embedded axiomatization 51



e : t 7! �D2
means that eþ : ftg 7! ; ¼ ?D2

. Note also that the null elements are

always stripped away in the full extension, since that function deals with databases, of

which a null element is never a member.

It may also be remarked that an elementary mapping could have been defined to

be of the form e : SynFndðD1Þ ! ExtSynFndðD2Þ, since null elements are not needed

in the domain. However, this would have complicated the definition of morphism

composition somewhat. Including �D1
in the domain of e is harmless enough, since it

is always mapped to �D2
.

Next, the details of extending an elementary mapping to mappings between

databases are elaborated.

(c) The elementary mapping e is semantically stable if eþðLDBðD1ÞÞ � LDBðD2Þ; i.e.,

for each M 2 LDBðD1Þ; eþðMÞ 2 LDBðD2Þ.

(d) Formally, a PF-morphism f : D1 ! D2 is a triple ð f ]; f [; fd Þ in which

(i) f ] : ExtSynFndðD1Þ ! ExtSynFndðD2Þ is a semantically stable elementary

mapping;

(ii) f [ : LDBðD1Þ ! LDBðD2Þ with f [ðMÞ ¼ ð f ]ÞþðMÞ for all M 2 LDBðDÞ.

(iii) fd : ExtSynFndðD1ÞdLDBðD1Þ ! ExtSynFndðD2ÞdLDBðD2Þ given by fdðxÞ ¼
f ]ðxÞ if x 2 SynFndðD1Þ, and fdðxÞ ¼ f [ðxÞ if x 2 LDBðD1Þ.

This definition may seem to be needlessly complex, since f is completely determined

by f ], and fd is obtained by combining f ] and f [. However, a notation is needed for all

three components in any case, and including them explicitly in the definition causes no

harm, while making the definition of morphism composition more concrete.

Composition of morphisms is defined in the obvious way; that is, f � g is given

by the triple ðf ] � g]; f [ � g[; fd � gdÞ.
It is clear that all three of f ] : SFPosetðD1Þ ! SFPosetðD2Þ, f [ : LDBPosetðD1Þ !

LDBPosetðD2Þ, and fd : DJPosetðD1Þ ! DJPosetðD2Þ may be viewed as poset mor-

phisms. f d embodies the ideas of CFA-morphism, although it is not formally one

itself.

The notions of a surjective morphism and an open morphism must be defined

carefully here, since they focus on LDBðDÞ. The definition of isomorphism is standard

[2, 3.8].

(e) The PF-morphism f will be called surjective precisely in the case that both f ] :
ExtSynFndðD1Þ ! ExtSynFndðD2Þ and f [ : LDBðD1Þ ! LDBðD2Þ are surjective.

(Note that this is not equivalent to the surjectivity of f ] alone.)

(f) The PF-morphism f is open if for any N1;N2 2 LDBðD2Þ with N1 � N2, there are

M1;M2 2 LDBðD1Þ with M1 � M2 and f [ðM1Þ ¼ N1, f [ðM2Þ ¼ N2.
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(g) The PF-morphism f is a PF-isomorphism if there is a morphism g : D2 ! D1 with

the property that g � f is the identity on D1 and f � g is the identity on D2.

Finally, it is useful to have a special notation for the PF-morphism between the

syntactic schemata derived from D1 and D2.

(h) Define the PF-morphism �ff : D1 ! D2 as ð �ff ]; �ff [; �ff dÞ, with �ff ] ¼ �ff , �ff [ ¼ f ]
þ
, and

�ff d given by �ff dðxÞ ¼ f ]ðxÞ if x 2 SynFndðD1Þ, and �ff dðxÞ ¼ �ff [ðxÞ if x 2 DBðD1Þ.

Example 3.5 (PF-morphisms). The example builds upon the context introduced in

example 3.3. Let W1AB
be the schema whose sole relation is R3½AB�, constrained by the

FD A! B. Define the elementary mapping h4 : ExtSynFndðE4Þ ! ExtSynFndðW1AB
Þ

by ða; b; cÞ 7! ða; bÞ if ða; b; cÞ 2 DomðAÞ � DomðBÞ � DomðCÞ, ðd; e; f Þ 7! �W1AB
if

ðd; e; f Þ 2 DomðDÞ� DomðEÞ � DomðFÞ, and �E4
7! �W1AB

.

The full extension h4
þ : DBðE4Þ ! DBðW1AB

Þ is the morphism which projects

each tuple of the instance of R1½ABC� onto its AB projection, and ignores all tuples in

the instance of R2½DEF�, while h4
[ : LDBðE4Þ ! LDBðW1AB

Þ exhibits the same behavior

on the instances satisfying F 4. Thus, if M ¼ fða1; b1; c1Þ; a2; b2; c2Þ; ðd1; e1; f1Þ;
ðd2; e2; f2Þg, then !1AB

ðMÞ ¼ fða1; b1Þ; ða2; b2Þg. The morphism h4 is clearly seman-

tically stable; however, if the constraint A! B were dropped on E4, with that same

constraint retained on R3½AB�, then semantic stability would no longer hold.

It is important to note in particular the need for the null elements �W1AB
. Without

it, it would not be possible to specify the behavior of !1AB
on an element-by-element

basis, since it would then be impossible to specify the image of tuples in the instance

of R2½DEF�.

Discussion 3.6 (The limitations of PF-morphisms). In a PF-morphism, the mapping is

defined element by element. Thus, in the context of the classical relational model, a

PF-morphism can represent operations such as projection, selection, and renaming.

However, join cannot be so represented, since the join operation involves the

combination of two tuples. This may seem to be a rather severe limitation, but it is

necessary to obtain the results developed in this work. Element-by-element operators,

such as projection and restriction, do not generate any constraints themselves; rather,

they simply pass along information about the constraints which already exist. On the

other hand, an operation such as join imposes a constraint (a join dependency) itself on

the image, a constraint which may not exist on the domain. Thus, a situation in which

a single element in the view schema is constructed from several elements in the main

schema complicates matters enormously. The view mapping may itself impose

constraints, so that constraints now come from two sources, the other being the

implied constraints from the main schema. It seems most prudent here to begin with

PF-morphisms, and to look for extensions only after the theory for these element-by-

element mappings is understood better.
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Definition 3.7. (PF-views). The abstract definition of a PF-view parallels closely that

of an order view [20, 2.3] and a CFA-view [21, 3.2]. Specifically, let ðSynFndðDÞ;
LDBðDÞÞ be a PF-schema.

(a) A PF-view of D is a pair � ¼ ðV; �Þ in which V ¼ ðSynFndðVÞ; LDBðVÞÞ is a PF-

schema and � : D! V is an open surjective PF-morphism.

Note that open and surjective have the meanings assigned in Definition 3.4(e)Y(f)

above. Furthermore, it is easy to see that �1 ¼ ðV1; �1Þ and �2 ¼ ðV2; �2Þ of D are

isomorphic if there is a PF-isomorphism f : V1 ! V2 with the property that f � �1 ¼
�2. Indeed, if f is a PF-isomorphism, then f �1 � �2 ¼ f �1 � ð f � �1Þ ¼ ð f �1 � f Þ � �1 ¼
�1.

In the context of updates, it is important to have available the associated

syntactic view, which is defined as follows.

(b) The extension of � to D is �¼ðV; �Þ.

It is straightforward to verify that � is a PF-view of D.

Discussion 3.8 (Congruences on a PF-schema). The definition of closed update

strategy is made within the context of meet-complementary views, and the definition

of the latter is based centrally upon the congruences of those views. It is therefore

critical to classify these congruences and identify their rôles in the construction of

complementary and meet-complementary views. Just as a morphism has three

functional components, so too does a view have three congruences. In addition, the

congruence of the syntactic extension �ff is also identified explicitly, since it is used in

subsequent proofs.

Let D1 ¼ ðSynFndðD1Þ; LDBðD1ÞÞ and D2 ¼ ðSynFndðD2Þ; LDBðD2ÞÞ be PF-

schemata, and let f : D1 ! D2 be a PF-morphism.

(a) The elementary congruence on D1 induced by f is the relation EltCongrð f Þ on

ExtSynFndðD1Þ given by ðx; yÞ 2 EltCongrð f Þ iff f ]ðxÞ ¼ f ]ðyÞ.

(b) The full syntactic congruence on D1 induced by f is the relation SynCongrð f Þ on

DBðDÞ given by ðM1;M2Þ 2 SynCongrð f Þ iff �ff [ðM1Þ ¼ �ff [ðM2Þ.

(c) The full semantic congruence on D1 induced by f is the relation SemCongrð f Þ on

LDBðDÞ given by ðM1;M2Þ 2 SemCongrð f Þ iff f [ðM1Þ ¼ f [ðM2Þ.

(d) The full congruence on D1 induced by f is the relation Congrð f Þ on ExtSynFndðD1Þ
dLDBðD1Þ given by ðP1;P2Þ 2 Congrð f Þ iff fdðP1Þ ¼ fdðP2Þ.

These four congruences have natural counterparts on views. Let � ¼ ðV; �Þ be an PF-

view of D.

(e) The elementary congruence of �, denoted EltCongrð�Þ, is just EltCongrð�Þ.
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(f) The syntactic congruence of �, denoted SynCongrð�Þ, is just SynCongrð�Þ.

(g) The semantic congruence of �, denoted SemCongrð�Þ, is just SemCongrð�Þ.

(h) The full congruence of �, denoted Congrð�Þ, is just Congrð�Þ.

The congruences SynCongrð f Þ and SemCongrð f Þ have a special structure. Since

they are defined in terms of EltCongrð f Þ, two sets are equivalent if and only if each

element in one is equivalent to an element in the other. In the formalization below,

note in particular the use of NullExtð�Þ (see Definition 3.2) to support the fact that the

syntactic foundation f ] of a PF-morphism f involves the null element as well as the

elements of the syntactic foundation.

Proposition 3.9 (Characterization of equivalences). Let D1 ¼ ðSynFndðD1Þ; LDBðD1ÞÞ
and D2 ¼ ðSynFndðD2Þ; LDBðD2ÞÞ be PF-schemata, and let f : D1 ! D2 be a PF-

morphism.

(a) For M1;M2 2 DBðDÞ, ðM1;M2Þ 2 SynCongrð f Þ iff the following two conditions

are satisfied:

(eeq-i) ð8x 2 M1Þð9y 2 NullExtðM2ÞÞððx; yÞ 2 EltCongrð f ÞÞ.

(eeq-ii) ð8y 2 M2Þð9x 2 NullExtðM1Þððx; yÞ 2 EltCongrð f ÞÞ.

(b) Similarly, for M1;M2 2 LDBðDÞ, ðM1;M2Þ 2 SemCongrð f Þ iff the conditions

(eeq-i) and (eeq-2) are satisfied.

Proof. Part (a) follows from the fact that �ff is defined to be the full extension of f ]

(see Definition 3.4). Part (b) then follows immediately, since SemCongrð f Þ �
SynCongrðf Þ. Ì

Definition 3.10 (Null-augmented congruence containment). Given PF-views �1 ¼
ðV1; �1Þ and �2 ¼ ðV2; �2Þ of the PF-schema D, to say that the congruence of �1 is

finer than that of �2= it does not suffice to assert only that Congrð�1Þ � Congrð�2Þ. It

is also necessary to guarantee that whenever �]1 maps a particular element to the null

element, so too does �]2. More precisely, proceed as follows.

(a) Define EltCongrð�1Þ �þ EltCongrð�2Þ to mean that ð8x 2 SynFndðD1ÞÞðð�]1ðxÞ ¼
�V1
Þ ) ð�]2ðxÞ ¼ �V2

ÞÞ.

When this condition is appended to a usual set-theoretic containment of congruences,

new definitions, denoted using v instead of �, are obtained.

(b) Define EltCongrð�1ÞvEltCongrð�2Þ to mean that both EltCongrð�1Þ�EltCongrð�2Þ
and EltCongrð�1Þ �þ EltCongrð�2Þ hold.
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(c) Define SynCongrð�1Þ v SynCongrð�2Þ to mean that both SynCongrð�1Þ �
SynCongr ð�2Þ and EltCongrð�1Þ �þ EltCongrð�2Þ hold.

(d) Define Congrð�1Þ v Congrð�2Þ to mean that both Congrð�1Þ � Congrð�2Þ and

EltCongrð�1Þ �þ EltCongrð�2Þ hold.

Next, the conditions which ensure that the fill-in of figure 1 exists in the

framework of PF-morphisms are established.

Proposition 3.11. Let D ¼ ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and let �1 ¼
ðV1; �1Þ and �2 ¼ ðV2; �2Þ be PF-views of D. The following conditions are equivalent.

(a) EltCongrð�1Þ v EltCongrð�2Þ.

(b) SynCongrð�1Þ v SynCongrð�2Þ.

(c) Congrð�1Þ v Congrð�2Þ.

(d) There is an open surjective PF-morphism f : V1 ! V2 with the property that �2 ¼
f � �1.

Proof. The equivalence of conditions (a)Y(c), as well as (d) ) (c), are immediate.

Suppose that conditions (a)Y(c) are satisfied. Define g : SynFndðV1Þ !
SynFndðV2Þ as follows. For y 2 SynFndðV1Þ, pick any x 2 SynFndðDÞ with �]1ðxÞ ¼
y, and define gðyÞ ¼ �]2ðxÞ. The fact that EltCongrð�1Þ � EltCongrð�2Þ ensures that

this definition is independent of the particular choice of x 2 ð�]1Þ
�1ðyÞ. Now, simply

define f to be the unique PF-morphism with f ] ¼ g. The fact that ð8x 2 SynFndðD1ÞÞ
ðð�]1ðxÞ ¼ �D1

Þ ) ð�]2ðxÞ ¼ �D2
ÞÞ ensures that f will be surjective. To see that f [ :

LDBðV1Þ ! LDBðV2Þ is open, let N1;N2 2 LDBðV2Þ with N1 � N2, and choose

M1;M2 2 LDBðDÞ with M1 � N2 and �[2ðM1Þ ¼ N1, �[2ðM2Þ ¼ N2. Then �[2ðM1Þ ¼
f [ð�[1ðM1ÞÞ � f [ð�[1ðM2ÞÞ ¼ �[2ðM2Þ, so ð�[1ðM1Þ; �[2ðM2ÞÞ is the desired pair which

maps to ðN1;N2Þ under f [. Ì

Definition 3.12 (Relative views). Let D ¼ ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and

let �1 ¼ ðV1; �1Þ and �2 ¼ ðV2; �2Þ be PF-views of D. Suppose further that the

equivalent conditions of Proposition 3.11 are satisfied. The relative view from �1 to �2

is the PF-view �ð�1;�2Þ ¼ ðV2; �h�1;�2iÞ of V1, with �h�1;�2i : V1 ! V2 the

unique fill-in identified in Proposition 3.11(d) above. This situation is depicted in

Figure 3. Relative view morphism.
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figure 3. The concept of a relative view is particularly critical to the construction of a

meet, as illustrated in figure 2, and developed in 4.3.

As a concrete example, think of D as R½ABC�, V1 as R½AB�, and V2 as R½B�, with

�1 ¼ �AB : R½ABC� ! R½AB�, and �2 ¼ �B : R½ABC� ! R½B�. Then �h�1;�2i ¼ �B :
R½AB� ! R½B�.

Definition 3.13 (The view defined by an elementary congruence). In some important

constructions, it is necessary to construct a view from a congruence. (In this work, the

meet is such a construction; see Definition 4.3(c)) for details.) This is a rather

straightforward process; the steps are outlined below.

Let ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and let R be an equivalence relation

on ExtSynFndðDÞ. A PF-view of D, denoted gDÄ==R and unique up to isomorphism,

with the property that the elementary equivalence of the view is R, may be constructed

via the following steps.

(a) Define R=� ¼ R j SynFndðDÞ ¼ R \ ðSynFndðDÞ � SynFndðDÞÞ.

(b) Define SynFndðgDÄ==RÞ ¼ SynFndðDÞ=R=� ¼ the set of equivalence classes of

SynFnd ðDÞ under the equivalence relation R=� .

(c) For M 2 DBðDÞ, define ½M�R=� ¼f½x�R=� j x 2 M and ðx; �DÞ 62 Rg. (½x�R=� denotes the

block of SynFndðDÞ=R=� in which x lies.)

(d) Define LDBðgDÄ==RÞ ¼ f½M�R=� j M 2 LDBðDÞg.

(e) Define gDÄ==R ¼ ðSynFndðgDÄ==R; gLDBðDÞÄ==RÞ.

It is easy to see that gDÄ==R is a PF-schema.

(f) Define g : ExtSynFndðDÞ ! ExtSynFndðgDÄ==RÞ on elements as follows.

x 7!
½x�R� if ðx; �DÞ 62 R:

�gDÄ=R if ðx; �DÞ 2 R:

�

(g) Let g�ÄR : D! D==R be the PF-morphism with ðg�ÄRÞ]¼g.

(h) Finally, put g�ÄR ¼ ðgDÄ==R; g�ÄRÞ.

It is easy to see that g�ÄR is a PF-view which has R as its elementary congruence.

4. Decompositions in the context of PF-views

In order to be able to use PF-views as the abstract model for meet-comple-

mentary pairs, it is necessary to show that the key ideas which were developed in the

earlier work [20] can be extended to this framework. Although the main ideas are
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essentially the same, there are a number of details to be considered, particularly as

regards the congruence to use in defining complementary pairs.

Definition 4.1 (Products and complements of views). Let �1 ¼ ðV1; �1Þ and �2 ¼
ðV2; �2Þ be PF-views of the PF-schema D. Unfortunately, there does not appear to be a

clean way to extend the definition of view product presented in [20, 2.1] to the PF-

context in such a way that �1 � �2 is a PF-morphism. The problem is that the product

mapping cannot be defined by an elementary mapping, since a single element in the

main schema D maps to two elements in the decomposition, one in LDBðV1Þ and the

other in LDBðV2Þ. Fortunately, this is not a serious problem. There is no need to

require the decomposition mapping to be a PF-morphism; it is quite sufficient that it be

a poset morphism, and so the definitions of the earlier work suffice. The appropriate

translations of these definitions are as follows.

(a) Define LDBðV1�1
��2

V2Þ ¼ fð�[1ðMÞ; �[2ðMÞÞ j M 2 LDBðDÞg:

(b) Define the function �[1 � �[2 : LDBðDÞ!LDBðV1�1
��2

V2Þ by M 7! ð�[1ðMÞ; �[2ðMÞÞ:

(c) The pair f�1;�2g of PF-views is said to form a subdirect complementary pair just

in case �[1 � �[2 : LDBðDÞ ! LDBðV1�1
��2

V2Þ is a poset isomorphism, with both

sets carrying the natural order defined by set inclusion �. In this case, it is also

said that �1 and �2 are subdirect complements of one another.

In the more general case of order schemata, it is quite possible for �[1 � �[2 to be a

bijection without being a poset isomorphism [20, 2.11]. However, in the context of PF-

views, this is not possible, as is established by the following proposition.

Proposition 4.2. Let D ¼ ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and let f�1;�2g be a

pair of PF-views of D. For f�1;�2g to be a subdirect complementary pair it is

necessary and sufficient that �[1 � �[2 be injective.

Proof. Since �[1 � �[2 is surjective by construction, under the injectivity assumption

it is bijective. It is immediate that it is also a poset morphism. That ð�[1 � �[2Þ
�1

is

a poset morphism is very straightforward also. Indeed, for M;N 2 LDBðDÞ with

�[1ðMÞ � �[1ðNÞ and �[2ðMÞ � �[2ðNÞ, it is immediate from the definition of product

ordering that M � N. Ì

Definition 4.3 (Fully commuting views and meet complements). The importance of

commuting congruences cannot be overstated. It is the condition on a complementary

pair which ensures that constant-complement update strategies are independent of the

state of the complement [20, 3.10]. In addition, commuting congruences play a key

role in the characterization of Fdesirable_ properties of decompositions which are

related to the classical notion of acyclic schemata [17].

Because of the way in which the (full) congruence of a PF-view is defined, the

formal definition is identical to that for order views.
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(a) The pair f�1;�2g of PF-views of the PF-schema D is called a fully commuting
pair if Congrð�1Þ � Congrð�2Þ ¼ Congrð�2Þ � Congrð�1Þ, with B�^ denoting ordi-

nary composition of binary relations, as already sketched in Summary 2.1 for set-

based views. In view of the definitions of Discussion 3.8, this is equivalent to

simultaneous satisfaction of the following two conditions:

(i) EltCongrð�1Þ � EltCongrð�2Þ ¼ EltCongrð�2Þ � EltCongrð�1Þ.

(ii) SemCongrð�1Þ � SemCongrð�2Þ ¼ SemCongrð�2Þ � SemCongrð�1Þ.

Of course, if the semantic congruences SemCongrð�1Þ and SemCongrð�2Þ are

sufficiently rich; that is, if they contain enough information to reconstruct the

corresponding elementary congruences, then condition (ii) suffices. This will be the

case if the schemata and views are definable as CFA-schemata and CFA-views, but it

is not true in general. This provides the motivation for the rather heavy constructions

of combining the two components using the Fd_ operators.

(b) A subdirect complementary pair f�1;�2g which is fully commuting is called a

meet-complementary pair, and �1 and �2 are called meet complements of one

another.

(c) If �1;�2 is a meet-complementary pair of PF-views of the PF-schema D, the view

(unique up to isomorphism Y see 3.13) whose congruence is Congrð�1Þ �
Congrð�2Þ is called the meet of f�1;�2g, and is denoted �1 ^ �2. It is immediate

that Congrð�iÞ v Congrð�1 ^ �2Þ for i 2 f1; 2g.

Definition 4.4 (Independence dependencies). The meet of a pair of meet-complementary

views defines the common ground on which the views must agree. More formally, let

D ¼ ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, let f�1;�2g be a subdirect complementary

pair of PF-views, and let f�1;�2g be a PF-view of D, with Congrð�1Þ v Congrð�3Þ
and Congrð�2Þ v Congrð�3Þ.

(a) The �3-independence dependency on V1�1
��2

V2, denoted ��3
, is satisfied iff for

any M1 2 LDBðV1Þ and M2 2 LDBðV2Þ, the following condition is satisfied [20,

2.13].

ðidÞ ððM1;M2Þ 2 LDBðV1�1
��2

V2ÞÞ ()
ð�h*1;*3iðM1Þ ¼ �h*2;*3iðM2ÞÞ

In the context of PF-schemata, this dependency may be expressed in an element-by-

element fashion. To understand the difference, first consider the example of a simple

relational schema R½ABC� constrained by the single FD B! C, which decomposes

losslessly and in a dependency-preserving fashion into the two projections �AB and

�BC. In this case, the meet �AB ^�BC ¼ �B [20, 2.17]. The �B-independence de-
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pendency asserts that the projection of the state of each view on attribute B is the

same. The alternate, element-by-element characterization states that for each tuple

ða; bÞ in the state of the view �AB, there is a tuple ðb; cÞ in the state of the view �BC

with a matching B-value, and conversely. These conditions are so obviously identical

that it may seem pointless to differentiate between them. However, in a more general

context, they display an important difference. The �B-dependency characterization is

formulated within the very general framework of order views; no concept of tuple is

necessary. On the other hand, a generalization of the tuple-by-tuple matching

condition requires a corresponding abstraction of the notion of a tuple; while general

order views do not support this abstraction, PF-views do. The formalizations are as

follows.

(b) The pointwise �3-independence dependency is satisfied iff the following two dual

conditions are met for each ðM1;M2Þ 2 LDBðV1�1
��2

V2Þ.

ðid : 1Þ
ð8x1 2 M1Þð9x2 2 NullExt ðM2ÞÞð�h*1;*3i]ðx1Þ ¼ �h*2;*3i]ðx2ÞÞ

ðid : 2Þ
ð8x2 2 M2Þð9x1 2 NullExtðM1ÞÞð�h*1;*3i]ðx1Þ ¼ �h*2;*3i]ðx2ÞÞ

In other words, in the context of PF-views, conditions (id:1) and (id:2) may replace

(id).

The formalization of these ideas is recorded in the following proposition.

Proposition 4.5. Let ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, let f�1;�2g be a subdi-

rect complementary pair of PF-views of D, and let �3 be the view (unique up to iso-

morphism) whose congruence is the smallest equivalence relation on ExtSynFndðD1Þd
LDBðD1Þ containing both Congrð�1Þ and Congrð�2Þ. Then f�1;�2g is a meet-

complementary pair iff conditions (id:1) and (id:2) of Definition 4.4 are satisfied.

Proof. Follows directly from the discussion of Definition 4.4 and [20, 2.14]. Ì

Definition 4.6 (Generalized join dependencies). The constructions of Definition 4.4

characterize completely the conditions needed for a decomposition into two views to

be independent relative to a common view, but they do not specify completely the

minimal constraints on the main schema D which enable that decomposition.

Consider, once again, the relational schema R½ABC�, this time without the FD B!
C, decomposed into the two projection views �AB and �BC, let r1 ¼ fða1; b1;
c1Þ; ða2; b1; c2Þg, and let r2 ¼ fða1; b1; c1Þ; ða1; b1; c2Þ; ða2; b1; c1Þ; ða2; b1; c2Þg be re-

lations on R½ABC�. Both r1 and r2 map to ðfða1; b1Þ; ða2; b1Þg; fðb1; c1Þ; ðb1; c2ÞgÞ
under the decomposition into the AB- and BC-projections, but only one may be a legal

state of R½ABC� under the constraints of the schema if the decomposition is to be
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lossless. The classical relational theory mandates that the join dependency ffl ½AB;BC�
hold on R½ABC�, so that r1 is excluded. However, the general theory outlined in

Definition 4.4 makes no such preference. There could just as easily be a complex set of

constraints on R½ABC� under which r1 is legal but r2 is not.

In the general decomposition context developed in [20], it does not appear to be

possible to express such a preference in a natural way. However, in the present

context, in which database states are expressed as sets of elements, it is quite possible.

Specifically, return to the general context of a PF-schema D ¼ ðSynFndðDÞ,LDBðDÞÞ,
with a pair f�1;�2g of meet-complementary PF-views whose meet is �3.

(a) The join completion of M 2 DBðDÞ relative to f�1;�2g is

JoinComplh*1;*2iðMÞ ¼ fx 2 SynFndðDÞj
ð9y 2 MÞð9z 2 MÞð�]1ðxÞ ¼ �]1ðyÞ ^ �]2ðxÞ ¼ �]2ðxÞÞg

(b) Call M 2 DBðDÞ join complete relative to f�1;�2g if M ¼ JoinComplh�1;�2iðMÞ. It

is easy to see that M is join complete iff the following generalized join
dependency, denoted ffl ½�1;�2�, is satisfied.

ðg jdÞ ð8x; y 2 MÞðð�]3ðxÞ ¼ �]3ðyÞÞ )
ð9z 2 MÞð�]1ðzÞ ¼ �]1ðxÞ ^ ð�]2ðzÞ ¼ �]2ðyÞÞÞÞ

(c) Say that D uses join reconstruction from f�1;�2g if every M 2 LDBðDÞ is join

complete relative to f�1;�2g.

The theory of this paper will generally be formulated under the explicit stipulation that

the decomposition of the main schema D is governed by the join reconstruct-ion from

f�1;�2g. In such a context, it is necessary to work with databases which,

while not necessary in LDBðDÞ, have the property that their join completions are

legal. The formal definition is as follows.

(d) Call M 2 DBðDÞ a join premodel relative to h�1; �2i if JoinComplh�1;�2i ðMÞ 2
LDBðDÞ. The set of all join premodels of D relative to JPairh�1; �2i is denoted

PLDB ðhD; f�1;�2giÞ:

(e) The schema D has implicit join completion with respect to f�1;�2g if whenever

M 2 DBðDÞ has the property that ���iðMÞ 2 LDBðViÞ for both i ¼ 1 and i ¼ 2, then

M 2 LDBðDÞ; i.e., M ¼ JoinComplh�1;�2iðMÞ.

For example, the schema E2 of Example 1.2 has implicit join completion, because the

join dependency ffl ½ABCE;ABCD� is implied by the FD ABC! E, and the latter is

satisfied by any legal state of the schema of �ABCE.

Observation 4.7 (Premodels and view axiomatization). Let D be a PF-schema with

f�1;�2g a meet-complementary pair of PF-views of D. Assume further that D has
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implicit join completion with respect to f�1;�2g. Then for any M 2 DBðDÞ, M 2 PLDB
ðhD; f�1;�2giÞ iff ���iðMÞ 2 LDBðViÞ for both i ¼ 1 and i ¼ 2. Ì

Definition 4.8 (Join schemata). In order to study the complexity of constraint

satisfaction and updates, it is necessary to extend the semantic views; i.e., those views

which operate on collections of the form LDBð�Þ, to syntactic views; i.e., those which

operate on collections of the from DBð�Þ. As identified in Definitions 3.4(h) and

3.7(b), the information needed to effect this translation is built into the PF-view

itself. However, there is one important detail which cannot be overlooked; namely,

if f�1;�2g is a meet-complementary pair of PF-views on the PF-schema D, it

is not generally the case that f�1;�2g is a meet-complementary pair on D. The

problem is that �[1 � �[2 : D! V1 �11
� �2

V2 is not necessarily injective, although

it is certainly surjective. To render it injective, the domain must be restricted to

those elements of DBðDÞ which are join complete, in the sense of Definition 4.6(b)

above.

More formally, let D ¼ ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and let f�1;�2g
be a meet complementary pair of views of D. Assume further that D uses join

reconstruction from f�1;�2g.

(a) Define hD; f�1;�2gi to be the schema with SynFndðhD; f�1;�2giÞ ¼ SynFndðDÞ
and LDBðhD; f�1; �2giÞ ¼ fJoinComplh�1;�2iðMÞ jM 2 DBðDÞg: The notation

JDBh�1;�2iðDÞ will often be used to denote LDBðhD; f�1;�2giÞ.

(b) The view b��i¼ðVi; �iÞ (i 2 f1; 2g) of hD; f�1;�2gi is given by b��i ¼ ���i j JDBh�1 ;�2iðDÞ
;

that is, b��i is just ���i restricted to the join-complete members of DBðDÞ.

It is easy to see that b��i remains surjective, since for any M 2 DBðDÞ, ���iðMÞ ¼ ���i

ðJoinComplh�1;�2iðMÞÞ.
It should also be stressed that the Fhat_ notation; e.g., b��i, is ambiguous, since the

definition depends not only upon �i, but upon the meet-complementary pair f�1;�2g
as well. However, if this pair is clearly fixed by context, then the meaning of things

such as b��i will be apparent and unambiguous.

It is also useful to have some terminology which describes pairs, and sets of

pairs, which are compatible with respect to a decomposition.

(c) Call a pair ðM1;M2Þ 2 DBðV1Þ � DBðV2Þ join compatible for h�1; �2i if there is an

M 2 JDBh�1;�2iðDÞ such that ð�̂�[1 � �̂�[2ÞðMÞ ¼ ðM1;M2Þ.

Proposition 4.9. Let ðSynFndðDÞ; LDBðDÞÞ be a PF-schema, and let f�1;�2 be a meet-

complementary pair of PF-views over D. Assume further that D uses join recon-

struction from f�1;�2g.

(a) fb��1; b��2g is a meet complementary pair of PF-views over hD; f�1; �2gi.

62 S. J. Hegner / Complexity of embedded axiomatization



(b) �̂�[1 � �̂�[2 ¼ ð�[1 � �[2ÞjJDBh�1 ;�2iðDÞ
, with the last entry denoting the restriction of �1�

�2 to the domain JDBh�1;�2iðDÞ:

Proof. To show (a), first note that since JDBh�1;�2iðDÞ consists entirely of join com-

plete sets, �̂�1
[ � �̂�[2 : JDBh�1;�2iðDÞ ! V1 �̂�1

� �̂�2
V2 must be injective. Hence, in view

of 4.2, fb��1; b��2g must be a subdirect complementary pair. To show that it is meet com-

plementary, it suffices to observe that for M 2 JDBh�1;�2iðDÞ, letting M1 ¼ b��1ðMÞ and

M2 ¼ b��2ðMÞ, conditions (id:1) and (id:2) of Definition 4.4 are satisfied, and so by

propositon 4.5, fb��1; b��2g is a meet-complementary pair.

Part (b) follows directly from Definition 4.8(c). Ì

5. Complexity of view constraints in a general setting

In this section, the relative complexity of verifying the constraints on a schema

via a meet-complementary pair of its views is investigated. For schemata governed by

consistency constraints which do not involve the generation of new elements, the

conclusion is strong and positive: in a general sense, a cover of the constraints on the

main schema embeds in the view, and so the complexity of constraint checking via

the views is no more complex than constraint checking on the main schema itself. This

extends the result which was reported in [21], and this is accomplished with a much

simpler proof technique.

For constraints which can generate new tuples (such a join dependencies), the

results require a condition called meet uniformity, which stipulates that the two views

comprising the decomposition treat this common sub-view in a uniform way. While this

condition is somewhat strict, the constructions nonetheless provide valuable insights.

Notation 5.1. Throughout this section, unless noted specifically to the contrary, D ¼
ðSynFndðDÞ; LDBðDÞÞ will be taken to be a PF-schema.

Definition 5.2 (The k-submodel property). In the earlier work [21], the k-submodel

property was used as the measure of constraint complexity. To motivate the extended

framework developed in this section, it is instructive to provide first a brief summary

of this idea.

Given a relation M and a set F of FDs, it may be determined whether M satisfies

those FDs by checking two tuples at a time. If M does not satisfy all of the dependencies

in F , then there must be some ’ 2 F and some two-element subset N � M with the

property that ’ does not hold on N. In other words, M satisfies F iff every subset of M
of size two satisfies F . The k-submodel property generalizes this idea of reducing

constraint satisfaction to checking satisfaction on subinstances of a fixed size.

Formally, for k 2 IN, a k-model of D is any M 2 DBðDÞ with the property that for

every N � M with CardðNÞ r k, it is necessarily the case that N 2 LDBðDÞ. The sche-

ma D has the k-submodel property if for every M 2 DBðDÞ, M 2 LDBðDÞ iff M is a
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k-model of D. If D has the k-submodel property, then it has the unrestricted submodel
property as well, in the sense that if M 2 LDBðDÞ, then so too is every subset of M
[21, 3.7].

In particular, a relational schema constrained solely by FDs has the 2-submodel

property. More generally, the equality-generating constraints, or EGDs, of this

classical relational framework, are characterizable via the k-submodel property. See

Summary 6.1 and Discussion 6.2 for more details.

Unfortunately, the k-submodel property cannot model any sort of relational

constraint which mandates the existence of new tuples based upon existing ones. This

includes both full tuple-generating dependencies (TGDs) and embedded TGDs, such

as inclusion dependencies, of which the immensely important foreign-key constraints

are a special case.

In order to model these more general constraints, an expanded notion of

complexity is introduced. Rather than simply asking whether every subset of M of a

given size is a model, it asks whether every subset of M of a given size is contained in

a model which in turn is contained in M. The formalization of this notion begins with

the concept of a completion.

Definition 5.3 (Completions). Let M 2 DBðDÞ. A completion of M is any N 2 LDBðDÞ
which contains M. There are two important families of completions of M, which are

detailed below.

(a) The full set of completions of M is FullComplDðMÞ ¼ fN 2 LDBðDÞ j M � Ng.

(b) The set of minimal completions of M is MinComplDðMÞ ¼ fS 2 FullComplDðMÞ j
ð8T 2 FullComplDðMÞÞððT � SÞ ) ðT ¼ SÞÞg. A minimal completion of M is thus

a completion which does not contain any proper subset which is itself a completion

of M.

Observe that M 2 LDBðDÞ iff MinComplDðMÞ ¼ fMg.
Because a schema with the k-submodel property has the unrestricted submodel

property as well, it follows that the only possibilities for the set of minimal

completions of M 2 DBðDÞ in that case are fMg (in which case M is already in

LDBðDÞ) and ; (in which case no extension of M is in LDBðDÞ).

Definition 5.4 (ðk1; k2Þ-boundedness). Clearly, the process of completion involves an

increase in size of the database. The notion of ðk1; k2Þ-boundedness characterizes this

growth locally; that is, for models of size no more than k1. Informally, the ðk1; k2Þ-
boundedness property states that for any M 2 DBðDÞ with CardðMÞ r k1, the size of

any minimal completion is no more than k2. It is necessary to be a bit careful here.

Even though all databases are taken to be finite, there may be no bound on the size of

completions of databases of size k1. To model this possibility, let IN denote the set

consisting of the natural numbers, together with a special element which will be

denoted by1. The ðk1;1Þ-boundedness property then provides no information on the
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maximum size of completions of databases of size at most k1. The symbol 1 will be

used rather loosely, at least to the extent that it may be compared to any natural

number; i.e., m for any m 2 IN. The formal definition is as follows.

(a) For k1 2 IN, k2 2 IN, the schema D has the ðk1; k2Þ-boundedness property if for

every M 2 DBðDÞ with CardðMÞ r k1, every N 2 MinComplDðMÞ has the property

that CardðNÞ r k2.

As a specific example, a universal relational schema constrained by FDs (or even

EGDs) and a single join dependency has the (2,4)-boundedness property.

Definition 5.5 (The k1-premodel property). The notion of a k-premodel and the

k-premodel property generalize the notions of k-model and the k-submodel property to

the context in which completions can add new elements. A k-premodel contains a

completion of each of its subsets of size at most k, with a schema having the

k-premodel property iff its legal databases are characterized by k-premodels.

More formally, Let k 2 IN.

(a) A k-premodel of D is an M 2 DBðDÞ with the property that for every N � M with

CardðNÞ r k, there is a P 2 MinComplDðNÞ with P � M.

(b) The schema D has the k-premodel property if for every M 2 DBðDÞ, the condition

M 2 LDBðDÞ holds iff M is a k-premodel of D.

Definition 5.6 (Relative ðk1; k2Þ-boundedness and relative k1- premodels). In the

framework of [21], it is always the case that the join dependency underlying the

decomposition of the base schema D into meet-complementary views is generated by

the other dependencies, which are in turn embeddable into the component views. In

that case, every join-compatible pair of legal view states gives rise to a unique state of

the main schema; in the terminology of Definition 4.6(e), the main view has implicit

join completion. In the more general framework developed here, this need not be the

case. Rather, the join dependency may be specified separately, as elaborated in

Definition 4.6. This dependency can force a database in the main schema to be much

larger than the sum of the sizes of its components under the decomposition, giving an

artificially high measure of how large completions can become. Thus, when looking at

some completion N of an M 2 DBðDÞ, it is advantageous to separate the increase in

size due to the constraints which embed in the view from that caused by the join

dependency governing the decomposition. The key is to ask not how large N can be,

but rather how large some N0 2 DBðDÞ which completes to N upon applying the join

dependency can be. The formalization of these ideas, for both the k-submodel and the

k-premodel contexts, is as follows. Let k 2 IN, and assume that f�1;�2g forms a meet-

complementary pair of PF-views of D, and that D uses join reconstruction from

f�1;�2g (See Definition 4.6(c)).
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(a) M 2 DBðDÞ is a h�1; �2i-relative k-premodel of D if for every N � M with

Card r k, there is a P � M with JoinComplh�1;�2iðPÞ 2 MinComplDðNÞ.

(b) The schema D has the h�1; �2i-relative k-premodel property if for every M 2
DBðDÞ, the condition M 2 PLDBðhD; f�1;�2giÞ holds iff M is a h�1; �2i-relative

k-premodel of D.

(a0) M 2 DBðDÞ is a h�1; �2i-relative k-model of D if every N � M with CardðNÞ r k
is in PLDBðhD; f�1;�2giÞ.

(b0)The schema D has the h�1; �2i-relative k-submodel property if for every M 2
DBðDÞ, the condition M 2 PLDBðhD; f�1;�2giÞ holds iff M is a h�1; �2i-relative

k-model of D.

(c) For k1 2 IN, k2 2 IN, the schema D has the h�1; �2i-relative ðk1; k2Þ-boundedness
property if for every M 2 DBðDÞ with CardM r k1 and every N 2 MincomplD
ðMÞ, there is a P � M with JoinComplh�1;�2iðPÞ ¼ N and CardðPÞ r k2.

Definition 5.7 (Rules and their containment semantics). Characterization of the

k-premodel and k-submodel properties is facilitated greatly through the use of rules

on a schema. Informally, a rule on D states that if certain elements are present, then so

too are others.

(a) A rule on D is a pair �¼ðAntcð�Þ;Cnsqð�ÞÞ in which Antcð�Þ 2 DBðDÞ and

Cnsqð�Þ � DBðDÞ, with Antcð�Þ � M for each M 2 Cnsqð�Þ. Antcð�Þ is called

the antecedent of �, and Cnsqð�Þ its set of consequents.

(b) The rule � is called a denial rule if Cnsqð�Þ ¼ ;, and a generator rule if Cnsqð�Þ
6¼ ;.

Roughly, denial rules correspond to constraints such as EGDs, while generator rules

correspond to constraints such as TGDs. See Examples 5.9Y5.12 below for examples

and more details.

(c) RulesðDÞ (resp. GeneratorRulesðDÞ, resp. DenialRulesðDÞ) denotes the set of all

rules (resp. generator rules, resp. denial rules) on D.

Informally, the containment semantics of a rule simply state that a structure which

contains its antecedent (as a subset) must also contain one of its consequents.

(d) The containment semantics of rules are defined as follows.

(i) For � 2 RulesðDÞ and M 2 DBðDÞ, M 2 Modð�Þ iff Antcð�Þ � M implies that

there is an N 2 Cnsqð�Þ with N � M.

(ii) For S � RulesðDÞ and M 2 DBðDÞ, M 2 ModðSÞ iff M 2 Modð�Þ for each

� 2 S.
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Since containment semantics will be used exclusively in this paper, the notation

Modð�Þ will not result in any ambiguity.

(g) The set of rule constraints of D is RuleConstrðDÞ ¼ f� 2 RulesðDÞ j ð8M 2 LDB
ðDÞÞðM 2 Modð�ÞÞg.

Definition 5.8 (The completion rules of a schema). The rules which form the

foundation of the results developed here are based upon the notion of minimal

completion, as defined in Definition 5.3. They are formalized as follows.

(a) Let M 2 DBðDÞ. The minimal-completion rule of M is defined to be MinCompl
RuleDðMÞ¼ðM;MinComplDðMÞÞ. In other words, AntcðMinComplRuleDðMÞÞ ¼ M,

and CnsqðMinComplRuleDðMÞÞ ¼ MinComplDðMÞ.

(b) Define MinComplRulesðDÞ ¼ fMinComplRuleDðMÞ j M 2 DBðDÞg.

(c) Let k 2 IN. Define MinComplRules kðDÞ ¼ fMinComplRuleDðMÞ j ðM 2 DBðDÞÞg:

Although the definition of schema semantics via minimal-completion rules has

some similarities to the use of classical constraints, there are a number of key

differences. In the next four examples, some of these are highlighted.

Example 5.9 (Rule semantics with functional dependencies). Let E5 be the relational

schema with the single relation R½ABCD�, constrained by the FDs fA! B;C! Dg. It

should first of all be noted that rules, as defined here, do not support quantification.

Thus, it not possible to express the following first-order representation of the FD

A! B as a single minimal completion rule.

ð8vA
1 Þð8vB

1 Þð8vB
2 Þð8vC

1 Þð8vC
2 Þð8vD

1 Þð8vD
2 Þ

ððRðvA
1 ; v

B
1 ; v

C
1 ; v

C
1 Þ^RðvA

1 ; v
B
2 ; v

C
2 ; v

C
2 Þ^ðvB

1 6¼ vB
2 ÞÞ ) falseÞ

Rather, it is necessary to express each ground instance of the formula (i.e., each

instance with the variables bound to specific constants) as a distinct rule. A generic

logical ground instance for the above expression is

ððRða1; b1; c1; d1Þ^Rða1; b2; c2; d2ÞÞ ) falseÞ

with a1, as well as the bi’s, ci’s, and di’s, values from the appropriate domains, and

b1 6¼ b2. The corresponding minimal-completion (denial) rule is

�
�E5

A ! B

�
ðfða1; b1; c1; d1Þ; ða1; b2; c2; d2Þg; ;Þ

Similarly, the FD C! D is represented by denial rules of the form

�
�E5

C ! D

�
ðfða1; b1; c1; d1Þ; ða2; b2; c1; d2Þg; ;Þ
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in which d1 6¼ d2, but the other elements may nor may not be equal. All other ordered

pairs of tuples result in (trivial) normal rules. That is, rules of the form

ðfða1; b1; c1; d1Þ; ða2; b2; c2; d2Þg; ffða1; b1; c1; d1Þ; ða2; b2; c2; d2ÞggÞ

in which a1 6¼ a2 and c1 6¼ c2 are always in RuleConstrðE4Þ. However, these not need

be included explicitly in a constraint set for this schema; it is sufficient that rules of the

form �E5
A ! B and �E5

C ! D be included. In general, identity rules; that is, rules � for which

Cnsqð�Þ ¼ fAntcð�Þg, never need be included in the definition of minimal-completion

semantics, since the containment semantics of Definition 5.7(d) takes them to be true

by default, unless overridden by other rules.

Example 5.10 (Rule semantics with a join dependency). Next, let E6 be the relational

schema with the single relation R½ABCD�, constrained by the FD A! B and the join

dependency ffl ½ABC;CD�. The rule �E6
A ! B

, identified above, applies to this schema as

well. The join dependency ffl ½ABC;CD� is represented in E6 by the set of all rules of

the form

ð�E6ffl½ABC;CD�Þ
ðfða1; b1; c1; d1Þ; ða2; b2; c1; d2Þg;

ffða1; b1; c1; d1Þ; ða2; b2; c1; d2Þ; ða1; b1; c1; d2Þ; ða2; b2; c1; d1ÞggÞ

with either a1 6¼ a2 or else b1 ¼ b2. Note that this rule expresses the JD ffl ½ABC;CD�
only in the context of tuples which also satisfy the FD A! B. It is not possible to drop

the conditions that either a1 6¼ a2 or else b1 ¼ b2. Minimal-completion rules, unlike

classical integrity constraints, must have consequents whose members satisfy all of the

constraints on the schema. On the other hand, if the FD A! B on E6 is dropped, so

that the JD is its only constraint, then instances of the above rule with both a1 ¼ a2 and

b1 6¼ b2 would apply.

Note also that this schema has the ð2; 4Þ-boundedness property.

Example 5.11 (Rule semantics with multiple generating dependencies). A third

example illustrates this integration of integrity constraints within rules more saliently.

Let E7 have three binary relation symbols R½AB�, S½AB�, and T½AB�, and assume further

that DomðAÞ ¼ DomðBÞ. Informally, the constraints on E7 state that S contains R, as

well as the composition of R with itself, and T contains S, as well as the composition of

S with itself. More formally, these constraints are expressed by the following logical

formulas.

ð8vA
1 Þð8vB

1 ÞðRðvA
1 ; v

B
1 Þ ) SðvA

1 ; v
B
1 ÞÞ

ð8vA
1 Þð8vB

1 ÞðSðvA
1 ; v

B
1 Þ ) TðvA

1 ; v
B
1 ÞÞ

ð8vA
1 Þð8vA

2 Þð8vB
1 Þð8vB

2 ÞðRðvA
1 ; v

B
1 Þ^RðvA

2 ; v
B
2 Þ^ðvB

1 ¼ vA
2 Þ ) SðvA

1 ; v
B
2 ÞÞ

ð8vA
1 Þð8vA

2 Þð8vB
1 Þð8vB

2 ÞðSðvA
1 ; v

B
1 Þ^SðvA

2 ; v
B
2 Þ^ ðvB

1 ¼ vA
2 Þ ) TðvA

1 ; v
B
2 ÞÞ
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The minimal-completion rules of E7 must embody all of these constraints simul-

taneously. For single tuples, the rules take on the following forms. (Since tuples may

now come from one of several relations, they must be tagged with the name of the

relation of origin.)

ð�E7

1 Þ ðfRða1; b1Þg; ffRða1; b1Þ; Sða1; b1Þ;Tða1; b1ÞggÞ
ð�E7

2 Þ ðfSða1; b1Þg; ffSða1; b1Þ;Tða1; b1ÞggÞ
ð�E7

3 Þ ðfTða1; b1Þg; ffTða1; b1ÞÞgg

The third rule is an identity and will not affect the semantics of the total constraint set.

Now, for rules with two elements in the antecedent set, it is best to begin with relation

S. There are two possibilities for an antecedent containing two tuples. First, if a1 6¼ b2,

there are rules of the following form.

ð�E7

4 Þ ðfSða1; b1Þ; Sðb1; b2Þg;
ffSða1; b1Þ; Sðb1; b2Þ; Tða1; b1Þ; Tðb1; b2Þ; Tða1; b2ÞggÞ

if a1 ¼ b2, the rules take this form.

ð�E7

5 Þ ðfSða1; b1Þ; Sðb1; a1Þg;
ffSða1; b1Þ; Sðb1; a1Þ; Tða1; b1Þ; Tðb1; a1Þ; Tða1; a1Þ; Tðb1; b1ÞggÞ

The rules with two antecedent tuples in R are similar, but more complex, since they

involve three relation symbols. First, if a1 6¼ b2, the rules have the following form.

ð�E7

6 Þ ðfRða1; b1Þ;Rðb1; b2Þg;
ffRða1; b1Þ;Rðb1; b2Þ; Sða1; b1Þ; Sðb1; b2Þ; Sða1; b2Þ;

Tða1; b1Þ; Tðb1; b2Þ; Tða1; b2ÞggÞ

if a1 ¼ b2, the rules take this form.

ð�E7

7 Þ ðfRða1; b1Þ;Rðb1; a1Þg;
ffRða1; b1Þ;Rðb1; a1Þ; Sða1; b1Þ; Sðb1; a1Þ; Sða1; a1Þ; Sðb1; b1Þ;

Tða1; b1Þ;Tðb1; a1Þ;Tða1; a1Þ;Tðb1; b1ÞggÞ

The rules of the form �E7

1 j �E7

2 and �E7

4 j �E7

7 suffice to identify the legal databases of

E7, in the sense that the models of these rules under the containment semantics of

Definition 5.7(d) are sufficient to identify LDBðE7Þ. Since these rules all have

antecedents of cardinality no more than two, this schema has the two-premodel

property, although it does not have the two-submodel property. It also has the ð2; 10Þ-
boundedness property, but it does not have the ð2; kÞ-boundedness property for any
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k < 10. This is the case even though the logical constraints, as identified above, have a

sort of ð2; 3Þ-boundedness property, since each takes at most two antecedents and

generates at most one additional consequent. Thus, the size of the consequents of a

generating rule can be much larger than those of a logical constraint.

Example 5.12 (Rule semantics with an inclusion dependency). Let E8 consist of two

binary relations R½AB� and S½AB�, and suppose that it is constrained by the FD A! B
on S, as well as the inclusion dependency R½A� � S½A�. In other words, R½A� is a

foreign key for S½A�. The rules which enforce the FD have the following form, for

b1 6¼ b2.

ð�E8

1 Þ ðfSða1; b1Þ; Sða1; b2; Þg; ;Þ

The rules which enforce the foreign-key dependency involve a possibly infinite

disjunction (depending upon the cardinality of the domain B). They have the following

form.

ð�E8

2 Þ ðfRða1; b1Þg; ffRða1; b1Þ; Sða1; bÞg j b 2 DomðBÞgÞ

The reason that these examples have been presented is to illustrate the essential

difference between minimal-completion rules and ordinary database dependencies. In

effect, the right hand side of a minimal-completion rule must always be a collection of

legal databases, which may render the representation somewhat more complex. As

shall be shown, minimal-completion rules are precisely the kind of representation

which is necessary for the study of relative complexity of view axiomatization.

Definition 5.13 (Projection of rules to views). To determine the constraints which a

rule on the main schema imposes upon a view, that rule is projected onto the view.

The definition provided here applies only to minimal-completion rules, but this is not a

problem since only such rules are employed in this work. Formally, let � ¼ ðV; �Þ be

a PF-view of D.

(a) For � ¼ MinComplRuleDðMÞ, define the projection of � onto � to be the rule

�ð�Þ ¼ MinComplRuleVð���ðMÞÞ.

(b) For S � RulesðDÞ, �ðSÞ ¼ f�ð�Þ j � 2 Sg.

(c) The set S � RulesðDÞ is said to define � semantically if LDB ¼ Modð�ðSÞÞ.

See the discussion which follows Definition 5.17(c) for an example of a view which is

not semantically definable.

Notation 5.14 Further notational conventions For the rest of this section, the focus

will be upon the behavior of minimal-completion rules within the context of a meet-

complementary pair. To avoid repeating the context over and over, in addition to
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D ¼ ðSynFndðDÞ; LDBðDÞÞ being a PF-schema, unless stated specifically to the con-

trary, it will be assumed that �1 ¼ ðV1; �1Þ and �2 ¼ ðV2; �2Þ form a meet comple-

mentary pair of views of D, with meet �3 ¼ ðV3; �3Þ. It will further be assumed that D

uses join reconstruction from f�1;�2g.

It is not difficult to see that the property of ðk1; k2Þ-boundedness, as well as the

property of being a k-premodel or k-model, is inherited by the views from the main

schema. The following two results formalize these facts.

Observation 5.15 Let k1 2 IN and k2 2 IN, and assume that D has the h�1; �2i-
relative ðk1; k2Þ-boundedness property. Then both V1 and V2 have the ðk1; k2Þ-
boundedness property.

Proof. Let i 2 f1; 2g, let M 2 DBðViÞ with CardðMÞ r k1, and let N 2 MinComplVi

ðMÞ: Choose N0 2 LDBðDÞ with the property that ���iðN0Þ ¼ N, and choose M0 � N0 with

the property that ���iðM0Þ ¼ M and CardðM0Þ ¼ CardðMÞ. Then N0 2 FullComplDðM0Þ,
and so there is an N00 2 MinComplDðM0Þ with N00 � N0. Since D has the h�1; �2i-
relative ðk1; k2Þ-boundedness property and CardðM0Þ ¼ CardðMÞ r k1, there is a P �
N00 with JoinComplh�1;�2iðPÞ¼ N00 and CardðPÞ r k2. Now ���iðPÞ ¼ ���iðN00Þ � ���iðN0Þ ¼
N, and since N 2 MinComplVi

ðMÞ, it follows that ���iðPÞ ¼ N. Furthermore, CardðNÞ ¼
Cardð���iðPÞÞ r CardðPÞ r k2, which establishes that Vi has the ðk1; k2Þ-boundedness

property. Ì

Lemma 5.16 (Projection of k-premodels and k-models). Let k 2 IN.

(a) If M is a h�1; �2i-relative k-premodel of D, then ���iðMÞ is a k-premodel of Vi for

both i ¼ 1 and i ¼ 2.

(b) If M is a h�1; �2i-relative k-model of D, then ���iðMÞ is a k-model of Vi for both

i ¼ 1 and i ¼ 2.

(c) �ðMinComplRuleskðDÞÞ ¼ MinComplRuleskðVÞ.

Proof. Choose i 2 f1; 2g. To show (a), let M be a h�1; �2i-relative k-premodel of D,

and let N0 � ���iðMÞ with CardðN0Þ r k. Choose N � M with the property that ���iðNÞ ¼
N0 and CardðNÞ ¼ CardðN0Þ. Since CardðNÞ ¼ CardðN0Þ r k, there is P � M with

JoinComplh�1;�2iðPÞ 2 MinComplDN. Since ���iðPÞ ¼ ���iðJoinComplh�1;�2iðPÞÞ 2 LDBðViÞ,
���iðPÞ 2 FullComplVðN0Þ, so there is a Q � ���iðPÞ with Q 2 MinComplVðN0Þ. Further-

more, since P � M, Q � ���iðPÞ � ���iðMÞ, whence ���iðMÞ is a k-model of V.

Part (b) is similar to (a). Just choose P ¼ N and Q ¼ N0.
To establish part (c), it suffices to observe that for every M0 2 DBðVÞ, there is an

M 2 DBðDÞ with ���ðMÞ ¼ M0 and CardðMÞ ¼ CardðM0Þ. Ì
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Definition 5.17 (Notions of axiomatization for decompositions). To address the

question of axiomatization of the views in a meet-complementary decomposition, it is

first necessary to be very precise about what is meant by an axiomatization of the main

schema D. Formally, let S � MinComplRulesðDÞ:

(a) S is called an h�1; �2i-embeddable axiomatization of D if for every M 2 DBðDÞ,
M 2 PLDBðhD; f�1;�2giÞ iff ���iðMÞ 2 Modð�iðSÞÞ for both i ¼ 1 and i ¼ 2.

(b) S is called a complete h�1; �2i-axiomatization of D if for every M 2 DBðDÞ,
Modð�iðSÞÞ ¼ LDBðViÞ for both i ¼ 1 and i ¼ 2.

The schema E2 of Example 1.2 illustrates the distinction between these two

notions. Let R2 be the set of all minimal-completion rules based upon the FDs in

F 2, obtained using the techniques outlined in example 5.9. It is straightforward to

show that �ABCDðR2Þ represents fA! D;B! D;CD! Ag, and �ABCEðR2Þ repre-

sents fA! Eg. Thus, R2 is an f�ABCD;�ABCEg-embeddable axiomatization of E2.

On the other hand, it cannot be a complete f�ABCD;�ABCEg-axiomatization of

E2. Indeed, this is the whole point of the example E2. The view �ABCE cannot be

axiomatizable by �ABCEðR2Þ. If it were, it would have the two-submodel property,

which means that it would be axiomatizable by FDs. However, as shown in Appendix

A, it is not even finitely axiomatizable.

It is now possible to establish very sharp results about the decomposition of

schemata which have the k-submodel property. The decomposition is always h�1; �2i-
embeddable, and in particular, to verify that a database of the main schema is legal, it

suffices to verify that the decomposed components are each k-models.

Proposition 5.18. (View axiomatization via k-models). Let k 2 IN and let M 2 DBðDÞ.
Then M is a h�1; �2i-relative k-model of D iff ���iðMÞ is a k-model of Vi for both i ¼ 1

and i ¼ 2.

Proof. Let M 2 DBðDÞ have the property that ���iðMÞ is a k-model of Vi for both i ¼ 1

and i ¼ 2, and let N � M with CardðNÞ r k. Then Cardð���iðNÞÞ r k for both i ¼ 1 and

i ¼ 2, so ���iðNÞ 2 LDBðViÞ. Thus ð�̂�[1 � �̂�[2Þ
�1ð���1ðNÞ; ���2ðNÞÞ ¼ JoinComplh�1;�2iðNÞ 2

LDB ðDÞ, and so N 2 PLDBðhD; f�1;�2giÞ, whence M is a h�1; �2i-relative k-model

of D.

The converse follows immediately from Lemma 5.16(b). Ì

Theorem 5.19. For any k 2 IN, if D has the h�1; �2i-relative k-submodel property,

then MinComplRules kðDÞ is a h�1; �2i-embeddable axiomatization of D.

Proof. The proof follows immediately from Proposition 5.18 and Lemma 5.16(c).

Ì

72 S. J. Hegner / Complexity of embedded axiomatization



Discussion 5.20 (Interpretation in the classical framework). At this point, it is helpful

to step back and interpret the above result within the context of the simple example of

E2 presented in example 1.2. Since E2 is constrained by FDs, it has the two-submodel

property. The above proposition states that to determine whether a relation r½ABCDE�
satisfies the set F 2 of FDs, it suffices to check whether each subset of r½ABCD�
containing at most two tuples and each subset of r½ABCD� containing at most two

tuples satisfies the constraints of the view. However, since the projection of a family of

FDs is a family of EGDs ([11, Thm. 6.1]), and since the FDs are precisely the EGDs of

degree two (see summary 6.1) it follows that this reduces to checking the FDs on

�ABCE and �ABCD. The important point to note is that this characterization does not

require that the projected constraints completely axiomatize each view individually.

This has already been observed in the discussion of Definition 5.17. The above result

shows that the projected constraints, taken together, nonetheless suffice to characterize

those of the main schema E2.

In the above example, the whole argument may seem rather trivial, since each

FD of F 2 embeds into one of the views. However, this need not be the case in general.

To illustrate, let E9 be the schema with the single relation R½ABC�, governed by the

FDs F 9 ¼ fA! B; A! C; B! A; C! Ag, and consider the pair f�AB;�BCg of

views. Note that F 9 does not embed into the views. While A! B and B! A embed

into �AB, the FDs A! C and C! A embed into neither view, nor are they implied by

the pair fA! B; B! Ag. Therefore, a nave approach which considers only those

FDs which embed into the views will not deliver the required constraints. Nonetheless,

the decomposition f�AB;�BCg is easily seen to be meet complementary. In the

classical theory, the way to prove this is to find a cover of F 9 (i.e., a set of equivalent

FDs) which does embed into the two views. One such cover is F09 ¼ fA! B; B!
C; B! A; C! Bg. which is easily seen to be equivalent to F 9. The set fA! B;
B! Ag embeds into �AB, while fB! C; C! Bg embeds into �BC.

At first glance, this might seem to contradict the above results. However, it does

not. The reason is, once again, the distinction between classical logical constraints and

minimal-completion rules. Consider a generic ground rule for the FD A! C, with

c1 6¼ c2:

ð�E9

A!CÞ ðfða1; b1; c1Þ; ða1; b2; c2Þg; ;Þ

If A! C were the only constraint in F 9, then both projections of this rule (onto �AB

and onto �BC) would be identity rules. However, rules must take into consideration the

entire constraint set, so in the context of F 9, the projection onto �AB is the denial

ðfða1; b1Þ; ða1; b2Þg; ;Þ in the case that b1 6¼ b2. On the other hand, if b1 ¼ b2, then the

projection onto �BC is the denial ðfðb1; c1Þ; ðb1; c2Þg; ;Þ, in view of the fact that the

FD B! C is implied by F 9. Thus, while the rule �E9

A ! C above represents only

A! C, the semantics of projection defined in Definition 5.13(b) ensure that the

information about the other constraints which must embed into the views is taken into

account automatically. The key point of the above result, in the context of denial rules,
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is that taking this additional information into account does not increase the complexity

of the rules. For sets of FDs, this can of course be proved in a more direct fashion,

since an embeddable cover of a set of FDs is always as set of FDs. However, for more

complex families of constraints, this may not be the case.

Example 5.21 (Difficulties in extension to generating rules). Based upon the strong

result expressed in theorem 5.19 for schemata constrained by denial rules, it is natural to

conjecture that a similar result holds in the presence of generating rules. Unfortunately,

this is not the case. Indeed, for any n 2 IN, there is a schema E10 with the 2-premodel

property, and a meet complementary pair f�101;�102g of views of that schema with

the property that the schema of �102 does not have the k-premodel property for any

k r 2n�1. The example which illustrates this is quite simple. Let n 2 IN, and let A ¼
fai j 1 r i r 2n � 1g be an indexed set of elements. Let b be any element not in A,

and define S ¼ A [ fbg. Regard the elements of A as forming a complete binary tree,

represented in sequential fashion [22, Section 2.2.2]. For each vertex ai with 1 r i r
2n�1, the left child is a2i and the right child is a2iþ1. Conversely, the parent of ai for

i > 1 is abi=2c, with bi=2c denoting n=2 rounded down to the nearest integer. The ele-

ments of S form the syntactic basis for the PF-schema E10; the elements of LDB ðE10Þ
are defined to be precisely those subsets of S which satisfy the following constraints.

(i) A parent vertex of the tree defined by A is in M 2 LDBðE10Þ iff both of its children

are. (Note that one child may be present without the parent.)

(ii) If a1 2 M, then b 2 M as well.

It is easy to see that E10 has the two-premodel property.

Now, define two views of E10. The view �101 has A as the syntactic basis of its

schema E101, with the view mapping M 7! M \ A. In other words, �101 preserves the

tree of A but drops b. For the view �102, define A0 ¼ fai j 2n�1 r i r 2n � 1g, and let

the syntactic basis of the underlying schema E102 be A0 [ fbg, with the view mapping

M 7! M \ ðA0 [ fbgÞ. In other words, �102 preserves b as well as the leaf nodes of the

tree formed by A, but drops all interior nodes of that tree. It is easy to see that

f�101;�102g forms a meet-complementary pair. The meet is the view which keeps just

A0; i.e., the leaf nodes of the tree. It follows that for any M 2 LDBðE10Þ, a1 2 M iff

A0 � M. In light of the constraint identified in (ii) check the rest above, the following

constraint must hold in E10 and so in E102 as well.

(iii) If every element of A0 is in M 2 LDBðE102Þ, then so too is b.

However, this constraint cannot be represented any more succinctly within that view,

since the structure of the interior vertices of the tree is not available. There are no

other constraints on that view. Clearly, this prevents E102 from having the k-premodel

property for any k < 2n�1.
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There is a class of decompositions for which such problems do not occur. These

views have the property that if two view states match on the meet, then so too do all

completions.

Definition 5.22 (Meet uniformity of rules).

(a) A set S � RulesðDÞ is called �3-uniform, or just meet uniform, if whenever

�1; �2 2 S \ GeneratorRulesðDÞ with ���3ðAntcð�1ÞÞ ¼ ���3ðAntcð�2ÞÞ, then for

every M1 2 Cnsqð�1Þ and M2 2 Cnsqð�2Þ, ���3ðM1Þ ¼ ���3ðM2Þ.

(b) For k 2 IN, the schema D is called hk;�3i-uniform if the set MinComplRuleskðDÞ is

�3-uniform.

Before moving on to the main decomposition result, it is necessary to establish a

bound on how large a Fbasis_ or Fskeleton_ for a join-complete set must be, in terms of

the size of its projections to the views of the decomposition.

Lemma 5.23 (Representation of join-complete sets). Let M 2 JDBh�1;�2iðDÞ. Then

there is a set N � M containing at most Cardð���1ðMÞÞ þ Cardð���2ðMÞÞ elements with

the property that JoinComplh�1;�2
iðNÞ ¼ M.

Proof. Begin by partitioning M into three disjoint sets. Let S1 ¼ fa 2 M j �]2ðaÞ ¼
�V2
g, S2 ¼ fa 2 M j �]1ðaÞ ¼ �V1

g, and S3 ¼ fa 2 M j ð�]1ðaÞ 2 SynFnd ðV1ÞÞ and
ð�]2ðaÞ 2 SynFndðV2ÞÞg. (Recall the definition of �V1

from Definition 3.2(c)). In other

words, S1 consists of those elements which project only onto �1, S2 those which

project only onto �2, and S3 those which project onto both �1 and �2. Next, choose

T1 � S1 such that �]1 is injective on T1; that is, a1; a2 2 T1 and �]1ða1Þ ¼ �]1ða2Þ
implies a1 ¼ a2. Similarly, choose T2 � S2 such that �]2 is injective on T2. Thus,

CardðTiÞ ¼ Cardð���iðSiÞÞ for both i ¼ 1 and i ¼ 2. For any Q � S3, call an element

a 2 Q redundant for Q if there are a1; a2 2 Q with a1 6¼ a, a2 6¼ a, and with the

property that �]iðaiÞ ¼ �]iðaÞ for both i ¼ 1 and i ¼ 2. Let T3 � S3 be obtained from S3

by repeatedly removing redundant elements, until there are no more. Clearly ���iðT3Þ ¼
���iðS3Þ for both i ¼ 1 and i ¼ 2. Furthermore, since T3 does not contain any redundant

elements, CardðT3Þ r Cardð���1ðS3ÞÞ þ Cardð���2ðS3ÞÞ. Define N ¼ T1 [ T2 [ T3. Then

CardðNÞ ¼ CardðT1Þ þ CardðT2Þ þ CardðT3Þ r Cardð���1ðS1ÞÞ þ Cardð���2ðS2ÞÞ þ Card
ð���1ðS3ÞÞ þ Cardð���2ðS3ÞÞ r Cardð���1ðMÞÞþ Cardð���2ðMÞÞ. Furthermore, for both i ¼ 1

and i ¼ 2, ���iðNÞ ¼ ���iðMÞ, so JoinComplh�1;�2iðNÞ ¼ M, completing the proof. Ì

Now, the results of Proposition 5.18 and Theorem 5.19 may be extended to the

case of meet-uniform rules.

Proposition 5.24 (View axiomatization via h�1; �2i-models). Let k1 2 IN, k12; k22 2
IN, and assume that D is hk1;�3i-uniform.
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(a) For any M 2 DBðDÞ, M is a h�1; �2i-relative k1-premodel of D iff ���iðMÞ is a k1-

premodel of Vi for both i ¼ 1 and i ¼ 2.

(b) If V1 has the ðk1; k21Þ-boundedness property, and V2 has the ðk1; k22Þ-boundedness

property, then D has the h�1; �2i-relative ðk1; k21 þ k22Þ-boundedness property.

Proof. To show part (a), let M 2 DBðDÞ have the property that ���1ðMÞ is a k1-

premodel of V1 and ���2ðMÞ is a k-premodel of V2, and let N � M with CardðNÞ r k1.

Then for both i ¼ 1 and i ¼ 2, Cardð���iðNÞÞ r k1 as well, so using the fact that ���iðMÞ
is a k1-premodel, choose Pi 2 MinComplV1

ð���iðNÞÞ with Pi � ���iðMÞ for i ¼ 1 and

i ¼ 2. Since D is �3-uniform, it follows that �h�1;�3iðP1Þ ¼ �h�2;�3iðP2Þ, so ð���1 �
���2Þ
�1 ðP1;P2Þ 2 LDBðDÞ. For notational convenience, define P ¼ ð���1 � ���2Þ

�1ðP1;P2Þ.
Since Pi � ���iðMÞ for both i ¼ 1 and i ¼ 2, it follows that P � JoinComplh�1;�2iðMÞ.
Hence, P 2 FullComplDðNÞ. It is furthermore the case that P 2 MinComplDðNÞ.
Indeed, if P0 2 MinComplDðNÞ with P0 � P, then ���iðNÞ � ���iðP0Þ � ���iðPÞ for both i ¼
1 and i ¼ 2, and since ���iðPÞ ¼ Pi 2 MinComplVi

ð���iðNÞÞ, it follows that ���iðP0Þ ¼
���iðPÞ ¼ Pi for both i ¼ 1 and i ¼ 2, whence P ¼ P0. Finally, set P00 ¼ M \ P to

obtain P00 � M with JoinComplh�1;�2iðP00Þ 2 MinComplDðNÞ. The converse follows

immediately from Lemma 5.16(a).

To show part (b), first note that by assumption, CardðPiÞ r k2i for i ¼ 1 and

i ¼ 2. Then, rather than choosing P00 ¼ M \ P, use Lemma 5.23 to construct a P00 with

CardðP00Þ r k21 þ k22 and JoinComplh�1;�2iðP00Þ ¼ P. Ì

Theorem 5.25. For any k 2 IN, if D is �3-uniform and has the h�1; �2i-relative k-

premodel property, then MinComplRuleskðDÞ is a h�1; �2i-embeddable axiomatization

of D.

Proof. The proof follows immediately from Proposition 5.24 and Lemma

5.16(a)+(c). Ì

Discussion 5.26 (The applicability of meet uniformity). The results of Proposition

5.24 and Theorem 5.25 provide an extension of those of Proposition 5.18 and Theorem

5.19 in a context of relatively strong independence of the two views comprising the

meet-complementary pair. Unfortunately, it fails to supports a level of independence

which is adequate in some practical situations. For example, let E11 be the relational

schema constrained by the single relation R½ABCDE�, together with the JD ffl
½ABC;CDE� and the two inclusion dependencies R½A� � R½B� and R½D� � R½E�. It is

easy to see that the pair f�ABC;�CDEg forms a meet-complementary pair, since

R½A� � R½B� embeds in �ABC and R½D� � R½E� embeds in �CDE. Yet, this

decomposition is not meet uniform, since the two inclusion dependencies may

generate essentially arbitrary values for attribute C.

As shown in example 5.21, in the presence of generating rules, it is nonetheless

necessary to exercise some control over the nature of the meet. What seems to be
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necessary is a way to distinguish the inconsequential additions to it made by the

inclusions dependencies of E11 from the clever encoding of information which is

illustrated by the example of example 5.21. The development of a theory which

addresses this distinction in a general way must be left as a topic for future research.

However, as a first step in this direction, in the next section, it is shown that for

situations involving the relational model which include E11, it is possible to charac-

terize, in a very useful way, characteristics which a meet-complementary decompo-

sition imposes upon the constraints of the schema.
The results of Proposition 5.18 and Theorem 5.19, as well as Proposition 5.24

and Theorem 5.25, extend those of [21] in a significant way. In that paper, the focus

was on the complexity of verifying the correctness of updates on a view. So rather

than identifying the complexity of an embedded cover of the constraints of the main

schema, only the complexity of verifying that a proposed state of the view schema is

correct, under the assumption that the state of the complement is already correct, was

established (as 4.14 of that paper). Knowledge of the complexity of the embedded

cover provides more information. These ideas are formalized in the following, for both

the k-submodel and k-premodel contexts.

Definition 5.27 (The relative generalized submodel property). Suppose that �1 is to

be updated with constant-complement �2. According to [20, 3.10] (see also the

summary in Summary 2.1 of this paper), the allowable updates are precisely those

which hold the meet �1 ^ �2 ¼ �3 constant. Therefore, when performing such an

update, it is known that for any proposed new state M 2 DBðV1Þ, its projection onto �3

is already legal; i.e., �h�1;�2iðMÞ 2 LDBðV3Þ. This information may be used to

reduce substantially the number constraints which need to be checked; the following

definitions formalize these concepts.

Let k 2 IN and let i 2 f1; 2g. The ideas below generalize the those of [21, 4.13]

for k-premodels and k-submodels.

(a) The database M 2 DBðViÞ is called �3-legal if �h�i;�3iðMÞ 2 LDBðV3Þ, and it is

called a �3-relative k-premodel (resp. �3-relative k-submodel) for Vi if it is both

�3-legal and a k-premodel (resp. k-model) of Vi.

(b) The view �i ¼ ðVi; �iÞ has the �3-relative k-premodel property (resp. �3-relative
k-submodel property) if, for every M 2 DBðViÞ, the condition M 2 LDBðViÞ holds

iff M is a generalized �3-relative k-premodel (resp. a generalized �3-relative

k-model) for Vi.

The next and final theorem of this section establishes formally that the complexity of

testing updates on �1, with �2 held constant, is defined by the generalized �3-relative

k-submodel property on V1, even in the case that the full schema V2 itself has a much

higher degree of complexity for its set of constraints.

S. J. Hegner / Complexity of embedded axiomatization 77



Theorem 5.28 (Relative complexity for view updates under closed strategies). Let

k 2 IN.

(a) If D has the h�1; �2i-relative k-submodel property, then both �1 and �2 have the

�3-relative k-submodel property.

(b) If D is �3 uniform and has the h�1; �2i-relative k-premodel property, then both

�1 and �2 have the �3-relative k-premodel property.

Proof. The proof follows directly from Theorem 5.19 and Theorem 5.25. Ì

6. An application within the relational framework

In the classical relational theory Y as well as in practice Y the two most important

types of dependencies are the functional dependencies and the inclusion dependencies.

The latter are central to the modelling of foreign-key constraints, which are a part of

standard SQL and virtually all modern database-management systems. While the theory

of the previous section provides very strong results for schemata constrained by func-

tional dependencies (since they satisfy the two-submodel property), it does not provide

any results for inclusion dependencies, since they are neither universal (and so do not

satisfy the k-submodel property for any k), nor do they define meet-uniform minimal

completions (and so Theorem 5.25 does not include schemata which are constrained

by them).

Given the importance of these families of constraints, it is essential for any

theory of decomposition to address schemata and decompositions in which they occur.

In this section, the question of the complexity of view axiomatization is addressed for

multi-relation schemata constrained by EGDs and an important subset of the implica-

tional dependencies called fanout-free unary inclusion dependencies (fanout-free

UINDs). This class of inclusion dependencies is nonetheless quite powerful; in

particular, it is sufficient to model foreign-key constraints. Using ideas reported in [7],

which show that EGDs and UINDs essentially decouple from one another in terms of

inference, it is established that in the context of a meet-complementary decomposition

defined by projections of the component relations, if the main schema is constrained

by a combination of EGDs of degree at most k and fanout-free UINDs, then to verify

that a candidate database of the main schema is legal, it suffices to check that the

decomposed components each satisfy all embedded EGDs of degree at most k, as well

as all embedded UINDs. In particular, if the EGDs are FDs, then it suffices to check

that the both components of the decomposition satisfy all embedded FDs as well as all

embedded UINDs.

Summary 6.1 (EGDs and UINDs). The topic of dependencies on relational databases

has been studied extensively, if not exhaustively [27]. Therefore, the discussion here is

limited to establishing notation and nonstandard conventions.
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It is assumed that there is a finite set U of attributes, as well as a finite set of

relation symbols fRi j 1 r i r ng. With each relation symbol is associated a Ui � U,

with Ui \ Uj ¼ ; for i 6¼ j and [n
i¼1Ui ¼ U. There is also an infinite set DomðUÞ called

the universe of domain values. Following standard conventions, a tuple over Ri is a

function t : Ui ! DomðUÞ, and a relation for Ri is a finite set of tuples over Ri. A

database is just a set of relations, one for each Ri. Sets of attributes are often written

linearly, so R½ABC� is shorthand for R½fA;B;Cg�.
The universal dependencies (i.e., those dependencies which are representable

using logical formulas involving only universal quantifiers) which are used in this

work are called full implicational dependencies (FIDs) [7], or sometimes just

implicational dependencies (IDs) [11, 23]. These include the functional dependencies

(FDs) and join dependencies (JDs) which are ubiquitous in the relational theory. The

three references just cited all give readable summaries of these constraints, so there is

no need to repeat them here. Suffice to say that they are always unirelational (that is,

they apply to only one relation), and they are always typed; that is, they can make

comparisons of tuples only between entries in the same column. Because they are used

fundamentally in the results developed in this section, it is perhaps appropriate to say a

bit more about the equality-generating dependencies (EGDs) [26, Section 3.6], [1,

10.1]. Such dependencies take the following general form:

ð8:ÞÞððt1^ t2^ . . . ^ tnÞ ) "Þ
The terms on the left-hand side are (constant-free) atoms in the language of the

relations, while the right-hand side is an equality of two of the variables from the left-

hand side. As an example, here is the formula for the functional dependency A! B on

R½ABC�.
Rðx1; y1; z1Þ^Rðx1; y2; z2Þ ) ðy1 ¼ y2Þ

The degree of an EGD is the number of atoms which occur on the left-hand side of the

defining formula. The FDs are precisely the EGDs which can be expressed with degree

two, and so a relational schema constrained by EGDs has the two-submodel property

iff it has a basis consisting of FDs. Although EGDs which are not FDs exist and are

not difficult to construct, it is not clear that they have any practical use. Nonetheless,

since the theory developed here supports them with no additional effort, and since the

inclusion of EGDs in fact shows more clearly how the complexity patterns behave,

they are retained in their full generality.

To follow the constructions below (particularly in Lemma 6.16 and Lemma

6.19), it is essential to understand in detail what is meant by a typed constraint. By

way of example, the following constraint is not typed, because it compares values in

two different columns,

Rðx1; y1; z1Þ^Rðy2; x1; z2Þ ) ðy1 ¼ y2Þ
and the following is not typed because it equates values in two different columns.

Rðx1; y1; z1Þ^Rðx1; y2; z2Þ ) ðy1 ¼ z2Þ
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The family of inclusion dependencies (INDs) is neither typed nor universal. In its

most general form, for Yi � Ui and Yj � Uj, the inclusion dependency Ri½Yi� � Rj½Yj�
stipulates that for every tuple r in the instance of Ri, there is a tuple s in the instance of

Rj for which r½Yi� ¼ s½Yj�. In their general form, INDs are very complex. For example,

it is known that the inference problem for INDs and FDs together is undecidable [6].

For this reason, various subfamilies of the INDs have been studied as well. For this

work, the most important is the unary INDs (UINDs), in which both Yi and Yj are

restricted to contain just one attribute. For UINDs, various associated inference

problems are not only decidable, but of reasonable complexity as well. Furthermore,

and central to this paper, in the associated inference problem, the effects of the INDs

and other dependencies (IDs, etc.) can be essentially Fdecoupled_ [7]. Since each

attribute occurs in exactly one relation, the UID Ri½Yi� � Rj½Yj� may be unambigu-

ously abbreviated to just Yi � Yj. However, since the symbol F�_ is already

overloaded mathematically, the alternate notation Yi v Yj using the squared inclusion

symbol will be used in the presentation which follows. (More precisely, since Yi ¼
fAig and Yj ¼ fAjg are singletons in the case of UINDs, the resulting notation is just

Ai v Aj.) Occasionally, the notation Aj w Ai will be used; it has the same meaning as

Ai v Aj. Similarly, Ai v Aj v Ak means that both Ai v Aj and Aj v Ak hold.

There is one further point of framework to be made. In much of the classical

theory of dependencies, it is further assumed that DomðUÞ is partitioned into disjoint

sets fDomðAÞ j A 2 Ug, with a tuple entry for attribute A restricted to take values from

DomðAÞ. In the context of typed dependencies, this makes complete sense. However,

since inclusion dependencies are not typed, this convention cannot be used here.

Rather, the same domain value must be permitted in different columns, both of the

same relation and of different relations. All that can be said is that DomðAÞ � DomðUÞ
for each A 2 U.

Finally, it is appropriate to recall a point of notation. If � is a set of constraints of

some type T (e.g., FIDs, UINDs, EGDs, FDs, etc.), then �þ is used to denote the set of

all constraints of that same class which are consequences of those in �. For the

purposes of this paper, this will always mean finite implication. See Lemma 6.7 below

for more details.

Discussion 6.2 (Projections of EGDs). The theory developed here is based upon views

of relational schemata which are defined by projections of relations onto subsets of

their attributes. The problem of characterizing the dependencies on a view is called the

implied constraint problem [24], of which there are two dimensions. On the one hand,

there is the aspect of complexity; as illustrated by the example of example 1.1, the

constraints on the view may be far more complex than those on the main schema. On

the other hand, there is the aspect of form. Again, the example of Example 1.1 illus-

trates this, showing that the projection of a family of FDs need not be characterized by

FDs.

The main result on form which is needed in this paper states that the

projection of a family of EGDs is always characterized by a family of EGDs [11,
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Thm. 6.1]. In other words, if the main schema is constrained by EGDs, and the view is

a projection, then the view schema has a basis for its constraints consisting entirely of

EGDs.

Definition 6.3 (Single relation EGD-schemata and their views and decompositions).

While the theory developed here applies to multi-relation schemata, such schemata are

constructed by assembling a set of single-relation schemata, each with its own set of

EGDs, and then imposing a common set of UINDs. Therefore, it is appropriate to

begin with a careful definition of single-relation schemata.

(a) A single-relation EGD-schema is a pair ðR½U�;�Þ in which R is a relation name on

attribute set U and � is a finite set of EGDs on R½U�.

(b) Given a single relation EGD-schema R ¼ ðR½U�;�Þ and W � U, the (projection)
view defined by W is �W ¼ ððR½W�; �Wð�ÞÞ; �WÞ. �Wð�Þ is the projection of the

constraints � onto W, and �W : R½U� ! R½W� is the projection mapping of R from

the attributes of U to the attributes of W.

Although it is often the case that the EGDs of the schema will ensure that the

decomposition is lossless (that the EGDs define a lossless decomposition was a

requirement in the earlier work [21]), it is not necessary to so require. As expressed in

general form in Definition 4.6, the dependency which defines the reconstruction may

be specified separately. By its nature, this dependency is not embeddable in the views.

In the single-relation case, it is always a join dependency; the following definition

makes this explicit.

(c) A single-relation EGD-schema with JD is a triple ðR½U�;�;ffl ½W1;W2�Þ in which

ðR½U�;�Þ is a single-relation EGD-schema and ffl ½W1;W2� is a full join

dependency on U; i.e., W1;W2 � U with W1 [W2 ¼ U. The possibility that

either of W1 and W2 is empty, or that W1 \W2 ¼ ;, is not excluded.

(d) The single-relation EGD-schema with JD ðR½U�;�;ffl ½W1;W2�Þ defines a meet-
complementary pair if f�W1

;�W2
g forms a meet-complementary pair of views of

ðR½U�;�Þ.

Everything about EGD-schemata is decidable and constructible by algorithm, as

shown by the next result.

Proposition 6.4 (Algorithmic construction of covers for EGDs). Let R ¼ ðR½U�; �;ffl
½W1;W2�Þ be a single-relation EGD schema with JD which defines a meet-com-

plementary pair f�W1
;�W2

g, and let k 2 IN.

(a) R has the f�W1
;�W2

g-relative k-submodel property iff � has a basis consisting of

EGDs of degree at most k.
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(b) It is decidable whether or not R has the f�W1
;�W2

g-relative k-submodel property.

(c) If R has the f�W1
;�W2

g-relative k-submodel property, then it is possible to

construct a set � of EGDs of degree no more than k with the property that � [ fffl
½W1;W2�g and � [ fffl ½W1;W2�g are equivalent sets of dependencies (for finite or

infinite relations).

Proof. To establish (a), let �0 be the set of all EGDs on R which are of degree at

most k, and which are consequences of those in �. Note that �0 is a finite set, up to

renaming of variables, since the number of distinct patterns of equality of variables on

the left hand side is finite. Now, let M 2 DBðDÞ satisfy all dependencies in �. Then, M
is a h�1; �2i-relative k-submodel, by construction, and hence a model. Thus, �0 itself

must be a basis for �, as required.

For (b), let �00 be the set of all EGDs on R which are of degree at most k. This is

a finite set, for the same reason as �0 above is Y there are only a finite number of

possible patterns for the left hand side of such a constraint. Now, for each such

constraint ’ 2 �00, simply test to see whether � � ’, using any of the standard in-

ference procedures for data dependencies, such as the chase of [4] or the resolution-

like procedure of [14]. Since these are all universal dependencies, inference for infinite

and finite relations are equivalent. Part (c) follows immediately from this. Ì

Definition 6.5 (Multi-relation EGD-schemata and their views and decompositions) In

part (a) below, a multi-relation EGD schema is nothing more than a suitably presented

collection of single-relation EGD schemata. In part (b), a common set of (inter-

relational) UINDs is imposed on top of this to obtain the formalization of the schemata

to be investigated in this section.

(a) A multi-relation EGD-schema with JDs is a set fðRi½Ui�;�i;ffl ½W1i; W2i�Þ j 1 r
i r ng in which ðRi½Ui�;�i;ffl ½W1i;W2i�Þ is a single-relation EGD-schema for

1 r i r n, and the attributes are pairwise disjoint, in the precise sense that for

i 6¼ j, Ui \ Uj ¼ ;.

(b) A multi-relation EGD-schema with JDs and UINDs is a pair ðfðRi½Ui�;�i;ffl ½W1i;
W2i�Þ j 1 r i r ng;�UINDÞ in which fðRi½Ui�;�i;ffl ½W1i;W2i�Þ j 1 r i r ng is a

multi-relation EGD schema with JDs and �UIND is a set of UINDs on these

relations.

Discussion 6.6 (Axioms of inference for UINDs in the presence of FIDs). As already

remarked in summary 6.1, the interaction of FIDs and UINDs is minimal. The

following inference rules, from [7]; apply to single-relation schemata constrained by

FIDs and UINDs. (Since both EGDs and JDs are FIDs, these rules apply to the context

of this paper.) They are presented in the standard format in which the preconditions of

the rule are presented above the horizontal line, with the consequences below it.
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(a) Reflexivity and transitivity of UINDs:

ðrt-uidÞ A v A

A v B B v C

A v C

(b) The cycle rule for FDs and UINDs on finite databases:

ðcy-uidÞ
C0 ! C1 C1 w C2 . . . Cm�1 ! Cm Cm w C0

C1 ! C0 C2 w C1 . . . Cm ! Cm�1 C0 w Cm

The cycle rule is peculiar to the context of finite databases, and does not apply in

the infinite case. It is best understood in terms of a special case. Suppose that both

C0 ! C1 and C1 v C0 hold. For a relation r which satisfies these constraints, The FD

forces Cardð�C1
ÞðrÞ r Card�C0

ðrÞÞ, while the UIND forces Cardð�C0
ÞðrÞ r Cardð�C1

ðrÞÞÞ. Thus, Cardð�C0
ÞðrÞ ¼ Cardð�C1

ðrÞÞÞ, and combined with the inclusion implied

by the UIND, this forces the two sets to be equal, thus implying C1 ! C0 and

C0 v C1. The rule (cy-uid) states this idea in a more general form in which the FDs

and UINDs may chain over several relations. This is the only way in which FIDs may

combine with UINDs to form new constraints of either class. A formalization of these

ideas is given next.

Lemma 6.7 (Decoupling of FIDs and UINDs). Let ðR½U�;�Þ be a single-relation

schema in which � ¼ �FID [�UIND ; with �FID a set of FIDs, and �UIND a set of UINDs,

both taken over the attribute set U. Let ’ be any FID or UIND over R½U�.

(a) � �f ’ holds iff � ‘ ’ may be established using standard inference rules for FIDs

(such as the chase [4] or the resolution-like inference procedure of [14]), together

with the rules (rt-uid) and (cy-uid) given in Discussion 6.6.

(b) Using this proof procedure, it is decidable whether or not � �f ’ holds.

Here, �f denotes finite implication; that is, implication when the models are finite

relations, and ‘ denotes deduction via the above-mentioned proof procedures.

Proof. See [7, Corollary 5.3]. Note in particular that this result applies to finite
models, which is exactly the framework used here. Ì

Definition 6.8 (Product-relation EGD schemata and EJU/EGD-schemata). The results

identified in Lemma 6.7 above apply in the context of single-relation schemata, while

the focus of investigation here is multi-relation schemata. The easiest remedy to this

problem is to recast (temporarily) the framework of this section into a single-relation

format. In this process, a minor additional constraint will be imposed.

The idea is simple Y just form the Cartesian product of the component relations

using the so-called cross dependency ffl ½U1; . . . ;Un�, which is just a join dependency

in which there are no common columns of the component attributes. More precisely,
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let R ¼ ðfðRi½Ui�;�i;ffl ½W1i;W2i�Þ j 1 r i r ng;�UINDÞ be a multi-relational EGD-

schema with JDs and UINDs.

(a) The product-relation EGD schema with JDs and UINDs corresponding to R is

ðmegdÞ ðR1½U1� � . . .� Rn½Un�;
�[n

i¼1

�i

�
[ �UIND[
fffl ½W1i;W2i� j 1 r i r ng [ fffl ½U1; . . . ;Un�gÞ

It is important to note in the above that the JDs in fffl ½W1i;W2i� j 1 r i r ng
may be viewed as full (as opposed to embedded) dependencies. This is true

because the embedding is into a Cartesian product, and each JD lies in one

component of this product. Indeed, define Wi ¼
S

i6¼jðW1j [W2jÞ, and then

replace ffl ½W1i;W2i� with ffl ½W1i [Wi;W2i [Wi�. In the presence of ffl ½U1;
. . . ;Un�, these two constraints are equivalent, with the latter being an FID. Thus,

all of the constraints, save for those in �UIND, are FIDs.

There is a small complication; namely, this approach will not work if some

of the relations are empty and others are not. One way around this, taken in [12],

is to add a special tuple to each relation, and require that these special tuples

always be present. Here, a simpler approach is taken, in which the requirement is

imposed that if one relation is nonempty, then they all must be nonempty. In

practice, this is hardly a serious drawback, since relations in real databases are

almost never empty.

(b) Define the uniform nonemptiness-emptiness constraint ’UNE for R to be that

which states that for all i 2 f1; 2; . . . ; ng, it is either the case the the instance of

every Ri is empty, or else the case the instance of every Ri is nonempty.

(c) The uniform nonemptiness-emptiness schema corresponding to R is

ðeju=egdÞ ðfðRi½Ui�;6i;ffl ½W1i;W2i�Þ j 1 r i r ng;6UIND[f’UNEgÞ

(d) A multi-relation EGD-schema with JDs and UINDs and with the uniform non-
emptiness-nonemptiness constraint is exactly a schema of the above form. For

convenience, such a schema will also be called an EJU/EGD-schema.

Theorem 6.9 (Constraint interaction on EJU/EGD-schemata). Let R be an EJU/EGD-

schema of the form given in (eju/egd) of Definition 6.8. Then it is possible to

construct, by algorithm, finite sets of constraints f�01;�02; . . . ;�0n;�
0
UINDg with the

following properties.
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(a) With R0 defined as

ðfðRi½Ui�;60i;ffl ½W1i;W2i�Þ j 1 r i r ng;60UIND[f’UNEgÞ

it is the case that LDBðRÞ ¼ LDBðR0Þ.

(b) For each i 2 f1; 2; . . . ; ng, if ’ is an EGD on Ri with ðð
Sn

i¼1�Þ [ �UINDÞ �f ’,

then �0i �f ’.

(b) If ’ is a UIND on
Sn

i¼1Ui and ðð
Sn

i¼1�Þ [ �UINDÞ �f ’, then ’ 2 �0UIND.

Proof. Follows directly from Lemma 6.7 and the equivalence between product Y and

multiple-relational schemata developed in Definition 6.8. The only point of concern is

the effect of the join dependencies. However, according to [5, Lemma 7], the join

dependencies in fffl ½W1i [Wi;W2i [Wi� j 1 r i r n2g [ fffl ½U1; . . . ;Un�g cannot

cause any additional EGDs to be generated that would not already be generated by the

EGDs alone. Since UINDs and EGDs only interact via FDs, it follows that the JDs are

inconsequential in terms of constructing the �0i’s and �0UIND. Ì

Notation 6.10 (Notational and constraint-format convention). For the rest of this

section, unless stated specifically to the contrary, R will be taken to be an EJU/EGD-

schema of the form shown in (eju/egd) of Definition 6.8. For the sake of convenience,

it will also be assumed that the �i’s and �UIND satisfy the conditions identified in

Theorem 6.9 above. In particular, �UIND will contain all UINDs which govern the

schema.

Also, since the context �UIND is fixed, for A1;A2 2 U, the statement A1 v A2 will

be used as an abbreviation for the more cumbersome A1 v A2 2 �UIND.

Notation 6.11 (Notation for the views and decomposition of an EJU/EGD schema).

In the general context of the previous sections, the decomposition of the main schema

D was denoted f�1;�2g, with the meet of this meet-complementary pair denoted �3.

Similarly, a standard notation will be used for the relational case considered here. The

component views of the EJU/EGD schema R will be denoted f��1ðRÞ;��2ðRÞg. These

two will be taken to be a meet-complementary pair, with meet ��3ðRÞ. More formally,

proceed as follows.

(a) For i 2 f1; 2g, define the schema

�iðRÞ ¼
n
ðRi½Wij�; �Wij

� [n

m¼1

ð�imÞ [ �UINDÞ
�

1 j 1 r j r n
o

(b) Define the schema

�3ðRÞ ¼
n
ðRi½W1i\W2i�; �W1i \ W2i

� [n

m¼1

ð�imÞ [ �UINDÞ
�
j 1 r j r n

o
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At this point, the sets of the form �Zð
Sn

m¼1ð�imÞ [ �UINDÞ are simply some

representation of the constraints which project from R. It remains to characterize

their exact nature.

(c) For i 2 f1; 2g, the mapping �R
i : R! �iðRÞ is just the collection of the pro-

jections f�Wi
: R½Uj� ! R½Wij� j 1 r j r ng. For i ¼ 3, �R

3 : R! �3ðRÞ is f�W3
:

R½Uj� ! R½W1j \W2j� j 1 r j r ng.

(d) For i 2 f1; 2; 3g, the view ��iðRÞ ¼ ð�iðRÞ; �R
i Þ.

(e) For i 2 f1; 2g, define Ui ¼
Sn

j¼1Wij, and define U3 ¼ U1 \ U2. Furthermore, for

i 2 f1; 2; 3g, let U
�ii ¼ U n Ui,

Notation 6.12 (Further notational convention). Unless stated specifically to the

contrary, throughout the remainder of this section, f��1ðRÞ;��2ðRÞg will be assumed to

be a meet-complementary pair, with meet ��3ðRÞ.

Definition 6.13 (The graphs of �UIND). The family �UIND defines a directed graph in a

natural way, with the vertices the attributes in U. An edge from A1 to A2 in this graph

corresponds to A1 v A2, provided that this dependency cannot be inferred by tran-

sitive closure. In other words, the graph defines a minimal Fskeleton_ of the UINDs,

from which the others may be derived via the transitivity rule of (rt-uid) of Discussion

6.6.

(a) Formally, the graph of �UIND, denoted Graphð�UINDÞ, is defined as follows.

(i) The set of vertices of Graphð�UINDÞ is just U, the set of all attributes over the

relations.

(ii) For A1;A2 2 U, there is a (directed) edge from A1 to A2 precisely in the case

that A1 v A2 and, for all A3 2 U with the property that A1 v A3 v A2, either

A1 ¼ A2 or else A2 ¼ A3. Write A1	 A2 to indicate that there is an edge from

A1 to A2 in Graphð�UINDÞ.

It is important to be able to classify attributes (qua vertices) according to the pro-

jections in which they lie. The following provides a convenient notation for this.

(b) For i 2 f1; 2; 3; �11; �22; �33g and A 2 U, A is an ðiÞ-vertex precisely in the case that

A 2 Ui.

The graph Graphð�UINDÞ may contain cycles, and it is important to have a means of

grouping the corresponding vertices together, since they will all have exactly the same

projection in any legal database. The reduced graph of �UIND collapses Graphð�UINDÞ
by collecting such equivalent vertices into one.

(c) The vertices A1;A2 2 U are equivalent if both A1 v A2 and A2 v A1 hold. The

equivalence class of A1 under this relation is denoted ½A1�.
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(d) The reduced graph of �UIND, denoted ½Graph�ð�UINDÞ, is defined as follows.

(i) The set of vertices of Graphð�UINDÞ is just f½A� j A 2 Ug. Denote this set by

½U�.

(ii) For ½A1�; ½A2� 2 ½U�, there is a (directed) edge from ½A1� to ½A2� precisely in the

case that ½A1� 6¼ ½A2� and B1 	 B2 in Graphð�UINDÞ for some B1 2 ½A1� and

B2 2 ½A2�. Write ½A1� 	 ½A2� to indicate that there is an edge from ½A1� to ½A2�
in ½Graph �ð�UINDÞ.

The identification process of (b) above extends to the reduced graph, but two

possibilities must be considered. The first occurs when some element from the

equivalence class lies in a given region, and the other when all elements from that

equivalence class do.

(e) For i 2 f1; 2; 3; �11; �22; �33g and ½A� 2 ½U�, A is an ð9iÞ-vertex in the case that some

B 2 ½A� is an ðiÞ-vertex in Graphð�UINDÞ, and a ð8iÞ-vertex in the case that every

B 2 ½A� is an ðiÞ-vertex in Graphð�UINDÞ.

Definition 6.14 (Fanout-free families of UINDs). To realize the main result of this

section, it is necessary to place a restriction on the form of allowed family of UINDs.

The requirement stipulates that there cannot be branching in the forward direction.

Formally, the condition is formulated as follows.

(a) The set �UIND is fanout free if for any A1;A2;A3 2 U, if both A1 v A2 and A1 v A3

hold, then one of A2 v A3 or A3 v A2 holds as well.

It does not appear that restricting consideration to fanout free systems of UINDs is a

significant limitation in practice. Consider in particular the ubiquitous foreign-key
constraints or referential integrity constraints [10, Section 5.2.4]. The inclusion A2 v
A1 may be used to model the situation in which A2 of (R2, say) is a foreign key to the

primary key A1 (of R1, say). There may certainly be another relation (R3, say) with a

foreign key A3 which also references the primary key A1 of R1. Fanout freeness does

not prohibit this. What it would prohibit would be a situation in which a foreign key

had to be a subset of two distinct primary keys, but this is not part of traditional

database modelling.

Of course, primary keys consisting of more than one attribute are allowed in

existing database systems, although they are relatively uncommon. These are not

modellable directly within the framework developed here, although in real instances of

such, the multiple attributes could likely be lumped into one, for the purposes of

modelling the dependencies of the schema.

Definition 6.15 (Meet-free traversals and meet-situated ancestors and descendants).

The question of which UINDs may be allowed and which must be prohibited in a
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meet-complementary decomposition is now considered. The only type of UIND which

is does not obviously embed into one of the two component views of the

decomposition is one which connects an attribute in U
�22 to one in U

�11; that is, one

whose two attributes lie in opposite views, with neither lying in the meet. (More

precisely, these two attributes cannot be equivalent to any which lie in the meet.) The

formalization of this situation is as follows.

(a) The edge A1	A2 of Graphð�UINDÞ defines a meet-free traversal from ��1ðRÞ to

��2ðRÞ if one of the following two conditions is satisfied.

(i) ½A1� is a type ð8�22Þ-vertex and ½A2� is a type ð8�11Þ-vertex of ½Graph�ð�UINDÞ.

(ii) ½A1� ¼ ½A2�, A1 is a ð�22Þ-vertex, A2 is a ð�11Þ vertex, and for all B 2 ½A1�, B is

either a ð�11Þ-vertex or else a ð�22Þ-vertex of ½Graph�ð�UINDÞ.

(b) A meet-free traversal from ��2ðRÞ to ��1ðRÞ is defined analogously.

The goal is to show that meet-free traversals cannot occur in the case that

f��1ðRÞ;��2ðRÞg is a meet-complementary pair. The idea is simple. If A1 	 A2 defines

a meet-free traversal from ��1ðRÞ to ��2ðRÞ, and M 2 LDBðRÞ, then there is an a 2
�A1
ðMÞ which must necessarily be in �A2

ðMÞ as well. Now, replace this a with some

b 2 DomðUÞ which does not occur in M to obtain a new model M0. Then, consider

M00 ¼ ð�R
1 � �R

2 Þ
�1ð�R

1 ðMÞ; �R
2 ðM0ÞÞ which must also be in LDBðRÞ, since it is

constructed from the appropriate view projections of M and M0. It is clear that M00

cannot satisfy A1 v A2, whence a contradiction is obtained. Thus, such a meet-free

traversal cannot occur, and so there must be a basis of the UINDs which embed in the

views of the decomposition.

Unfortunately, there is a flaw in the above argument. Namely, when a is replaced

by b, this may change the state of the meet view ��3ðRÞ, since a may have been visible

there as well, due to the presence of other UINDs. Such a change would render the pair

ð�R
1 ðMÞ; �R

2 ðM0ÞÞ join incompatible, and prevent the construction of M00. Fortunately,

there is a way to ensure that this does not happen. The details are now presented.

Informally, a minimal proper meet-situated ancestor of A1 is a predecessor of A2

(i.e., A2 v A1 which lies in the meet ��3ðRÞ, with the additional constraint that no

attribute Fbetween_ between A2 and A1 has this property. A minimal proper meet-

situated successor is defined dually; i.e., in the opposite direction of inclusion. It

should be noted that a minimal proper meet-situated successor must be unique, if it

exists, due to the fanout-freeness condition.

In the definitions below, let i 2 f1; 2g, and let A1 2 U
�ii.

(c) A2 is a minimal proper meet-situated ancestor of A1 if the following conditions are

met.

(i) A2 v A1.

(ii) A2 is a ð3Þ-vertex; (i.e., A2 lies in the meet ��3ðRÞ).
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(iii) Whenever A2 v A3 v A1 holds with ½A1� 6¼ ½A3� 6¼ ½A2�, it must be the case

that ½A3� is a ð8�33Þ-vertex; (i.e., A2 does not lie in the meet ��3ðRÞ).

(d) A2 is a minimal proper meet-situated successor of A1 if conditions identical to (i)-

(iii) above, save that all instances of F v _ are replaced with Fw_, are met.

Now, the first of three lemmata which lead to the construction of the

contradictory database M00 of Definition 6.15 is presented.

Lemma 6.16. Assume that �UIND is fanout free, let i 2 f1; 2g, and let A1;A2 2 U with

A1 	 A2 a meet-free traversal from �iðRÞ to �2�iðRÞ. Let M 2 DBðDÞ, and let a 2
DomðUÞ be such that the following conditions are satisfied on M.

(i) a 2 �A1
ðMÞ.

(ii) For no minimal proper meet-situated ancestor B of A2 is it the case that

a 2 �BðMÞ.

(iii) For any minimal proper meet-situated successor B of A2, there exists b 2 �BðMÞ
with b 62 �A2

ðMÞ.

Then it cannot be the case that M 2 LDBðRÞ.

Proof. To begin, assume that M 2 LDBðRÞ; it will be shown that this assumption is

contradictory. The idea is to replace a by b in certain place in M to obtain a new

M0 2 LDBðRÞ with the properties that �U3
ðMÞ ¼ �U3ðM0Þ and M0 2 LDBðRÞ iff

M 2 LDBðRÞ. In particular, it will be the case that �U3
ðMÞ ¼ �U3

ðM0Þ.
First of all, since it is assumed that M 2 LDBðRÞ, it must be the case that

a 2 �A2
ðMÞ, since the UIND A1 v A2 holds. Now assume that A2 has a minimal proper

meet-situated successor B. In view of the fanout-freeness assumption, all such

ancestors must lie in the same equivalence class ½B�. Choose b 2 �BðMÞ n �A2
ðMÞ;

such an element is guaranteed by (iii) above. Let ½A2� ¼ ½B1� 	 ½B2� 	 . . . 	 ½Bn� ¼ B
be the path in ½Graph�ð�UINDÞ from ½A2� to ½B�, and let ½Bi� be the last element in this

path with b 62 DomðBiÞ. Now, to obtain M0 from M, for all attributes C 2 U with

C v Bi, replace all occurrences of a with b in the C position of all tuples containing

that attribute with value a. (Note that this replacement procedure includes Bi in

particular.)

If A2 does not have a minimal proper meet-situated successor, then simply

choose b to be any any domain element which does not already occur in M, and

replace all occurrences of a by b in M to obtain M0.
Note four things. First of all, for tuple t and A 2 U in which t½A� is changed from

a to b, the value a did not occur as the A-value of any other tuple t0 of M. Thus, this

replacement cannot force any of the EGDs or the JDs to become unsatisfied, since

these constraints are all typed. Within attribute A, this replacement amounts to a

simple renaming. Second, all of the UINDs remain satisfied, just by construction.
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Third, by the assumption of (ii) above, none of these changes is visible in the meet

�U3
ðRÞ. Finally, note that this construction works even in the case that ½A1� ¼ ½A2�. In

this case, the minimal proper meet-situated predecessors and successors will be

common to the two attributes, but this will not change the construction.

Thus, M0 2 LDBðRÞ. Since �R
3 ðMÞ¼ �R

3 ðM0Þ, M00 ¼ ð�R
1 � �R

2 Þ
�1ð�R

1 ðMÞ; �R
2 ðM0ÞÞ

is well defined, and must be in LDBðRÞ as well. However, it is clear that this latter

element violates A1 v A2, since a 2 �A1
ðM00Þ n �A2

ðM00Þ. This is a contradiction, and

so M 62 LDBðRÞ, as was to be shown. Ì

Definition 6.17 (Products of databases). Let fMi j 1 r j r mg � DBðDÞ. The product
of
Qm

i¼1 Mi is obtained by taking the products of the relations com-ponentwise. More

specifically, for the relation symbol Ri of R, if ti ¼ ðai1; ai2; . . . ; aini
Þ is a tuple in the

relation for Ri in Mi, 1 r i r m, then t ¼ ðha11; a21; . . . ; ani1i; ha12; a22; . . . ; ani2i; . . . ;
ha1m; a2m; . . . ; animiÞ is a tuple in the relation corresponding to Ri in

Qm
i¼1 Mi, and

conversely. Note that this requires a renaming of the elements of the domain DomðUÞ,
but this is not a significant issue, since it is the form of the models, and not the names

of the domain elements, which are of importance.

In [11], the issues surrounding preservation of models on such products and the

corresponding projection operations are studied extensively, and a strong correspon-

dence between such preservation and Armstrong models is established. For the

purposes of this paper, only the two simple results stated in the lemma below are

needed.

Lemma 6.18.

(a) If fMi j 1 r i r ng is a finite subset of LDBðDÞ, then the product
Qn

i¼1 Mi 2
LDBðDÞ as well.

(b) Let A1;A2 2 U with the property that A1 v A2 62 �UIND. Then there is an M 2
LDBðDÞ on which A1 v A2 does not hold.

Proof. First of all, part (a) follows almost immediately from [11, Thm. 7.2], in which

it is shown that every schema constrained by constraints which are called extended
embedded implicational dependencies (XEIDs) is closed under products. All of the

constraints used here Y EGDs, JDs, and UINDs Y are special cases of XEIDs. The only

caveat is that his result, as stated, holds only on databases for which none of the

component relations is empty. However, it is easy to see that it also holds if the

database in which all relations are empty is allowed. It is rather the case in which some

relations are empty and others are not which causes problems, and that case has

already been eliminated from the framework used here via the uniform

nonemptinessYemptiness constraint ’UNE.

For part (b), it suffices to note that since ðð
Sn

i¼1ð�i[ ffl ½W1i;W2i�ÞÞ [ �UINDÞ
6�f A1 v A2, there must be some M 2 DBðDÞ which satisfies all of the constraints in
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Sn
i¼1ð�i[ ffl ½W1i;W2i�Þ but does not satisfy A1 v A2. This is exactly the M which is

needed for part (b). Ì

Lemma 6.19. For any A 2 U there is an M 2 LDBðRÞ and an a 2 �AðMÞ with the

following properties.

(i) For no B 2 U with ½B� 	 ½A� is it the case that a 2 �BðMÞ.

(ii) For no B 2 U with ½A� 	 ½B� is it the case that �BðMÞ ¼ �AðMÞ.

Proof. Let B 2 U with ½B� 	 ½A�; thus, in particular, B v A 2 �UIND while A v
B 62 �UIND. In view of Lemma 6.18(b), there is an MB 2 LDBðRÞ with the property that

A v B is not satisfied by MB. Thus, there is an aB 2 U with aB 2 �AðMBÞ n �BðMBÞ.
Similarly, for B 2 U with ½A� 	 ½B�; A v B 2 �UIND while B v A 62 �UIND, and so

there is an MB 2 LDBðRÞ with the property that B v A is not satisfied by MB. Now, let

S0 ¼ f½B� j ½B� 	 ½A�g [ f½B� j ½A� 	 ½B�g and let S be any subset of S0 which selects at

least one representative from each equivalence class. Define M ¼
Q

B2S MB; by

Lemma 6.18(a), M 2 LDBðDÞ. Let a 2 M be the element whose Bth component is ab.

Then a 62 �BðMÞ for any B with ½B� 	 ½A�, since aB 62 MB. Hence, M satisfies condition

(i) above. Condition (ii) is in fact satisfied by every MB, and so by the product in

particular. Ì

It is now possible to establish that meet-free traversals cannot exist when the

UINDs are fanout free. This in turn leads to the conclusion that a cover of the UINDs

embeds in the component views.

Proposition 6.20. If �UIND is fanout free, then Graph ð�UINDÞ cannot contain any

meet-free traversals.

Proof. Let i 2 f1; 2g, and let A1;A2 2 U with A1 	 A2 a meet-free traversal from �R
i

to �R
2�i. Let A ¼ A1 in Lemma 6.19, and obtain a database M 2 LDBðRÞ satisfying the

conditions (i) and (ii) of that lemma. Then M also satisfies the three conditions (i)Y(ii)

of Lemma 6.16, and so cannot be in LDBðRÞ. This is a contradiction; hence, such a

meet-free traversal cannot exist. Ì

Definition 6.21 (Embedded UINDs). For i 2 f1; 2g, let �R
i ð�UINDÞ denote the set of

all UINDs which hold on �R
i .

Proposition 6.22. If �UIND is fanout free, then �UIND ¼ ð�R
i ð�UINDÞ [ �R

2 ð�UINDÞÞþ.

In other words, there is an embedded cover of �UIND into the two views of the meet

complementary pair.

Proof. It is clear that the only UINDs which do not embed into one of the two

component views, or which cannot be deduced from such embedded UINDs via
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application of the transitivity rule of (rt-uid) Discussion 6.6, are those which

correspond to meet-free traversals. However, by Proposition 6.20, such traversals

cannot occur in the case that �UIND is fanout free. Ì

Finally, the main decomposition result may be established. Just as the inference

rules for FIDs and UINDs may be decoupled, so too does the constraint checking on

the views of the decomposition decouple into two independent checks, one for the

EGDs and the other for the UINDs.

Theorem 6.23 (Decomposition in the presence of EGDs and fanout-free UINDs).

Assume that �UIND is fanout free, let k 2 IN, and suppose that for each j, 1 r j r n,

�i consists of EGDs of degree at most k. Let M 2 JDBh�1;�2iðDÞ. Then M 2 LDBðRÞ iff

for both i ¼ 1 and i ¼ 2, �R
i ðMÞ satisfies all EGDs in �i

Rð�iÞ of degree at most k, as

well as all UINDs in �R
i ð�UINDÞ.

Proof. First of all, consider the same candidate model M 2 JDBh�1;�2iðDÞ, but as a

database in a modified schema in which the UINDs in �UIND are ignored. The

resulting schema clearly has the f��1ðRÞ;��2ðRÞg-relative k-submodel property; thus,

in view of theorem 5.19, the main theorem on decomposition of schemata with the

k-submodel property, to verify that the EGDs in
Sn

i¼1�i are satisfied, it suffices to

check that for both i ¼ 1 and i ¼ 2, �R
i ðMÞ satisfies all EGDs in �R

i ð�iÞ of degree at

most k.

Now, restore the requirement of checking satisfaction of the UINDs. By

Proposition 6.22, a cover of the UINDs must embed into the views. Thus, checking

the satisfaction of the members of this cover suffices to verify that the constraints of

�UIND are satisfied. Hence, M 2 LDBðDÞ. Ì

Upon restricting the above theorem to the familiar territory of FDs, the following

result is obtained. In essence, to check the correctness of a decomposed database, it

suffices to verify that each of the component views satisfies all embedded FDs and

UINDs.

Corollary 6.24 (Decomposition in the presence of FDs and fanout-free UINDs).

Assume that �UIND is fanout free, let k 2 IN, and suppose that for each j, 1 r j r n,

�i consists of FDs. Let M 2 JDBh�1;�2iðDÞ. Then M 2 LDBðRÞ iff for both i ¼ 1 and

i ¼ 2, �R
i ðMÞ satisfies all FDs and UINDs from ð�iÞþ [ �UIND which embed in the

view �iðRÞ.

7. Final remarks

Discussion 7.1 (An alternative approach to recapturing generating constraints). The

decomposition results for schemata constrained by comparison constraints (Theorem
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5.19) are general and comprehensive. On the other hand, the general results reported

for generating constraints (Theorem 5.25) are not as broad. While the results established

in Section 6 on schemata constrained by EGDs and fanout-free UINDs nonetheless

provide interesting results for what is perhaps the most important type of generating

constraint in databases, they make use of very specific properties of the relational

data model, and in particular of constraints governed by situations in which finite

Armstrong relations exist. A crucial next step in this work is to look for alternative

formulations of the general problem which promise to lead to stronger results about

decompositions in the presence of generating constraints.

Discussion 7.2 (Strong uniqueness of complements). In the preliminary version of this

paper [21], results on the uniqueness of update strategies were also presented. One of

the weaknesses of the classical constant-complement strategy, set in the set-based

framework, is that complements are almost never unique, and the way in which view

updates are reflected back to the main schema depends upon the choice of

complement. The principal focus of [20] was to identify situations in which such

uniqueness may be obtained. The setting was database schemata with order, and the

main result stated that so-called order-based updates, that is, updates which may be

realized as a sequence of legal insertions and deletions, have a unique reflection to the

main view, independent of the choice of complement [20, 4.3].

In [21, Thm. 5.8], it was shown how to generalize this result in the context of

CFA-views. The key idea was to extend update strategies on a view � ¼ ðV; �Þ to its

syntactic extension b��; i.e., from LDBðVÞ to DBðVÞ. Since b�� is an order-based view, the

results of [20] guarantee that the updates on b�� are unique, and so these translate back

to �. The upshot is that all updates on a CFA-view � have a unique translation back to

the main schema, provided that they are defined by a constant-complement strategy

with some CFA-view �0 as complement.

Due to space and time restrictions, it was not possible to provide a suitable

elaboration to PF-schemata and PF-views in this paper. These uniqueness results will

be extended and reported separately.

Discussion 7.3 (Relationship to other work). The problem of characterizing the

complexity of the constraints on a view does not appear to have received much

attention previously, aside from the classical work of Hull [23], in which it is

shown that finite specification is not preserved under projection, and the work of

Fagin [11], which includes characterizations of projections of various classes of

dependencies.

There has been some work on the complexity of verifying the acceptability of

view updates under a constant complement strategy. In an early paper, Cosmadakis

and Papadimitriou [8] present pessimistic complexity results for view update under

constant complement which would appear to contradict those obtained here. However,

they work with general subdirect complements, and not meet complements, and so
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their results do not apply to the closed update strategies considered here. They also

investigate the complexity of identifying a minimal (not necessarily meet) com-

plement which will support a given update, again with pessimistic results.

Recently, Lechtenbörger and Vossen [25] have also looked at the complexity of

the problem of identifying (not necessarily meet) complements to views, but for the

purpose of identifying information missing in the view, and not with an eye towards

update strategies. Their approach, by design, does not concern itself with meet

complements or update strategies. Beyond those works, most of the literature on the

problem of complexity of view updates is focused on logic databases. The

fundamental issues which arise in that context (theory-oriented database models) are

quite different from those of instance-oriented database models, and so a meaningful

comparison is difficult at best.

Appendix A: A simple counterexample to the finite axiomatizability of relational

views

It is part of the folklore of the theory of relational databases that there exists a

schema with a simple axiomatization which has a projective view which is not finitely

axiomatizable. From time to time, it is useful to be able to point to such an example,

complete with an explanation of why finite axiomatizability fails. Unfortunately, they

have rarely made it into the literature. Only two are known to the author. In [23,

Lemma 4.1], Hull presents an example of a schema with five attributes constrained by

three functional dependencies (FDs). The view which is not finitely axiomatizable is a

projection onto four of those attributes. In [16], the author identifies a simpler example

containing just four attributes and constrained by three FDs, with the corresponding

view a projection onto three of those attributes. Unfortunately, that example contains

an error; and, in any case, no argument for its validity is offered. In this note, the

example of [16] is corrected, and the proof of the lack of finite axiomatizability of the

view is elaborated.

Let E1 be the relational schema with the single relation name R½ABCD� on four

attributes; the constraining set of FDs is F 1 ¼ fA! D;B! D;CD! Ag. The

domain of possible values for each attribute is assumed to be infinite. Let �ABC ¼
ðR½ABC�; �ABCÞ denote the view which is the projection onto the attributes ABC. For

any n > 0, let rðnÞ denote the instance which is depicted in figure 4. Assume that any

two elements with distinct names are distinct values, save that a1 and an may be the

same. It is easy to see that rðnÞ is a legal instance of the main schema if and only if

a1 ¼ an. Similarly, r0ðnÞ ¼ �ABCðrðnÞÞ is a legal instance of �ABC under the implied

constraints if and only if a1 ¼ an, since a simple Fchase_ through any element of

��1
ABCðr0ðnÞÞ shows that all of the values in the column of attribute D must be the same.

However, if any tuple from r0ðnÞ is deleted, a valid instance of R½ABC� is obtained

even if a1 6¼ an, since it is now possible to have two distinct values appearing in
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column D in an inverse image. This situation is shown in figure 5 with the row con-

taining ða3; b4; c6Þ deleted. In this case, it need not be the case that a1 ¼ an. Therefore,

�ABC is not axiomatizable by any set of sentences having only n free tuple variables

(i.e.; a maximum of n variables per column). Since n is arbitrary, �ABC is not fin-

itely axiomatizable. In particular, it is not axiomatizable by any finite set of equality

Figure 4. The layout of the generic counterexample instance.

Figure 5. The layout of the generic counterexample instance with one row deleted.
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generating dependencies (EGDs) [1, 10.1], much less by a family of functional

dependencies.
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[2] J. Adámek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (Wiley-Interscience,

1990).

[3] F. Bancilhon and N. Spyratos, Update semantics of relational views, ACM Transactions on

Database Systems 6 (1981) 557Y575.

[4] C. Beeri and M.Y. Vardi, Formal systems for tuple and equality generating dependencies, SIAM

Journal on Computing 13(1) (1984) 76Y98.

[5] C. Beeri and M.Y. Vardi, A proof procedure for data dependencies, Journal of the Association for

Computing Machinery 31(4) (1984) 718Y741.

[6] A.K. Chandra and M.Y. Vardi, The implication problem for functional and inclusion dependencies

is undedidable, SIAM Journal on Computing 14 (1985) 671Y677.

[7] S. Cosmadakis, P.C. Kannelakis and M.Y. Vardi, Polynomial-time implication problems for

unary inclusion dependencies, Journal of the Association for Computing Machinery 37(1) (1990)

15Y46.

[8] S. Cosmadakis and C. Papadimitriou, Updates of relational views, Journal of the Association for

Computing Machinery 31 (1984) 742Y760.

[9] B.A. Davey and H.A. Priestly, Introduction to Lattices and Order, 2nd edition (Cambridge

University Press, 2002).

[10] R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 4th edition (Pearson Education,

2004).

[11] R. Fagin, Horn clauses and database dependencies, Journal of the Association for Computing

Machinery 29(4) (1982) 952Y985.

[12] R. Fagin and M.Y. Vardi, Armstrong databases for functional and inclusion dependencies,

Information Processing Letters 16 (1983) 13Y19.

[13] J.N., Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce and A. Schmitt, Combinators for Bi-

Directional Tree Transformations: A Linguistic Approach to the View Update Problem, Technical

Report MS-CIS-04-15, Department of Computer Science, University of Pennsylvania, 2004. to

appear in POPL 2005.

[14] J. Grant and B.E. Jacobs, On the family of generalized dependency constraints, JACM 29(4) (1982)

986Y997.

[15] S.J. Hegner, 1990, Foundations of canonical update support for closed database views, in: ICDT’90,
Third International Conference on Database Theory, eds. S. Abiteboul and P.C. Kanellakis (Paris,

France), pp. 422Y436, December.

[16] S.J. Hegner, Some open problems on view axiomatization, Bulletin of the EATCS 40 (1990)

496Y498.

[17] S.J. Hegner, Characterization of desirable properties of general database decompositions, Annals of

Mathematics and Artificial Intelligence 7 (1993) 129Y195.

[18] S.J. Hegner, Unique complements and decompositions of database schemata, Journal of Computer

and System Sciences 48(1) (1994) 9Y57.

[19] S.J. Hegner, 2002, Uniqueness of update strategies for database views, in: Foundations of
Information and Knowledge Systems: Second International Symposium, FoIKS 2002, Salzau Castle,
Germany, February 2002, Proceedings, pp. 230Y249.

96 S. J. Hegner / Complexity of embedded axiomatization



[20] S.J. Hegner, An order-based theory of updates for database views, Annals of Mathematics and

Artificial Intelligence 40 (2004) 63Y125.

[21] S.J. Hegner, The relative complexity of updates for a class of database views, in: Foundations of
Information and Knowledge Systems: Third International Symposium, FoIKS 2004, Wilehminenberg
Castle, Austria, February 17Y20, 2004, Proceedings, Vol. 2942 of Lecture Notes in Computer
Science, eds. D. Seipel and J.M. TurullYTorres, (2004) pp. 155Y175.

[22] E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms (Computer Science, 1998).

[23] R. Hull, Finitely specifiable implicational dependency families, Journal of the Association for

Computing Machinery 31(2) (1984) 210Y226.

[24] B.E. Jacobs, A.R. Aronson and A.C. Klug, On interpretations of relational languages and solutions

to the implied constraint problem, ACM Transactions on Database Systems 7(2) (1982) 291Y315.

[25] J. Lechtenbörger and G. Vossen, On the computation of relational view components, ACM

Transactions on Database Systems 28 (2003) 175Y208.

[26] J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht, The Structure of the Relational Database
Model (Springer, 1989).

[27] B. Thalheim, Dependencies in Relational Databases, Vol. 126 of Teubner-Texte zur Mathematik
(Teubner, 1991).

[28] K. Wang and M.H. Graham, Constant-time maintainability: A generalization of independence,

ACM Transactions on Database Systems 17(2) (1992) 201Y246.

S. J. Hegner / Complexity of embedded axiomatization 97



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /Gautami
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kartika
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /Latha
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Mangal-Regular
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MVBoli
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Raavi
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SpsFont4Medium
    /SPSFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Sylfaen
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Tunga-Regular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /Vrinda
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


